
1

A Direct Approach to Solving Trajectory Planning Problems Using Genetic
Algorithms with Dynamics Considerations in Complex Environments

Fares J. Abu-Dakka1, Francisco J. Valero*, Jose Luis Suñer* and Vicente Mata*

* Centro de Investigación en Tecnología de Vehiculos, U.P.V. Valencia, 46022, Spain

Abstract

This paper presents a new genetic algorithm methodology to solve the trajectory planning problem. This

methodology can obtain smooth trajectories for industrial robots in complex environments using a direct method. The

algorithm simultaneously creates a collision-free trajectory between initial and final configurations as the robot

moves. The presented method deals with the uncertainties associated with the unknown kinematic properties of

intermediate via points since they are generated as the algorithm evolves looking for the solution. Additionally, the

objective of this algorithm is to minimize the trajectory time, which guides the robot motion. The method has been

applied successfully to the PUMA 560 robotic system. Four operational parameters (execution time, computational

time, end-effector distance travelled and significant points distance travelled) have been computed to study and

analyze the algorithm efficiency. The experimental results show that, the proposed optimization algorithm for the

trajectory planning problem of an industrial robot is feasible.

Keywords: Robotics, Trajectory Planning, Obstacles Avoidance, Genetic Algorithms

1. Introduction

Minimum time trajectory planning for industrial robots has been addressed by numerous researchers

motivated by the direct relationship between tasks being executed in minimum time and productivity in

manufacturing systems. The resolution of efficient trajectory planning with prevention of collisions for

robots in complex environments requires computationally costly algorithms that prevent their industrial

application.

A clear difference exists between path and trajectory planning, as well as the algorithms used to solve

these problems. In the case of path planning, the algorithms try to obtain a sequence of configurations

between the initial and final ones, fulfilling some kinematic and geometrical constraints [1]. On the other

1 Corresponding author. Address: CITV, Universidad Politécnica de Valencia, c/camino de vera s/n, 46022, Valencia, Spain. Tel: 0034 652972454;

Fax: 0034 963877629.

E-mail addresses: fares.abudakka@gmail.com, fvalero@mcm.upv.es, josuner@mcm.upv.es, vmata@mcm.upv.es

Robotica / Volume 33 / Issue 03 / March 2015, pp 669-683

Copyright © Cambridge University Press 2014

DOI: http://dx.doi.org/10.1017/S0263574714000393 (About DOI), Published online: 10 March 2014

mailto:fares.abudakka@gmail.com
mailto:fvalero@mcm.upv.es
mailto:josuner@mcm.upv.es
mailto:vmata@mcm.upv.es
http://journals.cambridge.org/action/displayJournal?jid=ROB
http://dx.doi.org/10.1017/S0263574714000393
http://journals.cambridge.org/action/stream?pageId=3624&level=2&sessionId=DCB65052203984DFE37232BD6B253640.journals#30

2

hand, the algorithms for trajectory planning try to obtain a temporal history of the evolution of robot joint

coordinates, by minimizing aspects such as time, power, and/or energy consumption.

Essentially, the trajectory planning has been analyzed using two different approaches: direct (global)

and indirect (decoupled) approaches. Indirect approaches, first seek a path in the configuration space and

then the trajectory adjusts subject to the dynamic constraints of the [2-9]. In the direct approaches, on the

other hand, the search takes place in the system’s state space. These approaches involve optimal control

and numerical optimization [10-13]. The method used in this paper is oriented towards the attainment of

an algorithm that avoids obtaining a prior path.

The main difficulties in finding an optimum trajectory are due to the system complexity, where the

analytical solution may be intractable. While enumerative search methods are overwhelmed by the size

of the search space, the genetic algorithm (GA) provides a more robust approach. GA was first introduced

by Holland [14]. GA-based search and optimization techniques have recently found increasing use in

machine learning, robot motion planning, scheduling, pattern recognition, image sensing, etc. [15].

Numerous implementations of GAs in the field of robot trajectory planning have been carried out by

several researchers in recent decades. Toogood, et al., [16] developed a GA to find collision-free

trajectories for the 3R robot with specific start and goal joint configurations, among known stationary

obstacles. A new method for time-optimal motion planning based on improved GA was proposed, which

incorporates kinematics, dynamics and control constraints of the robotic manipulator [17]. Rana and

Zalzala [18] described a method to design a near time-optimal, collision-free motion in the case of multi-

arm manipulators. The trajectory planning is carried out in the joint space, and the path is represented by

knots connected through cubic splines. Monteiro and Madrid [19] have used GA to plan the stages of the

trajectory of a robot arm called Jeca III. They have proposed the use of GA to plan a trajectory with

obstacle avoidance and to implement joint space using classical GA. This is achieved in two stages: initial

positioning, which locates the end-effector of the robot arm in the first point of the trajectory, and

incremental positioning which moves the end-effector to the next point of the trajectory. Pires and

Machado [20] proposed an algorithm containing a GA and a pattern search to design the optimal point-to-

point trajectory planning for a planar 3-DOF manipulator. L. Tian and Collins [21] proposed a GA using a

floating point representation to search for optimal end-effector trajectory for a manipulator. One year

later, in 2004, they extended their work by developing a novel GAs for point obstacles avoidance

trajectory using a cubic interpolation function [22]. Pires et al. [23] proposed a multi-objective GA, when

3

considering up to five simultaneous objectives, to generate manipulator trajectories and for obstacle

avoidance. The authors in [24-26] use two evolutionary mutli-criteria algorithms, NSGA-II and MODE,

to get optimal trajectory planning by minimizing travelling time, actuators energy and penalty for obstacle

avoidance. A parallel populations GA procedure was presented to obtain a minimum time trajectory for a

given sequence of configurations [27].

Direct methods usually start from knowledge of the initial state (q𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and q̇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and final state

(q𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and q̇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) of the robotic system. q = �𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝑖𝑖 … , 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑� is the vector of the joint

coordinates representing a generic configuration of the system, 𝐪̇𝐪 is the vector of their respective

velocities, and i = 1, 2, 3, …, dof (degrees of freedom of the robot). Direct methods are about the

acquisition of the trajectory, avoiding collisions and considering dynamic constraints of the robot, usually

minimum and maximum torques �𝜏𝜏𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , 𝜏𝜏𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� in the actuators, setting the minimization of the execution

time or energy consumed as the objective. The solution results in the time history of the joint coordinates

q(𝑡𝑡) and torques 𝛕𝛕(𝑡𝑡) in the actuators.

