Hand control

IMAG0077

Description

The ability of manipulating a wide variety of a priori unknown objects permits the mobile manipulators to operate in unstructured environments. This ability also helps people when they are developing certain tasks. In order to acquire this skill, the mobile manipulators need highly flexible mechanic hands. These hands must operate autonomously. Besides, they must be secure and friendly when executing a large range of high level tasks. We are implementing control strategies in the
Gifu Hand III, developed by the Kawasaki and Mouri Laboratory at Gifu University.

The Gifu Hand III has a thumb and four fingers. The thumb has 4 joints with 4 DOF. Each finger has 4 joints with 3 DOF. The movement of the first joint of the thumb and the fingers allows adduction and abduction. The second, third, and fourth joints allow anteflexion and retroflexion. The main difference between the thumb and the fingers is that the fourth joint of the fingers is actuated by the third servomotor through a planar four-bars linkage mechanism. In conclussion, the Gifu Hand III has 20 joints with 16 DOF.

Grasping:

The algorithms required by the hand to provide grasping abilities of different objects are under development. This is the first step towards in-hand manipulation, which is the final goal of this research line.

Learning and mimic of human objects manipulation:

To obtain capacity levels close to human beings when manipulating objects and tools, an approach based on the learning process of the human beings is considered. The starting point is an initial observation and a subsequent imitation of the human manipulation sequences to reproduce the movement. The first difficulty is to find how observation and execution are conected, which means to observe the movements in the human hand and implement these movements in the motor activation programs of the robotic hand.

Entries:
A model-free approach for accurate joint motion control in humanoid locomotion
International Journal of Humanoid Robotics. num. 1 , vol. 8 , 2011
J. Villagra
Humanoid Robot RH-1 for Collaborative Tasks. A Control Architecture for Human-Robot Cooperation
Applied Bionics and Biomechanics. num. 4 , vol. 5 , pages: 225 – 234 , 2009
C.A. Monje P. Pierro

Entries:
O. Stasse; A. Kheddar; K. Yokoi. Humanoid feet trajectory generation for the reduction of the dynamical effects
The 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids '09), Paris, France
P. Pierro
A Human-Humanoid Interface for Collaborative Tasks
Second workshop for young researchers on Human-friendly robotics, Sestri Levante, Italy
P. Pierro M. Gonz谩lez-Fierro D. Hernandez
A Practical Decoupled Stabilizer for Joint-Position Controlled Humanoid Robots
The 2009 IEEE/RSJ International Conference on Intelligent RObots and Systems (IROS '09), St. Louis, USA
D. Kaynov P. Pierro
The Virtual COM Joints Approach for Whole-Body RH-1 Motion
18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN '09), Toyama , Japan
P. Pierro C.A. Monje
Performing collaborative tasks with the humanoid robot RH-1 – A novel control architecture
12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR '09), Istanbul, Turkey
P. Pierro C.A. Monje
Pose Control of the Humanoid Robot RH-1 for Mobile Manipulation
14th International Conference on Advanced Robotics (ICAR '09), Munich, Germany
P. Pierro C.A. Monje
Cap铆tulo: “Realizaci贸n de tareas colaborativas entre robots humanoides. Experimentaci贸n con dos robots Robonova”
At Proceedings of the V Workshop ROBOCITY2030. Cooperaci贸n en Rob贸tica, 2009, Madrid, Spain
D. Herrero P. Pierro A. Jardon
Modelling and Control of the Humanoid Robot RH-1 for Collaborative Tasks
IEEE RAS/RSJ Conference on Humanoids Robots, Daejeon, Korea
P. Pierro C.A. Monje
Robots in future collaborative working environments
First workshop for young researchers on Human-friendly robotics, Napoli, Italy
P. Pierro
HUMAN-HUMANOID ROBOT COOPERATION IN COLLABORATIVE TRANSPORTATION TASKS
11th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2008), 2008, Coimbra, Portugal
M. Arbulu
Trends of new robotics platform, designing Humanoid Robot Rh-1
CARS & FOF 0723rd ISPE International Conference on CAD/CAM Robotics and Factories of the Future, 2007, Bogota, Colombia
M. Arbulu D. Kaynov L.M. Cabas P. Staroverov
Nuevas tendencias en plataformas de rob贸tica, caso robot humanoide Rh-1
Intercon 2007XIV Congreso Internacional de Ingenier铆a El茅ctrica, Electr贸nica y Sistemas, 2007, Piura, Peru
M. Arbulu D. Kaynov L.M. Cabas P. Staroverov
ZMP Human Measure System
8th International Conference on Climbing and Walking Robots (Clawar'2005), London, United Kingdom
M. Arbulu D. Kaynov P. Staroverov
Rh-0 Humanoid Robot Bipedal Locomotion and Navigation Using Lie Groups and Geometric Algorithms
International Conference on Intelligent Robots and Systems (IROS'2005), Edmonton, Canada
J. M. Pardos-Gotor
Humanoid Robot Kinematics Modeling Using Lie Groups
7th International Conference on Climbing and Walking Robots (Clawar'2004), Madrid, Spain
J. M. Pardos-Gotor
Lie Groups and Lie Algebras in Robotics.
University Carlos III of Madrid – ROBOTICSLAB SEMINAR., Madrid, Spain
J. M. Pardos-Gotor

Previous Research topics

next Research topics