Soft robotics

Picture_soft

Description

Although advances in robotics have been undisputed for the past 50 years, robots made of rigid materials still have many limitations. Nowadays, there exists a new trend on biologically inspired robots with “soft” elements that are able to perform tasks which are not available to robots with rigid limbs. This new paradigm is known as Soft Robotics and is presented as an innovation beyond already existing flexible robots or other robots that include variable stiffness actuators (VSA). The technological challenge is in the incorporation of soft links into the robotic structure.

In the case of humanoid robotics, and in comparison with a rigid design, a robot with soft links has the following main advantages: a) simplicity of design, favouring an underactuated architecture without the need of increasing the number of degrees of freedom; b) increased accessibility and adaptability to complex environments, with a postural control that can hardly be implemented in rigid robots; and c) safer interaction with the human and the environment, with a high level of absorption of possible impacts, increasing the stability of the robot.
The main objective of this research topic is the development of a new type of links to create softer humanoid robots that meet the characteristics of simplicity, accessibility and safety. These soft links may be used interchangeably in various limbs of the humanoid robots, like arms, neck and spine, under the constraints of scalability, controllability of their stiffness and integration. To achieve this goal, this research proposes the following sub-objectives: 1) design and development of a prototype of soft link with definition of its material and its actuation system. As a result the electromechanical prototype will be obtained with the premise of easy integration into the rigid structure of a humanoid robot; 2) reconfigurable embedded control system for the soft link, using fractional order and robust control techniques. As a result a controller easily implementable in the humanoid robot TEO will be obtained; 3) substitution (integration) of various links of the life-size humanoid robot TEO by soft links properly scaled to act like arms, neck and spine. As a result a new soft humanoid will be available; and 4) final evaluation of the system, developing new metrics for the analysis of the behaviour of the soft robot, especially in human-robot interaction.

Entries:
High-Accuracy Global Localization Filter for Three-Dimensional Environments
Robotica, http://dx.doi.org/10.1017/S0263574711000701. num. 3 , vol. 30 , pages: 363 – 378 , 2012
F. Martín S. Garrido D. Blanco L. Moreno
Diseño y simulación de un actuador de rigidez variable
Anales de Ingeniería Mecánica: Revista de la Asociación Española de Ingeniería Mecánica; ISSN: 0212-5072. num. 18 , vol. 1 , pages: 154 – 161 , 2012
A. Gimenez A. Jardon López, J. García, D.
Compact modeling technique for outdoor navigation
IEEE Transactions on Systems, Man, and Cybernetics-Part A (ISSN: 1083-4427). num. 1 , vol. 38 , pages: 9 – 24 , 2008
D. Blanco L. Moreno
Desarrollo de un sistema de percepción de una plataforma móvil para entornos exteriores
Revista Iberoamerica de Ingeniería Mecánica (ISSN : 1137-2729). num. 3 , vol. 8 , pages: 3 – 23 , 2004
D. Blanco L. Moreno

Entries:
Topographical analysis for Voronoi-based modelling
28th Annual Conference of the IEEE Industrial Electronics SocietyIECON 2002, 2002, Seville, Spain
L. Moreno
Voronoi Extraction of Free-way Areas in Cluttered Environments
2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2005), Edmonton, Canada
D. Blanco L. Moreno
Traversability analysis technics in outdoor environments: a comparative study.
11th International Conference on Advanced Robotics, ICAR 2003, 2003, Coimbra, Portugal
D. Blanco L. Moreno
Traversable regions model for outdoor robots.
11th International Conference on Advanced Robotics, ICAR 2003 , 2003, Coimbra, Portugal
D. Blanco L. Moreno
Estimación de Suelos Navegables para Interiores
11th Workshop Robocity 2030: Robots personales y asistenciales, 2013, Madrid, Spain
J.V. Gomez D. Alvarez L. Moreno
Localization in 3D Environments Using DifferentialEvolution
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
F. Martín S. Garrido D. Blanco L. Moreno
Accelerated Localization in Noisy 3D Environments usingDifferential Evolution
The 2010 International Conference on Genetic and Evolutionary Methods, Las Vegas, USA
C. G.Uzcategui F. Martín D. Blanco L. Moreno
Differential Evolution approach to the grid-based Localization and Mapping problem
2007 IEEE International Conference on Intelligent Robots and Systems (IROS'2007), California, USA
F. Martín S. Garrido L. Moreno
L1-norm global localization based on a Differential Evolution Filter
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
M.L. Muñoz F. Martín S. Garrido D. Blanco L. Moreno
Modelado de zonas cruzables para la navegación segura de robots en entornos exteriores
2º Workshop de RoboCity 2030, Robot de exteriores, 2007, Ávila, España
D. Blanco L. Moreno
Evolutionary Filter for Mobile Robot Global Localization
2007 IEEE International Symposium on Intelligent Signal Processing (WISP'2007), 2007, Alcala Henares, Spain
F. Martín S. Garrido L. Moreno
E-SLAM solution to the grid-based Localization and Mapping problem
2007 IEEE International Symposium on Intelligent Signal Processing (WISP'2007), 2007, Alcala Henares, Spain
F. Martín S. Garrido L. Moreno
Rh-0 Humanoid Robot Bipedal Locomotion and Navigation Using Lie Groups and Geometric Algorithms
International Conference on Intelligent Robots and Systems (IROS'2005), Edmonton, Canada
J. M. Pardos-Gotor

Entries:
Innovations in Robot Mobility and Control
chapter: Voronoi-based outdoor traversable region modelling pages: 201 – 250. Springer-Verlag , ISBN: 3-540-26892-8, 2005
D. Blanco L. Moreno

Previous Research topics

next Research topics