Robotic hands

Robot_hands

Description

Introduction
Many research areas exist in Robotics, for example, the developement of robotic arms, manipulator robots, humanoids and robots created for disable people麓s assistance.
A common caracteristic between all those robots is the need of a manipulator which allows it to fulfil certain tasks. This manipulator should be universal in order to give the robot the possibility of being used in as many tasks as the user may want or need. For that reason, the objetive of imitating the human hand grows: it is the best manipulator created by Nature.
Currently, The Robotic麓s Lab has two projects:

  • RL1 Hand
  • UC3M Hand

RL1 Hand
The RL1 Hand is a Robotic Claw design to be mounted on the ASIBOT Robot for helping disable people. Due to the fact that the claw was expected to fit inside the Robot麓s Docking Station it had to reach certain caracteristics. A Docking Station is a mechanism that allows the robot to trasnsport throught different enviroments; this feature makes the ASIBOT Robot a climbing robot.


The movement to make the claw pass from a resting state (inside the Docking Station) to a operative state, requires a high complexity internal mechanism. This movement is achieved by only one electrical motor, situated inside the Docking Station with the electronic that controls the claw.

The RL1 Hand麓s fingers are able to adapt to the objects shape; this guarantee a firm holding in all cases. The three finger are activated by tendons guide throght pulleys.

The RL1 Hand recives specific instructions given by the ASIBOT Robot, throght the serial port.

Nowadays, a second version of the RL1 Hand is being developed (RL2 Hand), focusing on certain mechanisms optimizations which are expected to make the hand more robust.

UC3M Hand

This project is focused on the development of robotic hand capable of being mounted on the RH0 Humanoid. For that reason, the robotic hand needs to fulfil certain requirements, such us:

  • Modular configuration
  • Low weight (less than 700 gr.)
  • High dexterity

To achieve those requirements, certain objetives have been fixed:

  • All the movements must be governed by only one electrical motor
  • The UC3M Hand must contain all the mechanism and the electrical motor
  • The Humanoid must send simple instruccions to the UC3M Hand to control all its tasks

The objetives mentioned above will be reached by the design of an specific actuator and special mechanisms with a complex coontrol.

Entries:
A model-free approach for accurate joint motion control in humanoid locomotion
International Journal of Humanoid Robotics. num. 1 , vol. 8 , 2011
J. Villagra
Humanoid Robot RH-1 for Collaborative Tasks. A Control Architecture for Human-Robot Cooperation
Applied Bionics and Biomechanics. num. 4 , vol. 5 , pages: 225 – 234 , 2009
C.A. Monje P. Pierro

Entries:
O. Stasse; A. Kheddar; K. Yokoi. Humanoid feet trajectory generation for the reduction of the dynamical effects
The 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids '09), Paris, France
P. Pierro
A Human-Humanoid Interface for Collaborative Tasks
Second workshop for young researchers on Human-friendly robotics, Sestri Levante, Italy
P. Pierro M. Gonz谩lez-Fierro D. Hernandez
A Practical Decoupled Stabilizer for Joint-Position Controlled Humanoid Robots
The 2009 IEEE/RSJ International Conference on Intelligent RObots and Systems (IROS '09), St. Louis, USA
D. Kaynov P. Pierro
The Virtual COM Joints Approach for Whole-Body RH-1 Motion
18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN '09), Toyama , Japan
P. Pierro C.A. Monje
Performing collaborative tasks with the humanoid robot RH-1 – A novel control architecture
12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR '09), Istanbul, Turkey
P. Pierro C.A. Monje
Pose Control of the Humanoid Robot RH-1 for Mobile Manipulation
14th International Conference on Advanced Robotics (ICAR '09), Munich, Germany
P. Pierro C.A. Monje
Cap铆tulo: “Realizaci贸n de tareas colaborativas entre robots humanoides. Experimentaci贸n con dos robots Robonova”
At Proceedings of the V Workshop ROBOCITY2030. Cooperaci贸n en Rob贸tica, 2009, Madrid, Spain
D. Herrero P. Pierro A. Jardon
Modelling and Control of the Humanoid Robot RH-1 for Collaborative Tasks
IEEE RAS/RSJ Conference on Humanoids Robots, Daejeon, Korea
P. Pierro C.A. Monje
Robots in future collaborative working environments
First workshop for young researchers on Human-friendly robotics, Napoli, Italy
P. Pierro
HUMAN-HUMANOID ROBOT COOPERATION IN COLLABORATIVE TRANSPORTATION TASKS
11th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2008), 2008, Coimbra, Portugal
M. Arbulu
Trends of new robotics platform, designing Humanoid Robot Rh-1
CARS & FOF 0723rd ISPE International Conference on CAD/CAM Robotics and Factories of the Future, 2007, Bogota, Colombia
M. Arbulu D. Kaynov L.M. Cabas P. Staroverov
Nuevas tendencias en plataformas de rob贸tica, caso robot humanoide Rh-1
Intercon 2007XIV Congreso Internacional de Ingenier铆a El茅ctrica, Electr贸nica y Sistemas, 2007, Piura, Peru
M. Arbulu D. Kaynov L.M. Cabas P. Staroverov
ZMP Human Measure System
8th International Conference on Climbing and Walking Robots (Clawar'2005), London, United Kingdom
M. Arbulu D. Kaynov P. Staroverov
Rh-0 Humanoid Robot Bipedal Locomotion and Navigation Using Lie Groups and Geometric Algorithms
International Conference on Intelligent Robots and Systems (IROS'2005), Edmonton, Canada
J. M. Pardos-Gotor
Humanoid Robot Kinematics Modeling Using Lie Groups
7th International Conference on Climbing and Walking Robots (Clawar'2004), Madrid, Spain
J. M. Pardos-Gotor
Lie Groups and Lie Algebras in Robotics.
University Carlos III of Madrid – ROBOTICSLAB SEMINAR., Madrid, Spain
J. M. Pardos-Gotor

Previous Research topics

next Research topics