Climbing Robots

For complex climbing robots, which work in difficult 3D outdoor environments, the gravity force has an important influence with respect the robots changes during its motion. This type of climbing robots is self-supported in the complex 3D structures (bridges, skeleton of the buildings, etc.) which require periodic, manually performed inspections and maintenance. The use of non-conventional climbing robots for this type of operation is highly appropriate. Their locomotion system commonly comprises arms/legs that permit the robot’s 3D mobility (gait). These mechanisms also enable the robot to support itself and guarantee its stability.

The RoboticsLab research in the field of climbing robots starts in 1995. Since this date several robots had been developed: a) Roma 1 was developed for inspection steel-based structures, like steel-beams based infrastructures like bridges, skeletons of the buildings, etc. Its grasping mechanism is able to securely grasp beams and columns, b) Roma 2 for travel along concrete, wood or plastic surfaces, by using a suction cups mechanism; its weight was substantially reduced by using several developed design criteria, and c) Mats robot allows moving in domestic interior environment.by using specially located docking stations. Being the robots? mobility different in some aspects, it was demonstrated that climbing in a complex 3D environment is possible with a high level of security.

roma222

Entries:
Task-Oriented Kinematic Design of a Symmetric Assistive Climbing Robot
Short paper, IEEE Transactions on Robotics. num. 6 , vol. 27 , pages: 1132 – 1137 , 2011
M.F. Stoelen F. Bonsignorio A. Jardon
Metodología de diseño óptimo para la construcción de robots de servicio.
Anales de Ingeniería Mecánica, ESPAÑA.. num. 1 , vol. 2 , pages: 1041 – 1046 , 2008
A. Gimenez A. Jardon Rubio, H. García Prada, A. Castejón, C.
The MATS robot: Service Climbing Robot for Personal Assistance
IEEE Robotics & Automation Magazine. num. 1 , vol. 13 , pages: 51 – 58 , 2006
A. Gimenez A. Jardon
Robots applications against gravity
IEEE Robotics & Automation magazine. num. 1 , vol. 13 , pages: 5 – 6 , 2006
Climbing Robots for Inspection of Steel Based Infrastructures
Industrial Robot . num. 3 , vol. 29 , pages: 246 – 251 , 2002
A. Gimenez M. Abderrahim

Entries:
Design and path-planning for a climbing robot able to travel along 3D metallic structures
First International Symposium on Climbing and Walking Robots, CLAWAR'98, Brussels, Belgium
V.M. Padron A. Gimenez M. Abderrahim
Identification of Dynamic Parameters of Manipulators Links
7th Mechatronics Forum International Conference, Atlanta, USA
A. Gimenez M. Abderrahim
An Adaptive Controller of a Climbing Robot
2nd International Conference on Climbing and Walking Robots, CLAWAR'99, Portsmouth, UK
V.M. Padron A. Gimenez M. Abderrahim
Path planning strategy of autonomous climbing robot for inspection applications in construction
16th International Symposium on Automation and Robotics in Construction (ISARC?99), Madrid, Spain
V.M. Padron A. Gimenez M. Abderrahim
ROMA: A Climbing Robot for Inspection Operations
International Conference on Robotics & Automation, ICRA'99, Detroit, USA
V.M. Padron A. Gimenez M. Abderrahim
ASIBOT Assistive Robot in a Domestic Environment
2nd ACM International Conference on PErvasiveTechnologies Related to Assistive Environments (PETRA), 2009, Corfu, Greece
A. Jardon Juan G. Victores M.F. Stoelen S. Martinez
A portable light-weight climbing robot for personal assistance applications
8th International Conference on Climbing and Walking Robots (Clawar'05). ?The Best Paper Award?, London, UK
R. Cabas R. Correal A. Gimenez A. Jardon
Analysis of the direct and inverse kinematics ofROMA II robot
8th International Conference on Climbing and Walking Robots (Clawar'05), London, UK
A. Gimenez A. Jardon
Integrated system of assisted mechatronic design for oriented computer to automatic optimising of structure of service robots (SIDEMAR)
Analysis of the direct and inverse kinematics of ROMA II robot. 8th International Conference on Climbing and Walking Robots (Clawar'05), London, UK
A. Gimenez A. Jardon
Design and development of a light weight embodied robotic hand activated with only one actuators
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'2005), Edmonton, Canada
R. Cabas
System Identification and Control of the Climbing Robot ROMA II
6th International Conference on Climbing and Walking Robots. CLAWAR'03, Catania, Italy
A. Gimenez P. Staroverov A. Jardon
Lessons from the ROMA I inspection robot development experience
4th International Conference on Climbing and Walking Robots, CLAWAR'01, Karlsruhe, Germany
A. Gimenez M. Abderrahim
Skill-based Strategy motion planning of a climbing robot for complex metallic structures
3rd International Conference on Climbing and Walking Robots, CLAWAR'00, Madrid, Spain
V.M. Padron A. Gimenez M. Abderrahim
A multi-purpose autonomous robot for travelling in metallic structures
International Symposium on unmanned vehicles for aerial, ground and naval military operations, Ankara, Turkey
V.M. Padron A. Gimenez M. Abderrahim

Previous Robot types & applications

next Robot types & applications

This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.