Soft robotics

Picture_soft

Description

Although advances in robotics have been undisputed for the past 50 years, robots made of rigid materials still have many limitations. Nowadays, there exists a new trend on biologically inspired robots with “soft” elements that are able to perform tasks which are not available to robots with rigid limbs. This new paradigm is known as Soft Robotics and is presented as an innovation beyond already existing flexible robots or other robots that include variable stiffness actuators (VSA). The technological challenge is in the incorporation of soft links into the robotic structure.

In the case of humanoid robotics, and in comparison with a rigid design, a robot with soft links has the following main advantages: a) simplicity of design, favouring an underactuated architecture without the need of increasing the number of degrees of freedom; b) increased accessibility and adaptability to complex environments, with a postural control that can hardly be implemented in rigid robots; and c) safer interaction with the human and the environment, with a high level of absorption of possible impacts, increasing the stability of the robot.
The main objective of this research topic is the development of a new type of links to create softer humanoid robots that meet the characteristics of simplicity, accessibility and safety. These soft links may be used interchangeably in various limbs of the humanoid robots, like arms, neck and spine, under the constraints of scalability, controllability of their stiffness and integration. To achieve this goal, this research proposes the following sub-objectives: 1) design and development of a prototype of soft link with definition of its material and its actuation system. As a result the electromechanical prototype will be obtained with the premise of easy integration into the rigid structure of a humanoid robot; 2) reconfigurable embedded control system for the soft link, using fractional order and robust control techniques. As a result a controller easily implementable in the humanoid robot TEO will be obtained; 3) substitution (integration) of various links of the life-size humanoid robot TEO by soft links properly scaled to act like arms, neck and spine. As a result a new soft humanoid will be available; and 4) final evaluation of the system, developing new metrics for the analysis of the behaviour of the soft robot, especially in human-robot interaction.

Entries:
Signage system for the navigation of autonomous robots in indoor environments
IEEE Transactions on Industrial Informatics. num. 1 , vol. 10 , pages: 680 – 688 , 2014
A. Corrales M. Malfaz M.A. Salichs
Symbolic Place Recognition in Voronoi-based maps by Using Hidden Markov Models
Journal of Intelligent and Robotic Systems. , vol. 39 , pages: 173 – 197 , 2004
L. Moreno D. Blanco
Navigation of Mobile Robots: Open Questions
Robotica. num. 3 , vol. 18 , pages: 227 – 234 , 2000
L. Moreno M.A. Salichs

