ROBOESPAS

Active rehabilitation of patients with upper limb spasticity using collaborative robots

Main researcher: A. Jardon

Logo_circular

Description

The efficient and effective rehabilitation of people with neurological diseases, among them spasticity, represents one of the main social and economic problems for social security systems [1], [2]. Spasticity (from Greek spasmos, meaning ‘drawing or pulling’) is a muscle control disorder characterised by an increase in muscle tone with exaggerated stretch reflexes that also characterizes upper motor neuron syndrome. Furthermore, spasticity is present in other pathologies, such as cerebral palsy, spina bifida, brain stroke and amyotrophic lateral sclerosis. 
Robotics can play a significant role in the rehabilitation of patients with spasticity by improving their quality of life and reducing the costs associated with care. While the rehabilitation of lower limbs is a popular research area (particularly exoskeletons for locomotion), the rehabilitation of upper limbs remains to be further explored. In this light, the project aims to develop a platform for modelling, evaluation and rehabilitation of spasticity though robot-assisted therapy.
We propose to develop a method for non-invasive modelling of upper limbs based on the biomechanical modelling of joints using 7GDL Rosen Kinematics [3]. Traditionally, the muscle model is usually based on a non-linear state of Hill’s force-velocity relation [4]. However, the latest model is not suitable for people with spasticity. Therefore, improving the muscle model by introducing new parameters such as rigidity, viscoelasticity, extensibility and thixotropy is key. All of these elements will help develop a new model for spasticity to be validated through simulation.
Our second objective focuses on adapting the model to each patient through a new platform based on robot-assisted therapy and a 3D motion tracking system. The latter will enable a detailed analysis of passive movement response: force/pair and position/velocity of the limb and help determine the degree of spasticity of patients in a fast and objective manner, while simultaneously developing new clinical scales (a modified version of Ashworth [5]). The final adjustments of the model will be done by means of identification techniques like Hammerstein-wiener [6] and new concepts such as the patient’s acceptance.
Ultimately, this project pursues the clinical rehabilitation of patients that validates the system. Trials will be planned for each patient with user-friendly HMI and using a personalised model. The robot will guide the movements of each patient, generating 3D trajectories required automatically, and using continuous goal-directed actions algorithms [7], which will enable self-directed learning during execution [8]. This will allow to accurately assess the rehabilitation measuring new parameters: maximum level of hypertonia/rigidity, area under the curve, hypertonia relation, etc

Entries:
Planning Robot Formations with Fast Marching Square Including Uncertainty Conditions
Robotics and Autonomous Systems. num. 2 , vol. 61 , pages: 137 – 152 , 2013
J.V. Gomez A. Lumbier S. Garrido L. Moreno
MANFRED: Robot antropomórfico de servicio fiable y seguro para operar en entornos humanos
Revista Iberoamericana de Ingeniería Mecánica (ISSN: 1137-2729). num. 3 , vol. 9 , pages: 33 – 48 , 2005
S. Kadhim D. Blanco L. Moreno
Symbolic Place Recognition in Voronoi-based maps by Using Hidden Markov Models
Journal of Intelligent and Robotic Systems. , vol. 39 , pages: 173 – 197 , 2004
L. Moreno D. Blanco
Desarrollo de un sistema de percepción de una plataforma móvil para entornos exteriores
Revista Iberoamerica de Ingeniería Mecánica (ISSN : 1137-2729). num. 3 , vol. 8 , pages: 3 – 23 , 2004
D. Blanco L. Moreno
Path Quality Measures for Sensor-based Motion Planning.
Robotics and Autonomous Systems. num. 2 , vol. 44 , pages: 131 – 150 , 2003
L. Moreno

