Software architecture for humanoids

Sw_arquit

Description

    The architecture on development for the RH series of humanoid robots, follows a three layered model: Organization, Coordination & Execution.

    The first covers the high level functionality like the HMI, the trajectory generation, the pilot (in a mobile robot fashion), etc.
The second one, Coordination, basically translate the high level commands into drivers commands. Also, must coordinate the movement of the 21 joints and manage the robot state.
    The last layer cover the software need to manage a field bus use to comunicate all joint drivers with the central unit.

    The fuctionalities aforementioned are what the software team is developing nowadays. In a middle term, the software odn development should fulfill more complex features, like a pseudo-ZMP feedback, a sensorized head and more complex high-level tasks.

    The final objective of this development is to bring a modular, scalable, real-time and easy-to-use platform for the development of humanoid skills, human-humanoid interactions and service competences.

Entries:
Automatic Demonstration and Feature Selection for Robot Learning
IEEE International Conference on Humanoid Robots, 2015, Seoul, South Korea
S. Morante Juan G. Victores
Action Effect Generalization, Recognition and Execution through Continuous Goal-Directed Actions
IEEE International Conference on Robotics and Automation (ICRA 2014), 2014, Hong Kong, China
S. Morante Juan G. Victores A. Jardon
On Using Guided Motor Primitives to Execute Continuous Goal-Directed Actions
IEEE international symposium on robot and human interactive communication (RO-MAN 2014), 2014, Edinburgh, Scotland
S. Morante Juan G. Victores A. Jardon
Improving CGDA execution through Genetic Algorithms incorporating Spatial and Velocity constraints
IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2017, Coimbra, Portugal
R. Fernandez-Fernandez D. Estévez Juan G. Victores
Reducing the Number of Evaluations Required for CGDA Execution through Particle Swarm Optimization Methods
IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2017, Coimbra, Portugal
R. Fernandez-Fernandez D. Estévez Juan G. Victores
Robot Imitation through Vision, Kinesthetic and Force Features with Online Adaptation to Changing Environments
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, Madrid, Spain
R. Fernandez-Fernandez Juan G. Victores D. Estévez

Entries:

Previous Research topics

next Research topics