RISANAR

Satellite recognition and inspection via relative autonomous navigation

Main researcher: M.A. Salichs

sat_RISANAR

Description

Year by year, the number of satellites and space vehicles launched to space increases. Most of them would be able to carry out the tasks for which they have been designed, while others would not be able to fulfil their mission due to malfunction or operation anomalies, generating a great economic loss and becoming a potential risk for the others. It is clear, then, that the inspection and service of incapacitated satellites is a critical area in the space research and business sectors. The inspection and service of an incapacitated spacecraft must be performed with another spacecraft, which must be able to identify it and perform proximity and surrounding manoeuvres for visual inspection. The service operation will finish by carrying-out of a repair procedure with one or more robotic arms aboard the inspection vehicle. This research project is focused on the first phases of the mission, that is, on the identification of the motion and geometric structure of the incapacitated spacecraft and on the relative navigation around the non-cooperative vehicle for its inspection. Camera-based applications and novel artificial vision algorithms are the base of the technology to use, in straight relation with adequate architectures for guidance, navigation and control of space vehicles. In order to be able to obtain reliable results, an experimental testbed is constructed, based on an industrial robot; where different satellite geometries and configurations will be used under the space dynamics laws, based on robot visual servoing.

Also an adequate vision system will be implemented for the study of the identification and relative navigation problems. The project seeks to obtain the identification, inspection and navigation technology for the next generation of satellites, equipped with a high degree of autonomy due to their capacity of navigation with the information provided by a camera.

Part of the results is highly connected and will be useful for robot visual servoing in industrial applications

Entries:
The Rh-1 full-size humanoid robot: design, walking pattern generation and control
Journal of Applied Bionics and Biomechanics (Print ISSN: 1176-2322, Online: ISSN: 1754-2103). num. 3 , vol. 6 , pages: 301 – 344 , 2009
M. Arbulu D. Kaynov L.M. Cabas
Humanoid Robot RH-1 for Collaborative Tasks. A Control Architecture for Human-Robot Cooperation
Applied Bionics and Biomechanics. num. 4 , vol. 5 , pages: 225 – 234 , 2009
C.A. Monje P. Pierro

Entries:
O. Stasse; A. Kheddar; K. Yokoi. Humanoid feet trajectory generation for the reduction of the dynamical effects
The 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids '09), Paris, France
P. Pierro
A Human-Humanoid Interface for Collaborative Tasks
Second workshop for young researchers on Human-friendly robotics, Sestri Levante, Italy
P. Pierro M. González-Fierro D. Hernandez
A Practical Decoupled Stabilizer for Joint-Position Controlled Humanoid Robots
The 2009 IEEE/RSJ International Conference on Intelligent RObots and Systems (IROS '09), St. Louis, USA
D. Kaynov P. Pierro
The Virtual COM Joints Approach for Whole-Body RH-1 Motion
18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN '09), Toyama , Japan
P. Pierro C.A. Monje
Performing collaborative tasks with the humanoid robot RH-1 – A novel control architecture
12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR '09), Istanbul, Turkey
P. Pierro C.A. Monje
RH-2 an Upgraded full-size humanoid platform
12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR '09), Istanbul, Turkey
M. Arbulu L.A. Pabon P. Pierro C. Perez S. Martinez
Humanoid Teleoperation System for Space Environments
14th International Conference on Advanced Robotics (ICAR '09), 2009, Munich, Germany
P. Pierro M. González-Fierro D. Hernandez
Pose Control of the Humanoid Robot RH-1 for Mobile Manipulation
14th International Conference on Advanced Robotics (ICAR '09), Munich, Germany
P. Pierro C.A. Monje
Capítulo: “Realización de tareas colaborativas entre robots humanoides. Experimentación con dos robots Robonova”
At Proceedings of the V Workshop ROBOCITY2030. Cooperación en Robótica, 2009, Madrid, Spain
D. Herrero P. Pierro A. Jardon
Modelling and Control of the Humanoid Robot RH-1 for Collaborative Tasks
IEEE RAS/RSJ Conference on Humanoids Robots, Daejeon, Korea
P. Pierro C.A. Monje
CEABOT: Nationalwide Little humanoid robots competition; rules, experiences and new challenges
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS, 2008, Venice. , ITALY
P. Zafra A. Gimenez S. Martinez A. Jardon
Robots in future collaborative working environments
First workshop for young researchers on Human-friendly robotics, Napoli, Italy
P. Pierro
K., Yokoi, A., Kheddar, C., Balaguer<br>Dynamic acyclic motion from a planar contact-stance to another
IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems, Nice, France
M. Arbulu

Entries:
CLIMBING AND WALKING ROBOTS
chapter: A PORTABLE LIGHT-WEIGHT CLIMBING ROBOT FOR PERSONAL ASSISTANCE APPLICATIONS pages: 961 – 968. CLAWAR 05 , ISBN: 978-3-540-26413, 2006
A. Gimenez A. Jardon

Previous Project

next project

Robot types & applications