The authors in [10] the authors proposed to directly parameterize the joint evolution vector q(𝑡𝑡) using

clamped cubic spline functions between an initial configuration, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and a final one, 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, using free

nodes uniformly distributed between them and transforming the problem into a parametric constrained

optimization problem which is solved for the unknown transfer time T and the unknown parameters of

q(𝑡𝑡) and positions of nodes. A concatenation of fifth-order polynomials to provide a smooth trajectory

between two way points with jerk limits has been described [28]. The method requires the computation of

the quintic control points. A minimum-jerk 3D model is also used to obtain the desired path in Cartesian

space, which is widely used in the prediction of human reach movement. Instead of inverse kinematics, a

direct optimization approach is used to predict each joint's profile (a spline curve) [11]. In these last

examples, the obstacles are not addressed since the motion is path-constrained, that is, the whole path is

parameterized previously (cubic splines, 5th polynomials, B-splines) in terms of passing points and the

corresponding method is used not only to optimize the jerk, the time required or the energy consumed but

also to obtain the unknown characteristics of the path (coefficients and positions of via points).

In this paper, a direct method is presented using GAs to obtain minimum time trajectories for industrial

robots (at least 6 dof) working in complex environments and in which the intermediate configurations are

unknown, i.e., no assumptions are previously made for the path. For example, to move the robot

throughout the workspace (by means of adjacent configurations (AC)); a GA technique is used to ensure

4

continuous connections with minimum time between via points. This algorithm evaluates the time 𝑡𝑡𝑗𝑗 for

each step j in which the problem is solved. These times are progressively added up, so that when the final

configuration is reached, the complete trajectory also will be defined. The minimum time 𝑡𝑡𝑗𝑗 between two

ACs is obtained by solving an optimization problem using steady state GAs, in which a fundamental role

is played by the parameterization functions and the inverse dynamic problem, see Section 4. This

approach deals with two facts: the obstacles in the workspace and unknown intermediate configurations.

These two facts lead to uncertainties about the kinematic characteristics of intermediate points,

highlighting that the knowing of these kinematic characteristics are indispensable to solving the inverse

dynamic problem.

The algorithm in this paper works on a discretized configuration space which is generated

simultaneously as the direct procedure evolves, demanding less computational effort than the

corresponding indirect procedure [29].

The paper consists of eight sections. Section 2 briefly presents the GA procedure. Section 3 introduces

the robot and workspace modeling. After that, the acquisition of the ACs with dynamic compatibilities is

presented in section 4. The trajectories generation is covered in section 5. In section 6, a detailed

explanation about the GA operators is introduced. Results of the experimental evaluation are given in

section 7, followed by final remarks and conclusions in section 8.

2. Genetic algorithm procedure

In principle, GAs are stochastic search algorithms analogous to natural selection. They combine

survival of the fittest among the string structures with a structured yet randomized information exchange

to form a search algorithm with the innovative flair of natural evolution. GAs have proven their

robustness and usefulness over other search techniques because of their unique procedures that differ

from other normal search and optimization techniques in four distinct ways:

1. GAs work with coding of a parameter set, not the parameters themselves.

2. GAs use probabilistic transition rules, not deterministic rules.

3. GAs can be used when no information is available about the gradient of the function at the

evaluated points. The function itself does not need to be continuous or differentiable.

4. The function is not examined at a single place, constructing a possible path to the local maximum

or minimum, but many different places are considered simultaneously. The function must be

calculated for all elements of the population. The creation of new populations also requires

5

additional calculations. In this way the optimum of the function is sought in several directions

simultaneously and many paths to the optimum are processed in parallel.

The calculations required for GAs are obviously much more extensive than for a simple random

search. However, compared to other stochastic methods, GAs have the advantage that they can be

parallelized with little effort. Since the calculations of the function on all points of a population are

independent from each other, they can be carried out in several processors [30]. A clear improvement in

performance can be achieved with them in comparison to other non-parallelizable optimization methods.

Compared to purely local methods (e.g., gradient descent) GAs have the advantage that they do not

necessarily remain trapped in a suboptimal local maximum or minimum of the target function. Since

information from many different regions is used, a GA can move away from a local maximum or

minimum if the population finds better function values in other areas of the definition domain [31].

The search technique in GAs consists of generating an initial population of strings at random. Each

solution is assigned a numerical evaluation of its fitness by an objective function, which is a mathematical

function that maps a particular solution to a single positive number that is a measure of the solution’s

worth. During each iteration (generation), each individual string in the current population is evaluated

using this measure of fitness. New strings (children) for the next generation are selected from the current

population of strings (parents) by a process known as selection. A random selection process is used with a

higher probability given for strings with higher fitness values. Such a selection scheme systematically

eliminates low-fitness individuals from the population from one generation to the next. New generations

can be produced either synchronously, so that the old generation is completely replaced, or

asynchronously, so that the generations overlap.

In this paper, two optimization processes using GAs are involved. One optimization process is

constructed to obtain the ACs [32] and the other one is used to obtain the overall trajectory

simultaneously that ensures continuous connections for velocities and accelerations between intermediate

configurations. The GA for ACs uses the technique of steady-state reproduction without duplicates. This

technique creates a certain number of children to replace the parents in the population, but discards

children which are duplicated by the current individuals in the population. On the other hand, the GA for

the trajectory uses parallel populations with migration technique. The GA has multiple, independent

populations. It creates the populations by cloning the genome or population that is passed to it when it is

created. Each population evolves using the steady-state GA, but each generation some individuals migrate

6

from one population to another. The migration algorithm is deterministic stepping-stone; each population

migrates a fixed number of its best individuals to its neighbor. The master population is updated each

generation with the best individual from each population.

