Assistive portable robots design

42_G

Description

Today, health care has become one of the very potential businesses. The world population is becoming old, and many people are highly concerned about their welfare. It is very important to give a thoughtful consideration to the handicapped and the elderly. Nevertheless, the research about helping those people are currently limited to the enhancement of residential or welfare equipment such as the wheelchair, intelligent bed, assistance robot system for the handicapped, etc. Therefore, it is necessary to help the handicapped and the elderly to be a more productive member of the society in addition to being independent of care-givers.
Further, it will help them to live not as burdens to the society but with self-confidence as those who can contribute to the society. 
The main goal of this research area is to design and develop really portable assistive robotic devices able to be transported easily by the user in his daily trip from house to office, providing the assistance in both environments. 
In this way it’s possible to dock the MATS to the wheelchair, and once in the office undock automatically the robot and start to use in the adapted office environment.

Entries:
Real-Time Gait Planning for Rh-1 Humanoid Robot Using Local Axis Gait Algorithm
International Journal of Humanoid Robotics. Print ISSN: 0219-8436. Online ISSN: 1793-6942. num. 1 , vol. 6 , pages: 71 – 91 , 2009
M. Arbulu
The Rh-1 full-size humanoid robot: design, walking pattern generation and control
Journal of Applied Bionics and Biomechanics (Print ISSN: 1176-2322, Online: ISSN: 1754-2103). num. 3 , vol. 6 , pages: 301 – 344 , 2009
M. Arbulu D. Kaynov L.M. Cabas

Entries:
Aiming for multibody dynamics on stable humanoid motion with Special Euclideans groups, called SE(3) (Accepted)
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipei, Taiwan
M. Arbulu S. Martinez A. Jardon C.A. Monje
Aiming for Multibody Dynamics on Stable Humanoid Motion with Special Euclidean Groups
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’2010, 2010, Taipei, China
M. Arbulu S. Martinez A. Jardon C.A. Monje
Optimal gait synthesis of biped robot pasibot using artificial intelligence based predictive control
12th International Conference on Climbing and Walking Robots (Clawar'09), Istanbul,
J.G. Quijano A. Jardon
K., Yokoi, A., Kheddar, C., Balaguer<br>Dynamic acyclic motion from a planar contact-stance to another
IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems, Nice, France
M. Arbulu
Real -Time gait planning for Rh-1 humanoid robot, using Local Axis Gait algorithm
IEEE-RAS International Conference on Humanoid Robots (Humanoids'2007), Pittsburg-Pensi, USA
M. Arbulu
Trends of new robotics platform, designing Humanoid Robot Rh-1
CARS & FOF 0723rd ISPE International Conference on CAD/CAM Robotics and Factories of the Future, 2007, Bogota, Colombia
M. Arbulu D. Kaynov L.M. Cabas P. Staroverov
Nuevas tendencias en plataformas de robótica, caso robot humanoide Rh-1
Intercon 2007XIV Congreso Internacional de Ingeniería Eléctrica, Electrónica y Sistemas, 2007, Piura, Peru
M. Arbulu D. Kaynov L.M. Cabas P. Staroverov
Rh-0 humanoid full size robot`s control strategy based on the Lie logic technique
IEEE-RAS International Conference on Humanoid Robots (Humanoids'2005), 2005, Tsukuba, Japan
M. Arbulu D. Kaynov J. M. Pardos-Gotor P. Staroverov
Rh-0 Humanoid Robot Bipedal Locomotion and Navigation Using Lie Groups and Geometric Algorithms
International Conference on Intelligent Robots and Systems (IROS'2005), Edmonton, Canada
J. M. Pardos-Gotor
Inverse Dynamics of Humanoid Robot by Balanced Mass Distribution Method
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'2004), 2004, Sendai, Japan
M. Arbulu
User friendly graphical environment for gait optimization of the humanoid robot Rh-0
7tn International Conference on Climbing and Walking Robots (Clawar'2004), 2004, Madrid, Spain
M. Arbulu P. Staroverov
Humanoid Robot Kinematics Modeling Using Lie Groups
7th International Conference on Climbing and Walking Robots (Clawar'2004), Madrid, Spain
J. M. Pardos-Gotor

Previous Research topics

next Research topics