Visual tracking & servoing

Description

Visual tracking of objects is one the several capabilities that have the human beings. Even though it is performing in an unconscious way, it is tightly linked with many of the tasks we do.
At the present time, introducing these capabilities in artificial visual systems is one of the most interesting areas to research in computer vision and robotics.
Our effort is focused in the development of algorithms and techniques that allows an automatic adaptation of visual systems to changing environments.
With the purpose of making a complete vision-based control system, it is necessary to integrate several research areas such as visual matching, visual tracking and visual servoing.
The first step towards this integration consists of the use of model vision-based control techniques. These techniques have been designed to control a robot with respect to objects of any shape. Indeed, the system proposed have been designed for positioning a robot by tracking specific visual features (e.g. interest points, straight lines, contours).

Entries:
Sensorless Friction and Gravity Compensation
IEEE RAS International Conference on Humanoid Robots (Humanoids 2014), 2014, Madrid, Spain
S. Morante Juan G. Victores S. Martinez
Control Practices using Simulink with Arduino as Low Cost Hardware
ACE2013 – The 10th IFAC Symposium on Advances in Control Education , 2013, Sheffield, UK
J. Crespo R. Barber
Design and Implementation of Software Components for a Remote Laboratory
7th International Technology, Education and Development Conference, 2013, Valencia, SPAIN
J. Crespo R. Barber
An Approach on Remote Laboratories using Matlab Web Server and Easy Java Simulations
6th International Technology, Education and Development Conference., 2012, Valencia, Spain
M. Malfaz C.A. Monje R. Barber
Adaptive Control of a Pneumatic System for Educational Practices
The 8th International Technology, Education and Development Conference, 2014, Valencia, Spain
J. Crespo R. Barber S. Garrido D. Rofriguez
A Home Made Robotic Platform based on Theo Jansen Mechanism for Teaching Robotics
The 10th annual International Technology, Education and Development Conference, 2016, Valencia, Spain
A. C. Hernández C. Gómez J. Crespo R. Barber
Object Classification in Natural Environments for Mobile Robot Navigation
IEEE, International Conference on Autonomous Robot Systems and Competitions (ICARSC), 16th edition, 2016, Braganza, Portugal
A. C. Hernández C. Gómez J. Crespo R. Barber

Entries:
RoboCity16 Open Conference on Future Trends in Robotics
chapter: Object Perception applied to Daily Life Environments for Mobile Robot Navigation pages: 105 – 112. Consejo Superior de Investigaciones Científicas Madrid, España , ISBN: 978-84-608-8452-1, 2016
A. C. Hernández C. Gómez J. Crespo R. Barber

Previous Research topics

next Research topics