
ACTION GENERALIZATION IN HUMANOID ROBOTS

THROUGH ARTIFICIAL INTELLIGENCE WITH

LEARNING FROM DEMONSTRATION

By

Raúl Fernández Fernández

A dissertation submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in

Electrical Engineering, Electronics and Automation

At

Universidad Carlos III de Madrid

Advisors
Carlos Balaguer Bernaldo de Quirós

Juan Carlos González Víctores

Tutor
Juan Carlos González Víctores

September, 2021

Some rights reserved. This work is licensed under the CreativeCommons

Attribution-Non Commercial-Non Derivatives 3.0 (CC BY-NC-ND 3.0).

“I saved a life. My own. Am I a hero? I really can’t say.

But, yes.”

Michael Scott, The Office.

AKNOWLEDGEMENTS

Although this thesis is written in English allow me to use Spanish for

this. This is the mother tongue of most of the people I want to thank.

Primero de todo quiero darle las gracias a Juan y Carlos, mis tutores.

Sin ellos esta tesis no sería posible, es tan suya como mía. Gracias a Carlos

por confiar en mi desde el primer momento y ser uno de los mejores "jefes"

que he tenido. Gracias a Juan por todo su apoyo y esfuerzo a lo largo de la

tesis, gracias por dejarme escaparme de vez en cuando de viaje, y gracias

por ser mi amigo. El resto de agradecimientos están ordenados por orden

cronológico. Tranquilos, os quiero a todos igual, solo que a algunos os

quiero antes que a otros.

Gracias a mis padres, Mama y Papa, por estar siempre ahí, quererme

tanto, y enseñarme tantas cosas buenas. Gracias a mi hermano, Alex, por

lo bien que lo hemos pasado y por lo mucho que nos hemos divertido

juntos. Gracias a mis abuelos, Jovino, Laudelina, Erundina y Cueto, por

todos los buenos momentos. Gracias al resto de mi familia, Hector, Paula,

Aitana, Adam, Bea, Henar, Esther, Jose Antonio... por haberme querido

tanto. Gracias a Javi, Isa y Celia, por haber sido como mi segunda familia.

Gracias a Nuria, Armando y Mario, por todas las risas juntos. Gracias a

la gente de Peñerudes, Borja, Martin, Pablo, Jose, Adrián, Verónica, Izán,

Sergio, Eva, Dorita, Vicente, Nosa... por ser tan buena gente y por todas

las veces que me fuisteis a buscar a casa. Gracias a todos mis profesores,

JJ, Candido, Corsino, Adela, Susana, Cristina... por haber sido tan buenos

ejemplos a seguir. Gracias a mis compañeros de clase, Yahre, Lara, Sergio,

V

Carlos, el otro Sergio, Abraham, Noelia, Lucía, Alejandro, Luis, David, la

otra Lara, Juanpa, Roberto, Jinsop, Andreu, Aitor, Bruno, Ana, Fabián, el

otro Fabián, Cristina, el otro Alejandro, Rafa, Diego, Pelayo... por hacer

el día a día más llevadero. Gracias a Pepe y a Javi por haber sido siem-

pre tan buenos amigos. Gracias a Guille por descubrirme tantos hobbies

nuevos para los que no tengo ni tiempo ni dinero. Gracias al resto del Con-

cilio, Dani, Domi, Pif, Alex y Jairo, por todas las risas que nos echamos

juntos. Gracias al resto de mis amigos, Tania, Cris, Darío, Varito, Rafa,

Raquel, Mar, Abadin, Adriana, Karla, Inna, Alicia, Adriana, Lucas, San-

dra, Jaime, Cris, Hector, Inés, Chechu, Adriana, Noe, Noli, Indra, Juanki,

Miriam, Henar, Lara, Mata, Adrian, Meg, Rato, Marta, Rocío, Mendefu,

Olga, Oscar, Pam, Cesar, Rebe, Guille, Mario... por tantas cosas buenas.

Por último quería hacer un agradecimiento especial a toda la gente del

Roboticslab y la UC3M, Clara, Alejandra, Kike, Sergio, Javier, Miguel,

David, Javi, Santiago, Edu, Sonia, Santi, Ramón, Concha, Alvaro, Mar-

cos, Bartek, Jorge, Dorin, Carba, Pavel, Lisbeth, Luis, Pedro, Edwin, Fer-

nando, el otro Luis, Dolores, Mohamed, Alvaro, Hanno, Esther, el otro

Jorge, Juan, Marina, Raúl, Juanjo, la otra Marina, Sara, Angela, Fernando,

Silvia, Jennifer, Ana, Andrea... y todos los que se me olvidan pero es-

toy agradecido igual. Gracias a todos por haber hecho de esta experiencia

algo tan positivo. Quería también agradecer a mis compañeros del C13,

a Olaya por todos los momentos haciendo el idiota y lo bien que nos lo

hemos pasado juntos, a Elisabeth por ser la mejor compañera de piso del

mundo, a David por robarme los cojines, a Raúl por compartir tantas cosas

conmigo, a Alice por ser una tía tan guay, a Noé por no enfadarte cuando

nos metiamos con Andalucía, a Alvaro por ser tan buena persona y a Mar-

cos por ser tan buen rival al Mario Party. Thanks to the people at INRIA,

Claudio, Marco, Alberto, Adam, Abdul, Alexander, Amaia, Josu... you

made me feel very welcome. Por último, gracias a toda la gente que se me

olvida por todo lo demás.

VI

PUBLISHED AND SUBMITTED CONTENT

The most relevant published/submitted international journals that are

included in this thesis are presented in the following list.

1. Raul Fernandez-Fernandez, Juan G. Victores, Jennifer J. Gago, Da-

vid Estevez, and Carlos Balaguer. Neural Policy Style Transfer. Cog-

nitive Systems Research, 2021. JCR (2020): Q3. (Under revision:

original submitted Jun-2020, revision submitted April-2021)

* This source is wholly included in Chapters 5 and 6 of this thesis.

2. Raul Fernandez-Fernandez, Juan G. Victores, David Estevez, and

Carlos Balaguer. Real Evaluations Tractability using Continuous Goal-

Directed Actions in Smart City Applications. Sensors, 18(11):3818,

2018. ISSN 1424-8220. doi: 10.3390/s18113818. JCR: Q1. (Pub-

lished)

* This source is wholly included in Chapters 2 and 3 of this thesis.

The most relevant published peer-reviewed conference papers that are

included in this thesis are presented in the following list.

1. Raul Fernandez-Fernandez, Juan G. Victores, David Estevez, and

Carlos Balaguer. Robot Imitation through Vision, Kinesthetic and

Force Features with Online Adaptation to Changing Environments.

In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

pages 1-9. IEEE, 2018. doi: 10.1109/IROS.2018.8593724.

* This source is wholly included in Chapters 2 and 4 of this thesis.

VII

2. Raul Fernandez-Fernandez, David Estevez, Juan G. Victores, and

Carlos Balaguer. Improving CGDA execution through Genetic Al-

gorithms incorporating Spatial and Velocity constraints. In IEEE Int.

Conf. on Autonomous Robot Systems and Competitions (ICARSC),

pages 290-295. IEEE, 2017. doi: 10.1109/icarsc.2017.7964090.

* This source is wholly included in Chapters 2 and 3 of this thesis.

3. Raul Fernandez-Fernandez, David Estevez, Juan G. Victores, and

Carlos Balaguer. Reducing the number of evaluations required for

CGDA execution through Particle Swarm Optimization methods. In

IEEE International Conference on Autonomous Robot Systems and

Competitions (ICARSC), pages 284-289. IEEE, 2017. doi:

10.1109/ICARSC.2017.7964089.

* This source is wholly included in Chapters 2 and 3 of this thesis.

4. Raul Fernandez-Fernandez, Juan G. Victores, and Carlos Balaguer.

New Trends and Challenges in the Automatic Generation of New

Tasks for Humanoid Robots. In RoboCity16 Open Conference on

Future Trends in Robotics, pages 169-176, 2016. ISBN 978-84-608-

8452-1.

* This source is partially included in the Chapter 1 of this thesis.

The material from these sources included in this thesis is not singled

out with typographic means and references.

OTHER RESEARCH MERITS

This list includes other scientific contributions that have not been in-

cluded in this thesis but have been developed and published in parallel.

1. David Estevez, Juan G. Victores, Raul Fernandez-Fernandez, and

Carlos Balaguer. Enabling garment-agnostic laundry tasks for a Robot

VIII

Household Companion. Robotics and Autonomous Systems, 2020.

ISSN 0921-8890. doi: 10.1016/j.robot.2019.103330. JCR: Q2.

2. Raul Fernandez-Fernandez, Juan G. Victores, David Estevez, and

Carlos Balaguer. Quick, Stat!: A Statistical Analysis of the Quick,

Draw! Dataset. In 10th EUROSIM Congress on Modelling and Sim-

ulation. ARGESIM, 2019. doi: 10.11128/arep.58.

3. David Estevez, Juan G. Victores, Raul Fernandez-Fernandez, and

Carlos Balaguer. Towards Clothes Hanging via Cloth Simulation and

Deep Convolutional Networks. In 10th EUROSIM Congress on Mod-

elling and Simulation. ARGESIM, 2019. doi: 10.11128/arep.58.

4. David Estevez, Juan G. Victores, Raul Fernandez-Fernandez, and

Carlos Balaguer. Robotic Ironing with 3D Perception and Force/

Torque Feedback in Household Environments. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE,

2017. doi: 10.1109/IROS.2017.8206556.

5. David Estevez, Raul Fernandez-Fernandez, Juan G. Victores, and

Carlos Balaguer. Improving and evaluating robotic garment unfold-

ing: A garment-agnostic approach. In IEEE International Conference

on Autonomous Robot Systems and Competitions (ICARSC), pages

284-289. IEEE, 2017. doi: 10.1109/ICARSC.2017.7964077.

* Awarded Best Student Paper of the conference.

6. David Estevez, Raul Fernandez-Fernandez, Juan G. Victores, and

Carlos Balaguer. Robotic ironing with a humanoid robot using hu-

man tools. In IEEE International Conference on Autonomous Robot

Systems and Competitions (ICARSC), pages 134-139. IEEE, 2017.

doi: 10.1109/ICARSC.2017.7964065.

IX

ABSTRACT

Action Generalization is the ability to adapt an action to different contexts

and environments. In humans, this ability is taken for granted. Robots

are yet far from achieving the human level of Action Generalization. Cur-

rent robotic frameworks are limited frameworks that are only able to work

in the small range of contexts and environments for which they were pro-

grammed. One of the reasons why we do not have a robot in our house yet

is because every house is different.

In this thesis, two different approaches to improve the Action Gener-

alization capabilities of robots are proposed. First, a study of different

methods to improve the performance of the Continuous Goal-Directed Ac-

tions framework within highly dynamic real world environments is pre-

sented. Continuous Goal-Directed Actions is a Learning from Demonstra-

tion framework based on the idea of encoding actions as the effects these

actions produce on the environment. No robot kinematic information is

required for the encoding of actions. This improves the generalization ca-

pabilities of robots by solving the correspondence problem. This problem

is related to the execution of the same action with different kinematics.

The second approach is the proposition of the Neural Policy Style Trans-

fer framework. The goal of this framework is to achieve Action General-

ization by providing the robot the ability to introduce Styles within robotic

actions. This allows the robot to adapt one action to different contexts with

the introduction of different Styles. Neural Style Transfer was originally

XI

proposed as a way to perform Style Transfer between images. Neural Pol-

icy Style Transfer proposes the introduction of Neural Style Transfer within

robotic actions.

The structure of this document was designed with the goal of depicting

the continuous research work that this thesis has been. Every time a new

approach is proposed, the reasons why this was considered the best new

step based on the experimental results obtained are provided. Each ap-

proach can be studied separately and, at the same time, they are presented

as part of the larger research project from which they are part. Solving

the problem of Action Generalization is currently a too ambitious goal for

any single research project. The goal of this thesis is to make finding this

solution one step closer.

Raúl Fernández Fernández

ACTION GENERALIZATION IN HUMANOID ROBOTS THROUGH ARTIFICIAL

INTELLIGENCE WITH LEARNING FROM DEMONSTRATION

XII

LIST OF ABBREVIATIONS

AFFG Adaptive Fuzzy Fitness Granulation

CBR Case Based Reasoning

CGDA Continuous Goal-Directed Actions

DDPG Deep Deterministic Policy Gradient

DoF Degrees of Freedom

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DTW Dynamic Time Warping

FA Fitness Approximation

FI Fitness Inheritance

FTE Full Trajectory Evolution

GAN Generative Adversarial Network

IE Individual Evolution

IET Incrementally Evolved Trajectories

IRL Inverse Reinforcement Learning

NPST Neural Policy Style Transfer

NPST3 Neural Policy Style Transfer TD3
PSO Particle Swarm Optimization

RIT Real Iteration Time

RT Robot Threshold

SST Steady State Tournament

TD3 Twin Delayed Deep Deterministic Policy Gradient

OET Online Evolved Trajectories

XIII

TABLE OF CONTENTS

AKNOWLEDGEMENTS V

PUBLISHED AND SUBMITTED CONTENT VII

ABSTRACT XI

LIST OF ABBREVIATIONS XIII

LIST OF FIGURES XIX

LIST OF TABLES XXV

I Introduction 1
Chapter One: Introduction 3

1.1 An Introduction to Action Generalization 4
1.2 The goal of this thesis 7

1.2.1 Improving Continuous Goal-Directed Actions (CGDA) 8
1.2.2 NPST: Introducing Style Transfer in robot actions 10

1.3 Relevant concepts and elements 11
1.3.1 Elements of Learning from Demonstration 12
1.3.2 Elements of Evolutionary Algorithms 12
1.3.3 Elements of Reinforcement Learning 13

Conclusions of Part I: Introduction 16

II Continuous Goal-Directed Actions 17
Chapter Two: Continuous Goal-Directed Actions 19

2.1 The CGDA framework 20
2.2 Generalization 22
2.3 Recognition 24
2.4 Execution 26

2.4.1 FTE: Full Trajectory Evolution 26

XV

2.4.2 IE: Individual Evolution 27
2.4.3 IET: Incrementally Evolved Trajectories 28

2.5 Conclusions 29

Chapter Three: Reducing evaluations in CGDA 31
3.1 Introducing Approximations 32
3.2 Particle Swarm Optimization in CGDA 33

3.2.1 Particle Swarm Optimization 34
3.2.2 Adaptive Fuzzy Fitness Granulation PSO 34
3.2.3 Fitness Inheritance PSO 35

3.3 Introducing Constraints 36
3.4 Approximations and Constraints in CGDA 39
3.5 Experiments 40
3.6 Evolutionary Approximation Results 43

3.6.1 Wax Results 43
3.6.2 Paint Results 45

3.7 Constrained Genetic Algorithms Results 47
3.7.1 Wax Results 47
3.7.2 Paint Results 50

3.8 Conclusions 52

Chapter Four: Online Evolved Trajectories 55
4.1 Online Evolutionary Strategies 56
4.2 The Online Evolved Trajectories algorithm 58

4.2.1 Perception Step 58
4.2.2 Localization Step 59

4.3 Experiments 59
4.4 Results 61

4.4.1 Paint Results 62
4.4.2 Iron Results 64

4.5 Conclusions 64

Conclusions of Part II: Continuous Goal-Directed Actions 69

III Neural Policy Style Transfer (NPST) 69
Chapter Five: Reinforcement Learning and Style Transfer 71

5.1 Reinforcement Learning 71
5.1.1 Q-Learning 72
5.1.2 Deep Reinforcement Learning 73
5.1.3 Continuous action spaces 74

XVI

5.2 Style Transfer: Content and Style 75
5.2.1 Neural Style Transfer 76
5.2.2 Conclusions 77

Chapter Six: NPST in discrete action spaces 79
6.1 Inverse Reinforcement Learning 81
6.2 Neural Policy Style Transfer 83
6.3 Experiments 86

6.3.1 Catch-ball Game Experiment 86
6.3.2 Grid-world Paint Experiment 89

6.4 Results 91
6.4.1 Catch-ball Game Results 91
6.4.2 Grid-world Paint Results 93

6.5 Conclusions 94

Chapter Seven: NPST3 in continuous action spaces 97
7.1 Framework 98

7.1.1 Inputs 99
7.1.2 Autoencoder Network: loss network 100
7.1.3 Constraints 100
7.1.4 TD3 Policy Network: execution network 101
7.1.5 Outputs 103

7.2 Training 103
7.3 Experiments 104

7.3.1 Setup 105
7.3.2 Questionnaire and Subjects 106
7.3.3 Results 106

7.4 Conclusions 108

Conclusions of Part III: Neural Policy Style Transfer 111

IV Conclusions 111
Chapter Eight: Conclusions 113

8.1 Main Conclusions and Results 113
8.2 Innovations 115
8.3 Future Work 117

8.3.1 Proposed Enhancements 117
8.3.2 Proposed Applications 118

References 123

XVII

LIST OF FIGURES

1 A CBR workflow example. The process is not sequential

and all stages may occur at any time. 5

2 User demonstration of the painting action using the hu-

manoid robot TEO within the CGDA framework. 8

3 Style Transfer example using the algorithm proposed by

Gatys et al. (1) with an image of TEO and the Starry Night

of Vincent Van Gogh. 10

4 Continuous Goal-Directed Actions (CGDA) framework di-

agram. 21

5 Plot of a 1-dimensional feature action generalization. Col-

orized lines depict different demonstrations. The black line

is the generalized feature trajectory obtained from all the

demonstrations. 23

6 Case example of applying DTW between two trajectories.

The two trajectories used in this example are the same, but

with different time executions. 25

7 Simulated execution of the “paint” action using the hu-

manoid robot TEO and Openrave. 41

8 “Wax” Evolutionary Approximation results: total number

of required evaluations for the “wax” action execution as

a function of the intermediate goals defined in the feature

trajectory. 44

XIX

9 “Wax” Evolutionary Approximation results: feature trajec-

tories obtained with the following algorithms: A) SST, B)

PSO, C) AFFG-PSO and D) FI-PSO. The green trajectory

depicts the generalized feature trajectory encoding the ac-

tion. The blue trajectory is the feature trajectory obtained

with the execution stage of CGDA. 44

10 “Paint” Evolutionary Approximation results: results as a

function of each intermediate goal defined by the general-

ized trajectory. At the top, the total number of required

evaluations. At the bottom, total percentage of painted

wall. 46

11 “Wax” spatial constraint experiment results: total number

of required evaluations for the “wax” action execution as

a function of the intermediate goals defined in the feature

trajectory. 48

12 “Wax” velocity constraint experiment results: total number

of required evaluations for the “wax” action execution as

a function of the intermediate goals defined in the feature

trajectory. 49

13 “Paint” spatial constraint experiment results: total number

of required evaluations for the “paint” action execution as

a function of the intermediate goals defined in the feature

trajectory. 50

14 “Paint” velocity constraint experiment results: total num-

ber of required evaluations for the “paint” action execution

as a function of the intermediate goals defined in the fea-

ture trajectory. 51

15 The OET algorithm allows introducing changes in the en-

vironment during execution. In the image, a collaborative

execution of the“paint” action is depicted. 56

XX

16 Resulting trajectories for the demonstrations of the “paint”

action. The orange thick line depicts the result of executing

the Gaussian Mixture Regression method (K = 7, T = 600)

using these demonstrations. 62

17 “Paint” OET experiments results: generalized feature tra-

jectory for the “paint” action compared to the features tra-

jectories obtained for each of the algorithms. 63

18 Resulting trajectories for the demonstrations of the “iron”

action. The orange thick line depicts the result of executing

the Gaussian Mixture Regression method (K = 5, T = 150)

using these demonstrations. 65

19 Deep neural network architecture similar to the one pro-

posed by Mnih et al. (2) for the introduction of DRL in

Atari games. 73

20 Grid-world paint scenario demonstration setup. 80

21 Neural Policy Style Transfer (NPST) framework. Three

DQN are proposed with the same architecture. The content

DQN (C) is trained using the reward function extracted

from the content action demonstrations. The Style DQN

(S) is trained using the reward function extracted from the

Style action demonstrations. The Generated DQN (G) is

obtained using the output layer Q-values of C and the full

weights of S. 84

22 Screenshots obtained during the NPST execution with the

“nervous” Style (top) and “fall” Style (bottom). Red bars

are the output of the Content network C. Blue bars are the

output of the Generated policy G. 92

XXI

23 Agent heat-map. From left to right: Content, Style and

Generated policies. “Nervous” Style (top) and “fall” Style

(bottom). Pixels with warms colors have been recurrently

visited by the agent. Cold colors represent less visited pix-

els. The depicted scale is the cumulative result of the 10

different executions of the NPST algorithm. 93

24 NPST3 base idea: human demonstrations define the Style

while the Content can be defined online via teleoperation. 98

25 NPST3 framework: The input of the Autoencoder network

are the Style, Content and Generated actions. The loss ob-

tained with the Autoencoder (Lst) is added to the loss de-

fined by the Constraints (Lp,Lep,Lv) to obtain the total loss

L. The inverse of this loss is used as the reward for train-

ing the TD3 Policy Network. In addition to this reward,

the input of the TD3 network are the Content and Gen-

erated actions. This network defines a control policy that

outputs a 3D Cartesian velocity to the robot end-effector.

The velocity command is executed and the new position of

the robot is obtained. The Generated trajectory is updated

using this new position. The Content trajectory is updated

using the information provided by the user. This Content

trajectory can be defined offline or online via teleoperation. 99

XXII

26 Cartesian trajectories obtained in the experiments. The top

trajectory is the selected Content action. For each pair of

trajectories, the left trajectory corresponds to one of the

four selected Styles: A) Angry, B) Happy, C) Calm and

D) Sad. The trajectory in the right corresponds to the gen-

erated action obtained with the NPST3 framework. Style

trajectories are defined via demonstrations with the right

hand of a volunteer using a Vicon mo-cap system. Warm

colors depict a higher velocity value, while cold colors de-

pict lower velocities. 105

27 NPST3 questionnaire first part results. Each chart depicts

the answers given for one of the videos. The title on the top

right of the chart depicts the original emotion transferred to

the shown video. The labels on the X axis are the emotions

written by the volunteers. The Y axis is the number of

times that emotion was used to describe the video by a

volunteer. 107

28 NPST3 questionnaire second part results. Each row corre-

sponds to a different video. Each column corresponds to

the Style selected by the volunteers. Each cell contains the

number of times a given Style was selected by a volunteer.

