Software architecture for humanoids

Sw_arquit

Description

    The architecture on development for the RH series of humanoid robots, follows a three layered model: Organization, Coordination & Execution.

    The first covers the high level functionality like the HMI, the trajectory generation, the pilot (in a mobile robot fashion), etc.
The second one, Coordination, basically translate the high level commands into drivers commands. Also, must coordinate the movement of the 21 joints and manage the robot state.
    The last layer cover the software need to manage a field bus use to comunicate all joint drivers with the central unit.

    The fuctionalities aforementioned are what the software team is developing nowadays. In a middle term, the software odn development should fulfill more complex features, like a pseudo-ZMP feedback, a sensorized head and more complex high-level tasks.

    The final objective of this development is to bring a modular, scalable, real-time and easy-to-use platform for the development of humanoid skills, human-humanoid interactions and service competences.

Entries:
Force-Torque Sensor-Based Strategy for Precise Assembly using a SCARA Robot
Robotics and Autonomous Systems. num. 8 , vol. 8 , pages: 203 – 212 , 1991

Entries:
Optimum Robot Manipulator Path Generation using Differential Evolution
IEEE Congress on Evolutionary Computation, CEC’09, Trondheim, Noruega
C. G.Uzcategui D. Blanco L. Moreno
A. De Santis, B. Siciliano, The Virtual End-Effectors approach for Human-Robot Interaction
10th International Symposium on Advances in Robot Kinematics, 2006, Ljubljana, Slovenia
P. Pierro
Predesign of an Anthropomorphic Lightweight Manipulator
8th International Conference on Climbing and Walking Robots and the support Technologies for Mobile Machines (CLAWAR 2005), 2005, London, U.K.
S. Kadhim D. Blanco L. Moreno
Lightweight robot design for mobile manipulators
International Conference on MECHATRONICSICOM 2003, 2003, Loughborough, U.K.
S. Kadhim D. Blanco L. Moreno
Sensor-based path planning for a mobile manipulator guided by the human
11th International Conference on Advanced Robotics (ICAR?2003), Coimbra, Portugal
D. Blanco L. Moreno
Sensor-based path planning for a mobile manipulator guided by the humans
11th International Conference on Advanced Robotics, ICAR?03, 2003, Coimbra, Portugal
D. Blanco L. Moreno
Path planning with uncertainty
18th Int. Conf. on CAD/CAM, Robotics and Factories of the futureCARS&FOF 2002, Oporto, Portugal
L. Moreno
Active human-mobile manipulator cooperation through intention recognition
IEEE International Conference on Robotics and Automation (ICRA'01), 2001, Seoul, Korea
D. Blanco M.A. Salichs
Active Human-Mobile Manipulator Cooperation Through Intention Recognition
IEEE International Conference on Robotics and Automation, 2001, Seoul, Korea
D. Blanco C. Balaguer M.A. Salichs
Kinematic Control of a Redundant Nonholonomic Mobile Manipulator for Singularity Avoidance.
9th International Conference on Advanced Robotics, ICAR´99, 1999, Tokyo, Japan
D. Blanco M.A. Salichs
On-line Identification of Dynamic Systems with Restricted Genetic Optimization
4th IFAC Workshop on Algorithms and Architectures for Real-Time Control, 1997, Vilamoura, Portugal
L. Moreno M.A. Salichs
A multisensor robot system for precise assembly based on force-torque compliance control strategy
IEEE International Workshop on Sensorial Integration for Industrial Robots (SIFIR?89), Zaragoza, Spain
Teaching Robot Planners Using a Practical Approach
15th International Technology, Education and Development , 2021, Online,
A. Mora R. Sánchez R. Barber

Previous Research topics

next Research topics