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Abstract We propose a new methodology for learn-

ing and adaption of manipulation skills that involve

physical contact with the environment. Pure position

control is unsuitable for such tasks because even small

errors in the desired trajectory can cause significant de-

viations from the desired forces and torques. The pro-

posed algorithm takes a reference Cartesian trajectory

and force/torque profile as input and adapts the move-

ment so that the resulting forces and torques match

the reference profiles. The learning algorithm is based

on dynamic movement primitives and quaternion repre-

sentation of orientation, which provide a mathematical

machinery for efficient and stable adaptation. Exper-

imentally we show that the robot’s performance can

be significantly improved within a few iteration steps,

compensating for vision and other errors that might

arise during the execution of the task. We also show

that our methodology is suitable both for robots with

admittance and for robots with impedance control.

Keywords Skill Learning and Adaptation · Manipu-

lation and Compliant Assembly

1 Introduction

Reliable transfer of skills involving physical interaction

with the environment to new configurations is a diffi-

cult problem because even small errors in transfer pa-

rameters can cause failure. It is therefore necessary to

provide methodologies that enable on-line adaptation
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based on the results of force feedback control. A suit-

able learning mechanism is required to improve the exe-

cution of the task if it has to be performed several times

in the same configuration.

As a practical example we study typical operations

in the automatic assembly, e. g. peg insertion, also re-

ferred to as Peg-in-Hole task (PiH), and extensions of

PiH. Unavoidable positioning errors and tight toler-

ances between the objects involved in the PiH oper-

ation require compliance and on-line adaptation of the

desired trajectories. Several approaches to solve the PiH

problem based on force feedback control were proposed

in the literature. Some of them focus on Remote-Center-

of-Compliance (RCC), which is implemented as a pas-

sive mechanical device mounted on the wrist to pre-

vent a peg from jamming when inserted into a hole
with tight clearance (Laurin-Kovitz et al, 1991; Whit-

ney and Nevins, 1979; Yun, 2008). Since RCC is a pas-

sive device, there are no problems with the stability

of force control. Adaptation to the sensed forces can

also be achieved by active control (Raibert and Craig,

1981), thus robotic controlled impedance devices that

can be mounted on standard industrial robots have also

been developed (Lopes and Almeida, 2008). Many ac-

tive force control approaches have been proposed in

the literature to solve the PiH task also with robot

manipulators without auxiliary devices (Broenink and

Tiernego, 1996; Hirana et al, 2002; Li, 1997; Stemmer

et al, 2007; Yamashita et al, 1991). Active approaches

can accommodate more complex assembly cases and

larger positioning uncertainties (Newman et al, 1999).

Both admittance (Gullapalli et al, 1992) and impedance

control (Broenink and Tiernego, 1996) have been stud-

ied in this context. Recent studies have shown that ac-

tive force control is required also for grasping in con-

junction with dextrous grippers (Kazemi et al, 2014).
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Since the appropriate strategy depends on the geome-

try of the manipulated workpiece, often an engineer has

to hardcode a different strategy for every new work-

piece geometry (Bruyninckx et al, 1995; Xiao, 1997),

although automatic extraction of assembly plans is pos-

sible in some cases when CAD models are available

(Stemmer et al, 2007). Besides force sensing, visual ser-

voing and reactive task controllers can also play an im-

portant role (Hamner et al, 2010).

While active compliance can deal with more com-

plex assembly cases and larger positioning uncertainties

than passive compliance, it still cannot reach human

performance (Giordano et al, 2008). Although force con-

trol can be fast as evidenced by research on legged loco-

motion (Hutter et al, 2012; Hyon et al, 2007), attempts

to speed up robots with algorithms that rely on active

force control has resulted in contact instability in as-

sembly tasks (Newman et al, 1999). Problems with re-

liability when high gain force control is used have been

confirmed in our own initial experiments, where jam-

ming often occurred when the peg was inserted into a

hole. This gives rise to an idea to first execute the move-

ment slower and then gradually increase the speed of

execution through learning.

Here we would like to point out that while in this

paper we focus on automatic assembly tasks, the pro-

posed algorithm is more general and can accommodate

also other tasks that involve contact with the environ-

ment, e. g. force-based trajectory following. Our general

approach to learning force-based skills consists of two

stages

1. Acquire a reference trajectory and force/torque pro-

file that successfully solve the task in a specific work-

space configuration. We use programming by demon-

stration (PbD) for this purpose.

2. Transfer the acquired skill to new configurations us-

ing 3-D vision and adapt the resulting motion to the

trained force/torque pattern.

Since humans are very good at performing assembly

tasks that require compliance and force control, we use

human demonstration of the task as a starting point.

Unlike standard PbD approaches (Dillmann, 2004), we

use besides trajectories also forces and torques arising

during the task execution as training data. Previous

works in this area include (Calinon et al, 2009; Kor-

mushev et al, 2011; Rozo et al, 2013), who used haptic

interfaces to demonstrate the training trajectories and

the associated forces and torques. These authors focus

on how to encode the demonstrations with Gaussian

mixture models to reproduce the desired task, where

the positions and forces are encoded in one model. This

is different from our approach where the demonstrated

trajectories are modified to achieve the desired force/

torque profile. (Kaiser and Dillmann, 1996) also stud-

ied force-based skill learning but compute motor com-

mands directly from force response without consider-

ing the phase and orientation, which is a problem for

general PiH-like tasks. The work of (Skubic and Volz,

1998) focuses on discrete force-based events to select an

appropriate controller, which is insufficient for PiH-like

tasks that require continuous force control.