Two genetic operators, crossover and mutation, are probabilistically applied to create a new population

of individuals. Parent individuals are selected as candidates for crossover or mutation using the roulette-

wheel selection method. This method is based on the magnitude of the fitness score of an individual

relative to the rest of the population. The higher score, the more likely it is that a given individual will be

selected. GAs are domain independent because they require no explicit notion of a neighborhood. Hence,

crossover and mutation may not always produce feasible solutions. Therefore, the feasibility of a newly

created individual is ascertained before inserting it in the population to replace a parent string.

In the GA-based solution procedure, a number of new individuals are created at each iteration. The

remaining individuals are obtained by deterministically copying the individuals with the top fitness from

the previous generation.

3. Robot & workspace modeling

The robot has been modeled as a wire linkage [4]. This model involves rigid links joined by the

corresponding kinematic joints. Furthermore, the robot configuration has been modeled as a function of

joint variables 𝐶𝐶(q).

The collision detection process between the robot and the obstacles will be realized in Cartesian

coordinates. In this manner, the configuration 𝐶𝐶 of a robot with dof degrees of freedom will be determined

without ambiguity in Cartesian coordinates for a minimum of M points. These points are called

significant points 𝛼𝛼𝑚𝑚(q) where m = 1, 2, …, M. Besides the significant points, in order to improve the

efficiency of the algorithm some other points 𝑃𝑃𝑘𝑘 called interesting points will be used, where k = 1, 2, …,

K. Interesting points are useful to define the robot’s links and their number K is dependent on the

geometric characteristics of the robot. The coordinates of interesting points are obtained from the

significant points and the geometric characteristics of the robot. All these points have been modeled as a

function of generalized coordinates and expressed in Cartesian coordinates. Therefore, the robot

configuration 𝐶𝐶(q) has been converted to the Cartesian coordinates 𝐶𝐶�𝛼𝛼𝑚𝑚 ,𝑃𝑃𝑘𝑘 � to facilitate the collision

avoidance technique.

As an application example, the wired model of the PUMA 560 robot is shown in Figure 1 and also its

four significant points 𝐶𝐶�𝛼𝛼1 ,𝛼𝛼2 ,𝛼𝛼3 ,𝛼𝛼4 � together with another four points of interest.

7

Figure 1: Robot wired model.

The workspace has been modeled in Cartesian coordinates. It is discretized according to increases (step

size) into a rectangular prism with its axis parallel to the Cartesian reference system. The step size of the

discretization should be smaller than the smallest obstacle size in the workspace. The end points of the

diagonal of the prism represent the initial and final position of the robot end-effector of the initial and

final configurations respectively [29]. The obstacles contained in the workspace are modeled in Cartesian

coordinates, using a combination of three simple obstacle patterns: spheres, cylinders, and planar

quadrilaterals since they are computationally simple [33]. Any types of obstacles can be modeled

approximately using these simple patterns. This will help in the calculation of the distances between

robot’s links and obstacles and to avoid collisions. The growing obstacles technique has been used in

order to obtain the actual dimensions of the robot [34]. The robot kinematics have been modeled in a

recursive way based on a modified form of Denavit-Hartenberg’s notation.

An important role is played by the generation of ACs using techniques described by [4, 32, 33]. The

inverse dynamic problem has been solved using recursive Newton-Euler formulation to obtain the joint

torques for a given set of joint angles, velocities, and accelerations [35].

4. Obtaining adjacent configurations with dynamic compatibility

The configuration space is generated by means of ACs. A new feasible configuration 𝐶𝐶𝑗𝑗+1 is said to be

adjacent to a given one 𝐶𝐶𝑗𝑗 once it fulfills the following three conditions and has the proceeding property.

Conditions:

α4

α2

α1

P4

P3

P2

P1
α3

8

1. The position of the end effector of 𝐶𝐶𝑗𝑗 is a one unit increment distance from the corresponding 𝐶𝐶𝑗𝑗+1

and is located at some point in the discretized workspace.

2. No obstacle can be placed between the configurations 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑗𝑗+1.

3. It minimizes the following multi-objective expression (1),

�𝐶𝐶𝑗𝑗+1 − 𝐶𝐶𝑗𝑗� = 𝐴𝐴 ∙ 𝑡𝑡𝑗𝑗,𝑗𝑗+1
2 + 𝐵𝐵 ∙ ∑ �𝑞𝑞𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑞𝑞𝑖𝑖
𝑗𝑗+1�

2𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖=1 + 𝐶𝐶 ∙

⎝

⎜
⎛
∑

�𝛼𝛼𝑚𝑚
𝑗𝑗+1 − 𝛼𝛼𝑚𝑚

𝑗𝑗 �
𝑥𝑥

2
+

�𝛼𝛼𝑚𝑚
𝑗𝑗+1 − 𝛼𝛼𝑚𝑚

𝑗𝑗 �
𝑦𝑦

2
+

�𝛼𝛼𝑚𝑚
𝑗𝑗+1 − 𝛼𝛼𝑚𝑚

𝑗𝑗 �
𝑧𝑧

2

𝑀𝑀
𝑚𝑚=1

⎠

⎟
⎞

 (1Erro

r! Bookmark not defined.)

Subjected to:

Joint Torques: |𝜏𝜏𝑖𝑖(𝑡𝑡)| ≤ 𝜏𝜏𝑖𝑖max 𝑖𝑖 = 1,⋯ ,𝑑𝑑𝑑𝑑𝑑𝑑

where A, B, and C are three weighted empirical coefficients. In case of PUMA 560 robot, dof = 6 and M =

4. The first term is to minimize the time needed to move the robot from configuration 𝐶𝐶𝑗𝑗 to 𝐶𝐶𝑗𝑗+1. The

second term is to minimize the distance between the generalized coordinates of the obtained configuration

𝐶𝐶𝑗𝑗+1 and the final one 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to make it converge. The third one is to minimize the distance between the

significant points of the current configuration 𝐶𝐶𝑗𝑗 and the obtained one 𝐶𝐶𝑗𝑗+1 and make them close.

Property:

The dynamic compatibility between the configurations 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑗𝑗+1 must be presented. To verify this

property, the trajectory is adjusted by means of polynomial functions. This trajectory is subjected to the

actuators constraints of the robot. The problem of obtaining the minimum time 𝑡𝑡𝑗𝑗,𝑗𝑗+1 between ACs, is

solved [32, 33]. In this paper, the trajectory has been modeled using cubic polynomials as shown in the

following equation.

