RISANAR

Satellite recognition and inspection via relative autonomous navigation

Main researcher: M.A. Salichs

sat_RISANAR

Description

Year by year, the number of satellites and space vehicles launched to space increases. Most of them would be able to carry out the tasks for which they have been designed, while others would not be able to fulfil their mission due to malfunction or operation anomalies, generating a great economic loss and becoming a potential risk for the others. It is clear, then, that the inspection and service of incapacitated satellites is a critical area in the space research and business sectors. The inspection and service of an incapacitated spacecraft must be performed with another spacecraft, which must be able to identify it and perform proximity and surrounding manoeuvres for visual inspection. The service operation will finish by carrying-out of a repair procedure with one or more robotic arms aboard the inspection vehicle. This research project is focused on the first phases of the mission, that is, on the identification of the motion and geometric structure of the incapacitated spacecraft and on the relative navigation around the non-cooperative vehicle for its inspection. Camera-based applications and novel artificial vision algorithms are the base of the technology to use, in straight relation with adequate architectures for guidance, navigation and control of space vehicles. In order to be able to obtain reliable results, an experimental testbed is constructed, based on an industrial robot; where different satellite geometries and configurations will be used under the space dynamics laws, based on robot visual servoing.

Also an adequate vision system will be implemented for the study of the identification and relative navigation problems. The project seeks to obtain the identification, inspection and navigation technology for the next generation of satellites, equipped with a high degree of autonomy due to their capacity of navigation with the information provided by a camera.

Part of the results is highly connected and will be useful for robot visual servoing in industrial applications

Entries:
Remote Interaction with Mobile Robots
Autonomous Robots. num. 3 , vol. 15 , pages: 267 – 281 , 2003
A.M. Khamis M.A. Salichs
Software Architecture for Internet Mobile Robotics
Robotics and Machine Perception. SPIE. num. 1 , vol. 12 , pages: 7 – 11 , 2003
A.M. Khamis M.A. Salichs

Entries:
Sistema de Interacción Remota con Robots Móviles basado en Internet I
I Jornadas de Trabajo: Educación en Automática. DocenWeb: Red Temática de Docencia en Control mediante Web, 2004, Alicante, Spain
A.M. Khamis R. Barber M.A. Salichs
Sistema de Interaccion Remota conRobots Moviles via Internet
II Jornadas de Redes de Investigaci¶on en Docencia Uni-versitaria, 2004, Alicante, Spain
M.A. Salichs
Pattern-based Architecture for Building Mobile Robotics Remote Laboratories
IEEE International Conference on Robotics and Automation, Taipei, Taiwan
M. Rivero A.M. Khamis M.A. Salichs
Multiact Approach for Building Web-based Educational Environments: Mobile Robotics Course as a Case Study
The 11th Mediterranean Conference on Control and Automation, MED'03, Rhodes, Greece
A.M. Khamis M.A. Salichs
The Merging to eLearning in Mobile Robotics
15th IFAC World Congress on Automatic Control (b?02), Barcelona, Spain
A.M. Khamis M.A. Salichs
Laboratorio a Distancia via Internet en Robotica Móvil
III Jornada de Trabajo – Enseñanza Vía Internet/Web de la Ingeniería de Sistemas y Automática- EIWSA 2002, 2004, Alicante, Spain
A.M. Khamis M.A. Salichs
Design of a Remote Laboratory on Mobile Robots
Internet-based Control Eduaction, IBCE01, Madrid, Spain
A.M. Khamis M.A. Salichs
A Remote Laboratory for Teaching Mobile Robotics
IFAC Conference on Telematics Applications and Robotics (TA2001), 2001, Weingarten, Germany
A.M. Khamis M.A. Salichs
Teaching Mobile Robotics to Anyone, Anywhere at Anytime
1st. EURON Workshop on Robotics Education and Training RET 2001, 2001, Weingarten, Germany
A.M. Khamis M.A. Salichs
Sensorial Data Acquisition Process for a Mobile Robot in the Virtual Laboratory
International Workshop in Teleeducation in Mechatronics based on Virtual Laboratories, 2001, Weingarten, Germany
A.M. Khamis M.A. Salichs

Previous Project

next project

Robot types & applications