The main focus of this paper is on item 2, i. e. the

refinement and transfer of known manipulation skills

to new configurations of the robot’s workspace. Con-

sider for example the PiH task. If a new workpiece

pose is determined by vision, the robot cannot sim-

ply translate and rotate the previously trained Carte-

sian space trajectory and replay it. Such an approach

is bound to fail due to noise in the estimated work-

piece pose, uncertainties in the posture of the peg in

the gripper, and due to a different joint space config-

uration of the robot arm, which can cause Cartesian

space tracking errors (Gullapalli et al, 1992). Instead

we attempt to improve the transformed control policy

by matching it with the previously trained performance

in the force/torque space using force feedback control.

The main idea is to adapt the transformed Cartesian

space trajectory on-line so that the resulting forces and

torques match the recorded force/torque profile. If the

task is repeated several times, our learning procedure

moves the force feedback errors to an offset trajectory,

thus improving the execution of the task and making

it closer in speed to the originally trained performance.

Our experimental results show that with the proposed

approach a robot can effectively learn and transfer as-

sembly operations to new situations. A graphical illus-

tration of the approach is provided in Section 3.4.

We selected Dynamic Movement Primitives (DMPs)

(Ijspeert et al, 2001, 2013) to encode and refine the

demonstrated movements. The motivation for this was

that DMPs can be effectively used to encode and re-

produce the demonstrated movements. In addition, the

mechanism of phase stopping as introduced in (Ijspeert

et al, 2001) can be used to slow down the robot execu-

tion, which prevents the jamming problem mentioned

above that can occur in the presence of large uncertain-

ties.

The paper consists of five sections. In Section 2 we

briefly present the data acquisition procedure used for

acquiring trajectories and force/torque profiles for as-

sembly operations. In Section 3 we start by formulating

the problem and introducing the dynamic movement

primitives framework for discrete Cartesian space tra-

jectories, including the mathematical machinery that

enables quaternion based orientation control and phase

stopping. We then present an approach to iteratively
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Fig. 1 Teleoperation setup with the position tracker inserted
into the object and the Universal Robot arm.

Fig. 2 Kinesthetic guiding using Kuka LWR arm in gravity
compensation mode.

adapt the learned trajectory to improve the task perfor-

mance using force feedback. This procedure exploits the

quaternion based control and phase stopping. Results of

the experimental evaluation on two different platforms,

one with admittance and one with impedance control,

are presented in Section 4. The main contributions are

summarized in the final section.

2 Acquisition of Training Data for Force-Based

Manipulation Skills

We first describe two example procedures for learning

of operations that involve contact with the environment

by human demonstration. We record human demon-

strations with two different systems:

– Teleoperation using a TrackSTAR 6D pose tracker

from Ascension attached to the object (Fig. 1).

– Kinesthetic guiding using the Kuka LWR arm in

gravity compensation mode (Fig. 2).

In the first setup we use a magnetic tracker attached

to the object, which is held by a human demonstra-

tor, to track the object position and orientation. The

demonstrator executes the task, e. g. peg-in-hole, with

his own hand. The measured poses are used to teleop-

erate the robot after being translated and rotated in

such a way that the peg held by the robot is in the

hole when the peg held by a human is in the hole. This

is a constant transformation, which is estimated by the

magnetic tracker in an initial calibration phase. The de-

veloped demonstration system is precise enough so that

the teleoperated robot successfully executes the task to-

gether with a human (see also the attached video). More

details about this systems are given in (Savarimuthu

et al, 2013).

The second setup uses the robot’s gravity compen-

sation mode to enable kinesthetic guiding (Hersch et al,

2008; Lee and Ott, 2011), where a human operator

guides the robot’s tool center point along the desired

trajectory in such a way that the desired task is suc-

cessfully executed. We measure the resulting joint space

motion by proprioception. In Kuka LWR arm, the torque

sensors are located in the robot’s joints and consequently,

the forces exerted by the human operator during the

demonstration affect the measured joint torques. There-

fore, to get the net forces and torques at the robot

tool center point without the influence of forces ex-

erted by the human operator, we replay the measured

joint space trajectory and record the resulting Carte-

sian space trajectory and joint torques. The measured

joint torques are transformed into the corresponding

tool center point forces and torques. We take care that

the workspace configuration does not change during

this process and since our robot can accurately track

the joint space trajectories, the newly measured forces

and torques provide a good reference for adaptation

later. To avoid replaying the recorded trajectory, the

procedure for estimating the forces and torques associ-

ated with the previously recorded trajectory could ex-

ploit a force/torque sensor mounted at the robot wrist

and measuring the resulting forces and torques with

this sensor.