𝑞𝑞𝑖𝑖
𝑗𝑗,𝑗𝑗+1(𝑡𝑡) = 𝑎𝑎𝑖𝑖

𝑗𝑗,𝑗𝑗+1 + 𝑏𝑏𝑖𝑖
𝑗𝑗,𝑗𝑗+1𝑡𝑡 + 𝑐𝑐𝑖𝑖

𝑗𝑗,𝑗𝑗+1𝑡𝑡2 + 𝑑𝑑𝑖𝑖
𝑗𝑗,𝑗𝑗+1𝑡𝑡3 ; ∀𝑡𝑡 ∈ �0, 𝑡𝑡𝑗𝑗,𝑗𝑗+1�. (2)

where 𝑎𝑎𝑖𝑖
𝑗𝑗,𝑗𝑗+1, 𝑏𝑏𝑖𝑖

𝑗𝑗,𝑗𝑗+1, 𝑐𝑐𝑖𝑖
𝑗𝑗,𝑗𝑗+1, and 𝑑𝑑𝑖𝑖

𝑗𝑗,𝑗𝑗+1 are the polynomial coefficients to move robot joints form

configuration j to j + 1. 𝑡𝑡𝑗𝑗,𝑗𝑗+1 is the time needed to move the robot form configuration j to j + 1.

The order in which the ACs are generated will condition the space of configurations generated and,

therefore, the trajectory to be obtained, for more details about ACs readers may refer to [32, 33].

In this paper, the proposed procedure was applied to a PUMA 560 robot. The verification of the

maximum torque in each actuator is done by dividing the interval 𝑡𝑡𝑗𝑗,𝑗𝑗+1 and solving the corresponding

inverse dynamic problem (IDP) [35].

9

5. Obtaining the trajectory

The determination of the overall trajectory from 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 to 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is undertaken in this section. First of

all, starting from 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, a random search algorithm has been applied to look for the next AC as explained

in section 4, then after the second AC a continuous connection between every two adjacent cubic

polynomials takes place until completing the whole trajectory. Like this, a continuous trajectory of

minimum time is adjusted directly.

The objective is to minimize the travelling time T between 𝐶𝐶𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.

𝑇𝑇 = ∑ 𝑡𝑡𝑗𝑗,𝑗𝑗+1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗=1 (3)

In each step of the evolution of the trajectory let’s consider the trajectory fragment j-1 (between

configurations 𝐶𝐶𝑗𝑗−1(q) and 𝐶𝐶𝑗𝑗(q)) represented by Eq. (5) and the fragment j (between configurations

𝐶𝐶𝑗𝑗(q) and 𝐶𝐶𝑗𝑗+1(q)) expressed in joint variables, Eq. (3)

𝑞𝑞𝑖𝑖
𝑗𝑗−1,𝑗𝑗(𝑡𝑡) = 𝑎𝑎𝑖𝑖

𝑗𝑗−1,𝑗𝑗 + 𝑏𝑏𝑖𝑖
𝑗𝑗−1,𝑗𝑗𝑡𝑡 + 𝑐𝑐𝑖𝑖

𝑗𝑗−1,𝑗𝑗𝑡𝑡2 + 𝑑𝑑𝑖𝑖
𝑗𝑗−1,𝑗𝑗𝑡𝑡3 ; ∀𝑡𝑡 ∈ �0, 𝑡𝑡𝑗𝑗−1,𝑗𝑗�. (4)

where j is the jth configuration in the trajectory and i = 1, 2, …, dof. 𝑡𝑡𝑗𝑗−1,𝑗𝑗 is the time needed to

move the robot joints form configuration j – 1 to j.

To guarantee the smoothness of the whole path, the following conditions are imposed:

• Position;

�
𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0) = 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖
𝑗𝑗−1,𝑗𝑗�𝑡𝑡𝑗𝑗−1,𝑗𝑗� = 𝑞𝑞𝑖𝑖

𝑗𝑗,𝑗𝑗+1(0)
𝑞𝑞𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� = 𝑞𝑞𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 (5)

• Velocity;

The velocity at the beginning (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and the end (𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) of the trajectory must be zero, while

between the intermediate configurations, the velocity at the end of the fragment j – 1 must be

coincident with the initial of the following one.

�
𝑞̇𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0) = 0
𝑞̇𝑞𝑖𝑖
𝑗𝑗−1,𝑗𝑗�𝑡𝑡𝑗𝑗−1,𝑗𝑗� = 𝑞̇𝑞𝑖𝑖

𝑗𝑗,𝑗𝑗+1(0)
𝑞̇𝑞𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� = 0

 (6)

• Acceleration;

Throughout intermediate configurations, the final acceleration of the fragment j – 1 must be coincident

with the initial acceleration of the following one.

10

𝑞̈𝑞𝑖𝑖
𝑗𝑗−1,𝑗𝑗�𝑡𝑡𝑗𝑗−1,𝑗𝑗� = 𝑞̈𝑞𝑖𝑖

𝑗𝑗,𝑗𝑗+1(0) (7)

Figure 2 shows how the kinematic parameters (position, velocity and acceleration) and the torques in

actuators 1, 2 and 3 evolve. The graphs correspond to the example No. 1 (the case with zero obstacles),

which is detailed in Section 7. The torques in the actuators are limited due to the following values: 𝜏𝜏1 ∈

[−140, 140] N.m, 𝜏𝜏2 ∈ [−180, 180] N.m, 𝜏𝜏3 ∈ [−140, 140] N.m, 𝜏𝜏4 ∈ [−80, 80] N.m, 𝜏𝜏5 ∈ [−80, 80]

N.m, 𝜏𝜏6 ∈ [−40, 40] N.m.

Figure 2. Joints (Coordinates (rad), Velocities (rad/s), Accelerations (rad/s2), Torques (N.m)) vs.

Execution Time (s).

6. Genetic algorithms operators and parameters

In this paper, the GA uses real representation scheme to encode the trajectory variables. The main

operators and characteristics in the exposed GA are explained as the following:

• Individual:

The individual or the chromosome is a complete trajectory between 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. Each

chromosome is composed of a set of genes. Each gene contains the robot configuration 𝐶𝐶𝑗𝑗(q), and the

time needed to move the robot to this configuration. See Figure 3.