All the videos were presented to all the volunteers. 108

XXIII

LIST OF TABLES

3 “Wax” Evolutionary Approximation results: average re-

sults after 50 repetitions of the “wax” action for each of

the proposed algorithms. 43

4 “Paint” Evolutionary Approximation results: average re-

sults after 100 repetitions of the “paint” action for each of

the proposed algorithms. 45

5 “Wax” spatial constraint experiment results: average re-

sults after 50 repetitions of the “wax” action for each of

the dilatation values. 47

6 “Wax” velocity constraint experiment results: average re-

sults after 50 repetitions of the “wax” action for each of the

velocity constraint values. 49

7 “Paint” spatial constraint experiment results: average re-

sults after 100 repetitions of the “paint” action for each of

the spatial constraint values. 50

8 “Paint” velocity constraint experiment results: average re-

sults after 100 repetitions of the “paint” action for each of

the velocity constraint values. 51

9 “Paint” OET experiment results: average and standard de-

viation results after 3 repetitions of the “paint” action for

each of the proposed strategies. 63

XXV

10 “Iron” OET experiments results: average and standard de-

viation results after 3 repetitions of the “iron” action for

each of the proposed strategies. 64

11 Hyper-parameters defined for the Catch-ball game. 88

12 Hyper-parameters defined for the Grid-world paint scenario. 90

13 Catch-ball game experimental results. 91

14 Grid-world paint experimental results. 93

15 Training hyper-parameters for the NPST3 algorithm. 104

XXVI

Part I

Introduction

1

1. INTRODUCTION

The idea of learning is conceived as the acquisition of a set of rules or

steps that allow performing a certain action. In the case of human learning,

the assumption is that once you have learned how to perform an action,

as long as some requisites are present, you can repeat that action in many

different contexts. For example, when you were a child and your parents

taught you how to make the bed, from that day, you were supposed to

make the bed every day. Telling your parents excuses in the fashion of

“These blankets are bigger than the others, so I do not know how to do

this anymore”, or “You taught me how to do the bed in summer; I do not

know what a quilt is or how to use it” or “The bed is slightly moved to

the left with respect to where it was when you taught me” were normally

not accepted by your parents. You were trapped in the fact of being able

to make the bed and therefore had to do it. You were even supposed to be

able to make beds that were different from the one you had in your house.

In humans, the ability to adapt a learned action is taken for granted.

In robotics, this ability is called Action Generalization, and is one of the

hardest problems existing in the robotic community. Robots are very lim-

ited by differences between the context where they learned the action and

where they have to execute it. In this thesis, a study of how to deal with this

problem is presented. First, Continuous Goal-Directed Actions (CGDA)

developed by Morante et al. (3) is presented, studied and improved as an

implementation of a learning and Action Generalization framework. In this

thesis, CGDA is improved to work with real robots in real environments.

3

Universidad Carlos III de Madrid Chapter 1. Introduction

In addition, following the breakthrough of Deep Learning methods, Neu-

ral Policy Style Transfer (NPST) –an application of state of the art deep

machine learning techniques– is proposed. This framework introduces

Deep Reinforcement Learning (DRL) for the robust execution of trajec-

tories generated using Style Transfer techniques. Finally, Neural Policy

Style Transfer TD3 (NPST3), a more advanced version of NPST working

with continuous action spaces and introducing Autoencoders to extract the

Content and Style, is proposed.

The rest of this chapter provides a background to the reader to under-

stand the following relevant topics presented in this thesis: what is Action

Generalization; what is the scope of this thesis; what is CGDA and what are

the improvements proposed; what is the idea behind NPST; an introduction

to the related relevant concepts; and finally some conclusions which sum

up and review all this information.

1.1 An Introduction to Action Generalization

The idea of Action Generalization was preceded and inspired by the

idea of Inductive Learning. The idea of Inductive learning was initially

introduced in 1739 by Hume (4). Inductive learning is based on a method

of reasoning that consists on extracting, from concrete pieces of experi-

ence, general rules than can be applied to a wider range of contexts (5).

An example of an inductive argument can therefore be something like the

following one extracted from Herms (6):

All swans I have seen in the past have been white.

It follows that the next swan I see will be white.

Following this, a more pragmatic example closer to the goals of this

thesis can be derived from this idea:

All painters I have seen have used a brush.

4

1.1. An Introduction to Action Generalization Universidad Carlos III de Madrid

It follows that if I have to paint I will use a brush.

Following this idea, the computer science community came up with a

method to use past experiences to solve new problems called Case Based

Reasoning (CBR). The idea of CBR was to use the knowledge of past

experiences to partially or fully solve new problems similar to ones already

faced (7).

Indexing

Retrieval

Adaptation Justification

Prediction

Evaluation

Storage

Figure 1: A CBR workflow example. The process is not sequential and all stages may occur at
any time.

Fig.1 depicts the stages typically presented in CBR. These stages are:

• Indexing stage: stored experiences are labeled to be stored and later

retrieved.

5

Universidad Carlos III de Madrid Chapter 1. Introduction

• Retrieval stage: experiences with labels related to the new problem

are selected from the database.

• Adaptation stage: old experiences are modified to adapt to the new

problem.

• Prediction and Justification stage: a simulation of what is going to

happen is performed as an initial evaluation of the reliability of the

generated solution.

• Evaluation stage: the action is executed in the real world and an eval-

uation is performed about the success of the generated solution.

• Storage stage: the new learned solution is stored as a new experience

in the database.

CBR, however, has not had a large impact in the robotics community.

One of the reasons may be that although conceptually CBR works, its im-

plementation in a real robotic system presents too many problems that have

yet to be solved.

More recent approaches using ideas similar to the ones presented in

CBR have been more successful at dealing with Action Generalization

problems in robotics. In Learning from Demonstration, Action General-

ization is presented in the correspondence problem. The correspondence

problem appears in the context of how to teach a robot to perform certain

actions while the demonstrator and robot kinematics may be completely

different. As defined by Argall et al. (8), the correspondence problem is

present in the mapping between the demonstrator and the learner, and how

to allow the transfer of information between them. In Calinon et al. (9), the

authors used Gaussian distributions to encode simple manipulation actions

from demonstrations, that can be generalized to be executed in robots with

different kinematics.

6

1.2. The goal of this thesis Universidad Carlos III de Madrid

Semantic learning introduces semantic rules that build upon ontology

trees of basic actions known by the robot (10). These frameworks are usu-

ally limited by the quality of the datasets and the adaptability of the basic

actions. Using Semantic Learning, in Beetz et al. (11), a robot application

to learn how to cook a pancake using a recipe from wikiHow, an online

web with instructions for daily actions, was proposed.

In Deep Learning, one of the concepts that is more interesting to Action

Generalization is the concept of latent space. The latent space of a cer-

tain input space is known as a set of most relevant/representative features

which may be hidden within that input. A latent space can be extracted us-

ing Deep Neural Networks. What is interesting about these hidden features

is that they allow comparing initially different inputs in this common la-

tent space. This has resulted in the emergence of applications using latent

spaces, such as Style Transfer. In Style Transfer, the latent space of differ-

ent inputs is combined to create new outputs that include a combination of

features of these inputs (12).

1.2 The goal of this thesis

To state that the goal of this thesis is to solve the Action Generalization

problem in robotics would be way too ambitious for the scope of a doctoral

thesis. The goal of this thesis can be summarized in three points:

• Study the state of the art of Action Generalization related methods in

robotics.

• Continue the work started by Victores et al. (13) and continued by

Morante et al. (3) in the area of Action Generalization.

• Develop new applications with the main goal of improving the Action

Generalization capability in robotics using and advancing on state of

the art artificial intelligence techniques.

7

Universidad Carlos III de Madrid Chapter 1. Introduction

Following these goals, two different approaches are proposed in this

thesis. First, a study and improvement of Continuous Goal-Directed Ac-

tions (CGDA), initially proposed by Morante et al. (3), is proposed in Part

II. In this part, CGDA is improved and adapted to work with dynamic real

robot environments. In Part III, Neural Policy Style Transfer (NPST) is

proposed as an application of the state of the art of machine learning tech-

niques within an Action Generalization approach. In NPST, Style Transfer

is proposed as a way to adapt a base robotic motion to different contexts

and situations with the introduction of different Styles selected by the user.

Figure 2: User demonstration of the painting action using the humanoid robot TEO within the
CGDA framework.

1.2.1 Improving Continuous Goal-Directed Actions (CGDA)

CGDA is a Learning from Demonstration framework for Action Gener-

alization initially proposed by Morante et al. (3). In CGDA, actions are en-

coded as feature trajectories. These features trajectories are extracted from

8

1.2. The goal of this thesis Universidad Carlos III de Madrid

the effects the actions produce on the environment. Actions are not limited

to joint or Cartesian positions as in classical Learning from Demonstration

frameworks. A generalized trajectory can then be defined using the trajec-

tory extracted from the user, as in Fig. 2. This generalized trajectory can

be later executed by the framework.

While encoding the action as a feature trajectory presents many advan-

tages in terms of Action Generalization capabilities, the robot joint trajec-

tories that executes these actions may not be encoded within the model.

To solve this, robot joint trajectories are computed using evolutionary al-

gorithms. Due to evolutionary algorithms requiring large numbers of eval-

uations to converge, these algorithms are performed within a simulated

environment. These simulated environments require to previously obtain

a model of the environment. Obtaining a model is an expensive operation

and, due to the long times that it requires for the evolutionary algorithm to

converge, by the end of the optimization process this model is usually out-

dated. Any changes that may have happened in the environment during the

evolutionary algorithm computation increase the probability that the solu-

tion obtained is no longer valid and a new one is required. In this thesis,

we deal with this problem in two different ways:

• Reducing the number of required evaluations in evolutionary algo-

rithms as a way to reduce computational time and make achievable,

in some contexts, the introduction of real world evaluations.

• Proposing the Online Evolutionary Trajectories (OET) algorithm to

drastically reduce computational time between real motor executions.

This allows regular updates of the generated model to work in real

and dynamic environments.

9

Universidad Carlos III de Madrid Chapter 1. Introduction

1.2.2 NPST: Introducing Style Transfer in robot actions

Style Transfer is the process of transferring the Style of A to B with-

out changing the Content of B. The definition of Content and Style is not

unique and can vary between different areas of research and between dif-

ferent authors and methods. Style Transfer has been applied to different

areas such as computer vision, natural language processing, and anima-

tion. The introduction of Deep Neural Networks proposed by Gatys et al.

(1) supposed a breakthrough in this area.

Figure 3: Style Transfer example using the algorithm proposed by Gatys et al. (1) with an image
of TEO and the Starry Night of Vincent Van Gogh.

In the work proposed by Gatys, a pre-trained VGG-19 (14) network is

introduced to extract latent features of the input images. Using the layer

outputs of this network as the latent features of the images, the Style was

defined by Gatys as the low level features extracted by the first layers of

the network. The Content was defined as the high level features extracted

with the last layers of the network. Using an optimization algorithm, a loss

function was defined such as the differences between the Content and Style

10

1.3. Relevant concepts and elements Universidad Carlos III de Madrid

features of the output image were minimized with respect the Content and

Style features of the selected Content and Style base images. An example

of the results obtained using the algorithm proposed by Gatys et al. is

depicted in Fig. 3.

In this thesis, Neural Policy Style Transfer (NPST) is proposed as a

way to introduce and transfer Styles between robotic actions. This allows

robotic actions to be potentially adapted and modified to different con-

texts and environments. New algorithms can be proposed where learned

actions are adapted to new contexts using Styles defined by actions that

have already been successfully applied to that contexts. In NPST, the same

learned action is executed after introducing two different moods, fall and

nervous. Neural Policy Style Transfer TD3 (NPST3), an advanced ver-

sion of NPST, is proposed as a way to work with continuous action spaces.

Here, the algorithm allows the operator to perform an online teleoperation

of the robot while introducing different Styles in the robot motions. The

goals presented in this part of the thesis can be summarized in the follow-

ing two points:

• The study and implementation of state of the art of machine learning

techniques in the context of Action Generalization.

• The introduction and adaption of Style Transfer within a robotic frame-

work.

1.3 Relevant concepts and elements

For the definition and study of CGDA and NPST, some additional back-

ground is required. The goal of the following sections is to provide an

introduction to the base concepts required for the proposed methods. The

idea of this section is to serve as a reference point to the reader for the rest

of this document.

11

Universidad Carlos III de Madrid Chapter 1. Introduction

1.3.1 Elements of Learning from Demonstration

Learning from Demonstration (LfD), also known as Programming by

Demonstration (PbD) or Imitation Learning, is a learning paradigm where

the goal is to create a framework that allows the robot to learn via examples

provided by a demonstrator. The work presented by Billard et al. (15) is

a perfect reference for a starting point. The examples or demonstrations

are defined as expert executions of the learning goal action provided by the

user. These demonstrations are typically introduced in the framework by

an external recording system such as an RGB-D sensor. Other methods can

be used such as kinesthetic learning (16), where the user directly moves the

robot for the recording of the expert demonstrations. The demonstrator

is usually the human operator, but the action demonstrations may come

from different sources like video recordings, or even executions from other

robots. One of the most important advantages of LfD is giving the ability

to non-technical users to teach new actions to the robot.

1.3.2 Elements of Evolutionary Algorithms

Evolutionary algorithms are a subset of global optimization algorithms,

inspired by biological evolution (17). These algorithms introduce biolog-

ical inspired concepts such as mutation, crossover (reproduction) and se-

lection. The population of individuals is defined as the group of individual

agents that explore, mutate and reproduce over the fitness function. The

goal is to find the optimal agent that maximize the obtained fitness defined

by the fitness function. The fitness function is a mathematical function that

maps fitness values with possible agents states. The definition of the fitness

function defines the behavior of the optimal agent and allows the encoding

of the different action goals. The evaluation step is defined as computing

12

1.3. Relevant concepts and elements Universidad Carlos III de Madrid

the fitness value of the individuals of the population. A complete itera-

tion happens when a complete evolutionary step is executed over all the

population.

1.3.3 Elements of Reinforcement Learning

Reinforcement learning is a learning framework where an agent is train-

ed to maximize a reward signal (18). The agent behavior in reinforcement

learning is defined by the policy. The policy is in charge of mapping states

with actions. The reward signal directly controls the policy behavior. Low

reward actions are usually avoided by the policy. The state is defined as a

unique combination of a set of selected available features. These are the el-

ements that essentially compose a Markov Decision Process. Additionally,

the value function is defined as the expected reward the agent can expect to

obtain in the long run as a function of the current state and a given policy.

Finally, the model is an optional element that encodes the behavior of the

environment. Models can be used, for example, to predict future states and

rewards.

Deep Reinforcement Learning is a set of developments that propose

the introduction of Deep Learning architectures as function approximators

within Reinforcement Learning. For example, Mnih et al. (2) proposed the

introduction of a deep neural network to define the value function of their

Reinforcement Learning framework.

13

CONCLUSIONS OF PART I: INTRODUCTION

In this part of the thesis, an introduction to the problem of Action Gen-

eralization in robotics has been proposed. This problem focuses on giving

robots the ability to adapt actions to different contexts and environments.

Based on this idea, the goals presented in this thesis to improve the Action

Generalization capabilities of robots were presented. A brief introduction

to the two main proposed approaches to achieve these goals was intro-

duced. To finish, the most relevant concepts that appear in this work have

been defined.

This part of the thesis is intended to serve as a reference point to the

reader. Relevant concepts and ideas that later appear in this thesis are de-

fined for reference. The rest of this document is organized to represent the

continuous research project that this thesis has been. A study of the state

of the art of the existing relevant topics is presented within each part.

The problem of Action Generalization is one of the hardest problems

in robotics. In this thesis, two different approaches are proposed as a way

to improve the Action Generalization capabilities of robots. The first ap-

proach focus on improving CGDA, while the second approach introduces

Style Transfer within a Deep Reinforcement Learning architecture.

15

Part II

Continuous Goal-Directed Actions

17

2. CONTINUOUS GOAL-DIRECTED ACTIONS

Continuous Goal-Directed Actions (CGDA) is a Learning from Demon-

stration framework for the encoding of actions as environment feature tra-

jectories. In Learning from Demonstration, the learning framework of

the robot is given expert demonstrations of the desired action by the user.

These demonstrations can come from action executions performed by the

user, moving the robot (16), recorded videos or even other robot execu-

tions. The demonstrations are then used by the framework to extract a

generalized trajectory to learn the demonstrated action. One critical as-

pect that defines the Learning from Demonstration framework is the selec-

tion of the model that encodes this generalized trajectory. In Calinon and

Billard (19) and Calinon et al. (9), Hidden Markov Models and Gaussian

Mixture Models are used to extract generalized robot Cartesian and joint

space trajectories. In Dynamic Motion Primitives (DMP) (20), these tra-

jectories are discretized using a database of low level predefined control

laws that define a set of low level Cartesian space trajectories. Finally, in

CGDA, actions are encoded as features trajectories that encode the effects

the demonstrated action produced on the environment (3).

One of the most important advantages of CGDA is that encoded gener-

alized trajectories are not limited by the encoding of Cartesian and robot

joint positions. A generalized trajectory in CGDA can be encoded, for

example, using only the percentage of painted area each time step. This

solves the correspondence problem (21) in all situations where a certain

kinematic configuration is no explicitly required to describe the action.

19

Universidad Carlos III de Madrid Chapter 2. Continuous Goal-Directed Actions

The selection of the encoded scalar features for every action can be hand-

crafted, or can be selected using the demonstration and feature selection

algorithms proposed by Morante et al. (22). Here, the authors combined

the introduction of Dynamic Time Warping (DTW) (23) and z-score to

extract the consistency of features between demonstrations. The most con-

sistent features are selected as relevant and tracked by the CGDA system.

Features with low consistency between demonstrations are discarded.

Since robot joint trajectories may not be explicitly encoded in CGDA,

these trajectories have to be computed inside the framework. As a conse-

quence of this, evolutionary algorithms are introduced as a way to compute

these trajectories. These algorithms require a large number of evaluations

in the target environment before generating the robot joint execution tra-

jectory. Performing all these evaluations on the actual physical robot is

extremely costly and most of the times infeasible. As a solution, these

evaluations are performed in simulation using models of the environment.

The optimal trajectory obtained in the simulation is then executed on the

real robot.

2.1 The CGDA framework

The CGDA framework is divided in three stages: Generalization, Recog-

nition and Execution. In CGDA, an action is encoded as a trajectory in a

feature space of m scalar features. These features encode the changes the

demonstrated action produced on the environment and may include visual

features, forces exerted by a given actuator, Cartesian positions of moving

objects in the environment, or even joint trajectories. The execution of the

encoded actions is achieved as an optimization problem with the goal to

match the generalized feature trajectory encoded for the action with the

20

2.1. The CGDA framework Universidad Carlos III de Madrid

feature trajectory generated by the CGDA execution step. This optimiza-

tion problem is computed using evolutionary algorithms. The result is a

robot joint trajectory that can be directly executed by the robot.

Figure 4: Continuous Goal-Directed Actions (CGDA) framework diagram.

A conceptual scheme of the CGDA framework is depicted in Fig. 4.

In the Generalization stage, the generalized feature trajectory is extracted

from the user demonstrations using the raw feature data extracted from the

sensors. The Recognition step fulfills a double role: it can be used to com-

pare the similarity between two actions given their feature trajectories, or it

can be used as an evaluation stage where the performance of the executed

action with respect the generalized action is evaluated. At the end of this

stage, a discrepancy value between the input trajectories is obtained. In the

Execution stage, the generalized trajectory and the discrepancy value ob-

tained in the previous stages are introduced in an evolutionary algorithm to

compute the optimal robot joint trajectory. This final robot joint trajectory

is then executed by the robot.

21

Universidad Carlos III de Madrid Chapter 2. Continuous Goal-Directed Actions

2.2 Generalization

In the Generalization stage, a generalized m-dimensional feature trajec-

tory X is extracted from user demonstrations, where m is the number of

tracked scalar features. This generalized feature trajectory encodes the ac-

tion defined by the user. In order to extract X , first, all user demonstrations

are normalized in time. The generalized trajectory X is defined as a nor-

malized discrete time trajectory with n equitemporal intermediate goals.

The number of intermediate goals is computed using Eq. 2.1.

n = ⌊Dtime

Tmin
⌋ (2.1)

Where Dtime is the average duration of the user demonstrations before

the normalization step, and Tmin is the desired minimum time interval be-

tween intermediate goals. Given a fixed Tmin, longer actions will be as-

signed with a larger number of intermediate goals to avoid losses of infor-

mation. The generalized trajectory X is then defined following Eq. 2.2.

X = (X1 · · ·X j · · ·Xn) =

⎛⎜⎜⎝
x00 · · · x0n
...

xm0 · · · xmn

⎞⎟⎟⎠ (2.2)

Where X j is an intermediate goal of the generalized trajectory, and xmn

is the value of the m scalar feature at the time corresponding to the n inter-

mediate goal.

Given d as a set of user demonstrations, di can then be defined as the

value of the scalar feature i over this set of user demonstrations. The value

of any intermediate goal xi j can be computed following Eq. 2.3.

22

2.2. Generalization Universidad Carlos III de Madrid

xi j =
1

|di ∈ [j, j+1]| ∑
di∈[j, j+1]

di (2.3)

Using these intermediate goals a generalized feature trajectory can be

computed using a Radial Basis Function interpolation (24) as in Eq. 2.4.

f (x) =
m

∑
i=1

wi φ(∥x− xi∥) (2.4)

0.0

100

0.2 0.4 0.6 0.8 1

80

60

40

20

0

Pe
rc

e
n
ta

g
e
 o

f
p
a
in

te
d
 w

a
ll

Time step (normalized)

Figure 5: Plot of a 1-dimensional feature action generalization. Colorized lines depict different
demonstrations. The black line is the generalized feature trajectory obtained from all the demon-
strations.

In Fig. 5 there is an example of a generalized trajectory obtained using

a set of user demonstrations. This feature trajectory encodes the “paint”

action as defined by Morante et al. (3). The goal of this action is to use a

brush attached to the robot end effector to paint a wall.

23

Universidad Carlos III de Madrid Chapter 2. Continuous Goal-Directed Actions

2.3 Recognition

In the recognition stage, generalized feature trajectories are used as ref-

erence inputs to compare and measure the performance of executed actions

or to identify new ones. In this stage, the discrepancy between the observed

feature trajectory O defined by the executed or new action and the gener-

alized one X is obtained. This discrepancy depicts how different these two

trajectories are. Executed trajectories with high discrepancy are associated

with a poor execution performance. New trajectories with low discrepancy

are identified as similar actions that, in some scenarios, could be added to

the demonstration database.

Dynamic Time Warping (DTW) is introduced as an optimization method

for temporal alignment (23). One of the advantages of DTW is that it al-

lows comparing feature trajectories from actions executed with different

velocities. In CGDA, an intermediate result obtained with DTW is used as

the discrepancy value. In DTW, all paired combinations of points between

the features trajectories are compared using the L2 norm. Then the Cost

Matrix (CM) with all these values is obtained as presented in Eq. 2.5.

CM =

⎛⎜⎜⎝
d(o0,x0) · · · d(on′,x0)

...

d(o0,xn) · · · d(on′,xn)

⎞⎟⎟⎠ (2.5)

Using this cost matrix, an optimal cost path can be obtained such as

the pairing combinations selected minimize the total cost value of the two

trajectories. This path is defined as the lowest cost path. The total cost

value CP(X ,Y) of a given path P is computed as the sum of all the local

costs C of each alignment as depicted in Eq. 2.6.

24

2.3. Recognition Universidad Carlos III de Madrid

CP(X ,Y) =
L

∑
l=1

C(on′ l,xnl) (2.6)

Where L is the length of the path P.

Figure 6: Case example of applying DTW between two trajectories. The two trajectories used in
this example are the same, but with different time executions.