The data acquired by both of our systems can be im-

proved by means of reinforcement learning (Kalakrish-

nan et al, 2011), where a suitable cost function is min-

imized. The cost function should relate to the desired

properties of the task, e. g. smoothness of execution, ex-

ecution time, etc. Note that since human does not feel

the same forces and torques as the robot in our first

demonstration setup, the recorded force/torque profiles

can sometimes be significantly improved through rein-

forcement learning, e. g. using the approach of (Kalakr-

ishnan et al, 2011). On the other hand, in our second

setup the initial trajectories are more optimal since the

human directly guides the robot and thus receives the

same feedback from the environment as the robot. Con-
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sequently, refinement through reinforcement learning is

normally not necessary with this system.

With both systems for the training of force-based

manipulation skills, we acquire the Cartesian space tool

center point positions and orientations (represented as

quaternions), angular velocities and accelerations

Gd = {pj ,qj , ṗj ,ωωωj , p̈j , ω̇ωωj}Tj=0, (1)

and the associated Cartesian space forces and torques

specified in hand coordinate frame

Fd = {Fj ,Mj}Tj=0, (2)

all acquired at times tj , j = 0, . . . , T . Positions and

orientations are represented as a frame Q = {p,q},
where p ∈ R3 and q = v + u, v ∈ R, u ∈ R3, is a unit

quaternion. We denote the space of all unit quaternions,

which forms a unit sphere in R4, by S3. The rest of this

paper deals with how such training data can be used

for learning and adaptation to new situations.

3 Policy Learning and Adaptation

The acquired Cartesian space trajectories that result

in a successful execution of the task are first encoded

with dynamic movement primitives (DMPs). A DMP

for a single degree of freedom trajectory y is defined

by the following set of nonlinear differential equations

(Ijspeert et al, 2013)

τ ż = αz(βz(g − y)− z) + f(x), (3)

τ ẏ = z, (4)

τ ẋ = −αxx, (5)

where x is the phase variable and z is an auxiliary vari-

able. Parameters αz and βz define the behavior of the

second order system described by Eq. (3) and (4). With

the choice τ > 0, αz = 4βz and αx > 0, the convergence

of the underlying dynamic system to a unique attractor

point at y = g, z = 0 is ensured (Ijspeert et al, 2013).

f(x) is defined as a linear combination of N nonlinear

radial basis functions, which enables the robot to fol-

low any smooth trajectory from the initial position y0

to the final configuration g

f(x) =

∑N
i=1 wiΨi(x)∑N
i=1 Ψi(x)

x(g − y0), (6)

Ψi(x) = exp
(
−hi (x− ci)2

)
, (7)

where ci are the centers of Gaussians distributed along

the phase of the trajectory and hi are their widths. For

a given N and setting the time constant τ = tT , where

tT is the time duration of the movement, we can de-

fine ci = exp
(
−αx i−1

N−1

)
, hi = 1

(ci+1−ci)2 , hN = hN−1,

i = 1, . . . , N . For each Cartesian degree of freedom, the

weights wi are estimated from the measured data (1)

using regression (Ude et al, 2010), while g is the last

recorded configuration on the trajectory. In our exper-

iments we used N = 20, while other constants were set

to αz = 48, βz = 12, and αx = 2. For the sequencing of

DMPs, e. g. to smoothly transition from the approach

to the peg insertion movement, we use the methodol-

ogy proposed in (Nemec and Ude, 2012). In the case of

PiH task, there are two separate phases: the approach

phase before the contact with the workpiece has been

established, and the insertion phase, where the peg is

inserted into the appropriate hole. Since our algorithm

is suitable for force-based tasks, it is applied only to the

second part of the movement, i. e. the insertion phase.

3.1 Cartesian Space DMPs

In the basic DMP equations (3) – (4), each degree of

freedom is encoded as a separate DMP, but with the

common phase variable x. However, direct integration

of unit quaternions, which we use to represent 3-D ori-

entation, does not ensure that the norm of quaternions

stays equal to 1. Any representation of orientation that

does not contain singularities is non-minimal, which

means that additional constraints need to be taken into

account during integration. (Pastor et al, 2011) pro-

posed an integration step that ensures that the unity

norm of quaternions is preserved during integration. We

rewrite their quaternion DMP formalism in the origi-

nal DMP form (3) – (4) and modify it by applying a

logarithmic map to better account for angular velocities

τη̇ηη = αz (βz2 log (go ∗ q)− ηηη) + fo(x), (8)

τ q̇ =
1

2
ηηη ∗ q, (9)

where go ∈ S3 denotes the goal orientation, bar denotes

the quaternion conjugation defined as q = v + u = v−u

and ∗ denotes the quaternion product defined as

q1 ∗ q2 = (v1 + u1) ∗ (v2 + u2) (10)

= (v1v2 − uT
1 u2) + (v1u2 + v2u1 + u1 × u2).

