Hand control

IMAG0077

Description

The ability of manipulating a wide variety of a priori unknown objects permits the mobile manipulators to operate in unstructured environments. This ability also helps people when they are developing certain tasks. In order to acquire this skill, the mobile manipulators need highly flexible mechanic hands. These hands must operate autonomously. Besides, they must be secure and friendly when executing a large range of high level tasks. We are implementing control strategies in the
Gifu Hand III, developed by the Kawasaki and Mouri Laboratory at Gifu University.

The Gifu Hand III has a thumb and four fingers. The thumb has 4 joints with 4 DOF. Each finger has 4 joints with 3 DOF. The movement of the first joint of the thumb and the fingers allows adduction and abduction. The second, third, and fourth joints allow anteflexion and retroflexion. The main difference between the thumb and the fingers is that the fourth joint of the fingers is actuated by the third servomotor through a planar four-bars linkage mechanism. In conclussion, the Gifu Hand III has 20 joints with 16 DOF.

Grasping:

The algorithms required by the hand to provide grasping abilities of different objects are under development. This is the first step towards in-hand manipulation, which is the final goal of this research line.

Learning and mimic of human objects manipulation:

To obtain capacity levels close to human beings when manipulating objects and tools, an approach based on the learning process of the human beings is considered. The starting point is an initial observation and a subsequent imitation of the human manipulation sequences to reproduce the movement. The first difficulty is to find how observation and execution are conected, which means to observe the movements in the human hand and implement these movements in the motor activation programs of the robotic hand.

Entries:
Signage system for the navigation of autonomous robots in indoor environments
IEEE Transactions on Industrial Informatics. num. 1 , vol. 10 , pages: 680 – 688 , 2014
A. Corrales M. Malfaz M.A. Salichs
Symbolic Place Recognition in Voronoi-based maps by Using Hidden Markov Models
Journal of Intelligent and Robotic Systems. , vol. 39 , pages: 173 – 197 , 2004
L. Moreno D. Blanco
Navigation of Mobile Robots: Open Questions
Robotica. num. 3 , vol. 18 , pages: 227 – 234 , 2000
L. Moreno M.A. Salichs

