Automatic 3D buildings design

Design_tool

Description

The automation in the construction industry is less developed when compared
to other industries. Traditional methods on house-building are usually based
on manual techniques which are slow and expensive. The productivity of construction
industries can be improved by using new materials, new construction methods
and new information technology techniques. The aim is not only to increase
productivity, but also to improve work safety and hygiene conditions. These
systems will increase the quality and the customer satisfaction.

The main difficulties that focus the automation construction industry are:
non-structured workspace, the building diversity, the number and variety
of construction processes, the volume and weight of pieces to handle, the
necessity of qualified workers and the exchange of information between the
different stages (design, planning, transport, erection, maintenance, etc.).
The integration of activities should be the major objective to increase benefits.

This work is part of an integrated project that deals with automation in
the construction and, in particular, with the erection of modular buildings.
The buildings will be assembled by placing prefabricated modules with robots
or automated cranes. A Computer Integrated Construction (CIC) architecture
has been proposed to achieve modular construction. Design, planning and simulation
tools have been integrated under a common graphical user interface. In this
work, several design and animation tools have been developed. In parallel
a planning tool has been developed to calculate the modules assembly sequence
from the design data.

The first design tool guides the user step by step to place modules into
design from a library of parametrised modules, created specially for this
purpose. The second design tool permits to obtain in an automatic way the
dimensions and position of the modules that are needed to construct a building
starting from the traditional architectural design. The selection of the
modules will be carried out responding to several criteria: minimum number
of modules, minimum number of different modules, module size and shape limitations,
etc.

Simulation and animation tools have also been designed and implemented within
the design CAD itself, as part of this thesis. These tools consist of, a
gantry crane simulator, a tower crane simulator and a program editor for
both. The simulators can be moved manually or can be programmed to execute
the task written in a specific crane language which has been developed. This
language is used to program the real prototype of gantry crane in the laboratory.
Programs can be written with the program editor or automatically generated
by a planning tool.

Entries:
Usability assessment of ASIBOT: a portable robot to aid patients with spinal cord injury
Disability & Rehabilitation: Assistive Technology. , pages: 1 – 11 , 2010
A. Jardon C.A. Monje A. Gil A. Peña
The MATS robot: Service Climbing Robot for Personal Assistance
IEEE Robotics & Automation Magazine. num. 1 , vol. 13 , pages: 51 – 58 , 2006
A. Gimenez A. Jardon
Robots applications against gravity
IEEE Robotics & Automation magazine. num. 1 , vol. 13 , pages: 5 – 6 , 2006

Entries:
Benchmarking Shared Control for Assistive Manipulators: From Controllability to the Speed-Accuracy Trade-Off
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), 2012, Vilamoura, Portugal
M.F. Stoelen F. Bonsignorio A. Jardon
Experimental evaluation of assistive robots in virtual domestic scenarios
International Symposium for Automation and Robotics in Construction (ISARC/Gerontechnology 2012). Vol. 11. Num. 2, 2012, Eindhoven, The Netherlands
A. Jardon Juan G. Victores M.F. Stoelen S. Martinez
Methodologies for Experimental Evaluation of Assistive Robotics HRI
ROBOCITY2030 9TH WORKSHOP: ROBOTS COLABORATIVOS E INTERACCION HUMANO-ROBOT, 2011, Madrid, Spain
M.F. Stoelen A. Jardon V. Tejada Juan G. Victores S. Martinez F. Bonsignorio
An information-theoretic approach to modeling and quantifying assistive robotics HRI
Late Breaking Report, Proceedings of the 6th international conference on Human-robot interaction (HRI), Lausanne, Switzerland
M.F. Stoelen F. Bonsignorio A. Jardon
Assistive robots dependability in domestic environment: the ASIBOT kitchen test bed
IARP-IEEE/RAS-EURON Joint Workshop on Shared Control for Robotic Ultra-operations, San Diego, California, Oct 28-30, 2007, 2007, San Diego, CA, EEUU
A. Gimenez S. Martinez A. Jardon
A. I. de la Peña González, A. M. Gil Agudo, Functional Evaluation of ASIBOT, a Portable Robot to Aid Disabled Persons
In Proceedings II International Congress on Domotics, Robotics and Remote‐Assistance for All DRT4all 2007, 2007, Madrid, SPAIN
A. Jardon
Live experimentation of the service robot applicationselderly people care in home environments
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'2005), Edmonton, Canada
R. Cabas R. Correal A. Gimenez A. Jardon
Wireless Teleoperation of an Assistive Robot by PDA
The 1st IFAC Symposium on Telematics Applications In Automation and Robotics, 2004, Helsinki, Finland
R. Correal A. Gimenez A. Jardon

Entries:
Progress in Robotics. Communications in Computer and Information Science 44
chapter: Infrared Remote Control with a Social Robot pages: 86 – 95. Springer , ISBN: 978-3-642-03985, 2009
A. Castro-Gonzalez M.A. Salichs
M. Ferre, M. Buss, C. Melchiorri. Advances in Telerobotics
chapter: Introduction to Advances in Telerobotics pages: 1 – 10. Springer Tracts in Advanced Robotics (STAR), vol. 31 , ISBN: 978-3-540-71363, 2007

Previous Research topics

next Research topics