ηηη ∈ R3 is treated as quaternion with zero scalar part in

(9). The quaternion logarithm log : S3 7→ R3 is given as

log(q) = log(v + u) =

arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (11)

It can be used to specify the distance metric on the

space of unit quaternions S3 (Ude, 1999)

d(q1,q2) =

{
‖ log(q1 ∗ q2)‖, q1 ∗ q2 6= −1 + [0, 0, 0]T

π, otherwise
.
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The motivation for the term 2 log (go ∗ q) in (8) is the

following relationship between the quaternion logarithm

and the angular velocity

ωωω = 2 log (go ∗ q) , (12)

where ωωω denotes the angular velocity that rotates qua-

ternion q into go within unit sampling time. Thus only

the application of the logarithmic map provides a proper

mapping of the quaternion difference go∗q onto the an-

gular velocity.

The logarithmic map becomes one-to-one and con-

tinuously differentiable if we limit its domain to S3/(−1+

[0, 0, 0]T). Thus in this case we can define its inverse,

i. .e. the exponential map exp : R3 7→ S3, as

exp(r) =

 cos (‖r‖) + sin (‖r‖) r

‖r‖
, r 6= 0

1 + [0, 0, 0]T, otherwise

. (13)

Here the domain of the exponential map is limited to to

‖r‖ < π. To simplify notation we also define the map-

ping χ, which denotes the transformation that maps an

angular velocity into a unit quaternion describing the

resulting rotation within time period ∆t,

χ(∆tωωω) = exp

(
∆tωωω

2

)
. (14)

The nonlinear forcing term

fo(x) = Do

∑N
i=1 wo

iΨi(x)∑N
i=1 Ψi(x)

x (15)

contains free parameters wo
i ∈ R3, which are used to en-

code any given orientation trajectory {qj , ωωωj , ω̇ωωj}Tj=0

with the quaternion DMP specified by (8) – (9). The
scaling factor Do = diag (log (go ∗ q0)) ∈ R3×3 is a di-

agonal matrix built from a 3-D vector. The free param-

eters wo
i are calculated by solving the following system

of linear equations∑N
i=1 wo

iΨi(xj)∑N
i=1 Ψi(xj)

xj =

D−1
o

(
τ η̇ηηj − αz

(
βz
(
2 log

(
go ∗ qj

))
− ηηηj

))
,

(16)

where phases xj are obtained by integrating (5), i. e.

xj = x(tj) = exp
(
−αx
τ
tj

)
. (17)

and j = 0, . . . , T . The relation between the quaternion

derivative and angular velocity is given by q̇ = 1
2 ωωω ∗ q,

thus from (9) we obtain ηηηj = τ ωωωj , η̇ηηj = τ ω̇ωωj .

Unlike in our work, (Pastor et al, 2011) used in Eq.

(8) just the vector part of the quaternion product go∗q
instead of 2 log (go ∗ q)

τη̇ηη = αz (βzgo ∗ q− ηηη) + fo(x), (18)

While this is equivalent as far as the direction of change

is concerned, such a formulation does not properly re-

late to the angular velocity of robot movement. As

shown in Eq. (12), it is necessary to apply the loga-

rithmic map to transform the difference vector into an-

gular velocity. Fig. 3 and 4 demonstrate that the pro-

posed approach generates a much quicker response and

therefore converges to the attractor point faster, which

is the desired characteristics of the linear part of the

DMP system. The DMP system with quaternion differ-

ence vector does not even come close to the attractor

point in the time when the proposed system (8) – (9)

has already converged. To make the system (18) closer

to ours, we need to multiply the quaternion difference

vector by 2

τη̇ηη = αz (βz2go ∗ q− ηηη) + fo(x), (19)

In this case the response of the DMP system (19), (9)

is more similar to the proposed system with the loga-

rithmic map, but it remains significantly slower. Note

that 2, as evident from (12), is the correct multiplier to

obtain a critically damped system in the DMP equa-

tions (8) – (9). If we further increase the multiplier,

the resulting system is not critically damped but starts

oscillating towards the goal orientation, which is sub-

optimal for robot control.

To simplify notation we also rewrite DMP equations

(3) – (4), which are used to encode the positional part

of the trajectory, in vector form

τ ż = αz(βz(gp − p)− z) + fp(x), (20)

τ ṗ = z, (21)

where gp ∈ R3 denotes the final position on the recorded

trajectory. The forcing term fp is defined as

fp(x) = Dp

∑N
i=1 wp

i Ψi(x)∑N
i=1 Ψi(x)

x, (22)

where Dp = diag (gp − p0) ∈ R3×3. The diagonal ma-

trices Dp in (22) and Do in (15) are used to scale

the movement amplitude if the goal configuration gp
and/or go change. The ability to scale orientation tra-

jectories is another advantage of our approach com-

pared to the quaternion DMP formulation of (Pastor

et al, 2011). To track the desired Cartesian space tra-

jectories, we need to integrate (20) – (21) and (8) – (9)

together with the common phase (5). Euler integration

can be used for this purpose except in the case of Eq.

(9), where according to (14) the formula

q(t+∆t) = χ

(
∆t

ηηη(t)

τ

)
∗ q(t) (23)

should be used instead.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Fig. 3 Response of DMP system (8) –
(9) without nonlinear term fo (this pa-
per).
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Fig. 4 Response of DMP system (18),
(9) with quaternion difference instead of
the logarithmic map and without nonlin-
ear term fo (Pastor et al, 2011).
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Fig. 5 Response of DMP system (19),
(9) with double quaternion difference
and without nonlinear term fo.