The result of applying DTW in a 2-dimensional feature space is the

temporal alignment path CP that minimizes the total cost taking in account

both dimensions. An example of the result of applying DTW to two 1-

dimensional trajectories is depicted in Fig. 6. In the case of m-dimensional

trajectories, the total cost D is defined as the sum of the costs obtained for

the optimal alignment of each feature dimension as in Eq. 2.7.

D =
m

∑
i=1

CPnorm(Oi,Xi) (2.7)

This value D is defined as the discrepancy value used inside the CGDA

framework.

25

Universidad Carlos III de Madrid Chapter 2. Continuous Goal-Directed Actions

2.4 Execution

In CGDA, joint motor parameters may not be explicitly encoded within

the framework. Additionally, conventional methods for the execution of

the trajectory, such as Inverse Kinematics, are only useful in situations

when the feature trajectory encoding the action only encodes Cartesian po-

sitions of the end effector. In CGDA, this is not the general case. Feature

trajectories usually encode different features like the Cartesian positions

of objects, visual features, force sensor information... In these situations,

the robot joint motor trajectory corresponding to the action has to be ob-

tained as an optimization problem. The goal is to find the joint parameters

that reduce the discrepancy between executed feature trajectories and gen-

eralized ones. For this optimization problem, evolutionary algorithms are

introduced within the CGDA framework. Evolutionary algorithms require

performing large numbers of evaluations to converge.

In order to increase the performance of evolutionary algorithms within

the CGDA framework, three different Evolutionary Strategies were pro-

posed at Morante et al. (3): Full Trajectory Evolution (FTE), Individual

Evolution (IE), and Incrementally Evolved Trajectories (IET). The follow-

ing sections introduce these strategies as defined in previous literature.

2.4.1 FTE: Full Trajectory Evolution

The first algorithm proposed is FTE. The pseudocode of this algorithm

is depicted in Algorithm 1. In FTE, each individual encodes a full robot

joint trajectory U . The obtained solution U defines the required full robot

joint trajectory to reach all the defined intermediate goals.

The initialize and evolve steps are defined by the evolutionary algo-

rithm selected. The termination conditions can be defined by the user. The

total number of parameters for each individual is DoF ·n, where DoF is the

26

2.4. Execution Universidad Carlos III de Madrid

Algorithm 1 Full Trajectory Evolution (FTE)
1: procedure FTE(X)
2: individuals←initialize
3: while not termination_conditions do
4: for each individual do
5: U ←evolve(DoF ·n)
6: O←mental_execution(U)
7: f ←mental_recognition(O,X)
8: end for
9: end while

10: motor_execution(U)
11: end procedure

number of Degrees of Freedom and n is the number of intermediate goals.

In the mental_execution step, each individual is executed within a sim-

ulated environment. The feature trajectory generated with this execution

is then introduced to the mental_recognition step. This step measure the

discrepancy value obtained by the solution. This discrepancy value is as-

signed to the individual as the individual fitness value f used in the evolve

step. This strategy tends to be the most computational expensive of the

three presented due to the usually large search spaces.

2.4.2 IE: Individual Evolution

The second algorithm proposed was IE as depicted in Algorithm 2. In

IE, each intermediate goal defined in the generalized feature trajectory is

treated as an independent optimization problem. Individuals are now de-

fined using only DoF parameters corresponding to the robot joint positions

required to reach an intermediate goal.

Although computationally less restrictive than FTE, this strategy is not

suitable for actions where there is a dependency between intermediate

goals. This is the case of the “paint” action later presented in this the-

sis. In CGDA, this action is encoded using the percentage of painted wall.

For the execution of this action, each intermediate goal, this percentage

27

Universidad Carlos III de Madrid Chapter 2. Continuous Goal-Directed Actions

Algorithm 2 Individual Evolution (IE)
1: procedure IE(X)
2: individuals←initialize
3: for j < n do
4: while not termination_conditions do
5: for each individual do
6: U j←evolve(DoF)
7: O j←mental_execution(U j)
8: f ←mental_recognition(O j,X j)
9: end for

10: end while
11: end for
12: motor_execution(U)
13: end procedure

may has to be increased a certain value. In IE, when performing the

mental_execution and mental_recognition step, the framework does not

have information about the effects of the execution of previous intermedi-

ate goals. Although some intermediate goals may individually increase the

percentage of painted wall as expected, this may not happen when execut-

ing the full generated robot joint trajectory. Some intermediate goals may

result in painting already painted areas by previous intermediate goals exe-

cutions. The result is an incompletely painted wall with some areas painted

more than once.

2.4.3 IET: Incrementally Evolved Trajectories

In IET, Algorithm 3, joint positions U j are evolved for each intermediate

goal after the mental execution of U[0, j−1]. IET works in a similar way

than IE, but with one critical difference. In IET, before the computation

of each intermediate goal, all the previous joint positions are executed in

the simulated environment. This updates the environment and solves the

problems presented in IE. In the case of the “paint” action, already painted

areas are presented painted for each intermediate step. Painting these areas

will not increase the percentage of painted wall and new solutions will have

28

2.5. Conclusions Universidad Carlos III de Madrid

Algorithm 3 Incrementally Evolved Trajectories (IET)
1: procedure IET(X)
2: individuals←initialize
3: for j < n do
4: while not termination_conditions do
5: for each individual do
6: mental_execution(U[0, j−1])
7: U j←evolve(DoF)
8: O j←mental_execution(U j)
9: f ←mental_recognition(O j,X j)

10: end for
11: end while
12: end for
13: motor_execution(U)
14: end procedure

to be found. In the experiments performed in the original paper, this was

presented as the most successful strategy of the three and the one chosen to

be implemented inside the CGDA framework. The main advantage of IET

is to combine the reduced search space of IE with the high performance of

FTE.

2.5 Conclusions

In this chapter, the CGDA framework for action generalization has

been introduced. CGDA is a Learning from Demonstration framework

where actions are encoded as feature trajectories. These features trajec-

tories are defined as the effects these actions produce on the environment.

The CGDA framework is composed by three stages: Generalization, Recog-

nition, and Execution. In the Generalization stage, the generalized feature

trajectory that encodes the action is generated. In the Recognition stage, a

discrepancy value is obtained between two different feature trajectories us-

ing DTW. This discrepancy value can be used to evaluate the performance

of an executed action or to recognize new ones. Finally, in the execution

29

Universidad Carlos III de Madrid Chapter 2. Continuous Goal-Directed Actions

stage, evolutionary algorithms are introduced as a way to generate the cor-

responding robot joint trajectories for the robot execution.

Since evolutionary algorithms methods are usually computationally ex-

pensive, different evolutionary strategies were proposed with the original

framework. These strategies are aimed at improving the performance and

efficiency of the evolutionary algorithms introduced. The execution of any

of these strategies still requires the evaluation of hundreds or thousands of

solutions in a simulated environment. Even for the reduced search space

defined by the IET strategy, this operation is still computational expensive

and time consuming. For some actions, the resulting trajectory may be

outdated at the time to be executed in the robot due to changes produced

in the environment while being generated. As a solution, in the first part

of this thesis, a study of how to improve the performance of CGDA with

dynamic real world environments is presented.

30

3. REDUCING EVALUATIONS IN CGDA

The CGDA framework requires the use of evolutionary algorithms for

the generation of robot joint trajectories. These algorithms converge to the

optimal solution by using a large number of evaluations. These evalua-

tions are performed in computationally expensive simulated environments

that require precomputed environment models. Due to the dynamic and

complex nature of real world environments, these models are usually im-

precise and costly to develop. In this chapter, a study of how to reduce

the number of evaluations in evolutionary algorithms is introduced. The

goal is to reduce the computational cost of performing evolutionary al-

gorithms steps, and, in some situations, potentially allow the framework

to perform the evaluations directly in the real world. Two different tech-

niques to reduce the number of evaluations will be studied and presented.

The first one consists on a set of different methods that reduce the number

of evaluations by changing the base of the evolutionary algorithms defini-

tion. The second one introduces constraints in evolutionary algorithms to

guide the convergence of the algorithm to achieve faster solutions. Both

of these alternatives will be studied and implemented within the CGDA

framework. The results will be compared with respect a common baseline

using Steady State Tournament (SST) as proposed in the first implemen-

tations of CGDA. SST is part of the sub-group of evolutionary algorithms

called genetic algorithms (17).

31

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

3.1 Introducing Approximations

The problem of reducing the number of evaluations in evolutionary al-

gorithms is not exclusive of CGDA. Real world scenarios or time sen-

sitive applications are also affected by the large number of evaluations

required for evolutionary algorithms to converge. Different methods for

the introduction of approximations within evolutionary algorithms have

already been proposed. These methods aim at introducing approximations

to reduce the problem complexity and with it the number of evaluations re-

quired for converging. They can be classified in three groups as a function

of where the approximation is introduced (25):

• Problem Approximation: In this category, the problem is simplified

by introducing approximations over the original problem definition.

These methods require a deep study of the problem to introduce these

approximations without changing the original goal.

• Functional Approximation: In these methods, the approximations

are introduced in the fitness function defined by the problem. The fit-

ness function is simplified with an approximate similar function that

is simpler to solve and less computational expensive. In Vincenzi

and Savoia (26), a speed up of a Differential Evolution algorithm is

achieved by introducing second order approximations in the fitness

function. The speed up of the system also came with a reduction in

the number of evaluations required by the system to converge.

• Evolutionary Approximation: In Evolutionary Approximation, the

base definition of the evolutionary algorithm is modified. There are

two main groups of Evolutionary Approximation algorithms: Fitness

Inheritance (FI) (27) and Fitness Approximation (FA) (25).

In FI, only a proportion of the population is evaluated. The rest of

the population fitness is computed through an approximation fitness

32

3.2. Particle Swarm Optimization in CGDA Universidad Carlos III de Madrid

function. This approximation fitness function does not require the

evaluation of the approximated individuals. The fitness value of these

individuals is computed as a function of the fitness value of the eval-

uated individuals. The number of required evaluations is reduced by

the proportion of the population computed through this approximate

fitness function. Barbour et al. (28) proposed the introduction of FI

methods for the optimization of chemotherapy dose schedules. The

design of chemotherapy dose schedules tends to be a complex prob-

lem with many variables (effects, schedules, drugs combination...)

that requires large number of evaluations to converge. This is usually

a computationally expensive problem and, at the same time, a critical

scenario where saving computational time is crucial.

In FA algorithms, the population is divided in clusters over the fit-

ness function. Each cluster has a fitness value assigned. Every time

a new particle is generated or moved to a new cluster, the particle fit-

ness is set to the one of that cluster. In Esparcia-Alcázar and Moravec

(29), FA is implemented within the computer game Unreal Tourna-

ment 2004TM for bot learning. In this scenario, evaluations must be

performed in real playtime, making them extremely constrained in

terms of available time. Another example is Bertini et al. (30). Here,

FA is introduced to reduce the number of evaluations required for

the optimization of a start-up phase of a combined cycle power plant.

This is a complex problem that requires a complex computational cost

model of the environment.

3.2 Particle Swarm Optimization in CGDA

For the original proposition of CGDA, an SST algorithm was chosen

as the evolutionary algorithm for the generation of joint robot trajecto-

ries. The most advanced methods for introducing approximations within

33

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

evolutionary algorithms are proposed using Particle Swarm Optimization

(PSO). For the introduction of these approximations within the CGDA ar-

chitecture, an implementation of PSO is proposed in this thesis. The re-

sults obtained will be later compared to the ones obtained with SST as in

the original framework.

3.2.1 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was initially pro-

posed by Kennedy and Eberhart (31). PSO was designed to be a method

based on introducing social interactions behaviors in the population of in-

dividuals. In PSO, a population of particles is randomly initialized within

the fitness function. Then, each movement step, the positions of the parti-

cles are updated using a velocity vi computed as in Eq. 3.1. This velocity

is a function of the particle’s current velocity, the position of the best par-

ticles in the population, and the best position in the particle history (32).

Each time the population has moved, an evaluation step is performed and

the fitness value of each particle updated.

⎧⎨⎩xi(t +1) = xi(t)+ vi

vi(t +1) = wvi(t)+R1c1(Pi− xi(t))+R2c2(Pg− xi(t))
(3.1)

Where w is the inertia weight, R1 and R2 are two random values, and c1

and c2 are constants. Pi is the best position in the particle history, and Pg is

the position of the best particle in the swarm.

3.2.2 Adaptive Fuzzy Fitness Granulation PSO

Davarynejad et al. (33) initially proposed the idea of Adaptive Fuzzy

Fitness Granulation (AFFG) as an evolutionary optimization method. This

34

3.2. Particle Swarm Optimization in CGDA Universidad Carlos III de Madrid

method can be considered as part of the FA algorithms, where individuals

are clustered inside granules of individuals. These granules are defined

within the fitness function using Gaussian distributions. New individuals

are assigned to granules similar to them. The fitness value of new individ-

uals is set to the one corresponding to the assigned granule. No evaluations

are required for these individuals. If a new individual does not fit any al-

ready existing granule, the new individual is evaluated and a new granule

is created. The fitness value of this new granule is set to the fitness value

obtained when evaluating the new individual. The results depicted on the

experiments performed by Akbarzadeh-T et al. (34) show a reduction, in

some scenarios, in the number of evaluations of 90% while reaching a

similar performance. In this thesis, an implementation of AFFG with PSO

(AFFG-PSO) is proposed as an original contribution.

3.2.3 Fitness Inheritance PSO

Fitness Inheritance (FI) was introduced by Smith et al. (27) as a way to

reduce the high computational cost of evolutionary algorithms. The initial

idea was to only perform the evaluation of a portion of the population. The

rest of the population fitness value was approximated as a function of the

fitness value of the already evaluated individuals.

In the experiments performed in Ducheyne et al. (35), the goal was to

measure the feasibility of performing FI with real world scenarios. The re-

sults showed how FI algorithms were able to converge when facing prob-

lems with convex fitness functions. This was not the same when facing

non-convex problems. In these situations, the algorithms were not able

to find the optimal solution. In Reyes-Sierra and Coello (36), the authors

proposed an implementation of FI within a PSO framework (FI-PSO). The

results of this paper depicted the convergence of the algorithm also for the

non-convex problems. Later, in Reyes-Sierra and Coello (37), the authors

35

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

proposed a set of methods to improve the performance of the initially pro-

posed FI-PSO method. One of these methods obtained the best results by

introducing the approximation fitness formula depicted in Eq. 3.2.

fi(t +1) = fi(t)+
c1R1Pi(t)+ c2R2Pg(t)

1+ c1R1 + c2R2
(3.2)

3.3 Introducing Constraints

Within the scope of genetic algorithms, some literature related to the

introduction of constraints in the search space of the evolutionary algo-

rithm exists. For accurate model generation, constraints are studied as a

way to represent infeasible positions within real world scenarios. Genetic

algorithms are not designed to work with constrained problems. Differ-

ent strategies to deal with the introduction of constraints within genetic

algorithms have already been proposed. These strategies can be divided

in different groups classified by the way they deal with solutions defined

within constrained states (38). In this thesis, constraints are introduced to

reduce the search space of the robot and, as a consequence, the number of

required evaluations to converge. The most relevant strategies are:

• Rejecting strategy: This strategy simply rejects solutions that corre-

spond to constrained states. These constrained solutions are not taken

in account by the algorithm at the time of computing the fitness. Only

non constrained solutions are evaluated. This strategy fails if all the

obtained solutions in one iteration are rejected. An example of this

strategy is the work proposed by Zhao and Sannomiya (39). Here, the

authors introduced a rejecting strategy for the problem of designing a

flow shop schedule. In flow shop schedule problems, a big part of the

action combinations are infeasible ones.

36

3.3. Introducing Constraints Universidad Carlos III de Madrid

• Repairing strategy: This strategy focus on maximizing the number

of solutions within the non constrained space each iteration. Con-

strained solutions, instead of being discarded, are “repaired” and trans-

formed to non constrained ones. This repairing step can sometimes

be as complex and computational expensive as the evolutionary algo-

rithm itself. Chootinan and Chen (40) proposed the introduction of

a gradient based function within the constrained area. This gradient

function is used to redirect constrained solutions to non constrained

states.

• Modifying genetic operator strategy: In this strategy, the genetic

algorithm hyper-parameters are modified to only allow the genera-

tion of solutions within non constrained states. This is the case for

example of defining the individuals using constrained values.

• Penalty strategy: This strategy is equivalent to a rejecting strategy

but with constrained solutions being assigned a penalty fitness value

instead of being directly rejected. Constrained areas are converted

to penalized ones. Constrained solutions are equivalent to non con-

strained ones with penalization values. The introduction of this pe-

nalization value can be done in two ways:

eval(x) =

⎧⎨⎩ f (x), i f x ∈ F

f (x)+ p(x) otherwise
(3.3)

eval(x) =

⎧⎨⎩ f (x), i f x ∈ F

f (x)p(x) otherwise
(3.4)

Where f (x) is the fitness function of the problem, p(x) the penalty

function, and F the non constrained space.

37

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

From all of these strategies, the penalty strategy is the one with the most

related literature. Penalty strategies algorithms can be classified according

to how the penalty is obtained (41) in the following groups:

• Death Penalties: The fitness penalty value for all the solutions inside

the constrained space is fixed to ∞.

• Static Penalties: All the solutions in the constrained space are as-

signed with the same constant fitness value.

• Dynamic Penalties: The current number of iterations performed over

the population is used to compute the fitness penalty value.

• Adaptive Penalties: The fitness penalty value is defined as a function

of the population current state. In Ben Hadj-Alouane and Bean (42),

if all the solutions obtained in the last iteration were located in the

constrained space, the penalty value was increased. On the contrary,

if none of the solutions were part of the constrained space, the penalty

value was decreased.

• Annealing Penalties: Annealing Algorithms are introduced to com-

pute the fitness value as function of the temperature value (43).

Several algorithms based on these strategies have been proposed by dif-

ferent authors (44, 45, 46, 47). Some of these algorithms were proposed as

a combination of different strategies. Chang (48) proposed a system using

a combination of death and static penalties to control the water levels of

a water reservoir. Death penalties are used to penalize solutions outside

the water reservoir boundaries. A static penalty is introduced to penalize

solutions that create water levels outside the safe levels of the system.

38

3.4. Approximations and Constraints in CGDA Universidad Carlos III de Madrid

3.4 Approximations and Constraints in CGDA

Evolutionary algorithms approximations and constrained genetic algo-

rithms are implemented and studied within the CGDA framework in order

to reduce the number of evaluations required.

In terms of introducing evolutionary algorithms approximations, two

different algorithms are proposed and implemented in this thesis: AFFG-

PSO as an original contribution of this thesis; and FI-PSO as proposed by

Reyes-Sierra and Coello (37). To compare the performance of these meth-

ods, two base algorithms are also implemented as the baselines: Steady

State Tournament (SST) (49) as in the original CGDA framework; and

Particle Swarm Optimization (PSO) (31) as the vanilla algorithm.

Algorithm 4 AFFG-PSO
1: procedure AFFG-PSO(similarity_threshold,max_num_granules)
2: individuals,granules← initialize
3: while not termination_conditions do
4: Pbest← find_best_particle(individuals)
5: for each individual do
6: individual_pos← compute_velocity(individual,Pbest)
7: max_similarity← compute_max_similarity(individual,granules)
8: if max_similarity > similarity_threshold then
9: individual_ f it← granule_ f it

10: else
11: individual_ f it← evaluate(individual)
12: granules← generate_new_granule(individual)
13: end if
14: end for
15: granules← update_granules(granules,max_num_granules)
16: end while
17: end procedure

The pseudo code of the proposed AFFG-PSO algorithm is depicted in

Algorithm 4. Here, f ind_best_particle and compute_velocity are defined

as in the vanilla PSO algorithm. The compute_max_similarity function

computes the similarity of the given individual with the most similar ex-

isting granule. This similarity is computed as proposed by Akbarzadeh-T

39

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

et al. (34). The similarity_threshold is a constant value that defines the

minimum similarity value required to consider a particle part of a gran-

ule. The update_granules operation checks the list of existing granules.

Less relevant granules are deleted when reached the maximum number of

granules defined by max_num_granules. Granules are generated following

the AFFG algorithm and the population of individuals is evolved as in the

vanilla PSO.

In terms of constrained genetic algorithms, two different types of con-

straints are defined for the experiments of this thesis. These are the spatial

and velocity constraints. The spatial constraint scenario introduces a con-

straint in the Cartesian search space of the robot. This constraint space is

defined as the minimum bounding box around the solution space with a di-

latation value. Solutions that generate robot end effector positions outside

this valid space are treated as constrained ones. The velocity constraint is

introduced in the joint velocity space of the robot. When a solution is gen-

erated, the joint velocity resulting of that solution is obtained. If the result

value is higher than a given threshold, the solution is treated as constrained.

3.5 Experiments

Experiments were performed to test the effects of introducing constraints

and approximations within the CGDA framework. The reduction in the

number of evaluations was treated as the main parameter to measure. Two

sets of experiments were performed. The first set focus on the introduction

of evolutionary algorithms approximations in the CGDA framework. This

set of experiments introduce the implementation of the four algorithms

proposed earlier in this chapter: SST, PSO, AFFG-PSO, and FI-PSO. The

second set of experiments introduces the spatial and velocity constraints as

defined in the previous section. Here, SST was introduced as the evolu-

tionary algorithm for this set of experiments.

40

3.5. Experiments Universidad Carlos III de Madrid

The experiments were performed within a simulated environment us-

ing OpenRAVE (50) as the simulation platform. YARP (51) was intro-

duced for the internal communications. The humanoid robot TEO1 (52)

from Universidad Carlos III de Madrid was chosen as the robotic platform.

Three joints of the right arm of the robot (two from the shoulder and one

from the elbow) were used for the control and generation of the joint robot

trajectories. The rest of the joints were fixed to a constant position. The

“wax” (defined as “clean” in previous literature (3)) and the already defined

“paint” actions were the actions selected for the experiments. One general-

ized feature trajectory was generated for each of the actions. These actions

were chosen in order to have a common baseline with respect previous

CGDA literature. For the execution of both actions, only the movement of

the right arm of the robot was required. The IET evolutionary strategy was

selected as the default evolutionary strategy for all of the experiments. The

code required to run the experiments was open-sourced and made available

online2.

Figure 7: Simulated execution of the “paint” action using the humanoid robot TEO and Openrave.

1https://github.com/roboticslab-uc3m/teo-main
2Source code available at https://github.com/roboticslab-uc3m/xgnitive

41

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

In the “wax” action, the goal is to move an object performing a circular

trajectory with a diameter of 30 cm for one revolution. This movement is

similar to the famous “wax” movement depicted on the film “The Karate

Kid” (53). Three scalar features corresponding to the scalar Cartesian po-

sition (X,Y,Z) of the object’s centroid are used to encode this action. The

generalized trajectory is a circular trajectory of 30 cm of diameter. In the

“paint” action, the goal is to paint a wall using a brush connected to the

robot end-effector. Only one scalar feature, the percentage of painted wall,

is required to encode this action. The generalized feature trajectory is de-

fined as a straight line going from 0% to 100% of painted wall. For sim-

plification, a 4x4 model of a discretized wall is introduced for both the

simulation and real world executions. An area of the wall is considered

painted when the painting tool of the robot is closer than a defined painting

threshold with respect the given area. In real world executions, a monitor

in front of the robot is used to depict the simulated wall. Here, the RGB-D

sensor of the robot is used to find the position of the painting tool and check

if some area of the wall has been painted. Fig. 7 depicts an execution of

the “paint” action in simulation.

