Visual tracking & servoing

Description

Visual tracking of objects is one the several capabilities that have the human beings. Even though it is performing in an unconscious way, it is tightly linked with many of the tasks we do.
At the present time, introducing these capabilities in artificial visual systems is one of the most interesting areas to research in computer vision and robotics.
Our effort is focused in the development of algorithms and techniques that allows an automatic adaptation of visual systems to changing environments.
With the purpose of making a complete vision-based control system, it is necessary to integrate several research areas such as visual matching, visual tracking and visual servoing.
The first step towards this integration consists of the use of model vision-based control techniques. These techniques have been designed to control a robot with respect to objects of any shape. Indeed, the system proposed have been designed for positioning a robot by tracking specific visual features (e.g. interest points, straight lines, contours).

Entries:
Force-Torque Sensor-Based Strategy for Precise Assembly using a SCARA Robot
Robotics and Autonomous Systems. num. 8 , vol. 8 , pages: 203 – 212 , 1991

Entries:
Optimum Robot Manipulator Path Generation using Differential Evolution
IEEE Congress on Evolutionary Computation, CEC’09, Trondheim, Noruega
C. G.Uzcategui D. Blanco L. Moreno
A. De Santis, B. Siciliano, The Virtual End-Effectors approach for Human-Robot Interaction
10th International Symposium on Advances in Robot Kinematics, 2006, Ljubljana, Slovenia
P. Pierro
Predesign of an Anthropomorphic Lightweight Manipulator
8th International Conference on Climbing and Walking Robots and the support Technologies for Mobile Machines (CLAWAR 2005), 2005, London, U.K.
S. Kadhim D. Blanco L. Moreno
Lightweight robot design for mobile manipulators
International Conference on MECHATRONICSICOM 2003, 2003, Loughborough, U.K.
S. Kadhim D. Blanco L. Moreno
Sensor-based path planning for a mobile manipulator guided by the human
11th International Conference on Advanced Robotics (ICAR?2003), Coimbra, Portugal
D. Blanco L. Moreno
Sensor-based path planning for a mobile manipulator guided by the humans
11th International Conference on Advanced Robotics, ICAR?03, 2003, Coimbra, Portugal
D. Blanco L. Moreno
Path planning with uncertainty
18th Int. Conf. on CAD/CAM, Robotics and Factories of the futureCARS&FOF 2002, Oporto, Portugal
L. Moreno
Active human-mobile manipulator cooperation through intention recognition
IEEE International Conference on Robotics and Automation (ICRA'01), 2001, Seoul, Korea
D. Blanco M.A. Salichs
Active Human-Mobile Manipulator Cooperation Through Intention Recognition
IEEE International Conference on Robotics and Automation, 2001, Seoul, Korea
D. Blanco C. Balaguer M.A. Salichs
Kinematic Control of a Redundant Nonholonomic Mobile Manipulator for Singularity Avoidance.
9th International Conference on Advanced Robotics, ICAR´99, 1999, Tokyo, Japan
D. Blanco M.A. Salichs
On-line Identification of Dynamic Systems with Restricted Genetic Optimization
4th IFAC Workshop on Algorithms and Architectures for Real-Time Control, 1997, Vilamoura, Portugal
L. Moreno M.A. Salichs
A multisensor robot system for precise assembly based on force-torque compliance control strategy
IEEE International Workshop on Sensorial Integration for Industrial Robots (SIFIR?89), Zaragoza, Spain
Teaching Robot Planners Using a Practical Approach
15th International Technology, Education and Development , 2021, Online,
A. Mora R. Sánchez R. Barber

Previous Research topics

next Research topics