Hardware architecture for humanoids

Harddef

Description

In contrast to industrial robots a humanoid robot will interact with a person in the same workspace. To be able to interact with a human and to operate in like a human mode, sensorimotor skills of the robot are required. The humanoid robot must be equipped with actuators and with a number of different sensors to control its movements and monitor its state and to avoid collisions with humans or objects in the environment.

Summarizing the requirements there are:

? hardware architecture must comply with needed computing power
? scalability
? modularity
? standardized interfaces

Especially in humanoid robots there are additional requirements like:

? energy efficiency
? small outline
? lightweight
? small effort in cabling

The main goal of the humanoid robot control system is provide it with stable walking and avoid fallings down. To do this we generate motion pat-terns for each articulation according to the ZMP (Zero Moment Point) theory. The humanoid robot do not falls down when the target ZMP is inside of the support polygon made by the supporting leg(s).

Hardware architecture

Figure 1 shows an overview of the hardware structure. Presented architecture is provided with large level of scalability and modularity by dividing the hardware system into three basic layers. Each layer is represented as a controller centered on its own task such as external communications, motion controller?s network supervision, and general control.

Fig.1 Harware architecture

Bottom level software architecture

We developed the bottom level software for the advanced motion control system. It configures intelligent motion controllers, establishes CAN communication, controls trajectory execution and collects motion data which is used in humanoid robot control process. Figure 2 shows the bottom level software architecture.

Fig.2 Software architecture

Entries:
High-Accuracy Global Localization Filter for Three-Dimensional Environments
Robotica, http://dx.doi.org/10.1017/S0263574711000701. num. 3 , vol. 30 , pages: 363 – 378 , 2012
F. Martín S. Garrido D. Blanco L. Moreno
Diseño y simulación de un actuador de rigidez variable
Anales de Ingeniería Mecánica: Revista de la Asociación Española de Ingeniería Mecánica; ISSN: 0212-5072. num. 18 , vol. 1 , pages: 154 – 161 , 2012
A. Gimenez A. Jardon López, J. García, D.
Compact modeling technique for outdoor navigation
IEEE Transactions on Systems, Man, and Cybernetics-Part A (ISSN: 1083-4427). num. 1 , vol. 38 , pages: 9 – 24 , 2008
D. Blanco L. Moreno
Desarrollo de un sistema de percepción de una plataforma móvil para entornos exteriores
Revista Iberoamerica de Ingeniería Mecánica (ISSN : 1137-2729). num. 3 , vol. 8 , pages: 3 – 23 , 2004
D. Blanco L. Moreno

Entries:
Topographical analysis for Voronoi-based modelling
28th Annual Conference of the IEEE Industrial Electronics SocietyIECON 2002, 2002, Seville, Spain
L. Moreno
Voronoi Extraction of Free-way Areas in Cluttered Environments
2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2005), Edmonton, Canada
D. Blanco L. Moreno
Traversability analysis technics in outdoor environments: a comparative study.
11th International Conference on Advanced Robotics, ICAR 2003, 2003, Coimbra, Portugal
D. Blanco L. Moreno
Traversable regions model for outdoor robots.
11th International Conference on Advanced Robotics, ICAR 2003 , 2003, Coimbra, Portugal
D. Blanco L. Moreno
Estimación de Suelos Navegables para Interiores
11th Workshop Robocity 2030: Robots personales y asistenciales, 2013, Madrid, Spain
J.V. Gomez D. Alvarez L. Moreno
Localization in 3D Environments Using DifferentialEvolution
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
F. Martín S. Garrido D. Blanco L. Moreno
Accelerated Localization in Noisy 3D Environments usingDifferential Evolution
The 2010 International Conference on Genetic and Evolutionary Methods, Las Vegas, USA
C. G.Uzcategui F. Martín D. Blanco L. Moreno
Differential Evolution approach to the grid-based Localization and Mapping problem
2007 IEEE International Conference on Intelligent Robots and Systems (IROS'2007), California, USA
F. Martín S. Garrido L. Moreno
L1-norm global localization based on a Differential Evolution Filter
2009 IEEE International Symposium on Intelligent Signal Processing (WISP'2009), Budapest, Hungary
M.L. Muñoz F. Martín S. Garrido D. Blanco L. Moreno
Modelado de zonas cruzables para la navegación segura de robots en entornos exteriores
2º Workshop de RoboCity 2030, Robot de exteriores, 2007, Ávila, España
D. Blanco L. Moreno
Evolutionary Filter for Mobile Robot Global Localization
2007 IEEE International Symposium on Intelligent Signal Processing (WISP'2007), 2007, Alcala Henares, Spain
F. Martín S. Garrido L. Moreno
E-SLAM solution to the grid-based Localization and Mapping problem
2007 IEEE International Symposium on Intelligent Signal Processing (WISP'2007), 2007, Alcala Henares, Spain
F. Martín S. Garrido L. Moreno
Rh-0 Humanoid Robot Bipedal Locomotion and Navigation Using Lie Groups and Geometric Algorithms
International Conference on Intelligent Robots and Systems (IROS'2005), Edmonton, Canada
J. M. Pardos-Gotor

Entries:
Innovations in Robot Mobility and Control
chapter: Voronoi-based outdoor traversable region modelling pages: 201 – 250. Springer-Verlag , ISBN: 3-540-26892-8, 2005
D. Blanco L. Moreno

Previous Research topics

next Research topics