For the experimental setup, the joint position value for each of the joints

was limited to a minimum of -15 and a maximum of 100 degrees. The mu-

tation probability for the SST algorithm was fixed to 60%. The tournament

size was set to 3. For the “wax” action, the total number of individuals was

set to 50. The termination condition was set to reach a maximum number

of iterations without improvement of 3. For the “paint” action, the total

number of individuals was set to 10. The termination conditions were set

to reach a maximum number of iterations without improvement of 10 or

obtaining a zero discrepancy error with the generated solution.

In the Evolutionary Approximation experiments, the PSO inertia weight

value was fixed to 1.2 and the maximum particle velocity was limited to

42

3.6. Evolutionary Approximation Results Universidad Carlos III de Madrid

a value of 5. The maximum number of granules, for the AFFG-PSO al-

gorithm, was fixed to 3. A proportion of 55% of the particles were not

evaluated, in the case of FI-PSO.

In order to measure the performance of each of the selected algorithms,

two different parameters were introduced. These two parameters are the

number of required evaluations and the discrepancy value. The discrep-

ancy value is measured as a way to study how the reduction of evaluations

impacts the quality of the obtained solutions. In addition to this, for the

“paint” action, the percentage of painted wall was also introduced as a

complementary parameter to this discrepancy value.

3.6 Evolutionary Approximation Results

In the first set of the experiments, the four selected algorithms for Evo-

lutionary Approximation were tested: SST, PSO, AFFG-PSO and FI-PSO.

These algorithms were introduced in the execution stage of the CGDA

framework. Experiments were performed over the two different actions:

“wax” and “paint”. The results depicted in this section compare the effects

of introducing each of these algorithms.

3.6.1 Wax Results

For each implementation of the four proposed algorithms, 50 repetitions

of the execution of the “wax” action were performed.

Table 3: “Wax” Evolutionary Approximation results: average results after 50 repetitions of the
“wax” action for each of the proposed algorithms.

Algorithm Evaluations Discrepancy
SST 9679 274
PSO 8470 213

AFFG-PSO 5314 434
FI-PSO 3432 362

43

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

0 1 2 3 4 5 6 7 8
Intermediate Goal

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

SST

PSO

AFFG-PSO

FI-PSO

Figure 8: “Wax” Evolutionary Approximation results: total number of required evaluations for
the “wax” action execution as a function of the intermediate goals defined in the feature trajectory.

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

A)

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

B)

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

C)

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

D)

Figure 9: “Wax” Evolutionary Approximation results: feature trajectories obtained with the fol-
lowing algorithms: A) SST, B) PSO, C) AFFG-PSO and D) FI-PSO. The green trajectory depicts
the generalized feature trajectory encoding the action. The blue trajectory is the feature trajectory
obtained with the execution stage of CGDA.

44

3.6. Evolutionary Approximation Results Universidad Carlos III de Madrid

The results obtained during these experiments are depicted in Table 3.

FI-PSO was the method with a lower number of required evaluations. The

number of required evaluations was reduced by 65% with an increase of

32% in the discrepancy value with respect the original SST algorithm. In

the case of the AFFG-PSO algorithm, this reduction was 45% with an in-

crease in the discrepancy value of 58%. Finally, the vanilla PSO algorithm

required 12% less evaluations with a discrepancy value reduction of 22%.

Fig. 8 depicts the total number of performed evaluations as a function

of the intermediate goal. In Fig. 9, a plot of the generated Cartesian trajec-

tories for each of the algorithms is depicted. For this action, this Cartesian

trajectory correspond to the feature trajectory used to encode the “wax”

action.

3.6.2 Paint Results

In the “paint” scenario, 100 repetitions of the execution of the “paint”

action for each of the algorithms were performed.

Table 4: “Paint” Evolutionary Approximation results: average results after 100 repetitions of the
“paint” action for each of the proposed algorithms.

Algorithm Evaluations Discrepancy Painted(%)
SST 539 7.25 94.4
PSO 583 12.06 91.44

AFFG-PSO 537 16.56 89.75
FI-PSO 441 20.13 87.88

Table 4 depicts the average results as a function of the used algorithm.

Here, FI-PSO was again the most successful algorithm in terms of reducing

the number of required evaluations. The number of required evaluations

using this algorithm was reduced by 18% with a 6.52% less painted wall.

The AFFG-PSO algorithm required the same number of evaluations than

the SST algorithm with a 4.65% less painted wall. The discrepancy value

was increased by more than the double for these two algorithms. Finally,

45

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

the PSO algorithm required 8% more evaluations reducing the percentage

of painted wall by 2.96% and increasing the discrepancy value a 66%.

0 2 4 6 8 10 12 14 16
Intermediate Goal

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

SST

PSO

AFFG-PSO

FI-PSO

0 2 4 6 8 10 12 14 16
Intermediate Goal

0

20

40

60

80

100

W
a
ll

P
a
in

te
d
 (

%
)

SST

PSO

AFFG-PSO

FI-PSO

Figure 10: “Paint” Evolutionary Approximation results: results as a function of each intermediate
goal defined by the generalized trajectory. At the top, the total number of required evaluations. At
the bottom, total percentage of painted wall.

Fig. 10 depicts two different plots. The plot at the top is the total

number of required evaluations. The plot at the bottom is the percentage of

painted wall. Both plots are represented as a function of the intermediate

goals presented in the generalized trajectory. In this action, the feature

trajectory that encodes the action measures the percentage of painted wall.

46

3.7. Constrained Genetic Algorithms Results Universidad Carlos III de Madrid

The generalized trajectory is a straight line with a 0% percentage of painted

wall at intermediate goal 0, and 100% at the last intermediate goal.

3.7 Constrained Genetic Algorithms Results

In these experiments, two different types of constraints were introduced:

spatial and velocity constraints. A death penalty strategy was the strategy

chosen to deal with constrained solutions. Solutions outside the non con-

strained space were assigned a Discrepancy value of ∞. These constraints

were tested using the same actions as in the case of the Evolutionary Ap-

proximation experiments. These are the “paint” and the “wax” actions.

The spatial constraint was introduced within the Cartesian search space

of the action. This constraint is defined as the minimum bounding box

around the solution space with a dilatation value. The results obtained are

depicted as a function of this dilatation value. The velocity constraint was

introduced in the joint space of the robot. This constraint is defined as the

maximum joint velocity allowed for each of the joints. Different velocities

thresholds were introduced. The results are depicted as a function of the

value of this velocity threshold.

3.7.1 Wax Results

The “wax” action experiments consisted on 50 repetitions of the exe-

cution of the “wax” action using the CGDA framework. These number of

repetitions were performed for both the spatial and velocity constraint.

Table 5: “Wax” spatial constraint experiment results: average results after 50 repetitions of the
“wax” action for each of the dilatation values.

Dilatation [m] 0.01 0.05 0.1 0.2 0.3 ∞

Evaluations 3212 3163 2993 4960 5722 9679
Discrepancy 465 (2) 503 (1) 471 (3) 312 331 274

47

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

0 1 2 3 4 5 6 7 8
Intermediate Goal

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

0.01 m

0.05 m

0.1 m

0.2 m

0.3 m

∞

Figure 11: “Wax” spatial constraint experiment results: total number of required evaluations for
the “wax” action execution as a function of the intermediate goals defined in the feature trajectory.

In the case of the spatial constraints, six different dilatation values were

tested in the experiments: 0.01 m, 0.05 m, 0.1 m, 0.2 m, 0.3 m and ∞.

Using a ∞ dilatation value is equivalent to the scenario of using the vanilla

SST algorithm. The average results after 50 repetitions of the “wax” ac-

tion, for each of the dilatation values, is depicted in Table 5. Here, the value

in parenthesis (), in the Discrepancy row, depicts the number of obtained

solutions that ended outside the constrained space. These solutions were

assigned an ∞ discrepancy value and therefore not considered to be com-

puted within the average of the discrepancy. In this scenario, the higher

reduction in the number of required evaluations was obtained using a di-

latation value of 0.1. The number of required evaluations was reduced by

69% increasing the discrepancy value by 71%. Lower dilatation values ob-

tained worse results both in terms of number of required evaluations and

discrepancy value. Higher dilatation values came with a reduction of the

discrepancy value but also an increase in the number of required evalua-

tions. In the case of a dilatation value of 0.2, the number of required eval-

uations was reduced by 49% with an increase of the discrepancy value of

48

3.7. Constrained Genetic Algorithms Results Universidad Carlos III de Madrid

14%. Fig. 11 depicts the total number of required evaluations as a function

of the intermediate goals defined in the feature trajectory.

In the velocity constraints experiments, using the “wax” action, six dif-

ferent velocity thresholds were introduced: 5, 10, 20, 60, 70, 80 and ∞

[degrees/iteration].

Table 6: “Wax” velocity constraint experiment results: average results after 50 repetitions of the
“wax” action for each of the velocity constraint values.

Max. Velocity [degrees/iteration] 5 10 20 60 80 ∞

Evaluations 3591 4058 5723 6876 7349 9679
Discrepancy 540 483 331 346 330 274

0 1 2 3 4 5 6 7 8
Intermediate Goal

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

5 deg/iter

10 deg/iter

20 deg/iter

60 deg/iter

80 deg/iter

∞

Figure 12: “Wax” velocity constraint experiment results: total number of required evaluations for
the “wax” action execution as a function of the intermediate goals defined in the feature trajectory.

The average results for the velocity constraints experiments are depicted

in Table 6. In these experiments, the higher reduction in the number of

required evaluations was achieved with the lower velocity threshold (5).

The number of required evaluations was reduced by 63% with an increase

in the discrepancy value of 97%. Higher velocity thresholds required a

higher number of evaluations but also obtained lower discrepancy values.

For a threshold of 20, the number of required evaluations was reduced

by 41% with an increase in the discrepancy of 21%. Fig. 12 depicts the

49

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

total number of required evaluations as a function of the intermediate goals

defined in the feature trajectory.

3.7.2 Paint Results

As in the Evolutionary Approximation experiments, 100 repetitions of

the “paint” action were performed for each dilatation value. The same

dilatation values as for the “wax” action were introduced.

Table 7: “Paint” spatial constraint experiment results: average results after 100 repetitions of the
“paint” action for each of the spatial constraint values.

Dilatation [m] 0.01 0.05 0.1 0.2 0.3 ∞

Evaluations 319 307 220 334 360 539
Discrepancy 193 17 5.7 7.3 6.3 7.3

Painted Wall (%) 64.06 89.58 95.13 94.38 94.56 94.44

0 2 4 6 8 10 12 14 16
Intermediate Goal

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

0.01 m

0.05 m

0.1 m

0.2 m

0.3 m
∞

Figure 13: “Paint” spatial constraint experiment results: total number of required evaluations for
the “paint” action execution as a function of the intermediate goals defined in the feature trajectory.

The results in Table 7 were the average obtained for these experiments.

Here, the minimum number of required evaluations was obtained with a

dilatation value of 0.1. The number of required evaluations was reduced

by 60% with also a decrease in the discrepancy value of 22% with respect

50

3.7. Constrained Genetic Algorithms Results Universidad Carlos III de Madrid

the SST algorithm and a 0.7% more painted wall. Fig. 13 depicts the

total number of required evaluations as a function of the intermediate goals

defined in the feature trajectory.

Table 8: “Paint” velocity constraint experiment results: average results after 100 repetitions of the
“paint” action for each of the velocity constraint values.

Max. Velocity [degrees/iteration] 20 60 80 100 120 ∞

Evaluations 543 557 572 527 529 539
Discrepancy 24.8 12.8 10.4 8.1 8 7.3

Painted Wall (%) 87.06 90.21 92.68 93.75 93.88 94.44

0 2 4 6 8 10 12 14 16
Intermediate Goal

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

e
v
a
lu

a
ti

o
n
s

20 deg/iter

60 deg/iter

80 deg/iter

100 deg/iter

120 deg/iter

∞

Figure 14: “Paint” velocity constraint experiment results: total number of required evaluations for
the “paint” action execution as a function of the intermediate goals defined in the feature trajectory.

In the case of the introduction of velocity constraints within the “paint”

action, six velocity constraint values were chosen: 20, 60, 80, 100, 120

and ∞. Again, an ∞ constraint value was equivalent to the original non

constrained SST algorithm. The average results obtained after the 100

repetitions for each of the constraint values are depicted in Table 8. In these

experiments, a relevant reduction in the number of required evaluations

was not obtained. The higher reduction was of a 2% obtained for the 120

velocity constraint. The percentage of painted wall, however, decreased to

a minimum of 87.06% (7.7% lower with respect SST) with the introduction

51

Universidad Carlos III de Madrid Chapter 3. Reducing evaluations in CGDA

of more restrictive constraints. Fig. 14 depicts the total number of required

evaluations as a function of the intermediate goals defined in the feature

trajectory.

3.8 Conclusions

In this chapter, a study of different methods to reduce the number of

required evaluations in evolutionary algorithms is proposed. Real world

scenarios are highly dynamic environments that are constantly changing.

Reducing the number of required evaluations allows the CGDA framework

to reduce computational times and in some situations to perform real world

evaluations. The goal is to give the framework the ability to achieve an on-

line adaptation to environment changes. Two different approaches are pre-

sented: Evolutionary Approximations and constrained genetic algorithms.

Evolutionary Approximations can be introduced as a way to reduce evo-

lutionary algorithms complexity. These techniques can be classified as a

function of where these approximations are introduced. Two Evolutionary

Approximation algorithms have been tested in the experiments: AFFG-

PSO and FI-PSO. The first one, AFFG-PSO, being an original contribu-

tion. In the second approach, referred as constrained genetic algorithms,

two different types of constraints were introduced and studied within the

CGDA framework: these are the spatial and velocity constraint. The spa-

tial constraint was introduced in the Cartesian search space of the robot.

The velocity constraint was introduced in the joint space of the robot. A

death strategy was implemented to deal with solutions outside the non con-

strained space. Both of these approaches, Evolutionary Approximation

and constrained genetic algorithms, were tested in experiments with the

CGDA framework and the humanoid robot TEO. Two different actions,

52

3.8. Conclusions Universidad Carlos III de Madrid

“paint” and “wax”, were introduced to test the performance of these ap-

proaches. The experiments measured the number of required evaluations

and the action performance for each of the proposed methods.

Introducing these methods successfully reduced the number of required

evaluations for both of the actions. In some configurations, this reduction

came with a decrease in the performance of the action execution. In others,

the performance was kept the same or even increased. Reductions in the

number of required evaluations of 60% were achieved with certain config-

urations. In the case of the Evolutionary Approximation algorithms, FI-

PSO obtained the best results for the “wax” action. For the “paint” action,

FI-PSO obtained a higher reduction in the number of required evaluations

than AFFG-PSO, but with a worse performance. In the case of constrained

genetic algorithms, the velocity constraint obtained better results than the

spatial constraint for the “wax” action. In the case of the “paint” action,

the spatial constraint achieved a 60% reduction in the number of required

evaluations while increasing the performance.

Two main conclusions can be extracted from these results. The first one

is that although the number of required evaluations is highly reduced for

some configurations, most of the times, this number is still high enough to

be too costly to directly perform these evaluations in real world environ-

ments. The second conclusion is that the performance of these methods

varies as a function of the target executed action. Some tuning has to be

performed for each action. This limits the generalization capabilities of

the framework. In the following chapter, a new evolutionary strategy to

allow CGDA to work in real world scenarios without these limitations is

proposed. This new strategy does not aim at reducing the number of eval-

uations, but rather to introduce an online generated model of the environ-

ment.

53

4. ONLINE EVOLVED TRAJECTORIES

In Continuous Goal-Directed Actions (CGDA), robot joint trajectories

for the execution of actions are generated using evolutionary algorithms.

These algorithms require high numbers of evaluations to converge. These

evaluations are performed in simulations using models of the environment.

This is a computational expensive process that usually takes a relevant

amount of time to converge. In these scenarios, robot joint trajectories

obtained with evolutionary algorithms may be no longer valid after being

generated. In the previous chapter, the introduction of different methods

to reduce the number of required evaluations has been studied. Although

achieving relevant reductions, this number was still too large to directly

perform the evaluations in real world scenarios.

In this chapter, a different approach is introduced. Here, the introduc-

tion of online evolutionary strategies is proposed. In online evolutionary

strategies, real world executions are introduced within the planning loop.

This planning loop iterates between the goals defined in the feature tra-

jectory to generate the corresponding robot joint trajectories. In classi-

cal CGDA evolutionary strategies, generated robot joint trajectories are

executed after this planning loop. In online evolutionary strategies, for

each iteration of the planning loop, a real world execution of the generated

robot joint trajectory is performed. An observation step is then executed

and a new model of the environment is generated. The model is updated

to contain the last changes of the environment in order to produce valid

robot joint trajectories. In this chapter, Online Evolved Trajectories (OET)

55

Universidad Carlos III de Madrid Chapter 4. Online Evolved Trajectories

Figure 15: The OET algorithm allows introducing changes in the environment during execution.
In the image, a collaborative execution of the“paint” action is depicted.

is proposed as an online evolutionary strategy for the CGDA framework.

OET drastically reduce computational times between real world execu-

tions. This allows CGDA to be executed in highly dynamic real world sce-

narios. This is the case of human robot collaborative actions such as the

one in Fig. 15. The performance of the OET strategy is compared with the

FTE and IET strategies presented in previous chapters. The experiments

are performed using two actions: “paint” and “iron”. The “iron” action is

presented as a new action defined in the scope of this work. Both of these

actions were chosen to include vision, kinesthetic and force features.

4.1 Online Evolutionary Strategies

In classic evolutionary CGDA strategies, actions are only executed in

the real world after the generation of the full robot joint trajectory. These

strategies are considered offline, due to having the planning stage detached

56

4.1. Online Evolutionary Strategies Universidad Carlos III de Madrid

from the real world executions. This planning stage is in charge of the gen-

eration of the robot joint trajectories that achieve all the intermediate goals

defined in the feature trajectory. A general layout of an offline evolutionary

strategy is presented in the pseudo code in Algorithm 5.

Algorithm 5 Offline Evolutionary Strategy
1: procedure OFFLINE

2: while not planning_termination_conditions do
3: mental_process_loop
4: end while
5: motor_execution(U)
6: end procedure

In this thesis, online evolutionary strategies is proposed as an alterna-

tive approach to deal with highly dynamic environments. In online evo-

lutionary strategies, the real world execution step is introduced within the

planning stage. Every time the robot joint trajectory required to reach any

intermediate goal is generated, a real world execution of this part of the

trajectory is performed. This increases the frequency between real world

executions, allowing the framework to adapt to changes produced in the

environment. A general layout of an online evolutionary strategy is pre-

sented in Algorithm 6.

Algorithm 6 Online Evolutionary Strategy
1: procedure ONLINE

2: while not planning_termination_conditions do
3: mental_process_loop
4: motor_execution(U j)
5: end while
6: end procedure

Here, a motor execution step is executed for each intermediate robot

joint trajectory U j generated. In classical offline evolutionary strategies,

this execution is only performed after the generation of the full robot joint

trajectory U .

57

Universidad Carlos III de Madrid Chapter 4. Online Evolved Trajectories

4.2 The Online Evolved Trajectories algorithm

Online Evolved Trajectories (OET) is proposed in this thesis as a con-

crete application of the online evolutionary strategies approach. This al-

gorithm introduces the idea of online evolutionary strategies with the in-

troduction of a perception and localization step. Algorithm 7 depicts the

pseudocode of the OET algorithm.

Algorithm 7 Online Evolved Trajectories (OET)
1: procedure OET(X)
2: individuals←initialize
3: while not oet_termination_conditions do
4: Pt ←sensor_perception
5: j←localization(Pt)
6: while not termination_conditions do
7: for each individual do
8: U j+1←evolve(DoF)
9: O j+1←mental_execution(U j+1)

10: f ←mental_recognition(O j+1,X j+1)
11: end for
12: end while
13: motor_execution(U j+1)
14: end while
15: end procedure

The sensor_perception and localization steps are two new steps intro-

duced for the OET algorithm. These steps are in charge of updating the

state of the environment model and the current feature trajectory.

4.2.1 Perception Step

In the sensor perception step, the robot sensors are used to extract the

current state of the environment encoded as the state of the features defined

in the generalized feature trajectory. An m-dimensional feature vector Pt ,

defined as in Eq. 4.1, is generated each time step t for the current environ-

ment state.

58

4.3. Experiments Universidad Carlos III de Madrid

Pt = [p0t , p1t , p2t , p3t , p4t ..., pmt]
T (4.1)

4.2.2 Localization Step

In the Localization step, the vector Pt is used to find the current state

of the executed trajectory in the generalized trajectory. This current state

is defined as the intermediate goal X j that is more similar to the current

environment state Pt as defined in Eq. 4.2.

j = arg min
j∈[jprev,n]

(∥Pt−X j∥p) (4.2)

Where jprev corresponds to the last achieved intermediate goal and p is

the order of the norm introduced, preferably fixed as 2 as the Euclidean L2

norm.

4.3 Experiments

Experiments over three different evolutionary strategies were performed:

Full Trajectory Evolution (FTE), Incrementally Evolved Trajectories (IET),

and the Online Evolved Trajectories (OET). The goal was to compare the

performance of OET with respect the base strategies proposed with CGDA.

These three strategies were tested with two different actions: the already

defined “paint” action introduced in the experiments in section 3.5; and a

new “iron” action defined for these experiments. These results were also

compared with the ones obtained via Gaussian Mixture Regression as pro-

posed by Calinon et al. (9). The robot platform selected was the humanoid

robot TEO from Universidad Carlos III de Madrid. The Individual Evolu-

tion (IE) strategy was not introduced due to the inherent issue explained in

59

Universidad Carlos III de Madrid Chapter 4. Online Evolved Trajectories

section 2.4.2. This issue affects time dependent actions such as the “paint”

action proposed in the experiments.

For the experimental setup, in order to execute the “paint” action, a

paintbrush was attached to the left arm end-effector of the robot. In the

case of the “iron” action, a real iron was attached to the right arm end-

effector. For the demonstrations, the 6 DoF of the corresponding arm (left

for “paint”, right for “iron”) were used. The other robot joints (torso, legs,

head...) were kept static. The demonstrations were performed via kines-

thetic learning setting all the joints of both of the robot arms into gravity

compensation mode. The demonstrator was asked to execute each of the

actions separately using only the robot arms. In the case of the “paint”

action, the encoded feature was the percentage of painted wall. The goal

of the “iron” action was to descend the iron to the ironing board, apply a

force of approximately 30 N, and then ascend again. Two sets of features

were measured for this action. First, the Cartesian position of the robot

end-effector was computed using the CUI absolute encoders in the robot

joints and forward kinematics. Second, the force exerted in the robot end-

effector was measured using the JR3 force/torque sensor equipped in the

right wrist of the robot. Four demonstrations were performed for each of

the actions.

Mental executions were performed inside a simulated environment us-

ing OpenRAVE. YARP was introduced for the internal communications.