0 0.5 1 1.5 2
-3

-2

-1

0

1

2

Time

Joint Coordinates 1-3 vs. Time

Q1
Q2
Q3

0 0.5 1 1.5 2
-2

-1

0

1

2

3

4
Joint Velocities 1-3 vs. Time

Time

DQ1
DQ2
DQ3

0 0.5 1 1.5 2
-40

-30

-20

-10

0

10

20

30

40
Joint Accelerations vs. Time

Time

0 0.5 1 1.5 2
-200

-150

-100

-50

0

50

100

150

200
Torques vs. Time

Time

TAU1
TAU2
TAU3

DDQ1
DDQ2
DDQ3

11

Figure 3: GA Chromosome

The first gene of each individual 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 contains the initial configuration 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 data. Then the

ramification to construct the chromosome will be started by selecting randomly the next gene; based on

the random search algorithm; by calling the AC builder algorithm, and so on until the final configuration

𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 reached, represented by 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . The ramification can be done without repetition in 7 directions;

X, Y, Z, XY, XZ, YZ, or XYZ directions. In this paper, chromosomes can be with different lengths.

In chromosome construction process, if the algorithm can’t find the next AC due to obstacles or

dynamic incompatibility, a retuning back recursive technique will be applied. This technique tracks back

looking for the last possible configuration in which the robot can continue from it. If the tracking back

drives the search to the initial configuration, this means that there is no possible trajectory in the

workspace. In this case, the algorithm extends the workspace and starts again.

• Objective function:

In this paper, as mentioned above there are three optimization algorithms: one deals with optimizing

the trajectory between ACs; detailed in [32]. The second deals with optimizing the time trajectory

composed of a set of optimized trajectories between ACs. Third, optimize the result of the second

optimization procedure using clamped cubic spline. The objective is:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑡𝑡𝑗𝑗,𝑗𝑗+1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗=1 (8)

Subject to:

Joint Torques: |𝜏𝜏𝑖𝑖(𝑡𝑡)| ≤ 𝜏𝜏𝑖𝑖max 𝑖𝑖 = 1,⋯ ,𝑑𝑑𝑑𝑑𝑑𝑑

• Crossover:

The crossover occurs randomly and only with some probability pcross. The crossover is made through

the exchange of a part of the trajectory (chromosome) between two selected trajectories through the

selection operation mentioned earlier. This is done by searching groups of individuals that have been

selected for crossover, and then, select pair of individuals randomly. In each pair, the algorithm searches

the genes of each individual for the intersection configurations. The intersection in this case is to find a

configuration p �𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
𝑝𝑝 � in the first trajectory (let’s call it Dad) that can be adjacent to a configuration k

(𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘) in the second trajectory (let’s call it Mom). The algorithm looks for all possible intersections

 Cinit(q) 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 C j(q) 𝑡𝑡𝑗𝑗−1,𝑗𝑗 C final(q) 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

… …

12

between two selected chromosomes (trajectories) for crossover. i.e. given two trajectories: Dad with

length n and Mom with length m.

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷1 ∪ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷2 ∪ ⋯∪ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
𝑝𝑝 ∪ ⋯∪ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛 (9)

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀1 ∪ 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀2 ∪ ⋯∪ 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 ∪⋯∪ 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚 (10)

𝐷𝐷𝐷𝐷𝐷𝐷 ∩𝑀𝑀𝑀𝑀𝑀𝑀 = ��𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
𝑝𝑝 ,𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 �1, �𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷

𝑝𝑝 ,𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 �2,⋯ , �𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
𝑝𝑝 ,𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 �𝑙𝑙� (11)

where l = 0, 1, 2, …, n – 2 in case of Dad or m – 2 in case of Mom, is the number of ACs found.

The algorithm then will select one intersection randomly in case of many are found satisfying these

criteria. The new offspring (trajectory) will be like this:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷1 ∪ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷2 ∪ ⋯∪ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
𝑝𝑝 ∪ 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 ∪ ⋯∪ 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚 (12)

If there are no such points, the crossover will be cancelled.

This means that the resulting trajectory (offspring) will consist of two parts: a part from Dad (from the

initial configuration until the selected Configuration 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
𝑝𝑝), and a part from Mom (from 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 until the

final configuration). This way for crossover doesn’t need equal chromosomes lengths. This process is

illustrated in 2-D in Figure 4:

Figure 4: Crossover between two robot trajectories.

Initial point

Final point

Crossover

Initial
point

Final point

<=OR=>

Final point

Initial point

13

• Mutation:

Mutation is done by selecting a configuration (gene) randomly from a selected trajectory

(chromosome). The first and the final configurations are not considered for mutation. The configuration is

then compared to the previous and next configurations in the trajectory. All the possible changes with

which the trajectory will remain incremental and quantum are applied to the configuration. To illustrate,

let us consider three consecutive robot configurations 𝐶𝐶𝑗𝑗−1, 𝐶𝐶𝑗𝑗, 𝐶𝐶𝑗𝑗+1 (three consecutive genes) in which

their end-effector has the positions (0, 0, 0), (1, 0, 1), (1, 1, 2) with a step value of 1 in the x, y and z-

coordinates. If mutation is to be applied on the 𝐶𝐶𝑗𝑗, where its end-effector position lies at (1, 0, 1), the

algorithm will consider how each of the coordinates changed. The x-coordinate changed from 0 (previous

position) to 1 and remained 1 in the next position. It is clear that changing the x-coordinate from 1 to 0

will not has the step size since the positions will become (0, 0, 0), (0, 0, 1), (1, 1, 2); i.e. x-coordinate

changed from current to next while remained the same when going from the previous position to the

current one. The same thing can be said about the y-coordinate, since it has not changed when going from

the previous position to the current one while changed when going to the next position. The mutation will

cause the y-coordinate to change from 0 to 1. Finally, the z-coordinate can't be modified since it changed

from 0 to 1 to 2. If the mutation would change the z-coordinated to 0 or 2, the step would be greater than

the predefined step. The mutation will not affect the coordinates that has not changed at all, for example

the x-coordinate in (0,0,0),(0,0,1),(0,1,1) since any changes will result in the trajectory being invalid. For

this new position, the ACs algorithm will take places to move the robot from the position (0, 0, 0) to (0, 0,

1) and then to (1, 1, 2).This process is illustrated in Figure 5.