Since forces and torques are used only as desired

variables along the trajectory and not as robot control

variables, they do not need to be encoded by DMPs.

Instead we use linear combinations of radial basis func-

tions

Fd(x) =

∑
i w

F
i Ψi(x)∑

i Ψi(x)
x, (24)

Md(x) =

∑
i w

M
i Ψi(x)∑
i Ψi(x)

x, (25)

to approximate the desired forces and torques along the

phase xi = x(ti). Six systems of linear equations need

to be solved in order to estimate Fd and Md from the

measured force/torque data (2).

3.2 Error Feedback and DMP Phase Stopping

When the robot executes the demonstrated trajectory,

the resulting forces and torques differ from the ones that

were measured during human demonstration. This oc-

curs due to small displacements arising from inaccurate

pose estimation, reduced accuracy of the robot tracking

control due to changes in the robot configuration (note

that the original trajectory must be moved to a new

configuration as specified by the workpiece pose), and

uncertainties in the placement of the peg in the gripper.

This could worsen or even prevent a successful execu-

tion of the PiH task. In order to adapt to a new situa-

tion, we propose to modify the demonstrated trajectory

according to the admittance (Villani and De Schutter,

2008) PI control law (indirect compliance, also referred

to as classical impedance, (Yoshikawa, 2000))

pc(x) = Ks1ep(x) + Ks3eip(x) +ϕϕϕp(x) + pr(x),

(26)

qc(x) = χ(Ks2eq(x) + Ks4eiq(x)) ∗ϕϕϕq(x) ∗ qr(x),

(27)

where pc(x) and qc(x) are the commanded position and

quaternion fed to the robot controller, (pr(x),qr(x))

is the reference trajectory, i. e. the displaced demon-

strated trajectory computed by integrating the learned

DMPs (pDMP and qDMP ) and then applying the work-

piece displacement (∆tw, ∆qw),

pr(x) = ∆qw ∗ pDMP (x) ∗∆qw +∆tw,

qr(x) = ∆qw ∗ qDMP (x).

In our system, the workpiece displacement is estimated

by an RGB-D camera. Ks1,Ks2,Ks3,Ks4 ∈ R3×3 are

positive definite, diagonal gain matrices. The feedback

error terms, i. e. Ks1ep(x)+Ks3eip(x) and χ(Ks2eq(x)+

Ks4eiq(x)), respectively provide force/torque feedback

control. Vectorsϕϕϕp(x) andϕϕϕq(x) denote additional trans-

lational and rotational displacement, respectively, which

are learned on line (see Section 3.3). Initially, they are

set to ϕϕϕp = [0, 0, 0]T and ϕϕϕq = 1 + [0, 0, 0]T. The main

idea of our approach is that learning should move as

much of the feedback error as possible to these dis-

placement trajectories. The errors ep(x), eq(x) ∈ R3

are defined as

ep(x) = q(x) ∗ (Fd(x)− F) ∗ q(x), (28)

eq(x) = q(x) ∗ (Md(x)−M) ∗ q(x), (29)

where Fd(x) and Md(x) are the desired reference force

and torque at phase x as acquired from human demon-

stration, F and M the current measured force and torque,

and q(x) the quaternion specifying the current orienta-

tion of the robot’s tool. Note that for any unit quater-

nion q ∈ S3 and p ∈ R3, the expression q∗p∗q results

in a vector p rotated by a rotation described by quater-

nion q. When combing 3-D vectors and quaternions like

in quaternion multiplication of Eq. (28) and (29), 3-D

vectors are interpreted as quaternions with the scalar

part equal to zero.

The integrated errors eip(x) and eiq(x) ∈ R3 are

cumulative sums of the corresponding errors ep(x) and
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eq(x) from the start of the robot movement to the cur-

rent phase xj . They are calculated as

eip(xj) =

j∑
ı=1

ep(xi), (30)

eiq(xj) =

j∑
ı=1

eq(xj). (31)

The proposed controller tracks and adapts the desi-

red positions and orientations while trying to achieve

the same forces and torques as the trained movement.

Force/torque adaptation requires low gains (matrices

Ks) for stable and robust operation. Thus, force adap-

tation is usually slow. In order to effectively minimize

the force/torque error, we propose slowing down the

trajectory execution using DMP slow-down feedback.

For DMP phase stopping (Ijspeert et al, 2001), the orig-

inal equation for phase (5) is replaced with

τ ẋ = − αxx

1 + αpxε
, (32)

where ε is the trajectory tracking error that can be esti-

mated as ε = ‖p̃−p‖+γ d(q̃∗q), where p̃ and q̃ are the

actual position and orientation of the tool center point,

respectively, and p and q the corresponding DMP out-

puts. In our task the most relevant error measure are

the discrepancies between the desired and actual forces

(28) and torques (29), i. e.

ε =
∥∥[eT

p , e
T
q

]∥∥ . (33)

Note that in the case of large force or torque errors,

the error value ε becomes large which in turn makes

the phase change ẋ small. Thus the phase evolution is

stopped until the robot reduces the force/torque error.