The strategies were implemented using the ECF C++ framework (54). In

order to have a common baseline with previous experiments, SST was cho-

sen as the evolutionary algorithm for the evolutionary algorithm step. The

code to run the experiments was open-sourced and made available online1.
1https://github.com/roboticslab-uc3m/xgnitive

60

https://github.com/roboticslab-uc3m/xgnitive

4.4. Results Universidad Carlos III de Madrid

The SST number of individuals was set to a population of 10. The tour-

nament size was set to a value of 3. A 60% mutation probability was intro-

duced. Each individual joint value was limited to the range [-15, 100]. This

range corresponds to the arm joint limits expressed in degrees. The termi-

nation conditions for FTE were set to reach a maximum number of 300

iterations or reaching 75 iterations without improving the fitness value. In

the case of the IET strategy, these termination conditions were set to 300/n

total number of iterations or 75/n iterations without improvement, where

n is the total number of intermediate goals. For the OET algorithm, these

numbers were set to 300/otc total iterations or 75/otc iterations without

improvement, where otc is the maximum number of allowed evolutionary

algorithm executions in the OET algorithm. The otc parameter was set to

be equal to n. With these parameters, the total number of possible evalua-

tions was the same for the three evolutionary strategies.

4.4 Results

In addition to the Discrepancy value and the number of Evaluations, a

new parameter was introduced to measure the results of this chapter. This

new parameter is the Real Iteration Time (RIT). The RIT measures the time

between two real world executions as defined in Eq. 4.3. This parameter

measures the update frequency of the environment model. The results ob-

tained in the following sections are the average of three repetitions of the

action for each of the strategies proposed.

RIT = t j− t jprev (4.3)

61

Universidad Carlos III de Madrid Chapter 4. Online Evolved Trajectories

4.4.1 Paint Results

The average duration defined by the “paint” demonstrations was Dtime =

130.2 s. The selected time interval for the action was Tmin = 10 s with

n = 13 intermediate goals. Each of these demonstrations were performed

following a different geometrical path. Fig. 16 depicts the “paint” demon-

strations as well as the obtained trajectory using Gaussian Mixture Regres-

sion. The trajectory obtained with the Gaussian Mixture Regression model

achieves a 43.75% of painted wall.

Figure 16: Resulting trajectories for the demonstrations of the “paint” action. The orange thick
line depicts the result of executing the Gaussian Mixture Regression method (K = 7, T = 600)
using these demonstrations.

Table 9 depicts the results obtained using CGDA with each of the strate-

gies proposed. The results depict critical reductions in terms of RIT be-

tween strategies. The RIT value obtained in the experiments goes from

272.3 seconds with FTE and 143 seconds with IET to 4 seconds for the

OET strategy. This reduction in RIT did not come with a reduction in the

62

4.4. Results Universidad Carlos III de Madrid

Table 9: “Paint” OET experiment results: average and standard deviation results after 3 repetitions
of the “paint” action for each of the proposed strategies.

Evaluations Discrepancy RIT [s] Painted Wall [%]
Strategy µ σ µ σ µ σ µ σ

FTE 1716 231.80 49.48 7.40 272.3 68.48 85.4 3.6
IET 1153 161.65 54 25.36 143 25.87 72.9 15.72
OET 1603 20.82 40.19 3 4 0.6 89.58 3.6

performance. The performance in terms of Discrepancy and percentage of

painted wall was improved in the case of the OET algorithm. The gener-

alized feature trajectory introduced for the action as well as the features

trajectories obtained for each of the strategies are depicted in Fig. 17.

Figure 17: “Paint” OET experiments results: generalized feature trajectory for the “paint” action
compared to the features trajectories obtained for each of the algorithms.

63

Universidad Carlos III de Madrid Chapter 4. Online Evolved Trajectories

4.4.2 Iron Results

The average demonstration time obtained for the “iron” action was

Dtime = 28.1 s. The selected time interval was Tmin = 3 s with n = 9 in-

termediate goals. Fig. 10 depicts the trajectories followed by the demon-

strations as well as the resulting trajectory using the Gaussian Mixture Re-

gression method. Although geometrically accurate, the force exerted by

the iron using the trajectory computed with Gaussian Mixture Regression

was close to zero.

The results obtained in the “iron” experiments are depicted in Table 10

and Fig. 18. These results are in line with the results obtained for the

“paint” action. The RIT was reduced to 1.4 seconds for the OET strat-

egy compared to the 30.3 seconds required for IET and the 2481 seconds

required for the FTE strategy. The performance in terms of Discrepancy

value was also improved with the introduction of the OET algorithm.

Table 10: “Iron” OET experiments results: average and standard deviation results after 3 repeti-
tions of the “iron” action for each of the proposed strategies.

Evaluations Discrepancy RIT [s]
Strategy µ σ µ σ µ σ

FTE 3010 0 0.7 0.09 2481 1.73
IET 1588 113.74 0.59 0.05 30.30 2.69
OET 1010 400.37 0.30 0.07 1.44 0.16

4.5 Conclusions

Online evolutionary strategies has been proposed as a new evolutionary

approach for the execution of actions in real world environments within

the CGDA framework. This new strategy does not aim at reducing the

number of evaluations, but rather to introduce an online generated model

of the environment. This approach proposes the idea of introducing real

motor executions within the planning loop. These real motor executions

64

4.5. Conclusions Universidad Carlos III de Madrid

Figure 18: Resulting trajectories for the demonstrations of the “iron” action. The orange thick
line depicts the result of executing the Gaussian Mixture Regression method (K = 5, T = 150)
using these demonstrations.

are performed while the robot joint trajectory is being generated. After

these real world executions, the new state of the environment is transferred

to the simulation model. The algorithm OET has been proposed as a con-

crete application of online evolutionary strategies. This algorithm intro-

duces a localization and an observation step to update the environment and

the executed feature trajectory. To test the performance of OET, experi-

ments using two different actions were performed. These two actions are

the “paint” and “iron” actions. The “paint” action is the same action as

the one presented in previous chapters. The “iron” action is a new action

introduced for the experiments of this chapter.

The results of the experiments were compared with the ones obtained

using IET and FTE. The resulting trajectory was compared with the one

obtained using Gaussian Mixture Regression. A new parameter called RIT

was introduced to measure the update frequency of the environment model.

65

Universidad Carlos III de Madrid Chapter 4. Online Evolved Trajectories

Lower RIT implies a higher model frequency update allowing the robot to

work with higher dynamic environments. In the results of the experiments,

OET critically reduced the RIT required with respect previous strategies.

This value was reduced from minutes to a few seconds. The more dras-

tic reduction was obtained for the “iron” action. Here, the FTE strategy

obtained an RIT of 2481 seconds while OET obtained an RIT value of

1.4 seconds. This RIT value is at the level of the ones observed in humans

(55). This reduction was obtained without compromising the performance.

The introduction of OET improved the overall performance for both of the

actions.

Future works introducing OET are related to CGDA applications with

highly dynamic environments. One of this applications is the case of

human-robot collaborative actions. Here, the robot has to adapt to the

changes produced by the human while executing the action. In the case

of the “paint” action, for example, it is important that the robot does not

paint the same areas already painted by the collaborator as in Fig. 15.

66

CONCLUSIONS OF PART II: CONTINUOUS GOAL-DIRECTED
ACTIONS

In this part of the thesis, CGDA, a learning framework for action gener-

alization (3), has been introduced. As an original contribution, two differ-

ent approaches to improve the CGDA execution within real environments

have been proposed.

The first approach was the introduction of Evolutionary Approxima-

tions and constrained genetic algorithms. These two methods are intro-

duced to reduce the number of required evaluations in evolutionary algo-

rithms. The goal is to reduce computational times to allow faster adap-

tations or, in some contexts, to directly perform real world evaluations in

the environment. The results show reductions in the number of evaluations

higher than 60% for some configurations. For most scenarios, these are

still too many evaluations to be directly performed in the real world. Ad-

ditionally, these methods require some additional action specific tuning,

which contrasts with the initial goal of achieving action generalization.

The second approach took a different perspective. Online evolution-

ary strategies was proposed as a new paradigm for the implementation of

evolutionary algorithms within the CGDA framework. The idea of this ap-

proach was to introduce real motor executions within the planning loop.

Every time a robot joint trajectory for an intermediate goal is generated, it

is executed and the environment is updated. OET was proposed as a con-

crete application of this paradigm. The results show a critical reduction in

67

Universidad Carlos III de Madrid Chapter 4. Online Evolved Trajectories

the RIT with respect previous strategies. For one of the actions, this reduc-

tion allowed CGDA to reach human-level reaction times. This is a critical

improvement with respect previous strategies where RIT values were over

minutes.

These results come at the same time of the emerging of Deep Learn-

ing as an important force within the Machine Learning community. Deep

Learning frameworks are being proposed achieving human-level perfor-

mance in many different areas. In the next part of this thesis, the introduc-

tion of Deep Learning is proposed as a way to achieve action generaliza-

tion in robotics. Two different methods will be studied: Style Transfer and

Deep Reinforcement Learning (DRL). A new framework introducing these

two methods will be proposed. The goal is to give the robot the ability to

introduce different styles in the same base action. The same action can

be adapted to work in different contexts and environments with the intro-

duction of different Styles. At the same time, DRL is introduced as a way

to directly implement robot controllers. The introduction of DRL allows

robot actions to be applied in complex dynamic environments.

68

Part III

Neural Policy Style Transfer (NPST)

69

5. REINFORCEMENT LEARNING AND STYLE TRANSFER

The melding of Reinforcement Learning and Style Transfer techniques

is proposed in this thesis as a way to introduce Style Transfer algorithms

within robotic actions. The introduction of Reinforcement Learning archi-

tectures, specifically Deep Reinforcement Learning (DRL) architectures,

has been proposed in the robotic scientific community as a way to directly

generate robot controllers. Style Transfer is introduced as a way to provide

robots the ability to transfer different Styles to base actions. The goal is to

allow the adaptation of actions to different contexts and environments by

transferring different Styles. In this chapter, an introduction to the Rein-

forcement Learning and Style Transfer background is proposed.

5.1 Reinforcement Learning

Reinforcement learning is a learning framework that is at the same time

different from supervised learning and unsupervised learning (18). In re-

inforcement learning, the user introduces a reward function to implicitly

define the goal of the problem. This reward function assigns a reward to

each state. For finite tasks, the goal of the agent is to maximize the total

obtained reward over a full episode. The agent behavior is defined using a

policy function. The policy function defines the robot action as a function

of the current state.

A problem in reinforcement learning can be defined using the tuple

T = {S,A,γ,R}: where S is the state space defined for the problem; A is

71

Universidad Carlos III de MadridChapter 5. Reinforcement Learning and Style Transfer

the action space available to the agent within this state space; γ is a dis-

count factor introduced to deal with future rewards; and R is the reward

function of the problem. This tuple is usually defined by the user. The

reinforcement learning algorithm is then in charge of generating the opti-

mal policy π∗(s) using this tuple. This policy defines the behavior of the

agent. A value function Vπ(s) –also known as state-value function– can

be defined as the expected total reward obtained following π as a function

of the current state s. Similarly, a value function Qπ(s,a) –also known as

action-value function, Q-value function, or simply Q-function– can be de-

fined as the expected total reward obtained following π as a function of the

current state s and the current action a. Qπ(s,a) can be defined as in Eq.

5.1.

Qπ(s,a) = Eπ

[
∞

∑
k=0

γ
kRt+k+1

⏐⏐⏐⏐St = s,At = a

]
(5.1)

where t is any time step and Eπ [] is the expected reward following π .

5.1.1 Q-Learning

One of the most successful approaches in reinforcement learning are

Temporal Difference methods. Temporal Difference methods are model-

free methods that merge the ideas of Monte Carlo and Dynamic Program-

ming methods. In Monte Carlo methods, the update of the value function

is only produced at the end of the episode. In Temporal Difference meth-

ods, each time step, an estimation of the error, using the obtained reward

R, is computed and the value function is updated.

One of the most popular methods within the Temporal Difference ap-

proach is Q-learning. Q-learning is an off-policy method where the ob-

tained value function Q(s,a) is independent of the policy used during train-

ing. The only requirement for the training policy is that all action-state

72

5.1. Reinforcement Learning Universidad Carlos III de Madrid

pairs are visited. Upon convergence, the optimal policy π∗ can be defined

as the greedy policy that maximizes the Bellman equation, via the update

rule defined in Eq. 5.2.

Q(St ,At) =Q(St ,At)+α[Rt+1 + γ max
a

Q(St+1,a)−Q(St ,At)] (5.2)

where α is the learning rate.

5.1.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) frameworks have gained popu-

larity by proposing the introduction of deep neural networks within a re-

inforcement learning architecture. DRL allows the generation of complex

robot controllers in the form of a deep neural network. Different applica-

tions have been recently proposed using DRL in robotics (56, 57, 58).

32

8

8

conv1+ReLU

64

4
4

conv2+ReLU

64

33

conv3+ReLU

1

51
2

fc1+ReLU

1

4

fc2+ReLU

Figure 19: Deep neural network architecture similar to the one proposed by Mnih et al. (2) for the
introduction of DRL in Atari games.

73

Universidad Carlos III de MadridChapter 5. Reinforcement Learning and Style Transfer

The idea of DRL is to use a deep neural network to define an element

of a Reinforcement Learning problem. Mnih et al. (2) proposed the in-

troduction of a deep neural network to define the value (specifically, the

Q-value) function. This Deep Q-Network (DQN) architecture was trained

for playing Atari video games at human-level. An architecture similar to

the one proposed by Mnih et al. is depicted in Fig. 19. The output of the

deep neural network is the Q-value function Q(St ,At) corresponding to the

state St passed as input. The results obtained in this paper greatly attracted

the attention of the scientific community towards DRL.

5.1.3 Continuous action spaces

Classical reinforcement learning methods are designed to work using

Markov Decision Processes. In Markov Decision Processes, actions are

encoded using a discrete action space. At the same time, robotics appli-

cations work with continuous and high dimensional action spaces. The

introduction of a greedy policy in a continuous action space would require

to perform an optimization problem every step. Deep Deterministic Policy

Gradient (DDPG) was proposed by Lillicrap et al. (59) as a way to intro-

duce DRL within continuous action spaces. In DDPG, the policy is defined

as a parametric function µ(s,θ) using an additional deep neural network.

This policy is trained to maximize the output of the Q-value function. Two

deep neural networks are then defined, one for the Q-function and one for

the policy. An actor-critic architecture is introduced to implement these

two networks. The actor corresponds to the policy, while the critic is the

Q-function.

Twin Delayed Deep Deterministic Policy Gradient (TD3) (60) was later

proposed as a more stable new version of DDPG. TD3 improves DDPG

with the introduction of Double Q-learning (61), delayed policy updates,

and target policy smoothing.

74

5.2. Style Transfer: Content and Style Universidad Carlos III de Madrid

5.2 Style Transfer: Content and Style

The idea of Style Transfer is to transfer how a certain element is to a

different element without changing what this different element is. In natu-

ral language processing, the how can be defined as the specific selection of

words, and the what as the actual meaning. In computer vision with fine

arts, the how would be the artistic technique of the painter, while the what

would be the objects in the painting. In animation, the how could be de-

fined as the emotion of the movements, while the what is the target defined

for the movement. The definition of these two concepts is the base of any

Style Transfer application. The what is typically referred as the Content,

while the how is referred as the Style. The concrete definition of these two

concepts depends on the authors and the application.

The terms Style and Content were first introduced in the area of com-

puter vision, concretely in the context of optical character recognition (62).

The first works introducing Style Transfer in motions were part of the com-

puter animation scientific community (63). These works focus on the in-

troduction of signal processing techniques to perform the Style transfer

step (64, 65). Recent works introduced more advanced techniques, such

as multilinear model design (66). In robotics, the introduction of Style has

been tied to the introduction of emotions. In order to achieve this, some

works have included methods such as the introduction of Laban movement

systems (67) or cost functions (68). Other works have proposed the intro-

duction of Generative Adversarial Networks (GAN) (69). Recently, Wang

et al. (70) proposed the introduction of a GAN Style Transfer framework

for Avatar drawing using a robot manipulator. In Liu et al. (71) a GAN

based Style Transfer framework is introduced to transfer the Style of a ref-

erence image to a video.

75

Universidad Carlos III de MadridChapter 5. Reinforcement Learning and Style Transfer

5.2.1 Neural Style Transfer

Neural Style Transfer was initially proposed by Gatys et al. (1) as an ap-

plication of Deep Learning within a Style Transfer architecture. In Neural

Style Transfer, a deep neural network is introduced to define the Content

and Style. The Content is encoded as the high level outputs extracted from

the last layers of the network. The Style is encoded as the Gram matrix of

the low level outputs corresponding to the first layers of the network. The

Style Transfer step is designed as an optimization process. The loss func-

tion of this optimization process is defined as the sum of the Content and

Style losses. Gatys et al. introduced the VGG-19 network (14) as the deep

neural network to extract the Content and Style. This VGG-19 network is

a popular network designed for image classification, and was pre-trained

with the ImageNet (72) dataset for the application. The weights of the net-

work remain constant through all the iterations of the optimization process.

The introduction of deep neural networks adds a new layer of abstrac-

tion to Style Transfer frameworks. This eased the integration of Style

Transfer within a wider range of different areas. Applications introduc-

ing Neural Style Transfer have been proposed in areas such as: computer

vision (73, 74), natural language processing (75, 76), and fixed trajecto-

ries for animated figures as proposed by Holden et al. (12). In this work,

Holden et al. proposed the introduction of Autoencoders as an alternative

to the VGG network. This was proposed as a solution to the difficulty of

having a deep neural network for motion classification. An Autoencoder is

a neural network architecture integrated by two stages: the encoder stage

and the decoder stage. The encoder stage generates a low dimensional rep-

resentation of the input: the latent space. For a simple network, this follows

Eq. 5.3. The decoder stage takes the output of the encoder and regenerates

the input, as in Eq. 5.4. This regeneration is achieved via self-supervised

training, where the output is forced to match the input.

76

5.2. Style Transfer: Content and Style Universidad Carlos III de Madrid

A(X) = ReLU(Ψ(X ∗W0 +b0)) (5.3)

Ã(H) = Ψ̃(H)∗W̃0−b0 (5.4)

where X is the input network; W0 is the weight vector of the encoder;

b0 is the layer bias; and Ψ is a pooling operation. For the decoder: H is

the encoder output; Ψ̃ is an inverse pooling operation; and W̃0 is the weight

matrix of the decoder.

The Content loss can be defined as the difference between the outputs

of the encoder when passing the Content and when passing the gener-

ated motion following Lcontent = ∥A(C)− A(G)∥. The Style loss is de-

fined as the difference between the Gram matrix of the decoder outputs

when passing the Style and when passing the generated motion following

Lstyle = ∥Gm(A(S))−Gm(A(G))∥. The total Style Transfer loss is the sum

of these two individual losses as in Eq. 5.5.

Lst = wcLcontent +wsLstyle (5.5)

where wc and ws are constants defining the weight of these losses; C is

the Content motion; S is the Style motion; G is the generated motion; and

Gm() corresponds to the Gram matrix operator.

5.2.2 Conclusions

Reinforcement learning is a learning framework where the goal of the

problem is encoded using a reward function defined by the user. The output

of reinforcement learning is a policy that maximizes the reward obtained

by the agent over a full execution of the problem. The policy is a mathe-

matical function in charge of mapping states with actions. A value function

77

Universidad Carlos III de MadridChapter 5. Reinforcement Learning and Style Transfer

Vπ(s) can be defined as the expected total reward obtained following pol-

icy π from any state s. Q-learning is an off-policy reinforcement learning

algorithm where the goal is to find the Q-function Q(St ,At). DQN intro-

duces Deep Learning within a reinforcement learning architecture. TD3

is proposed as a state of the art method to apply DQN within continuous

action spaces.

Style Transfer has gained popularity after the introduction of Neural

Style Transfer by Gatys et al. (1). The idea of Style Transfer is to transfer

the Style of one input to a different input without changing the Content of

this one. Neural Style Transfer introduces the idea of Deep Learning within

an Style Transfer framework. Here, a pre-trained deep neural network is

used to extract the Content and the Style. The introduction of deep neu-

ral networks introduces an additional layer of abstraction allowing Neural

Style Transfer to be applied to a wider range of applications. The introduc-

tion of Autoencoders was proposed by Holden et al. (12) as an alternative

to the VGG network proposed by Gatys et al. for the extraction of Content

and Style.

The goal of this chapter was to provide to the reader with the required

background in reinforcement learning and Style Transfer to understand the

algorithms proposed in the following chapters.

78

6. NPST IN DISCRETE ACTION SPACES

In this chapter, we scale the concept of Style Transfer up to be used

with control policies using a Deep Reinforcement Learning architecture.

Deep neural networks architectures are introduced to define the Content

and Style using Q-value functions. Two different sets of demonstrations

are introduced: one for the Content and another for the Style. Inverse Re-

inforcement Learning, which will be described in section 6.1, is used to

define the reward function corresponding to these networks. The Content

action is defined using user demonstrations of the target action. The Style

is extracted from a different set of demonstrations and defined as a sec-

ondary task regarding how an action can be performed. Different Styles

can be encoded using different sets of demonstrations. The Neural Policy

Style Transfer (NPST) algorithm is proposed to transfer the Style of one

policy to another, without changing the Content of the latter. The NPST

algorithm generates a new policy using the Content policy and the Style

policy as input. Two sets of experiments are introduced in this chapter:

Catch-ball game experiments, inspired by classical Deep Reinforcement

Learning problems using Atari games; and Grid-world paint experiments,

which are real world experiments using the full-sized humanoid robot TEO

and introducing an action similar to the “paint” action presented in previ-

ous chapters. Fig. 20 depicts an action demonstration introduced for the

Grid-world paint experiments of this chapter.

NPST is proposed as a way to improve the generalization capabilities

of robot actions. Different Styles can be introduced in a base Content

79

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

Figure 20: Grid-world paint scenario demonstration setup.

action as a way to achieve action adaptation. The same Content action can

be used in different contexts and situations using different recorded Styles.

This chapter proposes the following contributions that can derive in a wider

range of future applications:

• A framework that allows the introduction of Inverse Reinforcement

Learning (IRL) algorithms to extract Content and Style from user

demonstrations.

• The NPST algorithm as a way to perform Style Transfer between poli-

cies defined using DQN.

• Results within two different experimental scenarios: the Catch-ball

game scenario based on classical DRL problems using Atari games;

and the Grid-world paint scenario using the real humanoid robot TEO

and based on the “paint” action proposed on previous works of the

authors.

80

6.1. Inverse Reinforcement Learning Universidad Carlos III de Madrid

6.1 Inverse Reinforcement Learning

The implementation of a proper reward function is a critical step that

defines the agent behavior in reinforcement learning. Inverse Reinforce-

ment Learning (IRL) is proposed as a way to extract this reward function

R using a set of m user demonstrations defined as in Eq. 6.1.

E = {s(i)0 ,s(i)1 , ...}m
i=1 (6.1)

As defined by Abbeel and Ng (77), IRL assumes that a k-dimensional

feature vector φ(s) ∈ [0,1] exists in the state space S of the problem such

that R(s) = w ·φ(s) is true. Given a set of states with assigned reward val-

ues and a feature vector φ(s), an optimization step can be introduced to find

the weight vector w ∈ Rk[0,1] that follows this equation. The feature vec-

tor φ(s) is usually hand-crafted, although some entropy-based approaches

have been proposed as automatic selection methods (78).