14

Figure 5: Mutation.

• GA parameters:

The control parameter values and terminating conditions used in the GA were selected based on

several preliminary runs with alternate control parameters and terminating conditions on different

instances of the problem. The next Figure 6, can demonstrate the necessary number of generations. The

graph corresponds to example No. 1 (without obstacles), which is detailed in section 7.

Figure 6: Objective function – time in (s) vs. No. of generations.

These values were used for the algorithm testing. The final parameter values used in the computational

experiments for the GA procedure are summarized in Table 1.

0 50 100 150 200 250 300 350 400 450 500
1.8

2

2.2

2.4

2.6

2.8

3

Score(Time) vs Generation

Mutation

Initial
point

Final
point

Initial
point

Final
point

15

 Table 1: Parameter values for the genetic algorithm procedure.
Description Value
Population size 20
Number of populations 3
Generation number 500
Crossover rate 0.95
Mutation rate 0.05
Percentage of solutions replaced by new generation 0.25

7. Application examples

The introduced procedure has been applied to a PUMA 560 robot using a computer with Intel Xeon

CPU E5440 @ 2.83 GHz, 7.97 GB of RAM. For GA, the MIT GA Library [36] are used and adapted to

the problem.

Four operational parameters have been studied when the procedure was applied to a numerous

different examples. The parameters are:

a) Execution time: The time need to move the robot from the initial to the final configuration.

b) Computational time:

c) End-effector travelling distance.

d) Summation of significant points travelling distance (eq (13)).

∑ ∑ ��𝛼𝛼𝑚𝑚
𝑗𝑗+1 − 𝛼𝛼𝑚𝑚

𝑗𝑗 �𝑥𝑥
2

+ �𝛼𝛼𝑚𝑚
𝑗𝑗+1 − 𝛼𝛼𝑚𝑚

𝑗𝑗 �𝑦𝑦
2

+ �𝛼𝛼𝑚𝑚
𝑗𝑗+1 − 𝛼𝛼𝑚𝑚

𝑗𝑗 �𝑧𝑧
24

𝑚𝑚=1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗=1 (13)

Let’s consider three different detailed experiments, where given information about initial and final

configurations and the workspace are shown below:

• Experiment 1:

This experiment demonstrates the effectiveness of the mentioned algorithm. The next Figure (7) shows

the robot in the final configuration for 3 different runs for the same example in different environments.

Figure 7: Case 1, top view of the workspace.

The robot initial and final configurations are shown in Table 2. Obstacles are shown in Table 3.

16

Table 2: Initial and Final Configurations for experiment 1.
Joint No. Initial configuration Joint No. Final configuration

1 59.09º 1 -34.65º
2 -145.38º 2 -169.14º
3 13.03º 3 58.56º
4 1.13º 4 0.00º
5 31.68º 5 15.78º
6 0.00º 6 0.00º

Table 3: Obstacles locations (in m) for experiment 1.
 0 Obstacle 1st Spherical obstacle 2nd Spherical obstacle 3rd Spherical obstacle
Centre C1

SO = (-0.90, -0.30, 0.50) C2
SO = (-0.75, 0.05, 0.50) C3

SO = (-0.85, 0.30, 0.50)
Radius r1

SO = 0.15 R2
SO = 0.15 R3

SO = 0.15

The results for this example in case of obstacle or without obstacles are shown in Table 4:

Table 4: Experiment 1 Results:
 Execution time (s) Computational

time (s)
End-effector travelling

distance (m)
Significant points travelling

distance (m)
0 Obstacles 1.84813 3792 1.5803 4.1060
1 Obs. Sphere 2.17046 3890 1.5904 4.0968
2 Obs. Spheres 2.41278 3800 1.5258 4.1385
3 Obs. Spheres 2.84737 4476 1.5803 4.6633

• Experiment 2:

Also, this experiment demonstrates the effectiveness of the mentioned algorithm. The next Figure (8)

shows the robot in the final configuration for 2 different runs for the same. The left one is without

obstacles and the right one is with a complex environment.

Figure 8. Case 2, workspace.

The robot initial and final configurations are shown in Table 5. Obstacles are shown in Table 6.

Table 5: Initial and Final Configurations for experiment 2.
Joint No. Initial configuration Joint No. Final configuration

1 -7.50º 1 -95.10º
2 -174.80º 2 -101.20º
3 46.40º 3 15.59º
4 4.30º 4 0.00º
5 16.50º 5 0.00º
6 -6.50º 6 0.00º

17

Table 6: Obstacles locations (in m) for experiment 2.
 1st Cylindrical obstacle 2nd Cylindrical obstacle 3rd Cylindrical obstacle 4th Cylindrical obstacle
Centre 1 C1

Cyl = (-0.7, 0.5, 0.0) C2
Cyl = (-0.7, 0.0, 0.0) C3

Cyl = (-0.7,-0.15, 0.7) C4
Cyl = (-0.7,-0.15, 0.15)

Centre 2 C1
Cyl = (-0.7, 0.5, 0.8) C2

Cyl = (-0.7, 0.0, 0.8) C3
Cyl = (-0.7, 0.65, 0.7) C4

Cyl = (-0.7, 0.65, 0.15)
Radius r1

Cyl = 0.15 r2
Cyl = 0.15 r3

Cyl = 0.15 r4
Cyl = 0.15

 1st Prismatic obstacle 2nd Prismatic obstacle 3rd Prismatic obstacle 4th Prismatic obstacle
Point 1 P11 = (0.31, 0.79, 1.42) P21 = (0.31, 0.79, 1.42) P31 = (-0.03, 0.79, 1.42) P41 = (-0.03, 0.79, 0.97)
Point 2 P12 = (0.31, 0.99, 1.42) P22 = (0.31, 0.99, 1.42) P32 = (-0.03, 0.99, 1.42) P42 = (-0.03, 0.99, 0.97)
Point 3 P13 = (0.31, 0.79, 0.97) P23 = (-0.03, 0.99, 1.42) P33 = (-0.03, 0.99, 0.97) P43 = (0.31, 0.99, 0.97)
Point 4 P14 = (0.31, 0.99, 0.97) P24 = (-0.03, 0.79, 1.42) P34 = (-0.03, 0.79, 0.97) P44 = (0.31, 0.79, 0.97)
The results for this example in case of obstacle or without obstacles are shown in Table 7:

Table 7: Experiment 2 results:
 Execution time (s) Computational

time (s)
End-effector travelling

distance (m)
Significant points

travelling distance (m)
0 Obstacles 3.75705 2156 1.7205 4.5340
With Obstacles 4.51356 5692 1.7340 4.9652

• Experiment 3:

The next Figure 9 illustrates the time evolution for three more examples, which have three different

initial and final configurations, Table 8, in different environments (number of obstacles).