Entries:
An Android Interface for an Arduino Based Robot for Teaching in Robotics
6th International Conference of Education, Research and Innovation , 2013, Sevilla, Spain
J. Crespo R. Barber
Extended range guidance system for micro-tunnelling machine
International Symposium for Automation and Robotics in Construction 2012 (ISARC/Gerontechnology 2012). Vol. 11. Num. 2, 2012, Eindhoven, The Netherlands
A. Jardon S. Martinez Juan G. Victores
Use of RFID technology on a mobile robot fortopological navigation tasks
IEEE International Conference on RFID-Technologies and Applications, 2011, Sitges, Spain
A. Corrales M.A. Salichs
Autonomous Monitoring And Reaction To Failures In A Topological Navigation System
2nd International Conference on Informatics in Control, Automation and Robotics, 2005, Barcelona, Spain
V. Egido R. Barber M.A. Salichs
A Door Lintel Locator Sensor for Mobile Robot Topological Navigation
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2005, Sofia, Bulgaria
V. Egido R. Barber M.A. Salichs
A Planner For Topological Navigation Based On Previous Experiences
The 5th IFAC Symposium on Intelligent Autonomous Vehicles, 2004, Lisboa, Portugal
V. Egido R. Barber M.A. Salichs
Sistema de Interacción Remota con Robots Móviles basado en Internet I
I Jornadas de Trabajo: Educación en Automática. DocenWeb: Red Temática de Docencia en Control mediante Web, 2004, Alicante, Spain
A.M. Khamis R. Barber M.A. Salichs
Using learned visual landmarks for intelligent topological navigation of mobile robots
IEEE International Conference on Robotics and Automation, Taipei, Taiwan
M.A. Salichs
Corridor exploration in the EDN Navigation System
15th IFAC World Congress on Automatic Control, 2002, Barcelona, Spain
V. Egido R. Barber M.A. Salichs
Learning Visual Landmarks for Mobile Robot Navigation
15th IFAC World Congress on Automatic Control. Barcelona, Barcelona, Spain
M.A. Salichs
Self-Generation by a Mobile Robot of Topological Maps of Corridors
IEEE International Conference on Robotics and Automation, 2002, Washington, USA
V. Egido R. Barber M.A. Salichs
Mobile Robot Navigation Based on Event Maps
3rd International Conference on Field and Service Robotics, 2001, Helsinki, Filand
R. Barber M.A. Salichs
Mobile Robot Navigation Based on Visual Landmark Recognition
IFAC Symposium on Intelligent Autonomous Vehicles, 2002, Sapporo, Japan
M.A. Salichs
Algorithm of Topological Map Generation for the EDN Navigation System
IFAC Workshop on Mobile Robot Technology, 2001, Jejudo Island, Korea
V. Egido R. Barber M.A. Salichs
A Visual Landmark Recognition System for Topological Navigation of Mobile Robots
IEEE International Conference on Robotics and Automation, 2001, Seoul, Korea
M.A. Salichs
Navigation of Mobile Robots: Learning from Human Beings
Plenary Session. IFAC Workshop on Mobile Robot Tecnology, Jejudo Island, Korea
M.A. Salichs
An inferring semantic system based on relational models for mobile robotics
2015 IEEE International Conference on Autonomous Robot Systems and Competitions, 2015, Vila Real, Portugal
J. Crespo R. Barber O. M. Mozos
Detecting Objects for Indoor Monitoring and Surveillance for Mobile Robots
IEEE 2014 International Conference on Emerging Security Technologies, 2014, Alcalá de Henares, Spain
J. Crespo R. Barber C. Astua
A ROS-BASED MIDDLE-COST ROBOTIC PLATFORM WITH HIGH-PERFORMANCE
ICERI2015, The 8th annual International Conference of Education, Research and Innovation , 2015, Sevilla, Spain.
C. Gómez A. C. Hernández J. Crespo R. Barber
Object Classification in Natural Environments for Mobile Robot Navigation
IEEE, International Conference on Autonomous Robot Systems and Competitions (ICARSC), 16th edition, 2016, Braganza, Portugal
A. C. Hernández C. Gómez J. Crespo R. Barber
Integration of Multiple Events in a Topological Autonomous Navigation System
IEEE, International Conference on Autonomous Robot Systems and Competitions (ICARSC), 16th edition, 2016, Bragança, Portugal
C. Gómez A. C. Hernández J. Crespo R. Barber

Entries:
Robots Sociales
chapter: Modelado semántico del entorno en robótica cognitiva. Aplicación en navegación. pages: 145 – 166. Universidad Carlos III de Madrid , ISBN: 978-84-695-7212, 2013
J. Crespo R. Barber
The Industrial Electronics Handbook. Control and Mechatronics
chapter: 39. Mobile Robots pages: 1 – 13. CRC Press , ISBN: 978-1-4398-0287, 2011
M. Malfaz R. Barber M.A. Salichs
Progress in Robotics.
chapter: Integration of a RFID System in a Social Robot. pages: 66 – 73. Springer Berlin Heidelberg , ISBN: 978-3-642-03986, 1999
A. Corrales M.A. Salichs
RoboCity16 Open Conference on Future Trends in Robotics
chapter: Object Perception applied to Daily Life Environments for Mobile Robot Navigation pages: 105 – 112. Consejo Superior de Investigaciones Científicas Madrid, España , ISBN: 978-84-608-8452-1, 2016
A. C. Hernández C. Gómez J. Crespo R. Barber
RoboCity16 Open Conference on Future Trends in Robotics
chapter: A Topological Navigation System based on Multiple Events for Usual Human Environments Consejo Superior de Investigaciones Científicas Madrid, España , ISBN: 978-84-608-8452-1, 2016
C. Gómez A. C. Hernández J. Crespo R. Barber

Previous Research topics

next Research topics