Given a Markov Decision Process, where the reward function R(s) is

unknown, the goal of the IRL algorithm is to find the optimal policy π∗,

defined by the reward function R(s), that satisfies Eq. 6.2:

||µ(π∗)− µ̂E ||2 < ε (6.2)

where µ(π∗) is defined following Eq. 6.3:

µ(π∗) = E

[
∞

∑
t=0

γ
t
φ(st)

⏐⏐⏐⏐⏐π∗
]
∈ Rk (6.3)

and µ̂E is the expert feature expectation defined as in Eq. 6.4:

81

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

µ̂E =
1
m

m

∑
i=1

∞

∑
t=0

γ
t
φ(s(i)t) (6.4)

This expert feature expectation parameter encodes which features φ(s)

are preferred by the demonstrator. Desired features are assigned with

higher rewards.

Following these premises, different approaches have been proposed to

solve the IRL problem. For the NPST framework, a Maximum Entropy

IRL approach (79) is used as the IRL algorithm to define the input actions.

In this algorithm, the IRL problem is reduced to the maximization of the

likelihood distribution defined in Eq. 6.5:

L (w) = logP(E,w|R) = LE +Lw (6.5)

where LE and Lw are defined as in the following equations:

LE = logP(E|R) (6.6)

Lw = logP(w) (6.7)

The Eq. 6.5 was later adapted by Wulfmeier et al. (78) to work with

deep neural networks. This adaptation was achieved by defining the gradi-

ent of the reward function as a function of the deep neural network weights

obtained via backpropagation. The resulting formula is depicted in Eq. 6.9

extracted from Eq. 6.8.

δL

δw
=

δLE

δw
+

δLw

δw
(6.8)

where
δLE

δw
is defined as:

82

6.2. Neural Policy Style Transfer Universidad Carlos III de Madrid

δLE

δw
=

δLE

δR
· δR
δw

= (µ̂E−
1
m

m

∑
i=1

∞

∑
t=0

P(s(i)t |R)) ·
δR
δw

(6.9)

Here, as shown by Ziebart et al. (79) the gradient of LE with respect

the model weights of a linear function is equal to the difference in feature

expectation along the expert trajectories.

6.2 Neural Policy Style Transfer

Let Content C and Style S be two different DQN trained via IRL corre-

sponding to two different actions defined by two different sets of demon-

strations. The same deep neural network architecture –in terms of layers

and activation functions, but not weights– can be used for the two net-

works. Two control policies πc and πs can be defined using these DQN.

A control policy πg can also be defined for this action using a DQN

with the same deep neural network architecture of C and S; let G be this

DQN that encodes the Generated action defined with the execution of the

NPST. An architecture similar to the one proposed by Mnih et al. (2) is

used for each of the three DQN. The goal of the Generated action encoded

by G can be defined using the goal encoded in the Content action, while the

Style action defines the “mood” or “emotion” secondary task in which the

Generated action will be performed. The goal encoded by C is defined as

the Content and the secondary task encoded by S as the Style. The NPST

algorithm is proposed to transfer the Content of C and the Style of S to G.

The NPST framework is depicted in Fig. 21. The Content transfer step

is defined as a backpropagation step over G with the high-level features of

C as the true labels. These high-level features correspond to the Q-value

outputs of the C network. The obtained backpropagation loss is used to

define the Content loss Lcontent . For a single output, this Content loss is

defined as the Mean Squared Error of the Q-values as in Eq. 6.10.

83

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

Style DQN

Generated DQN

Content DQN

Figure 21: Neural Policy Style Transfer (NPST) framework. Three DQN are proposed with the
same architecture. The content DQN (C) is trained using the reward function extracted from the
content action demonstrations. The Style DQN (S) is trained using the reward function extracted
from the Style action demonstrations. The Generated DQN (G) is obtained using the output layer
Q-values of C and the full weights of S.

Lcontent(G,C) = ||qG−qC||2 (6.10)

where qG and qC are the Q-values of G and C respectively.

The Style Transfer step is implemented via an optimization step using

the weights of S . The Style loss is defined following Eq. 6.11:

Lstyle(G,S) = ||wG−wS||2 (6.11)

where wG and wS correspond to the weights of G and S respectively.

84

6.2. Neural Policy Style Transfer Universidad Carlos III de Madrid

The full algorithm is shown in Algorithm 8. The intuition behind NPST

is that the Content main objective is enforced via successive training specif-

ically with respect the output layer (the Q-values) of C, while the Style is

introduced as a secondary task through successive updating via the full

weights of the S network.

Algorithm 8 Neural Policy Style Transfer (NPST)

1: procedure NPST(C,S, env, N)

2: Initialize:
3: G← S
4: wS← S.get_weights()
5: env.init()
6: state← env.observe()

7: for n=1:N do
8: Update Environment:
9: qG←G.predict(state)

10: aG← argmaxa(qG)
11: env.step(aG)
12: state← env.observe()

13: Content Transfer:
14: qC← C.predict(state)
15: qG←G.predict(state)
16: G.backprop(qG,qC)

17: Style Transfer:
18: wG←G.get_weights()
19: wG← L-BFGS-B(||wG−wS||2)
20: G.set_weights(wG)
21: end for

22: end procedure

Here, G is initialized with the weights of S. Before the execution loop,

the simulated environment is initialized and the state is observed. The

network G is updated for N iterations. The loop is divided in the following

steps:

85

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

1. The output of G is used to update the environment.

2. The Q-values qC and qG of C and G respectively are obtained. A

backpropagation step is performed over G using these Q-values.

3. The Style Transfer step is defined using a box-constrained limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) algorithm

(80) to update the weights of G. This optimization step is performed

following Eq. 6.11.

In the following sections, two sets of experiments, as proposed in the

introduction of this chapter, are presented using this algorithm.

6.3 Experiments

Two different sets of experiments were performed in this chapter to

measure the performance of the NPST algorithm. The first set of experi-

ments, involving the Catch-ball game scenario, was inspired by classical

DRL experiments introducing Atari games. This Catch-ball game scenario

was performed in simulation. For the second set of experiments, the exe-

cution of the Grid-world paint action was proposed. This action is similar

to the “paint” action presented in previous chapters. Real world executions

using TEO as the real humanoid robotic platform are performed in this set

of experiments.

6.3.1 Catch-ball Game Experiment

The Catch-ball game scenario is inspired by classical DRL experiments

introducing Atari games. This scenario is similar to the Pong arcade game.

A ball is released from the top of the screen from a random location. The

ball then starts to fall following a vertical line. If the ball touches the

ground, it counts as a loss. If the paddle catches the ball before it touches

86

6.3. Experiments Universidad Carlos III de Madrid

the ground, it counts as a win. The agent can move the paddle horizontally

at the bottom of the screen.

Three sets of demonstrations, including five expert demonstrations each,

are performed for these experiments. These three sets define the three dif-

ferent actions introduced: one Content action, and two different Style ac-

tions (“nervous” and “fall”). The Content action tries to win the game by

catching the ball with the paddle. The “nervous” Style imitates a nervous

behavior with the paddle. Fast small movements around the same position

are performed in the demonstrations of this action. The “fall” Style imi-

tates a fall movement in which the paddle falls to the left of the screen. In

the demonstrations of this action, the paddle is constantly moving to the

left positions. Both Style actions ignore the position of the ball.

The Maximum Entropy Deep IRL algorithm presented in section 6.1 is

introduced to find the reward functions defining these three actions. These

rewards functions are later used to train the DQN introduced in the NPST

algorithm. In order to use the IRL algorithm, a hand-crafted feature vector

φ(s) and a latent state space s have to be defined for each set of demonstra-

tions. For the Content demonstrations, s is defined as the state space of ball

and paddle positions and φ(s) defines if the paddle and the ball are aligned.

For the Style demonstrations, the same latent state space s was introduced

for both sets of demonstrations. This state space s is defined as the last

three paddle positions corresponding to the last three time steps. The fea-

ture vector φ(s) encodes spatial-temporal information of the paddle. For

the “nervous” Style, φ(s) encodes if a movement was performed with the

same starting and ending position. For the “fall” Style, φ(s) encodes if a

movement to the left was performed.

In the case of the Content demonstrations, 5 iterations of the IRL al-

gorithm are required for convergence. This number was reduced to 2 for

the Style demonstrations. The IRL discount factor (γ) was set to 0.9 with

87

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

a learning rate of 0.01 for all sets of demonstrations. The three resulting

reward functions R(s) are then used to train the three DQN corresponding

to the three actions proposed.

The DQN are defined using the same architecture as the one proposed

by Mnih et al. (2). The weights of the networks are initialized with random

values. The inputs are raw 80x80 pixel images corresponding to the game

screen. The outputs are the Q-values assigned for each of the three possible

actions in the game (move paddle to the left, to the right and stay still). The

DQN are trained using a Q-learning algorithm.

Table 11: Hyper-parameters defined for the Catch-ball game.

Hyper-parameter Setting
Shared

Input size 80x80
Number of input time steps 4
Optimizer Adam (81)
Loss function Mean Squared Error
Number of actions 3
Discount (γ) 0.99
Experience Replay size 5000

Q-learning
Learning Rate 1e-6
Initial Epsilon 0.1
Final Epsilon 1e-5
Epsilon gradient Lineal
Batch size 32
Exploration Epochs 100
Training Epochs 1000

NPST Algorithm
Learning Rate 0.01
Number of iterations (N) One full Catch-ball episode
Batch size 100
L-BFGS-B internal iterations 1

The hyper-parameters chosen for training the DQN and the execution

of the NPST algorithms are depicted in Table 11.

88

6.3. Experiments Universidad Carlos III de Madrid

6.3.2 Grid-world Paint Experiment

The goal of the Grid-world paint scenario is to reach a target pixel de-

fined within a 16x16 grid environment with the agent. The agent in this

scenario is the end-effector of the humanoid robot TEO. The action space

allows the agent to move within the Grid-world environment one grid step

at a time. Only vertical and horizontal movements are allowed. The grid is

physically represented by a large monitor in front of the robot. An auxil-

iary depth sensor is in charge of measuring the position of the end-effector

and updating the grid according to the agent by changing the pixel colors.

An image of the final setup, used in this scenario for the IRL training, is

depicted in Fig. 20.

Three sets of demonstrations, of five expert demonstrations each, are

introduced in this set of experiments. The demonstrations define three

different actions similar to the ones used in the Catch-ball experiments:

one Content action, and two different Style actions (“nervous” and “fall”).

The Content action aims to win the game by reaching the target pixel. The

“nervous” Style imitates a nervous behavior or mood by performing small

movements around the initial positions. The “fall” Style imitates a fall

behavior in which the agent always tend to move towards the bottom side

of the grid environment. Both Styles ignore the target pixel.

As in the Catch-ball game experiments, the Maximum Entropy Deep

IRL algorithm presented in section 6.1 is introduced to find the reward

functions that defines these three actions. These rewards functions are then

used to train the DQN defined within the NPST algorithm. A hand-crafted

feature vector φ(s) and a latent state space s are defined for each set of

demonstrations. For the Content demonstrations, the state space s is de-

fined as a 256 element vector resulting from performing a flatten operation

over the 16x16 pixel grid. The feature vector φ(s) encodes if the current

position of the agent corresponds to the target pixel. The same state space s

89

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

used for the Content demonstrations is used for the “fall” demonstrations.

For these demonstrations, the feature vector φ(s) encodes if the current

agent position corresponds to a position at the bottom of the grid. For the

“nervous” demonstrations, the state space s is a 163 element vector, where

16 is the number of possible vertical positions and 3 corresponds to the

last three time steps. The feature vector φ(s) for this Style encodes if the a

movement was performed with the same starting and ending position.

Table 12: Hyper-parameters defined for the Grid-world paint scenario.

Hyper-parameter Setting
Shared

Input size 16x16
Number of input time steps 4
Optimizer Adam (81)
Loss function Mean Squared Error
Number of actions 4
Discount (γ) 0.99
Experience Replay size 50000

Q-learning
Learning Rate 1e-6
Initial Epsilon 0.9
Final Epsilon 0.01
Epsilon gradient Lineal
Batch size 32
Exploration Epochs 100
Training Epochs 5000

NPST Algorithm
Learning Rate 0.01
Number of iterations (N) One full Grid-world episode
Batch size 100
L-BFGS-B internal iterations 10

For each of the three sets of demonstrations, 5 iterations of the IRL al-

gorithm were required. The discount factor (γ) was set to 0.9 and a learn-

ing rate of 0.01 was introduced. The three rewards functions R(s) obtained

were used to train the DQN defining the three actions. The same architec-

ture for the DQN as the one used in the Catch-ball game is used in these

experiments. The DQN are initialized with random weights values. The

inputs of the networks are the 16x16 matrix representing the state of the

90

6.4. Results Universidad Carlos III de Madrid

grid world. The outputs are the Q-values assigned for each of the four pos-

sible actions (up, down, left, right). Q-learning is the training algorithm

used to train the networks. The hyper-parameters chosen for training the

DQN and the execution of the NPST algorithms are depicted in Table 12.

6.4 Results

To measure the performance of the NPST algorithm, three parameters

were measured in the experiments: the Content loss Lcontent , the Style

loss Lstyle, and the win ratio. The results depicted are the average results

obtained from 10 executions of the NPST algorithm. In order to have a

baseline to easily understand the obtained results, the performance of the

three vanilla DQN defining the three base actions were also added for the

two sets of experiments.

Table 13: Catch-ball game experimental results.

Actions Lstyle Lcontent Wins(%)

Content1
16796.47
16809.26

— 100

Nervous Style — 1.33 0
Fall Style — 0.50 0

Nervous NPST 62.21 0.81 70
Fall NPST 47.91 0.39 80

6.4.1 Catch-ball Game Results

For all the repetitions of the Catch-ball experiments, the ball was re-

leased from the same initial position at the top of the screen. These ex-

periments were performed in simulation. The obtained results are depicted

in Table 13. Here, the “Nervous Style” and the “Fall Style” action cor-

respond to the base Style actions defined by the demonstrations. These
1For the Content action, two different Style losses (L style) were measured. The value at the top corre-

sponds to the loss with respect the “nervous” Style, while the value at the bottom is with respect the “fall”
Style.

91

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

results illustrate effects such as the NPST “fall” Style obtaining a lower

Lcontent than the NPST “nervous” Style. This effect can be related to the

initial position of the ball being on the left side of the screen. This is also

the side where the preferred states for the “fall” Style are. This makes

both the Content and the “fall” Style policies to search for the same states.

The results show a reduction in both Lcontent and Lstyle for both obtained

policies with respect the vanilla DQN.

Figure 22: Screenshots obtained during the NPST execution with the “nervous” Style (top) and
“fall” Style (bottom). Red bars are the output of the Content network C. Blue bars are the output
of the Generated policy G.

Fig. 22 depicts the state of intermediate time steps defined by the NPST

Generated policy. The intermediate steps were randomly selected with the

condition of being equidistant and the same for both Styles. The first and

third row depict screenshots of the game state. These game states were

generated following the two Generated policies corresponding to the two

92

6.4. Results Universidad Carlos III de Madrid

Styles. The bar graphs compare the Q-values obtained with the Content

policy and the Generated policies.

6.4.2 Grid-world Paint Results

In addition to the three parameters explained in the introduction of this

section, a new parameter, the number of steps, was also introduced for this

set of experiments.

Table 14: Grid-world paint experimental results.

Actions Lstyle Lcontent Steps Wins(%)

Content2
1085.91
1055.98

— 16.0 100

Nervous Style — 3.02 50 0
Fall Style — 10.87 50 0

Nervous NPST 715.29 0.07 43.6 100
Fall NPST 336.75 1.30 34.6 40

0

2

4

6

8

10

100

125

150

75

25

50

0

40

0

20

60

80

100

200

160

120

60

40

0 0

6

24

12

18

30

Figure 23: Agent heat-map. From left to right: Content, Style and Generated policies. “Nervous”
Style (top) and “fall” Style (bottom). Pixels with warms colors have been recurrently visited by
the agent. Cold colors represent less visited pixels. The depicted scale is the cumulative result of
the 10 different executions of the NPST algorithm.

2As in the Catch-ball game experiments, the value at the top corresponds to the loss with respect the
“nervous” Style, while the value at the bottom is with respect the “fall” Style.

93

Universidad Carlos III de Madrid Chapter 6. NPST in discrete action spaces

The obtained results are depicted in Table 14. The results depict a pro-

nounced difference between the Lcontent obtained with each of the Styles.

This difference impacts the performance of the Generated policies. As ob-

served in the results of the Catch-ball game environment, lower Lcontent

comes with an increase of the performance. In this scenario, the “nervous”

Style reaches the same ratio of wins as the Content policy. One hypothe-

sis behind this is that the “nervous” Style allows the Generated policy to

follow an approximately straight line similar to the one used by the Con-

tent. The results also show how, although the “nervous” Generated policy

reaches the same performance as the Content, the number of required steps

is increased.

The paths performed by the different policies can be observed in Fig. 23.

This figure encodes the most and less visited states by the different agents.

The first and second columns of the figure correspond to the vanilla DQN.

The third column are the obtained Generated policies using NPST. The de-

picted scale are the cumulative results of 10 repetitions. Warm colors de-

pict recurrently visited pixels, cold colors depict less visited pixels. Both

Generated policies try to reach the target pixel while introducing the Style.

In the “nervous” Style, the most visited pixels are the ones defined by the

target pixel and his adjacent vertical neighbors. For the “fall” Style, the

most visited pixels are the one between the target pixel and the bottom of

the screen.

6.5 Conclusions

In this chapter, the NPST algorithm has been proposed as a way to per-

form Style Transfer between control policies. The goal of Style Transfer

is to introduce some Style in a certain input without changing the original

Content. NPST allows the adaptation of DRL control policies to different

contexts through the introduction of different Styles.

94

6.5. Conclusions Universidad Carlos III de Madrid

In NPST, actions are defined using DQN. Three DQN are defined within

the NPST framework: the Content DQN (C) containing the Content; the

Style DQN (S) containing the Style; and the Generated DQN (G) which

is the output of the NPST algorithm. A Maximum Entropy Deep IRL is

proposed to define the Content and Style DQN via user demonstrations.

The Content loss is defined as the difference between the outputs of C and

G. The Style loss is defined as the difference in the weights of S and G.

The Generated policy is the output of the NPST algorithm.

Two different sets of experiments corresponding to two different actions

were performed in this chapter: the Catch-ball game action and the Grid-

world paint action. The first action is inspired on classical DRL problems

using Atari games. The second action, Grid-world paint, is similar to the

“paint” action presented in previous chapters. Two different Styles (“ner-

vous” and “fall”) were introduced in the experiments. The results show a

clear influence of the transferred Style. The generated control policies are

a successful combination of the Content goal and Style emotion.

Some limitations are present in the framework. The first one is that this

framework is only valid for discrete action spaces, while robotic environ-

ments are complex environments that cannot be easily discretized. The

second limitation comes from how the Content and Style losses are de-

fined. In the experiments, it has been observed that the NPST algorithm

converges to solutions similar to the Content. The number of NPST it-

erations has to be tuned to avoid this. In the following chapter, a new

framework to solve these two problems is proposed. This new framework

introduces state of the art DRL techniques for working in continuous ac-

tions spaces, and the introduction of Autoencoders to extract the Content

and Style.

95

7. NPST3 IN CONTINUOUS ACTION SPACES

Robotic applications are typically characterized by dynamic and com-

plex environments with a low tolerance to error. The introduction of con-

tinuous actions spaces for the execution of robot trajectories is usually re-

quired to work with these environments. In this chapter, the Neural Policy

Style Transfer TD3 (NPST3) framework is proposed. This framework is

presented as an advanced version of the NPST framework proposed in the

previous chapter. In NPST3, the Content and Style are defined using Au-

toencoders. The generation of the control policies is performed by a TD3

algorithm. This algorithm allows the robot to work with continuous action

spaces. The output of the TD3 network defines the Cartesian velocity of

the end-effector to perform the trajectory that minimizes the Content and

Style loss. Additionally, the proposed NPST3 framework is designed to

allow the introduction of partially generated actions. This allows the on-

line generation of the input action, as in the case of teleoperating the robot

while performing the Style Transfer step at the same time. The framework

base idea is depicted in Fig. 24.

Different Styles can be defined using different sets of demonstrations.

Four emotions are defined as the four selected Styles for the experiments:

Angry, Happy, Calm and Sad. Four sets of demonstrations following the

four proposed Styles are performed by a volunteer and recorded using a

mo-cap system. Each of these Styles are transferred to the same base Con-

tent action using the NPST3 framework. The resulting action is executed

with a Panda robot (manufactured by Franka Emika GmbH). The results

97

Universidad Carlos III de Madrid Chapter 7. NPST3 in continuous action spaces

are evaluated using a questionnaire with 73 volunteers asked to assign each

unkown Style to each of the resulting actions.

Style Content

Demonstration (offline) Teleoperation (online)

Robot trajectory execution

Figure 24: NPST3 base idea: human demonstrations define the Style while the Content can be
defined online via teleoperation.

7.1 Framework

Two main stages are introduced to define the NPST3 framework: the

Style Transfer stage extracts the Content and Style of the input actions to

generates the loss, while the DRL stage is in charge of generating the con-

trol policies that produce the actions that minimize this loss. Two neural

networks corresponding to these two stages are defined: the loss and the

execution network. The loss network is defined within the Style Transfer

stage, while the execution network is defined in the DRL stage. The final

framework structure is depicted in Fig. 25. The details and architecture of

the NPST3 framework is presented in the following sections.

98

7.1. Framework Universidad Carlos III de Madrid

Encoder Decoder
Autoencoder Network TD3 Policy Network

Style

Content

Generated

Lst

Cartesian
velocity
[ẋ,ẏ,ż]

Robot end-effector position Updated Generated trajectory

(Lp, Lep, Lv)

Reward

Inputs OutputsConstraints

Figure 25: NPST3 framework: The input of the Autoencoder network are the Style, Content and
Generated actions. The loss obtained with the Autoencoder (Lst) is added to the loss defined by the
Constraints (Lp,Lep,Lv) to obtain the total loss L. The inverse of this loss is used as the reward for
training the TD3 Policy Network. In addition to this reward, the input of the TD3 network are the
Content and Generated actions. This network defines a control policy that outputs a 3D Cartesian
velocity to the robot end-effector. The velocity command is executed and the new position of
the robot is obtained. The Generated trajectory is updated using this new position. The Content
trajectory is updated using the information provided by the user. This Content trajectory can be
defined offline or online via teleoperation.

7.1.1 Inputs

The inputs of the framework are three 3D Cartesian trajectories (x,y,z)

defining the Content, the Style and the Generated actions. The length of

all the input trajectories is limited to 5 seconds. The sample rate is set to

10 samples per second to compromise accuracy and computational cost.

Data with a higher sample rate is reduced to this ratio. Input trajectories

are defined using an [m,n] vector, where m is set to 50 corresponding to the

total number of samples, and n is set to 3 corresponding to the total number

of dimensions. This framework allows introducing incomplete trajectories

as inputs, which allows the online generation of the Generated and Content

actions. This is the case for example of teleoperating the robot while the

NPST3 framework is being executed. Incomplete actions are padded with

zeroes to have the shape required by the network.