Table 8: Initial and Final Configurations for experiment 3.
 Example 1 Example 2 Example 3

Joint
No.

Initial
configuration

Final
configuration

Initial
configuration

Final
configuration

Initial
configuration

Final
configuration

1 59.0º -34.0º -35.0º -20.0º -34.0º 40.10º
2 -145.0º -170.0º -170.0º -115.0º -170.0º 50.20º
3 13.0º 60.0º 30.0º 89.0º 60.0º 15.59º
4 0.0º 0.0º 0.0º 0.00º 0.0º 24.0º
5 31.0º 0.0º 0.0º 0.00º 0.0º -79.0º
6 0.0º 0.0º 0.0º 0.00º 0.0º 12.0º

Figure 9: Time evolution in different examples with different environments.

The idea in this experiment is that we first run the algorithm when no obstacles in the workspace and

then we recorded the trajectory and the four operational parameters. In the next run, we just added one

obstacle colliding the path obtained from the first run and then recorded the trajectory and the four

operational parameters. In the subsequent one, we added another obstacle colliding the new trajectory

18

solution generated in the second run and then we recorded the new trajectory and the four operational

parameters. We repeated this until we added 9 obstacles in the workspace.

In the following Table 9, the four operational parameters are shown. Let’s denote Execution time by

“T” (sec), Computational time by “t” (sec), End-Effector travelling position by “d” (m), and significant

points travelling position by “D” (m).

Table 9: Three different Examples with different environment conditions:
 Example 1 Example 2 Example 3

0 Obstacles

T (s) 1.84813 1.67483 1.53561
t (s) 3792 3690 10667

d (m) 1.5803 1.7223 1.3251
D (m) 4.1060 3.4297 3.6164

1 Obstacles

T (s) 2.12692 1.76437 1.82668
t (s) 3405 4111 15740

d (m) 1.5904 1.7372 1.2901
D (m) 4.0757 3.7056 3.6198

2 Obstacles

T (s) 2.21279 2.29341 1.85097
t (s) 4719 4997 9382

d (m) 1.6071 1.6707 1.2856
D (m) 4.1867 4.3172 3.5747

3 Obstacles

T (s) 2.35064 2.26978 2.01012
t (s) 6426 13704 17911

d (m) 1.6784 1.7647 1.3686
D (m) 4.3513 4.1418 3.8453

6 Obstacles

T (s) 2.51637 2.43976 2.01315
t (s) 6101 15596 10593

d (m) 1.8762 1.8674 1.3838
D (m) 4.4731 4.2774 4.0285

9 Obstacles

T (s) 2.71562 2.86387 2.12885
t (s) 5695 12874 15040

d (m) 1.8678 1.9420 1.3838
D (m) 4.5879 4.4529 4.0823

8. Conclusions

In this paper, a new methodology using GA has been presented for a direct approach trajectory planner in

which the trajectory has been obtained simultaneously as the search algorithm evolves. The trajectories

between ACs have been modeled in cubic polynomials, and discretized to solve the inverse dynamic

problem and to validate the dynamics restrictions. Random search algorithms with new crossover and

mutation operators have been introduced. The results obtained have been analyzed and studied on base of

four operational parameters: (1) Execution time. (2) Computational time. (3) End-effector travelling

distance. (4) Summation of significant points travelling distance, Eq. (13).

From the conducted analysis it’s possible to conclude the follow:

a) The introduced algorithm provides a solution for the trajectory planning problem for industrial robots

in complex environments.

b) The computational time is far greater than the execution time, which discarded the possibility of

19

using the algorithm in real time. However, the off-line trajectory planning is justified as a large

number of robotic applications works in a repetitive manner. The main issue in these cases is to

minimize the operation time of the robot as much as possible and so increase the production.

c) Observing Figure 2, the torques values are saturated which implies that the obtained time is near to

optimal.

d) Moreover, it can be observed in Table 9 that the four operational parameters values are increasing by

increasing the environment complexity.

References

[1] F. J. Abu-Dakka, F. Valero, and V. Mata, "Evolutionary Path Planning Algorithm for Industrial
Robots," Advanced Robotics, vol. 26, pp. 1369-1392, 2012.

[2] F. J. Abu-Dakka, F. Rubio, F. Valero, and V. Mata, "Evolutionary Indirect Approach to Solving
Trajectory Planning Problem for Industrial Robots Operating in Workspaces with Obstacles,"
European Journal of Mechanics - A/Solids, vol. Available online 19 June 2013, 2013.

[3] S. F. P. Saramago and V. S. Jr., "Trajectory Modeling of Robot Manipulators in the Presence of
Obstacles," Journal of Optimization Theory and Applications, vol. 110, pp. 17-34, 2001.

[4] F. Valero, V. Mata, J. I. Cuadrado, and M. Ceccarelli, "A formulation for path planning of
manipulators in complex environments by using adjacent configurations," Advanced Robotics,
vol. 11, pp. 33-56, 1996.

[5] L. J. d. Plessis and J. A. Snyman, "Trajectory-planning through interpolation by overlapping
cubic arcs and cubic splines," International Journal for Numerical Methods in Engineering, vol.
57, pp. 1615–1641, 2003.

[6] A. Piazzi and A. Visioli, "A global optimization approach to trajectory planning for industrial
robots," in IEEE/RSJ International Conference on Intelligent Robots and Systems IROS '97,
Grenoble, 1997, pp. 1553-1559.