(Ijspeert et al, 2001) proposed to modify also Eq. (4)

to ensure faster error reduction

τ ẏ = z + αpy(ỹ − y), (34)

where ỹ denotes the actual position of the robot and y

the DMP calculated position. In the context of Carte-

sian space DMPs, Eq. (34) becomes different for the po-

sitional and orientational part of the trajectory, which

are respectively encoded by Eq. (21) and (9), i. e.

τ ṗ = z + αpp(p̃− p), (35)

τ q̇ =
1

2
(ηηη + αpq2 log (q̃ ∗ q)) ∗ q, (36)

In the context of force feedback control we replace tra-

jectory tracking error with force tracking error

τ ṗ = z− αppKs1ep(x), (37)

τ q̇ =
1

2
(ηηη − αpqKs2eq(x)) ∗ q. (38)

During the execution of the learned trajectory, the

resulting positions and orientations offsets are sampled

depending on the phase variable x, which ensures that

the sampling is independent of the trajectory duration.

Thus, the trajectory is sampled exactly the same num-

ber of times as during training, even when the phase

is slowed down during the task execution due to the

proposed phase stopping mechanism.

3.3 Offset Learning

The goal of learning is to iteratively modify the posi-

tional and orientational part of the demonstrated tra-

jectory so that the transformed trajectory results in

similar forces and torques as after the application of the

training procedure of Section 2. The offset trajectory is

updated after each iteration step using the combined

offsets

spj,l+1 = ϕϕϕp,l(xj) + Ks1ep(xj) + Ks3eip(xj), (39)

sqj,l+1 = χ(Ks2eq(xj) + Ks4eiq(xj)) ∗ϕϕϕq,l(xj), (40)

which are used also in (26) and (27) to compute the

reference trajectory. Index l denotes the learning trial.

Each component ϕk of the offsets ϕϕϕp,l and ϕϕϕq,l of this

newly sampled offset trajectory is represented as a lin-

ear combination of M radial basis functions (just like

the DMPs in Eq. (6))

ϕk(x) =

∑M
i=1 wi,kΨi(x)∑M
i=1 Ψi(x)

x. (41)

The new data points {skj,l+1}, j = 0, . . . , T , are obtained

from the k-th component of the offsets trajectory, where

k = 1, 2, 3, denote the components of the positional

part spj,l+1 and k = 4, 5, 6, 7, the components of the

quaternion part sqj,l+1. The aim of optimization is to

find weights {wi,k} that minimize the quadratic cost

function

T∑
j=0

(ϕk(xj)− skj,l+1)2. (42)

For each index k the optimal weights are computed by

solving the following system of linear equations

Awk = sk, (43)

wk =

 w1,k

...

wM,k

 , sk =

 s
k
0,l+1

...

skT,l+1

 ,

A =


ψ1(x0)x0∑M
i=1 ψi(x0)

· · · ψM (x0)x0∑M
i=1 ψi(x0)

...
. . .

...
ψ1(xT )xT∑M
i=1 ψi(xT )

· · · ψM (xT )xT∑M
i=1 ψi(xT )

 .
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ψi are the Gaussian kernel functions from (7). Note that

the quaternion part of the offset trajectory ϕϕϕq has to

be normalized before being used in (27).

3.4 Control Scheme

Fig. 6 shows the control flow diagram for the proposed

learning system. In this diagram, Gd(t) denotes the orig-

inal demonstrated trajectory, which is encoded by DMPs.

Qd(x) refers to the output signal obtained by integrat-

ing (20), (37), (8), (38), (32) and by applying the work-

piece displacement (∆tw, ∆qw) as estimated by vision,

which occurs in block T1. Fd(t) denotes the reference

force/torque acquired during training and Fd(x) de-

notes the output calculated by using Eq. (24) and (25).

Due to the noise induced by vision, robot tracking er-

rors, and uncertainties in the grasp configuration, the

current forces F and torques M measured during the

task execution differ from the trained force/torque pro-

files Fd. The aim of the learning process is to reduce

the difference between the measured and trained forces

and torques. In T2 the measured force error is trans-

formed into robot base coordinates. Using admittance

PI control (26) – (27), the position/orientation offset is

calculated and added to the existing offset from the pre-

vious iteration step. This offset is computed using func-

tion approximation in the block ϕϕϕ(x) = {ϕϕϕp(x),ϕϕϕq(x)}.
Motor commands Qc are given as the aggregation of

the DMP generated trajectory, force feedback (26) –

(27) and of the offset learned in several iterations (39)

– (40). This process is repeated until the measured

forces match the desired forces or no further improve-

ment is possible. The proposed learning algorithm (gray

shaded in Fig. 6), belongs to a class of iterative learn-

ing control algorithms, where we applied the current

iteration causal learning as described by (Bristow et al,

2006; Moore et al, 2006). Another related approach is

feedback error learning (Kawato, 1990; Nakanishi and

Schaal, 2004).

In our approach, the originally trained trajectory is

always preserved and we learn an offset to this trajec-

tory rather than modifying the trajectory itself. In such

a setting, the offset can be easily reset when a robot en-

counters a new situations.