99

Universidad Carlos III de Madrid Chapter 7. NPST3 in continuous action spaces

7.1.2 Autoencoder Network: loss network

The loss network is defined using a Convolutional Autoencoder. A sim-

ilar architecture to the one proposed by Holden et al. (12) is introduced to

define this Autoencoder network. The encoder is defined using a 1D con-

volutional layer followed by a pooling operation. This Convolutional layer

is composed by 256 filters with a kernel size of 5. Two layers equivalent to

the transposed layers of the Encoder are introduced to define the Decoder.

An additional dropout layer is defined in the Encoder to improve the per-

formance of the Autoencoder network. The resulting loss network extracts

the Content and Style of the input actions to define the loss in Eq. 5.5.

7.1.3 Constraints

In addition to the loss defined by the loss network, some additional con-

straints are introduced to assure that the generated motion is achievable by

the robot. Following this idea, the Generated trajectory should be similar

to the one defined by the operator: there should not be big jumps within

the execution of the full trajectory, and there should be some control over

the obtained trajectory velocity. These constraints are defined within the

position and velocity spaces of the robot.

The first constraint limits the position error of the Generated action with

respect to the Content action. A loss following Eq. 7.1 is introduced each

step.

Lp = ∥
G[t−1]−C[t−1]

RT
∥ (7.1)

where t is the current execution step and RT is the action Robot Thresh-

old (RT) defined by the robot.

100

7.1. Framework Universidad Carlos III de Madrid

The second constraint is introduced to limit the last step position er-

ror of the Generated trajectory with respect the Content trajectory. This

constraint smooths the transition between multiple Generated consecutive

actions. This constraint is defined as in Eq. 7.2.

Lep = ∥
G[tn]−C[tn]

RT
∥ (7.2)

where tn is the last time step. If the last time step has not been reached

yet, this loss is set to 0.

A final constraint is introduced in the velocity space of the robot. This

constraint increases the weight of the velocity transfer within the Style

Transfer algorithm. This constraint is introduced following Eq. 7.3.

Lv = ∥(
∂G
∂ t
− ∂S

∂ t
)/RT∥ (7.3)

The total loss to train the execution network is then defined as the

weighted sum of the losses defined by these constraints and the Content

and Style losses defined by the Autoencoder network. This total loss is

depicted in Eq. 7.4.

L = wcLcontent +wsLstyle +wpLp +wepLep +wvLv (7.4)

7.1.4 TD3 Policy Network: execution network

The execution network is defined by a TD3 network that generates the

control policies that produce the Generated action which minimizes the

total loss defined in the Style Transfer stage. The Content and Generated

actions are the inputs of this network. Both actions are incrementally in-

troduced to the network. This allows the online introduction of the Content

action. The Style is implicitly encoded in the network and defined during

101

Universidad Carlos III de Madrid Chapter 7. NPST3 in continuous action spaces

training. One TD3 network has to be trained for each Style. The same

network can be used for any Content action.

Two different networks are defined within the TD3 architecture: the

actor network and the critic network. The control policy is encoded by

the actor while the Q-value function is encoded by the critic. For both net-

works the two input actions (Content and Generated) are used as input. For

the actor network, first, each input passes through three 1D convolutional

layers separately. The first convolutional layer is defined using 256 filters

with a kernel size of 5. This architecture was chosen to be the same as

the layer introduced for the Encoder. The rest of the convolutional layers

each have 128 filters with a kernel size of 5. The two outputs of the convo-

lutional layers are flattened and concatenated. The resulting concatenated

output is passed to four fully connected layers. The first two fully con-

nected layers have a total of 512 nodes, the third 400, and the last one 300.

Between each of the layers of the network, a batch normalization layer is

introduced. A Rectified Linear Unit (ReLU) (82) activation was chosen

for all the layers except the last one, which was defined using a hyperbolic

tangent (tanh) activation. The output of the network is a 3D vector with

the Cartesian velocity of the robot end-effector.

The critic network is designed with the same architecture as the actor

network with some exceptions: the TD3 action, defined as the output of

the actor network, is introduced as an additional input; the TD3 action

input is not passed through the convolutional layers, but instead it goes

directly to the fully connected layers; the TD3 action is concatenated with

the rest of the inputs after the first fully connected layer; an additional

layer with 512 nodes is added before the 400 node layer; the last layer

of the network uses a linear activation function instead of a hyperbolic

tangent (tanh) activation; and the output of the critic network is a single

floating-point value corresponding to the Q-value.

102

7.2. Training Universidad Carlos III de Madrid

7.1.5 Outputs

The output of the framework is a 3D Cartesian velocity vector that can

be used to control the end effector of the robotic platform. The new robot

position is used to update the Generated action trajectory. This Generated

action trajectory is then used as input for the next step of the framework.

7.2 Training

In a similar way to the one proposed by Li et al. (83), the loss network

was trained using the CMU Graphics Lab Motion Capture Database1. The

CMU database contains recordings of different motions performed by dif-

ferent individuals using a mo-cap system. Only the data corresponding to

the tracker at the end of the right hand (RFIN) was introduced. Using this

dataset, the Autoencoder defining the loss network was trained to produce

the same output trajectory as the selected input trajectory.

For training the execution network, a random generator of linear trajec-

tories was implemented as the Content action generator. In the case of the

Style actions, four different Styles were selected: Angry, Happy, Calm and

Sad. The four Styles actions defining these four Styles were defined via

human demonstrations. These demonstrations were performed by a volun-

teer and recorded by a mo-cap system. The only instruction given to the

volunteer was to move expressing the given emotion. Only the position of

the right hand of the volunteer was recorded during these demonstrations.

One cut of 5 seconds long from each of the four Style motions performed

by the volunteer was selected for training. The results of the training were

four execution networks, each encoding one of the four selected Styles.

The TD3 algorithm was the selected algorithm for training. The loss de-

fined in Eq. 7.4 was inverted and introduced to the TD3 algorithm as the
1http://mo-cap.cs.cmu.edu/

103

Universidad Carlos III de Madrid Chapter 7. NPST3 in continuous action spaces

reward. The training parameters of the execution and loss networks are

depicted in Table 15.

Table 15: Training hyper-parameters for the NPST3 algorithm.

Hyper-parameter Setting Value
Shared

Input trajectory shape [50,3]
Sample frequency 10 [Hz]
Trajectory length 5 [s]
Robot Threshold (RT) 300 [mm]
Optimizer Adam (81)
Number of Styles 4

Autoencoder
Epochs 1000
Batch size 256

TD3 Network
Action space dimensions 3
Action Range (AR) ± 0.1 * RT
Loss weights (wc,ws,wp,wep,wv) (100, 1, 0.1, 1, 20)
Epochs 2500
Experience Replay size 10e3
Batch size 64
Critic Learning Rate 1e-5
Actor Learning Rate 1e-6
Discount (γ) 0.99
Critic/Actor update ratio 2
Target update value (tau) 1e-3
Initialization network values ± 3e-3 (Uniform distribution)
Loss Function Mean Squared Error
Policy noise 0.002 * RT (Normal distribution)
Action noise 0.02 * RT (Normal distribution)

7.3 Experiments

To evaluate the performance of the framework, a questionnaire with

human volunteers was performed. In this questionnaire, four videos corre-

sponding to the four generated motions resulting of the four selected Styles

were shown to the volunteers. The goal of the questionnaire was to find if

the volunteers were able to detect the original emotion transferred to the

action.

104

7.3. Experiments Universidad Carlos III de Madrid

A)

C)

B)

D)

Figure 26: Cartesian trajectories obtained in the experiments. The top trajectory is the selected
Content action. For each pair of trajectories, the left trajectory corresponds to one of the four
selected Styles: A) Angry, B) Happy, C) Calm and D) Sad. The trajectory in the right corresponds
to the generated action obtained with the NPST3 framework. Style trajectories are defined via
demonstrations with the right hand of a volunteer using a Vicon mo-cap system. Warm colors
depict a higher velocity value, while cold colors depict lower velocities.

7.3.1 Setup

The Content action selected was the one defined by the same Cartesian

trajectory as the one depicted at the top of Fig. 26. This Content action

was used as input for the four trained execution networks corresponding

to the four Styles: Angry, Happy, Calm and Sad. The resulting control

policies were executed on a Franka Emika Panda robot. The robot end-

effector frame was used as the reference frame for the execution of the

output velocities. The orientation of the end-effector was kept the same

for the full execution. ViSP (84) was introduced as the control library to

perform real time executions with the robot. The Generated results are the

5 seconds long Cartesian trajectories depicted in Fig. 26. The four full

executions were recorded using a camera.

105

Universidad Carlos III de Madrid Chapter 7. NPST3 in continuous action spaces

7.3.2 Questionnaire and Subjects

The questionnaire was divided in two parts. In the first part, the vol-

unteers were presented with the four videos and asked to freely write the

emotion that better suits the robot movements. No additional restrictions

were added in this part. In the second part, the four videos were presented

with the four emotions as selectable options: Angry, Happy, Calm and Sad.

The volunteers were asked to select one emotion for each of the videos.

Each emotion could not be selected more than once.

A total of 73 volunteers were asked to complete the questionnaire.

These volunteers were selected from different areas of work, academic

levels and a wide range of ages (18 to 76 years old). It was not limited

to people familiar with robots. The original questionnaire was performed

in three different languages with people from three different nationalities:

Spanish, Italian and English.

7.3.3 Results

Results corresponding to the first part of the questionnaire are depicted

in Fig. 27. All the obtained results were translated to English using the

same translator engine. Here, emotions similar to the original transferred

emotions were the most selected for each of the videos. The results cor-

responding to the second part are depicted in Fig. 28. In this second part,

the original transferred emotion was successfully chosen by most of the

volunteers for each of the presented videos. As expected, in the case of

the Angry emotion the second most selected emotion was Happy and vice

versa. The same thing happened for the Calm and Sad emotions.

106

7.3. Experiments Universidad Carlos III de Madrid

0

2

4

6

8

te
ns
e

al
ar
m
ed

ex
ci
te
d

an
gr
y

ha
pp
y

ne
rv
ou
s

en
te
rt
ai
ni
ng

an
ge
r

af
ra
id

di
st
re
ss
ed

ch
ee
rf
ul

di
sc
on
te
nt

fr
us
tr
at
ed

st
re
ss

fr
ig
ht
en
ed

tr
ou
bl
ed

ha
te

am
us
ed

tr
ou
bl
es
om

e
cu
rio
si
ty

in
di
ffe
re
nc
e

se
re
ne

un
fo
rt
un
at
e

co
nf
id
en
ce

un
pl
ea
sa
nt

bo
re
d

m
ild

up
se
t

Angry

0

2

4

6

8

ha
pp
y

am
us
ed

ch
ee
rf
ul

jo
yf
ul

te
ns
e

bo
re
d

se
re
ne

ex
ci
te
d

sa
tis
fie
d

ne
rv
ou
s

sc
ar
ed

am
az
ed

ne
rv
ou
sn
es
s

ca
lm

en
te
rt
ai
ni
ng

qu
ie
t

sl
ow

pl
ea
se
d

re
la
xe
d

pe
ac
ef
ul

as
to
ni
sh
ed

an
no
yi
ng

sa
tis
fy
in
g

tir
ed

sa
dn
es
s

in
di
ffe
re
nc
e

gr
at
ef
ul

fr
us
tr
at
ed

un
pl
ea
sa
nt

pl
ea
sa
nt

sl
ee
py

Happy

0

2

4

6

8

10

re
la
xe
d

tir
ed

bo
re
d

sa
d

qu
ie
t

se
re
ne

sa
tis
fie
d

ca
lm

te
ns
e

de
je
ct
ed

sl
ee
py

cu
rio
us

m
ild jo
y

m
is
er
ab
le

pa
tie
nt

un
de
ci
de
d

cu
rio
si
ty

sh
am

e

in
di
ffe
re
nc
e

an
gr
y

re
la
x

de
pr
es
se
d

im
pr
es
se
d

ex
ci
te
d

ex
pe
ct
an
t

Calm

0

2

4

6

8

10

sa
d

bo
re
d

de
pr
es
se
d

de
je
ct
ed

re
la
xe
d

do
w
nc
as
t

tir
ed

ca
lm

qu
ie
t

m
el
an
ch
ol
y

di
sc
ou
ra
ge
d

un
ha
pp
y

ne
ga
tiv
e

pe
ac
ef
ul

ne
rv
ou
s

m
is
er
ab
le

di
sc
on
te
nt

di
sa
pp
oi
nt
ed

sl
ee
py

en
te
rt
ai
ni
ng

di
st
re
ss

an
xi
et
y

in
di
ffe
re
nc
e

ov
er
w
he
lm
e

sc
ar
ed

ca
ut
io
us

dr
ow

si
ne
ss

tr
an
qu
ili
ty

do
w
n

pl
ea
sa
nt

m
el
an
ch
ol
ic

in
te
ns
e

fr
us
tr
at
ed

Sad

Figure 27: NPST3 questionnaire first part results. Each chart depicts the answers given for one
of the videos. The title on the top right of the chart depicts the original emotion transferred to the
shown video. The labels on the X axis are the emotions written by the volunteers. The Y axis is
the number of times that emotion was used to describe the video by a volunteer.

107

Universidad Carlos III de Madrid Chapter 7. NPST3 in continuous action spaces

Angry Happy Calm Sad
Selected Style

An
gr

y
Ha

pp
y

Ca
lm

Sa
d

Or
ig

in
al

 S
ty

le
41 27 0 5

19 38 11 5

4 6 41 22

9 2 21 41

Figure 28: NPST3 questionnaire second part results. Each row corresponds to a different video.
Each column corresponds to the Style selected by the volunteers. Each cell contains the number of
times a given Style was selected by a volunteer. All the videos were presented to all the volunteers.

7.4 Conclusions

The NPST3 framework has been proposed in this chapter as a way to in-

troduce DRL within an Style Transfer framework. The Content and Style

of the base actions are extracted using Autoencoders. New actions are

generated using the TD3 algorithm. This algorithm is proposed as a robust

robot controller to work in continuous action spaces. The framework is

designed to work with incomplete actions. This allows the online genera-

tion of the Content and Generated actions. This is the case for example of

teleoperating the robot while performing the Style Transfer step. For the

experiments, the Franka Emika Panda robot platform was introduced to

execute the Generated robot actions. To evaluate the results, the recorded

robot executions of the Generated actions are presented to 73 volunteers

and asked to identify the original Style. The results depict that the subjects

are able to identify the original emotion transferred to the base action.

108

CONCLUSIONS OF PART III: NEURAL POLICY STYLE
TRANSFER

The introduction of Style Transfer within a DRL framework has been

proposed within two different approaches in this part of the thesis. The first

approach, NPST, was presented as an initial approach using discrete action

spaces and IRL. In this first approach, the Style and Content losses were

directly defined using the Policy network. This presented the advantage of

not needing a secondary network to define these losses. At the same time,

this method required some additional previous tuning to properly work.

The number of iterations had to be tuned to achieve the desired policy

behavior. In addition to this, this network was only designed to work with

discrete action spaces.

The second approach presented was the NPST3 framework. This frame-

work improves the base NPST framework in several ways. First, the TD3

algorithm, for the generation of control policies within continuous action

spaces, was used in the framework. This allowed the robot to work with

continuous actions spaces similar to the ones presented in real robot appli-

cations. As a second improvement, an Autoencoder is used to define the

Content and Style losses, making the policy training stable without requir-

ing any additional tuning. The final improvement was introduced in the

design of the framework. The NPST3 framework was designed to work

with incomplete actions. This allows the user to command the robot online

while the Style Transfer process is being executed. The result is a robot that

is moving as commanded by the user while executing the selected Style.

109

Universidad Carlos III de Madrid Chapter 7. NPST3 in continuous action spaces

Results for both approaches show how the Generated control policy is

able to perform a new trajectory that introduces the Content and Style de-

fined. For the NPST framework, experiments were performed in two dif-

ferent scenarios. The results are compared in terms of Content and Style

loss and action performance. In the case of the NPST3, experiments were

approached using a group of volunteers to find if the original Style has been

successfully transferred to the Generated motion. Both experiments ap-

proach measuring the Style Transfer step with different perspectives. The

results obtained depict the generated trajectory as a combination of the

Content and Style selected as inputs.

110

Part IV

Conclusions

111

8. CONCLUSIONS

This thesis has focused on finding solutions to the Action Generaliza-

tion problem through diverse theoretical frameworks. Results have been

supported by empirical values obtained from the corresponding experi-

mental setups. New and improved frameworks were proposed to increase

the Action Generalization capabilities of robots. Experiments have been

provided to evaluate the performance of the proposed frameworks, and to

compare them with already existing or future related works. In the follow-

ing sections, the main conclusions extracted from this work are presented,

followed by a selection of the main contributions introduced in this work

and the future works proposed.

8.1 Main Conclusions and Results

The problem of Action Generalization is currently one of the hardest

problems in the robotic community. Two different approaches to increase

the Action Generalization capabilities of robots were proposed in this the-

sis. The first one consisted on the study and improvement of CGDA to

work with real robots and environments. In the second approach, NPST,

a framework introducing DRL and Style Transfer has been proposed as a

way to introduce Styles in robotic actions.

For the first approach, different methods to improve CGDA to work

with real world environments were studied. First, the introduction of evo-

lutionary algorithm approximations and constrained genetic algorithms to

113

Universidad Carlos III de Madrid Chapter 8. Conclusions

reduce the number of evaluations was proposed. Evolutionary algorithms

approximations modify the definition of evolutionary algorithms to only

evaluate part of the population. Constrained genetic algorithms reduce

the search space of the robot to achieve a faster convergence. These two

methods were tested using the “paint” and “wax” actions proposed in the

original CGDA publications.

After studying the experimental results, it was concluded that these al-

gorithms required the introduction of an additionally tuning step. This

additional tuning step limited the generalization capabilities of CGDA. In

order to deal with this limitation, OET was proposed as an alternative for

the execution of CGDA in real world environments. OET is an online

evolutionary strategy where real world executions are introduced in the

planning stage. This allows the model to be updated online during the

execution. To measure the performance of OET, the RIT parameter was

introduced to measure the time between environment updates.

In the second approach, NPST was proposed as a way to introduce

Style Transfer within a DRL architecture. The idea was to allow the robot

to adapt an action to different contexts with the introduction of different

Styles. In NPST, the Content and Style of each action are defined via

user demonstrations and IRL. Two different sets of experiments were per-

formed. The Catch-Ball game experiments were defined based on classical

DRL problems, while the Grid-world paint experiments were similar to the

“paint” experiments performed in the first chapters of this thesis.

The NPST framework presented two main limitations: it required the

definition of the policy within a discrete action space; and the proposed

definition of Content and Style required some additional previous tuning.

The NPST3 framework was proposed to solve these limitations. In NPST3,

control policies are generated using the TD3 algorithm. This algorithm

allows the generation of DRL control policies within continuous action

114

8.2. Innovations Universidad Carlos III de Madrid

spaces. Additionally, Autoencoders were introduced as a more conceptu-

ally accurate way to define the Content and Style. Styles are defined using

demonstrations recorded via a mo-cap system.

Several experiments were performed to test the performance of the pro-

posed frameworks. For the first approach, the introduction of approxima-

tions and constraints within evolutionary algorithms resulted in relevant

reductions in the number of evaluations required for the CGDA framework

to converge. In most scenarios, this reduction was not enough to perform

all the evaluations directly in real world scenarios. As an alternative, the

OET algorithm was proposed as a new evolutionary strategy for the exe-

cution of the CGDA framework in dynamic environments. Results for the

OET experiments depict reductions in the RIT from minutes to seconds

without loosing performance. For the second approach, experiments with

the NPST framework depict the generated trajectory as a combination of

the Content and Style actions. Here, the Generated trajectory achieved a

reduction in the obtained Content and Style losses. The NPST3 frame-

work was proposed as a more advanced version of NPST for working with

continuous action spaces. Experiments for the NPST3 algorithm were per-

formed with a group of 73 volunteers. For these experiments, volunteers

were presented with a recorded video of the robot executing the NPST3

generated action. The same Content action was used for all the videos.

The volunteers were able to successfully identify the original Style trans-

ferred to the robot action.

8.2 Innovations

Two different approaches to deal with the problem of action general-

ization have been proposed in this work. These two approaches introduce

two main contributions to the area of Action Generalization in robotics.

The first contribution proposes the improvement of CGDA to work with

115

Universidad Carlos III de Madrid Chapter 8. Conclusions

dynamic environments. The second contribution introduces Style Trans-

fer with a Deep Reinforcement Learning controller for its application in

robotic actions.

• The improvement of CGDA to work with dynamic environments.

In this thesis, several methods to improve the CGDA execution step

with real world scenarios have been proposed within two different

approaches. In the first approach, the cost of performing a CGDA

execution step was reduced with the introduction of state of the art

techniques that reduce the number of evaluations. In the second ap-

proach, a new evolutionary strategy has been proposed to increase

the update frequency of the environment within a CGDA execution

step. A concrete implementation of this strategy, OET, was able to

achieve replanning times of few seconds, similar to the ones observed

in humans.

• Style Transfer with a Deep Reinforcement Learning controller
for its application in robotic actions. Two different frameworks

have been proposed as a way to introduce Neural Style Transfer and

DRL in robotic actions. First, the NPST framework is designed to

work with environments involving discrete action spaces and with-

out requiring the introduction of an additional loss network. Then,

the NPST3 framework was proposed as a more advanced version of

NPST with the introduction of continuous action spaces and an Au-

toencoder network to define the Content and the Style. The NPST3

is additionally designed to allow the online teleoperation of the robot

with the online introduction of the Style within the teleoperated tra-

jectory.

116

8.3. Future Work Universidad Carlos III de Madrid

8.3 Future Work

Two different areas of study are introduced for presenting the future

works related to the contributions proposed in this thesis. The first area

of study focuses on studying the improvement of the proposed methods

introduced in this thesis. In the second area, future applications that take

advantage of the methods proposed in this thesis are presented.

8.3.1 Proposed Enhancements

Different improvements can be proposed as a way to enhance the per-

formance of the proposed methods, increase the generalization capabilities

of the proposed framework, or lead to a deeper study that can be useful for

future applications.

• Automatic constraint definition. The introduction of a method to

automatically extract constraints to introduce in the CGDA frame-

work using human demonstrations.

• Further reductions in RIT for the OET algorithm. This includes

the introduction of parallel computation.

• Increasing the generalization capabilities of NPST3. One network

has to be trained for each selected Style. Future works include the

study of a loss network that is able to work with multiple Styles.

• Experiments with social robotics platforms. Experimental results

using the NPST3 framework include a manipulator for the introduc-

tion of the selected human emotions defined as the Styles for these

experiments. Further studies should introduce a social robot platform

as an, initially, more suitable platform for the introduction of this kind

of Styles.

117

Universidad Carlos III de Madrid Chapter 8. Conclusions

• Increase the range of studied Styles. Styles in robotics do not need

to be limited to human emotions. Further works include the definition

of new Styles as, for example, the Styles defined by an expert human

operator. This would allow an inexperienced operator to command

the robot with the Style of an expert.