[7] A. Piazzi and A. Visioli, "Global minimum-jerk trajectory planning of robot manipulators," IEEE
Transactions on Industrial Electronics, vol. 47, pp. 140-149, 2000.

[8] E. Bertolazzi, F. Biral, and M. D. Lio, "real-time motion planning for multibody systems,"
Multibody System Dynamics, vol. 17, pp. 119-139, 2007.

[9] S. Behzadipour and A. Khajepour, "Time-optimal trajectory planning in cable-based
manipulators," IEEE Transactions on Robotics, vol. 22, pp. 559-563, 2006.

[10] T. Chettibi, H. E. Lehtihet, M. Haddad, and S. Hanchi, "Minimum cost trajectory planning for
industrial robots," European Journal of Mechanics - A/Solids, vol. 23, pp. 703-715, 2004.

[11] K. Abdel-malek, Z. Mi, J. Yang, and K. Nebel, "Optimization-based trajectory planning of the
human upper body," Robotica, vol. 24, pp. 683-696, 2006.

[12] D. Constantinescu and E. A. Croft, "Smooth and time-optimal trajectory planning for industrial
manipulators along specified paths," Journal of Robotic Syatems, vol. 17, pp. 233-249, 2000.

[13] F. J. Abu-Dakka, "Trajectory planning for industrial robot using genetic algorithms," Ph.D.,
Ingeniería Mecánica y de Materiales, Universitat Politècnica de València, 2011.

[14] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence, Second (Fisrt Edition, 1975) ed.
Cambridge, MA, USA: MIT Press, 1975/1992.

[15] Y. Davidor, Genetic Algorithms and Robotics: A Heuristic Strategy for Optimization: World
Scientific, 1991.

[16] R. Toogood, H. Hao, and C. Wong, "Robot path planning using genetic algorithms," in IEEE
International Conference on Intelligent Systems for the 21st Century, Vancouver, BC, 1995, pp.
489-494.

[17] W.-M. Yun and Y.-G. Xi, "Optimum motion planning in joint space for robots using genetic
algorithms," Robotics and Autonomous Systems, vol. 18, pp. 373–393, 1996.

[18] A. S. Rana and A. M. S. Zalzala, "An evolutionary planner for near time-optimal collision-free
motion of multi-arm robotic manipulators," in International Conference on Control '96, UKACC,
1996, pp. 29-35.

20

[19] D. C. Monteiro and M. K. Madrid, "Planning of robot trajectories with genetic algorithms," in
The First Workshop on Robot Motion and Control, RoMoCo '99, Kiekrz, 1999, pp. 223-228.

[20] E. J. S. Pires, J. A. T. Machado, and P. B. d. M. Oliveira, "An Evolutionary Approach to Robot
Structure and Trajectory," in ICAR'01, 10th Internat. Conf. on Advanced Robotics, Budapest,
2001.

[21] L. Tian and C. Collins, "Motion Planning for Redundant Manipulators Using a Floating Point
Genetic Algorithm," Journal of Intelligent and Robotic Systems, vol. 38, pp. 297-312, 2003.

[22] L. Tian and C. Collins, "An effective robot trajectory planningmethod using a genetic
algorithm," Mechatronics, vol. 14, pp. 455-470, 2004.

[23] E. J. S. Pires, P. B. d. M. Oliveira, and J. A. T. Machado, "Manipulator trajectory planning using
a MOEA," Applied Soft Computing, vol. 7, pp. 659-667, 2007.

[24] R. Saravanan and S. Ramabalan, "Evolutionary Minimum Cost Trajectory Planning for
Industrial Robots," Journal of Intelligent and Robotic Systems, vol. 52, pp. 45-77, 2008.

[25] R. Saravanan, S. Ramabalan, and C. Balamurugan, "Evolutionary multi-criteria trajectory
modeling of industrial robots in the presence of obstacles," Engineering Applications of Artificial
Intelligence, vol. 22, pp. 329-342, 2009.

[26] R. Saravanan, S. Ramabalan, C. Balamurugan, and A. Subash, "Evolutionary trajectory planning
for an industrial robot," International Journal of Automation and Computing, vol. 7, pp. 190-
198, 2010.

[27] F. J. Abu-Dakka, I. F. Assad, F. Valero, and V. Mata, "Parallel-Populations Genetic Algorithm for
the Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots," in Intelligent
Robotics and Applications, 2011.

[28] S. Macfarlane and E. A. Croft, "Jerk-bounded manipulator trajectory planning: design for real-
time applications," IEEE Transactions on Industrial Electronics on Robotics and Automation,
vol. 19, pp. 42-52, 2003.

[29] F. Valero, V. Mata, and A. Besa, "Trajectory planning in workspaces with obstacles taking into
account the dynamic robot behaviour," Mechanism and Machine Theory, vol. 41, pp. 525-536,
2006.

[30] M. Gorges-Schleuter, "ASPARAGOS an asynchronous parallel genetic optimization strategy," in
The third international conference on Genetic algorithms, George Mason University, USA,
1989, pp. 422-427.

[31] R. Rojas, Neutral Networks: A Systematic Introduction: Springer-Verlag New York Incorporated,
1996.

[32] F. J. Abu-Dakka, F. Valero, and V. Mata, "Obtaining Adjacent Configurations with Minimum
Time Considering Robot Dynamics Using Genetic Algorithm," in The 17th International
Workshop on Robotics in Alpe-Adria-Danube Region RAAD2008, Ancona, Italy, 2008.

[33] F. J. Abu-Dakka, F. Valero, A. Tubaileh, and F. Rubio, "Obtaining Adjacent Configurations with
Minimum Time Considering Robot Dynamics," in The 12th World Congress in Mechanism and
Machine Science, IFToMM, Besançon, France, 2007.

[34] T. Lozano-Pérez and M. A. Wesley, "An Algorithm for Planning Collision-Free Paths Among
Polyhedral Obstacles," Magazine Communications of the ACM, vol. 22, pp. 560-570, 1979.

[35] J. J. Craig, Introduction to Robotics Mechanics and Control, Second ed.: Addison-Wesley
Publishing Company, 2005.

[36] M. Wall. (1996). GAlib, A C++ Library of Genetic Algorithm Components. Available:
http://lancet.mit.edu/ga

http://lancet.mit.edu/ga