3.5 Trajectory Adaptation Using Impedance Control

Law

In the previous section we introduced a learning frame-

work based on the admittance control law. The benefit

of this approach is that it can be implemented also on

- +
+

+

+

+

�	(x)d�	(t)d

�	(t)d �	(x)dT1

T2K

ROBOT �
�c

Memory

�t		,	�qw w

�(x)�(t)
F,M

phase	stopping	signal

e
p

Ki∫

Fig. 6 Flow chart of the complete learning system

velocity controlled robots without access to the torque

level control. In this section we extend our learning ap-

proach to kinematically redundant robots with n de-

grees of freedom controlled by the impedance control

law, which is preferable if allowed by the robot.

Impedance control equations are derived in Appendix

A. By rewriting (51) and (52) we can express the task

space error in the form

−Ks1(q ∗ (Fd − F) ∗ q) = p̈r − p̈ + Kd(ṗr − ṗ) +

Kp(pr − p),

−Ks2(q ∗ (Md −M) ∗ q) = ω̇ωωr − ω̇ωω + Kd
q(ωωωr −ωωω) +

Kp
q log (qr ∗ q) ,

where q is the current quaternion specifying the tool

orientation. In the above equation, subscript r denotes

the reference trajectory values, subscript d the desired

forces and torques, and variables without the subscript

the current values as measured from the robot. The

above error equations show that it is necessary to assure

zero position and orientation error in order to obtain

zero force error. This happens if the reference trajectory

pr and qr is identical to the actual robot trajectory p

and q. We thus add positional and orientational offsets

to the reference DMP trajectory

pr,l(x) = ϕϕϕp,l(x) + pr(x), (44)

qr,l(x) = ϕϕϕq,l(x) ∗ qr(x). (45)

To make the reference trajectory closer to the actual

robot trajectory, we estimate the new offsets as follows

spj,l+1 = (pl(xj)− pl−1(xj)) +ϕϕϕp,l(xj), (46)

sqj,l+1 = (ql(xj) ∗ ql−1(xj)) ∗ϕϕϕq,l(xj), (47)

where (pl(x), ql(x)) is the actual robot trajectory in

the l-th learning step. Using these offsets, we update the

offset terms ϕϕϕp(x) and ϕϕϕq(x) in exactly the same way

as in Section 3.3 after each task execution. The only

difference between the two approaches is that here the

feedback control that generates data for offset learning

is based on impedance instead of admittance control.
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4 Experimental evaluation

The proposed paradigm for learning and adpatation

of force-based skills was implemented on two different

robot platforms, shown in Fig. 1 and 2, respectively:

– A 6 DOF Universal Robot arm - type UR5 - equipped

with a SCHUNK SDH gripper and a force/torque

wrist sensor. This robot uses a high gain non com-

pliant controller. Therefore, we implemented admit-

tance control law as defined by Eq. (26) and (27).

– A 7 DOF Kuka lightweight robot arm equipped with

a two-finger jaw gripper. This robot can measure

joint torques and can therefore be controlled by Car-

tesian compliance control law, as described in Sec-

tion 3.5.

4.1 Evaluation of the applied control schemes

In order to demonstrate the effectiveness of learning in

conjunction with force control, we first evaluated the

proposed algorithms on a simple task, where the robot

had to track sinusoidal force in z direction while stand-

ing still. The initial contact force was 10 N. The ex-

periments were conducted with the KUKA lightweight

robot arm. The robot’s stiffness was set to 3000 N/m.

We evaluated the quality of force tracking with the fol-

lowing control laws applied: 1) admittance P-control

law, i. e. PI control law with terms Ks3 and Ks4 set to

zero, 2) admittance PI-control law (both of them de-

fined through Eq. (26) – (27)), and 3) impedance con-

trol law (defined by Eq. (51) – (52)) without learning.

As we can see from Fig. 7, best tracking was achieved

with the PI control law. The integral term cancels steady

state error, but on the other hand introduces additional

phase lag. This is a severe problem when the robot

needs to track unknown surface shape with force con-

trol, since phase lag can result in significantly increased

contact forces. Please note also that the integral term

gain Ks3 for this experiment was selected at the sta-

bility margin and any additional increase in this gain

would results in closed loop instability.

We repeated the same experiment with the proposed

iterative learning. To ensure stable learning, the inte-

gral gain Ks3 had to be divided by a factor of 5. Results

for all three control laws in conjunction with learning

are show in Fig. 8. In all cases, learning results in al-

most perfect tracking after 5 learning cycles. As ex-

pected, impedance control had the smoothest transient

response, which can be observed in the first 0.05 sec of

the experiment. PI control law still exhibits small phase

lag, which indicates that the integral gain Ks3 should

be kept low for stable operation. On the other hand, in-

tegral term is particulary effective in combination with
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Big round 
peg

Base plate

Small round pegs

Square pegs

Separator

Fig. 10 Cranfield assembly benchmark.

phase stopping, since it can successfully eliminate the

steady state error.