8.3.2 Proposed Applications

Due to the theoretical nature of this thesis, future works also include

a wide range of possible applications derived from the frameworks pro-

posed. Some of these possible future applications are proposed in this

section. These applications introduce the advantages proposed by the dif-

ferent contributions presented in this thesis.

• The introduction of CGDA within Smart city applications. This

idea was already presented in Fernandez-Fernandez et al. (85). Thanks

to the improvements proposed in this thesis, the introduction of Learn-

ing from Demonstration and Action Generalization makes CGDA

suitable for applications involving non-technical users in dynamic en-

vironments. This is the case, for example, of Smart City applications.

• Collaborative tasks with human subjects. The introduction of fast

replanning times using the OET algorithm allows the proposition of

new applications using CGDA, e.g. introducing human subjects to

perform collaborative action executions.

• Social robot applications. The automatic introduction of emotions in

robots allows the introduction of new applications in social robotics.

The NPST3 framework allows the operator to command a social robot

while the framework takes care of introducing the low-level features

to make the robot move while expressing the selected human emotion.

118

8.3. Future Work Universidad Carlos III de Madrid

• Shared-control Style Transfer applications. NPST3 allows the on-

line transferring of Styles to the commanded motions defined by the

user in a similar way to classical shared control applications. Future

applications introducing shared control architectures and Style Trans-

fer can be proposed based on this idea.

119

References

121

References

1. Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style
transfer using convolutional neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
2414–2423. IEEE, 2016. doi: 10.1109/CVPR.2016.265.

2. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533,
2015. doi: 10.1038/nature14236.

3. Santiago Morante, Juan G Victores, Alberto Jardón, and Carlos Bala-
guer. Humanoid robot imitation through continuous goal-directed ac-
tions: an evolutionary approach. Advanced Robotics, 29(5):303–314,
2015. doi: 10.1080/01691864.2014.964314.

4. David Hume. A treatise of human nature. Courier Corporation, 2003.

5. IEP Staff. Deductive and inductive arguments. the internet encyclope-
dia of philosophy, 2016. ISSN 2161-0002.

6. D Herms. Logical basis of hypothesis testing in scientific research. In
A logic primer to accompany Giere. Ohio State University, 1984.

7. Janet L Kolodner. An introduction to case-based reasoning. Artificial
intelligence review, 6(1):3–34, 1992. doi: 10.1007/BF00155578.

8. Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-
ing. A survey of robot learning from demonstration. Robotics and
autonomous systems, 57(5):469–483, 2009. ISSN 0921-8890. doi:
10.1016/j.robot.2008.10.024.

123

Universidad Carlos III de Madrid References

9. Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, rep-
resenting, and generalizing a task in a humanoid robot. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(2):
286–298, 2007. doi: 10.1109/TSMCB.2006.886952.

10. Karinne Ramirez-Amaro, Michael Beetz, and Gordon Cheng. Trans-
ferring skills to humanoid robots by extracting semantic representa-
tions from observations of human activities. Artificial Intelligence,
247:95–118, 2017. ISSN 0004-3702. doi: 10.1016/j.artint.2015.08.
009.

11. Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz
Mösenlechner, Dejan Pangercic, Thomas Rühr, and Moritz Tenorth.
Robotic roommates making pancakes. In 2011 11th IEEE-RAS In-
ternational Conference on Humanoid Robots, pages 529–536. IEEE,
2011. doi: 10.1109/Humanoids.2011.6100855.

12. Daniel Holden, Ikhsanul Habibie, Ikuo Kusajima, and Taku Komura.
Fast neural style transfer for motion data. IEEE Computer Graphics
and Applications, 37(4):42–49, 2017. ISSN 02721716. doi: 10.1109/
MCG.2017.3271464.

13. Juan G Victores, Santiago Morante, Alberto Jardón, and Carlos Bal-
aguer. Towards robot imagination through object feature inference.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5694–5699. IEEE, 2013. doi: 10.1109/IROS.2013.
6697181.

14. Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In 3rd International Con-
ference on Learning Representations, ICLR, 2015.

15. A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot pro-
gramming by demonstration. Springer Handbook of Robotics, pages
1371–1394, 2008. doi: 10.1007/978-3-540-30301-5_60.

124

References Universidad Carlos III de Madrid

16. Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd
Thomaz. Trajectories and keyframes for kinesthetic teaching: A
human-robot interaction perspective. In Proceedings of the seventh
annual ACM/IEEE international conference on Human-Robot Inter-
action, pages 391–398. IEEE, 2012. doi: 10.1145/2157689.2157815.

17. John Henry Holland et al. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and ar-
tificial intelligence. MIT press, 1992. ISBN 9780262581110. doi:
10.7551/mitpress/1090.001.0001.

18. Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018. ISBN 0262039249. doi: 10.5555/
3312046.

19. Sylvain Calinon and Aude Billard. Recognition and reproduction of
gestures using a probabilistic framework combining PCA, ICA and
HMM. In Proceedings of the 22nd international conference on Ma-
chine learning, ICML ’05, pages 105–112. Association for Comput-
ing Machinery, 2005. ISBN 1595931805. doi: 10.1145/1102351.
1102365.

20. Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor
models for motor behaviors. Neural computation, 25(2):328–373,
2013. doi: 10.1162/NECO_a_00393.

21. Chrystopher L Nehaniv and Kerstin Dautenhahn. Of hummingbirds
and helicopters: An algebraic framework for interdisciplinary studies
of imitation and its applications. In Interdisciplinary approaches to
robot learning, volume 24, pages 136–161. World Scientific, 2000.
ISBN 978-981-279-274-7. doi: 10.1142/9789812792747_0007.

22. Santiago Morante, Juan G Victores, and Carlos Balaguer. Auto-
matic demonstration and feature selection for robot learning. In 2015
IEEE-RAS 15th International Conference on Humanoid Robots (Hu-
manoids), pages 428–433. IEEE, 2015. doi: 10.1109/HUMANOIDS.
2015.7363569.

125

Universidad Carlos III de Madrid References

23. Meinard Müller. Dynamic Time Warping, pages 69–84. Springer
Berlin Heidelberg, 2007. ISBN 978-3-540-74048-3. doi: 10.1007/
978-3-540-74048-3_4.

24. Martin D Buhmann. Radial basis functions. Acta numerica, 9:1–38,
2000. doi: 10.1017/CBO9780511543241.

25. Yaochu Jin. A comprehensive survey of fitness approximation in
evolutionary computation. Soft computing, 9(1):3–12, 2005. doi:
10.1007/s00500-003-0328-5.

26. Loris Vincenzi and Marco Savoia. Improving the speed performance
of an evolutionary algorithm by a second-order cost function approx-
imation. In Proceedings of the 2nd International Conference on En-
gineering Optimization, pages 6–9. APMTAC, 2010. ISBN 978-989-
96264-3-0.

27. Robert E. Smith, B. A. Dike, and S. A. Stegmann. Fitness in-
heritance in genetic algorithms. In Proceedings of the 1995 ACM
Symposium on Applied Computing, SAC ’95, page 345–350. Asso-
ciation for Computing Machinery, 1995. ISBN 0897916581. doi:
10.1145/315891.316014.

28. Robert Barbour, David Corne, and John McCall. Accelerated opti-
misation of chemotherapy dose schedules using fitness inheritance. In
IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.
doi: 10.1109/CEC.2010.5586118.

29. Anna I Esparcia-Alcázar and Jaroslav Moravec. Fitness approxima-
tion for bot evolution in genetic programming. Soft Computing, 17(8):
1479–1487, 2013. doi: 10.1007/s00500-012-0965-7.

30. Ilaria Bertini, Matteo De Felice, Alessandro Pannicelli, and Stefano
Pizzuti. Soft computing based optimization of combined cycled power
plant start-up operation with fitness approximation methods. Applied
Soft Computing, 11(6):4110–4116, 2011. ISSN 1568-4946. doi: https:
//doi.org/10.1016/j.asoc.2011.02.028.

126

References Universidad Carlos III de Madrid

31. James Kennedy and Russell Eberhart. Particle swarm optimization.
In Proceedings of ICNN’95-International Conference on Neural Net-
works, volume 4, pages 1942–1948. IEEE, 1995. doi: 10.1109/ICNN.
1995.488968.

32. Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm
optimization. Swarm intelligence, 1(1):33–57, 2007. doi: 10.1007/
s11721-007-0002-0.

33. Mohsen Davarynejad, M-R Akbarzadeh-T, and Naser Pariz. A novel
general framework for evolutionary optimization: Adaptive fuzzy fit-
ness granulation. In 2007 IEEE Congress on Evolutionary Computa-
tion, pages 951–956. IEEE, 2007. doi: 10.1109/CEC.2007.4424572.

34. M-R Akbarzadeh-T, Mohsen Davarynejad, and Naser Pariz. Adaptive
fuzzy fitness granulation for evolutionary optimization. International
Journal of Approximate Reasoning, 49(3):523–538, 2008. doi: 10.
1016/j.ijar.2008.05.004.

35. Els Ducheyne, Bernard De Baets, and Robert De Wulf. Is fitness inher-
itance useful for real-world applications? In International Conference
on Evolutionary Multi-Criterion Optimization, EMO’03, pages 31–42.
Springer, 2003. ISBN 3540018697.

36. Margarita Reyes-Sierra and Carlos A Coello Coello. Fitness inheri-
tance in multi-objective particle swarm optimization. In Proceedings
2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pages
116–123. IEEE, 2005. doi: 10.1109/SIS.2005.1501610.

37. Margarita Reyes-Sierra and Carlos A Coello Coello. A study of
fitness inheritance and approximation techniques for multi-objective
particle swarm optimization. In 2005 IEEE Congress on Evolu-
tionary Computation, volume 1, pages 65–72. IEEE, 2005. doi:
10.1109/CEC.2005.1554668.

127

Universidad Carlos III de Madrid References

38. Kusum Deep and Dipti. A self-organizing migrating genetic algorithm
for constrained optimization. Applied Mathematics and Computation,
198(1):237–250, 2008. ISSN 0096-3003. doi: https://doi.org/10.1016/
j.amc.2007.08.032.

39. Yong Zhao and Nobuo Sannomiya. An improvement of genetic al-
gorithms by search space reductions in solving large-scale flowshop
problems. IEEJ Transactions on Electronics, Information and Systems,
121(6):1010–1015, 2001. doi: 10.1541/ieejeiss1987.121.6_1010.

40. Piya Chootinan and Anthony Chen. Constraint handling in genetic
algorithms using a gradient-based repair method. Computers & op-
erations research, 33(8):2263–2281, 2006. ISSN 0305-0548. doi:
10.1016/j.cor.2005.02.002.

41. Özgür Yeniay. Penalty function methods for constrained optimiza-
tion with genetic algorithms. Mathematical and computational Ap-
plications, 10(1):45–56, 2005. ISSN 2297-8747. doi: 10.3390/
mca10010045.

42. Atidel Ben Hadj-Alouane and James C Bean. A genetic algorithm
for the multiple-choice integer program. Operations research, 45(1):
92–101, 1997. doi: 10.1287/opre.45.1.92.

43. Zbigniew Michalewicz and Naguib Attia. Evolutionary optimization
of constrained problems. In Proceedings of the 3rd annual conference
on evolutionary programming, pages 98–108. World Scientific, 1994.

44. Jianhua Xiao, Jin Xu, Zehui Shao, Congfeng Jiang, and Linqiang
Pan. A genetic algorithm for solving multi-constrained function op-
timization problems based on KS function. In 2007 IEEE Congress
on Evolutionary Computation, pages 4497–4501. IEEE, 2007. doi:
10.1109/CEC.2007.4425060.

45. Raziyeh Farmani and Jonathan A Wright. Self-adaptive fitness formu-
lation for constrained optimization. IEEE transactions on evolutionary
computation, 7(5):445–455, 2003. doi: 10.1109/TEVC.2003.817236.

128

References Universidad Carlos III de Madrid

46. Simone Puzzi and Alberto Carpinteri. A double-multiplicative dy-
namic penalty approach for constrained evolutionary optimization.
Structural and Multidisciplinary Optimization, 35(5):431–445, 2008.
doi: 10.1007/s00158-007-0143-1.

47. Biruk Tessema and Gary G Yen. An adaptive penalty formulation for
constrained evolutionary optimization. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, 39(3):565–578,
2009. doi: 10.1109/TSMCA.2009.2013333.

48. Li-Chiu Chang. Guiding rational reservoir flood operation using
penalty-type genetic algorithm. Journal of Hydrology, 354(1):65–74,
2008. ISSN 0022-1694. doi: 10.1016/j.jhydrol.2008.02.021.

49. Gilbert Syswerda. A study of reproduction in generational and
steady-state genetic algorithms. In Foundations of genetic algo-
rithms, volume 1, pages 94–101. Elsevier, 1991. doi: 10.1016/
B978-0-08-050684-5.50009-4.

50. Rosen Diankov. Automated Construction of Robotic Manipulation
Programs. PhD thesis, Carnegie Mellon University, 2010.

51. Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-
lived robot genes. Robotics and Autonomous systems, 56(1):29–45,
2008. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2007.09.
014.

52. Santiago Martínez, Concepción Alicia Monje, Alberto Jardón, Paolo
Pierro, Carlos Balaguer, and Delia Munoz. Teo: Full-size humanoid
robot design powered by a fuel cell system. Cybernetics and Systems,
43(3):163–180, 2012. doi: 10.1080/01969722.2012.659977.

53. John G. Avildsen, Bill Conti, and Brooks Arthur. The karate kid, 1984.

129

Universidad Carlos III de Madrid References

54. Stjepan Picek, Marin Golub, and Domagoj Jakobovic. Evaluation
of crossover operator performance in genetic algorithms with binary
representation. In Proceedings of the 7th International Conference
on Intelligent Computing: Bio-Inspired Computing and Applications,
ICIC’11, pages 223–230. Springer, 2011. ISBN 9783642245527. doi:
10.1007/978-3-642-24553-4_31.

55. Jessica B Hamrick, Kevin A Smith, Thomas L Griffiths, and Edward
Vul. Think again? the amount of mental simulation tracks uncertainty
in the outcome. In Proceedings of the 37th Annual Meeting of the Cog-
nitive Science Society, 2015. doi: 10.6084/M9.FIGSHARE.1554893.
V1.

56. Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-
to-end training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1):1334–1373, 2016. ISSN 1532-4435. doi:
10.5555/2946645.2946684.

57. Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine.
Deep reinforcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international conference
on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.
doi: 10.1109/ICRA.2017.7989385.

58. Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker,
and Sergey Levine. Learning to walk via deep reinforcement learning.
In Robotics: Science and Systems, 2019. doi: 10.15607/RSS.2019.
XV.011.

59. Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Con-
tinuous control with deep reinforcement learning. In International
Conference on Learning Representations (ICLR), 2016.

60. Scott Fujimoto, Herke Hoof, and David Meger. Addressing func-
tion approximation error in actor-critic methods. In Proceedings of
the 35th International Conference on Machine Learning, volume 80,
pages 1587–1596. PMLR, 2018.

130

References Universidad Carlos III de Madrid

61. Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforce-
ment learning with double Q-learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30 of AAAI’16, page
2094–2100. AAAI Press, 2016.

62. Joshua B Tenenbaum and William T Freeman. Separating style and
content. Advances in neural information processing systems, 9, 1997.

63. Armin Bruderlin and Lance Williams. Motion signal processing. In
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’95, pages 97–104, 1995. ISBN
0897917014. doi: 10.1145/218380.218421.

64. Munetoshi Unuma, Ken Anjyo, and Ryozo Takeuchi. Fourier princi-
ples for emotion-based human figure animation. In Proceedings of
the 22nd annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’95, pages 91–96. Association for Computing
Machinery, 1995. ISBN 0897917014. doi: 10.1145/218380.218419.

65. Kenji Amaya, Armin Bruderlin, and Tom Calvert. Emotion from
motion. In Graphics interface, volume 96, pages 222–229. Toronto,
Canada, 1996. ISBN 9781315579214. doi: 10.4324/9781315579214.

66. Jianyuan Min, Huajun Liu, and Jinxiang Chai. Synthesis and editing
of personalized stylistic human motion. In Proceedings of the 2010
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games,
I3D ’10, pages 39–46. Association for Computing Machinery, 2010.
doi: 10.1145/1730804.1730811.

67. Megha Sharma, Dale Hildebrandt, Gem Newman, James E Young,
and Rasit Eskicioglu. Communicating affect via flight path explor-
ing use of the laban effort system for designing affective locomo-
tion paths. In 2013 8th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 293–300. IEEE, 2013. doi:
10.1109/HRI.2013.6483602.

131

Universidad Carlos III de Madrid References

68. Allan Zhou and Anca D Dragan. Cost functions for robot motion style.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3632–3639. IEEE, 2018. doi: 10.1109/IROS.
2018.8594433.

69. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Un-
paired image-to-image translation using cycle-consistent adversarial
networks. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2242–2251. IEEE, 2017. doi: 10.1109/ICCV.2017.244.

70. Tianying Wang, Wei Qi Toh, Hao Zhang, Xiuchao Sui, Shaohua Li,
Yong Liu, and Wei Jing. Robocodraw: Robotic avatar drawing with
gan-based style transfer and time-efficient path optimization. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34:10402–
10409, 2020. doi: 10.1609/aaai.v34i06.6609.

71. Yaxin Liu, Xiaoyan Zhang, and Xiaogang Xu. Semantic-aware video
style transfer based on temporal consistent sparse patch constraint.
In 2021 IEEE International Conference on Multimedia and Expo
(ICME), pages 1–6. IEEE, 2021. doi: 10.1109/ICME51207.2021.
9428352.

72. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009
IEEE Conference on Computer Vision and Pattern Recognition, pages
248–255. IEEE, 2009. doi: 10.1109/CVPR.2009.5206848.

73. Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned
representation for artistic style. International Conference on Learning
Representations (ICLR), 2017.

74. Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep
painterly harmonization. Computer Graphics Forum, 37(4):95–106,
2018. ISSN 14678659. doi: 10.1111/cgf.13478.

132

References Universidad Carlos III de Madrid

75. Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan.
Style transfer in text: Exploration and evaluation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32. AAAI
Press, 2018.

76. Joseph Lee, Ziang Xie, Cindy Wang, Max Drach, Dan Jurafsky, and
Andrew Y Ng. Neural text style transfer via denoising and rerank-
ing. In Proceedings of the Workshop on Methods for Optimizing and
Evaluating Neural Language Generation, pages 74–81. Association
for Computational Linguistics, 2019. doi: 10.18653/v1/W19-2309.

77. Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via in-
verse reinforcement learning. In Proceedings of the Twenty-First In-
ternational Conference on Machine Learning, number 346 in ICML
’04, page 1. Association for Computing Machinery, 2004. ISBN
1581138285. doi: 10.1145/1015330.1015430.

78. Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum
entropy deep inverse reinforcement learning. arXiv preprint, 2015.

79. Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K
Dey. Maximum entropy inverse reinforcement learning. In Pro-
ceedings of the 23rd national conference on Artificial intelligence-
Volume 3, AAAI’08, pages 1433–1438. AAAI Press, 2008. ISBN
9781577353683. doi: 10.5555/1620270.1620297.

80. Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Al-
gorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization. ACM Trans. Math. Softw., 23(4):550–560,
1997. ISSN 0098-3500. doi: 10.1145/279232.279236.

81. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In 3rd International Conference on Learning Represen-
tations (ICLR), 2015.

133

Universidad Carlos III de Madrid References

82. Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning,
ICML’10, page 807–814. Omnipress, 2010. ISBN 9781605589077.
doi: 10.5555/3104322.3104425.

83. Yanran Li, Zhao Wang, Xiaosong Yang, Meili Wang, Sebastian Iu-
lian Poiana, Ehtzaz Chaudhry, and Jianjun Zhang. Efficient con-
volutional hierarchical autoencoder for human motion prediction.
The Visual Computer, 35(6):1143–1156, 2019. doi: 10.1007/
s00371-019-01692-9.

84. Éric Marchand, Fabien Spindler, and François Chaumette. ViSP for
visual servoing: a generic software platform with a wide class of robot
control skills. IEEE Robotics & Automation Magazine, 12(4):40–52,
2005. doi: 10.1109/MRA.2005.1577023.

85. Raul Fernandez-Fernandez, Juan G Victores, David Estevez, and Car-
los Balaguer. Real evaluations tractability using continuous goal-
directed actions in smart city applications. Sensors, 18(11), 2018.
ISSN 1424-8220. doi: 10.3390/s18113818.

134

	AKNOWLEDGEMENTS
	PUBLISHED AND SUBMITTED CONTENT
	ABSTRACT
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	I Introduction
	Chapter 1: Introduction
	An Introduction to Action Generalization
	The goal of this thesis
	Improving Continuous Goal-Directed Actions (CGDA)
	NPST: Introducing Style Transfer in robot actions

	Relevant concepts and elements
	Elements of Learning from Demonstration
	Elements of Evolutionary Algorithms
	Elements of Reinforcement Learning

	Conclusions of Part I: Introduction

	II Continuous Goal-Directed Actions
	Chapter 2: Continuous Goal-Directed Actions
	The CGDA framework
	Generalization
	Recognition
	Execution
	FTE: Full Trajectory Evolution
	IE: Individual Evolution
	IET: Incrementally Evolved Trajectories

	Conclusions

	Chapter 3: Reducing evaluations in CGDA
	Introducing Approximations
	Particle Swarm Optimization in CGDA
	Particle Swarm Optimization
	Adaptive Fuzzy Fitness Granulation PSO
	Fitness Inheritance PSO

	Introducing Constraints
	Approximations and Constraints in CGDA
	Experiments
	Evolutionary Approximation Results
	Wax Results
	Paint Results

	Constrained Genetic Algorithms Results
	Wax Results
	Paint Results

	Conclusions

	Chapter 4: Online Evolved Trajectories
	Online Evolutionary Strategies
	The Online Evolved Trajectories algorithm
	Perception Step
	Localization Step

	Experiments
	Results
	Paint Results
	Iron Results

	Conclusions

	Conclusions of Part II: Continuous Goal-Directed Actions

	III Neural Policy Style Transfer (NPST)
	Chapter 5: Reinforcement Learning and Style Transfer
	Reinforcement Learning
	Q-Learning
	Deep Reinforcement Learning
	Continuous action spaces

	Style Transfer: Content and Style
	Neural Style Transfer
	Conclusions

	Chapter 6: NPST in discrete action spaces
	Inverse Reinforcement Learning
	Neural Policy Style Transfer
	Experiments
	Catch-ball Game Experiment
	Grid-world Paint Experiment

	Results
	Catch-ball Game Results
	Grid-world Paint Results

	Conclusions

	Chapter 7: NPST3 in continuous action spaces
	Framework
	Inputs
	Autoencoder Network: loss network
	Constraints
	TD3 Policy Network: execution network
	Outputs

	Training
	Experiments
	Setup
	Questionnaire and Subjects
	Results

	Conclusions

	Conclusions of Part III: Neural Policy Style Transfer

	IV Conclusions
	Chapter 8: Conclusions
	Main Conclusions and Results
	Innovations
	Future Work
	Proposed Enhancements
	Proposed Applications

	References

