Humanoid motion planning

RH0_Navigation_Walking

Description

Humanoid robotics hardware and control techniques have advanced rapidly during the last years. In order to improve the autonomy and overall functionality of these robots, reliable sensors and general integrated software tools and techniques are needed. It is easier for bipedal robots to exist in a human oriented environment than for other types of robots. For a biped robot to achieve dynamic balance while walking, practical motion planning algorithms with obstacle avoidance and dynamic gait algoitms must be developed. A biped robot also requires a control system to ensure the stability of the robot while walking.

Entries:
Smooth and Accurate control of multiple Shape Memory Alloys based actuators via low cost embedded hardware.
IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS 2012, Vilamoura, Portugal
A. Flores D. Copaci D. Blanco L. Moreno
A design methodology to allow scalability of EAP materials as actuators
3rd World Congress on Biomimetics, Artificial Muscles & Nano-Bio, 2006, Laussane, Switzerland
D. Fernandez L. Moreno
Characterization of IPMC using standard testing methods
Smart Structures and Materials., 2006, San Diego, USA
D. Fernandez L. Moreno
Actuator design using Electroactive materials
Smart Sensors Actuators and MEMS II. Microtechnologies for the New Millenium. , 2005, Sevilla, Spain
D. Fernandez L. Moreno
Towards standarization of EAP actuator test procedures
Smart Structures and Materials, San Diego, USA
D. Fernandez L. Moreno
A bio-inspired EAP actuator design methodology
Smart Structures and Materials, 2005, San Diego, USA
D. Fernandez L. Moreno
Electroactive Polymer Actuator design for space applications
8th ESA Workshop on Advanced Space Technologies for Robotics and AutomationASTRA 2004, 2004, ESTEC, Noordwik, Netherlands
D. Fernandez L. Moreno

Previous Research topics

next Research topics