Entries:
Precision Grasp Planning Based on Fast Marching Square.
IEEE/RSJ 21st Mediterranean Conference on Control and Automation (MED) 2013., Platanias-Chani, Greece
J.V. Gomez D. Alvarez A. Lumbier S. Garrido L. Moreno
Fast Marching in motion planning for rhombic like vehicles operating in ITER
IEEE International Conference on Robotics and Automation (ICRA 2013), 2013, Karlsruhe, Germany
J.V. Gomez S. Garrido L. Moreno
Estimación de Suelos Navegables para Interiores
11th Workshop Robocity 2030: Robots personales y asistenciales, 2013, Madrid, Spain
J.V. Gomez D. Alvarez L. Moreno
Localization in 3D Environments Using DifferentialEvolution
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
F. Martín S. Garrido D. Blanco L. Moreno
L1-norm global localization based on a Differential Evolution Filter
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
M.L. Muñoz F. Martín S. Garrido D. Blanco L. Moreno
Predesign of an Anthropomorphic Lightweight Manipulator
8th International Conference on Climbing and Walking Robots and the support Technologies for Mobile Machines (CLAWAR 2005), 2005, London, U.K.
S. Kadhim D. Blanco L. Moreno
Voronoi Extraction of Free-way Areas in Cluttered Environments
2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2005), Edmonton, Canada
D. Blanco L. Moreno
Probability of success and uncertainty analysis in Path Planning
IEEE International Conference on Robotics and Automation, ICRA 2003, 2003, Taipei, Taiwan
L. Moreno
A Genetic Solution for the SLAM Problems
11th International Conference on Advanced Robotics, ICAR 2003 , 2003, Coimbra, Portugal
D. Blanco L. Moreno
Traversability analysis technics in outdoor environments: a comparative study.
11th International Conference on Advanced Robotics, ICAR 2003, 2003, Coimbra, Portugal
D. Blanco L. Moreno
Traversable regions model for outdoor robots.
11th International Conference on Advanced Robotics, ICAR 2003 , 2003, Coimbra, Portugal
D. Blanco L. Moreno
Lightweight robot design for mobile manipulators
International Conference on MECHATRONICSICOM 2003, 2003, Loughborough, U.K.
S. Kadhim D. Blanco L. Moreno
Topo-geometric modelling and localization in indoor environments
28th Annual Conference of the IEEE Industrial Electronics SocietyIECON 2002, 2002, Seville, Spain
L. Moreno
Topographical analysis for Voronoi-based modelling
28th Annual Conference of the IEEE Industrial Electronics SocietyIECON 2002, 2002, Seville, Spain
L. Moreno
Safe Local Path Planning for Human-Mobile Manipulator Cooperation
2nd IARP/IEEE-RAS Joint Workshop on Technical Challenge for Dependable Robots in Human Environments, 2002, Toulouse, France
D. Blanco L. Moreno
Localization and Modelling Approach Using Topogeometric Maps
Int. Conference on Intelligent Robots and SystemsIROS 2002, 2002, Lausanne, Switzerland
D. Blanco L. Moreno
Path planning with uncertainty
18th Int. Conf. on CAD/CAM, Robotics and Factories of the futureCARS&FOF 2002, Oporto, Portugal
L. Moreno
On-line Identification of Dynamic Systems with Restricted Genetic Optimization
4th IFAC Workshop on Algorithms and Architectures for Real-Time Control, 1997, Vilamoura, Portugal
L. Moreno M.A. Salichs
On line Performance Enhancement of a Behavioral Neural Network Controller
International Workshop on Artificial Neural Networks, 1993, Sitges, Spain
L. Moreno M.A. Salichs
Experiments with a Distributed Neural Network Controller for an Autonomous Mobile Robot
Workshop on Integration in Real Time Intelligent Control, IRTICS'93, Miraflores, Mad, Spain
L. Moreno M.A. Salichs
Mobile Robot Multitarget Tracking in Dynamic Environments
IEEE/RSJ International Conference on Intelligent Robots and Systems, 1992, Raleigh, NC, USA
L. Moreno M.A. Salichs
Ultrasonic Beacon System for Mobile Robots
IEEE International Workshop on Sensorial Integration for Industrial Robots: Architectures and Applications, 1989, Zaragoza, Spain
L. Moreno M.A. Salichs
A production system for AGV’s control
6th IFAC Symposium on Information Problems in Manufacturing Technology, 1990, Madrid, Spain
L. Moreno M.A. Salichs
Trajectory Planning Method for Autonomous Mobile Robot
6th IFAC Symposium on Information Problems in Manufacturing Technology, 1990, Madrid, Spain
L. Moreno M.A. Salichs
Metodo de asignacion multicarga para sistemas AGV
1er Congreso de la Asociación Española de Robótica, Zaragoza, Spain
L. Moreno M.A. Salichs
On line AGV System Planning
19th International symposium on automotive technology & automation, 1988, Montecarlo, Monaco
L. Moreno M.A. Salichs

Entries:
Innovations in Robot Mobility and Control
chapter: Voronoi-based outdoor traversable region modelling pages: 201 – 250. Springer-Verlag , ISBN: 3-540-26892-8, 2005
D. Blanco L. Moreno

Previous Project

next project