MANFRED-2

The mobile robot MANFRED-2 is a mobile manipulator whose purpose is to serve as experimental platform for R&D in the mobile robots area. It has been designed to operate efficiently in environments where human manipulation capabilities are required.

The mobile robot MANFRED-2 (MAN FRiEnDly mobile manipulator) is a mobile manipulator whose purpose is to serve as experimental platform for R&D in the mobile robots area. It has been designed to operate efficiently in environments where human manipulation capabilities are required. MANFRED-2 must be able to navigate autonomously in an environment typically composed of a corridor and offices.

The robot design is inspired by planetary rovers and communications satellites. These systems are composed of several subsystems that need to be interconnected to make the whole system work. These subsystems are: onboard computer, power distribution system, sensors, drive system, etc. More instruments to explore the surroundings, such as articulated arms, can also be implemented depending on its application.

MANFRED-2 has at most eight DOF. It is composed of a differential-type mobile base with two DOF and an anthropomorphic light arm with six DOF. It can execute multiple tasks. The most typical ones are opening and passing through doors, obstacle avoidance, and picking up and manipulating objects. In order to do that, the robot needs all the basic capabilities to move safely and independently around the environment, motor coordination between the base and manipulator, and sensory coordination to manipulate objects.

manfred_2

Entries:
General Path Planning Methodology for Leader-Followers based Robot Formations
International Journal of Advanced Robotic Systems. num. 64 , vol. 10 , pages: 1 – 10 , 2013
S. Garrido L. Moreno J.V. Gomez P. Lima
Planning Robot Formations with Fast Marching Square Including Uncertainty Conditions
Robotics and Autonomous Systems. num. 2 , vol. 61 , pages: 137 – 152 , 2013
J.V. Gomez A. Lumbier S. Garrido L. Moreno
Adaptive evolving strategy for dextrous robotic manipulation.
Evolving Systems, http://dx.doi.org/10.1007/s12530-013-9085-6.. , pages: 1 – 8 , 2013
D. Alvarez C. A. Arismendi S. Garrido L. Moreno
High-Accuracy Global Localization Filter for Three-Dimensional Environments
Robotica, http://dx.doi.org/10.1017/S0263574711000701. num. 3 , vol. 30 , pages: 363 – 378 , 2012
F. Martín S. Garrido D. Blanco L. Moreno
Robotic Motion using Harmonic Functions and Finite Elements
Journal of Intelligent and Robotic Systems. http://dx.doi.org/10.1007/s10846-009-9381-3. num. 1 , vol. 59 , pages: 57 – 74 , 2010
F. Martín S. Garrido D. Blanco L. Moreno
Nonholonomic Motion Planning Using the Fast Marching Square Method
International Journal of Advanced Robotic Systems. num. 56 , vol. 12 , 2015
C. A. Arismendi D. Alvarez S. Garrido L. Moreno

Entries:
Precision Grasp Planning Based on Fast Marching Square.
IEEE/RSJ 21st Mediterranean Conference on Control and Automation (MED) 2013., Platanias-Chani, Greece
J.V. Gomez D. Alvarez A. Lumbier S. Garrido L. Moreno
Fast Marching in motion planning for rhombic like vehicles operating in ITER
IEEE International Conference on Robotics and Automation (ICRA 2013), 2013, Karlsruhe, Germany
J.V. Gomez S. Garrido L. Moreno
Estimación de Suelos Navegables para Interiores
11th Workshop Robocity 2030: Robots personales y asistenciales, 2013, Madrid, Spain
J.V. Gomez D. Alvarez L. Moreno
Kinesthetic Teaching via Fast Marching Square
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), 2012, Vila Moura, Portugal
J.V. Gomez D. Alvarez S. Garrido L. Moreno
Adaptive Robot Formations Using Fast Marching Square Working Under Uncertainty Conditions
IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO 2011), 2011, San Francisco , CA – EEUU
J.V. Gomez S. Garrido L. Moreno
Accelerated Localization in Noisy 3D Environments usingDifferential Evolution
The 2010 International Conference on Genetic and Evolutionary Methods, Las Vegas, USA
C. G.Uzcategui F. Martín D. Blanco L. Moreno
Localization in 3D Environments Using DifferentialEvolution
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
F. Martín S. Garrido D. Blanco L. Moreno
L1-norm global localization based on a Differential Evolution Filter
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
M.L. Muñoz F. Martín S. Garrido D. Blanco L. Moreno

Previous Robot

next robot

This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.