Entries:
An Android Interface for an Arduino Based Robot for Teaching in Robotics
6th International Conference of Education, Research and Innovation , 2013, Sevilla, Spain
J. Crespo R. Barber
Extended range guidance system for micro-tunnelling machine
International Symposium for Automation and Robotics in Construction 2012 (ISARC/Gerontechnology 2012). Vol. 11. Num. 2, 2012, Eindhoven, The Netherlands
A. Jardon S. Martinez Juan G. Victores
Use of RFID technology on a mobile robot fortopological navigation tasks
IEEE International Conference on RFID-Technologies and Applications, 2011, Sitges, Spain
A. Corrales M.A. Salichs
Autonomous Monitoring And Reaction To Failures In A Topological Navigation System
2nd International Conference on Informatics in Control, Automation and Robotics, 2005, Barcelona, Spain
V. Egido R. Barber M.A. Salichs
A Door Lintel Locator Sensor for Mobile Robot Topological Navigation
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2005, Sofia, Bulgaria
V. Egido R. Barber M.A. Salichs
A Planner For Topological Navigation Based On Previous Experiences
The 5th IFAC Symposium on Intelligent Autonomous Vehicles, 2004, Lisboa, Portugal
V. Egido R. Barber M.A. Salichs
Sistema de Interacción Remota con Robots Móviles basado en Internet I
I Jornadas de Trabajo: Educación en Automática. DocenWeb: Red Temática de Docencia en Control mediante Web, 2004, Alicante, Spain
A.M. Khamis R. Barber M.A. Salichs
Using learned visual landmarks for intelligent topological navigation of mobile robots
IEEE International Conference on Robotics and Automation, Taipei, Taiwan
M.A. Salichs
Corridor exploration in the EDN Navigation System
15th IFAC World Congress on Automatic Control, 2002, Barcelona, Spain
V. Egido R. Barber M.A. Salichs
Learning Visual Landmarks for Mobile Robot Navigation
15th IFAC World Congress on Automatic Control. Barcelona, Barcelona, Spain
M.A. Salichs
Self-Generation by a Mobile Robot of Topological Maps of Corridors
IEEE International Conference on Robotics and Automation, 2002, Washington, USA
V. Egido R. Barber M.A. Salichs
Mobile Robot Navigation Based on Event Maps
3rd International Conference on Field and Service Robotics, 2001, Helsinki, Filand
R. Barber M.A. Salichs
Mobile Robot Navigation Based on Visual Landmark Recognition
IFAC Symposium on Intelligent Autonomous Vehicles, 2002, Sapporo, Japan
M.A. Salichs
Algorithm of Topological Map Generation for the EDN Navigation System
IFAC Workshop on Mobile Robot Technology, 2001, Jejudo Island, Korea
V. Egido R. Barber M.A. Salichs
A Visual Landmark Recognition System for Topological Navigation of Mobile Robots
IEEE International Conference on Robotics and Automation, 2001, Seoul, Korea
M.A. Salichs
Navigation of Mobile Robots: Learning from Human Beings
Plenary Session. IFAC Workshop on Mobile Robot Tecnology, Jejudo Island, Korea
M.A. Salichs
An inferring semantic system based on relational models for mobile robotics
2015 IEEE International Conference on Autonomous Robot Systems and Competitions, 2015, Vila Real, Portugal
J. Crespo R. Barber O. M. Mozos
Detecting Objects for Indoor Monitoring and Surveillance for Mobile Robots
IEEE 2014 International Conference on Emerging Security Technologies, 2014, Alcalá de Henares, Spain
J. Crespo R. Barber C. Astua
A ROS-BASED MIDDLE-COST ROBOTIC PLATFORM WITH HIGH-PERFORMANCE
ICERI2015, The 8th annual International Conference of Education, Research and Innovation , 2015, Sevilla, Spain.
C. Gómez A. C. Hernández J. Crespo R. Barber
Object Classification in Natural Environments for Mobile Robot Navigation
IEEE, International Conference on Autonomous Robot Systems and Competitions (ICARSC), 16th edition, 2016, Braganza, Portugal
A. C. Hernández C. Gómez J. Crespo R. Barber
Integration of Multiple Events in a Topological Autonomous Navigation System
IEEE, International Conference on Autonomous Robot Systems and Competitions (ICARSC), 16th edition, 2016, Bragança, Portugal
C. Gómez A. C. Hernández J. Crespo R. Barber

Entries:
Robots Sociales
chapter: Modelado semántico del entorno en robótica cognitiva. Aplicación en navegación. pages: 145 – 166. Universidad Carlos III de Madrid , ISBN: 978-84-695-7212, 2013
J. Crespo R. Barber
The Industrial Electronics Handbook. Control and Mechatronics
chapter: 39. Mobile Robots pages: 1 – 13. CRC Press , ISBN: 978-1-4398-0287, 2011
M. Malfaz R. Barber M.A. Salichs
Progress in Robotics.
chapter: Integration of a RFID System in a Social Robot. pages: 66 – 73. Springer Berlin Heidelberg , ISBN: 978-3-642-03986, 1999
A. Corrales M.A. Salichs
RoboCity16 Open Conference on Future Trends in Robotics
chapter: Object Perception applied to Daily Life Environments for Mobile Robot Navigation pages: 105 – 112. Consejo Superior de Investigaciones Científicas Madrid, España , ISBN: 978-84-608-8452-1, 2016
A. C. Hernández C. Gómez J. Crespo R. Barber
RoboCity16 Open Conference on Future Trends in Robotics
chapter: A Topological Navigation System based on Multiple Events for Usual Human Environments Consejo Superior de Investigaciones Científicas Madrid, España , ISBN: 978-84-608-8452-1, 2016
C. Gómez A. C. Hernández J. Crespo R. Barber

Previous Research topics

next Research topics