4.2 Evaluation on Peg-in-Hole Task

The tasks for evaluation were taken from the Cranfield

assembly benchmark (Collins et al, 1985) and included

the insertion of different pegs (round and square) into

the corresponding holes of the base plate and the place-

ment of a separator onto two previously inserted pegs

(see Fig. 9 and 10). Initial trajectories and force/torque

profiles were obtained using tele-operation and kines-

thetic guiding as described in Section 2. We executed
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(a) Round peg. (b) Square peg. (c) Separator.

Fig. 9 The insertion and placement of different piece shapes with the Universal Robot arm.

Fig. 11 Kinect/PCL - based visual pose estimation.

the trajectories for different randomly selected positions

of the base plate, which were estimated by a 3-D vision

system. The training data were translated and rotated

into new configurations using the pose of the base plate

as estimated by vision (Fig. 11). In this scenario most

of the uncertainties come from vision. Therefore, the re-

sulting forces during the execution of the demonstrated

trajectory may be different from the ones measured dur-

ing training.

Fig. 11 illustrates the localization of the base plate

within the workspace by a 3-D visual system using off

the shelf range sensor. A CAD model of the base plate

is provided to the system and fitted within the 3-D

scene, thus determining both the position and orienta-

tion of the object in the world coordinate frame. The

robot uses this information to target particular holes

in the base plate for peg insertion. Object localization

is performed using a component of the Point Cloud Li-

brary (PCL) (Rusu and Cousins, 2011) for point cloud

manipulation.

4.2.1 Peg-in-Hole with Admittance Control

The learning and adaptation procedure on the Uni-

versal robot arm UR5, which allows only admittance

control, was implemented in C++ and linked to the

robot using ROS (Quigley et al, 2009). After training

we slightly displaced the base plate and used the ac-

quired training data to execute the task. The results for

square peg insertion of Fig. 9(b) are depicted in Fig. 12

– 14. Fig. 12 shows the learned offsets of the positional

part of the trajectory in five consecutive cycles. Fig. 13

shows the forces that result from the execution of the

original (demonstrated) trajectories and the adjusted

(learned) trajectories. Although force-based feedback

control was used in all task executions, the adjusted

trajectories after a few cycles generally result in signifi-

cantly lower forces and torques, as evident from Fig. 13.

Fig. 14 illustrates the phase evolution in consecutive

learning cycles. The original phase measured during hu-

man demonstration is shown as dotted line. Whenever

the difference between the measured and the desired

forces became large enough, the phase was slowed down

due to the force/torque error term in Eq. (32) until the

force feedback controller sufficiently reduced it. The re-

sulting offsets were learned as described in Section 3.3.

Since our learning procedure reduces the difference be-

tween the desired and measured forces and torques, the

phase stopping becomes less frequent and consequently

the execution time decreases in each learning cycle, as

can be seen in Fig. 14. Even though the contact forces

were highly elevated in the first trial (Fig. 13), the pro-

posed approach succeeded to significantly reduce force

errors and consequently reduce the insertion time. This

indicates the robustness of our algorithm.

In order to demonstrate that the developed approach

does not depend on the shape of the workpiece, we

applied it also to PiH tasks involving other types of

pegs, e. g. round peg of Fig. 9(a). The results shown

in Fig. 15 – 17 demonstrate that the developed sys-
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Fig. 12 Positional part of the learned offset in 5 consecutive
cycles. Cycle 1 denotes the execution of the trained trajectory
(zero offset).
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Fig. 13 Forces measured during the square PiH task. Dashed
lines (cycle 1) correspond to the original DMP trajectory and
solid lines to the adjusted trajectories in 5 consecutive learn-
ing cycles.
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Fig. 14 Phase evolution during the square PiH task. Dashed
line is the phase evolution achieved after training and solid
lines are the actual phase in 5 consecutive cycles.

tem works equally well for round pegs and is therefore

suitable to specify insertion strategies for workpieces of

different shapes. Although different geometries require

different peg insertion strategies, the proposed training

and learning procedure can be used for all of them.

Yet a more complex workpiece with two holes is a

separator, which needs to be put on two square pegs

priorly inserted into the base plate (see Fig. 9(c) and

10). Even though this is a significantly more complex

task, the same learning and adaptation procedure could

be applied to perform the task, thus exhibiting the gen-

erality of the proposed approach. The results shown in

Fig. 18 – 20 are comparable to the results obtained

during square and round peg insertion. Note that since

unexpectedly large forces (Fy component in Fig. 19)

were exerted at the end of the separator placement in

the first trial, the separator slipped in the robot hand.

Consequently, additional forces arose in the next at-

tempt, but these were successfully compensated for in

the later cycles. This demonstrates that our approach

can deal also with unforeseen perturbations that cause

deviations from the original force profile, such as the

slippage of the object in the robot hand described in

the above experiment.

4.2.2 Peg-in-Hole with Impedance Control

Additional experiments were conducted on Kuka LWR

arm, which unlike Universal robot arm enables impe-

dance control. The learning procedure was implemented

in Matlab, which communicated with the Kuka LWR

controller using Fast Research Interface (Schreiber et al,

2010). Fig. 21 – 23 show the experimental results of

the algorithm performing round PiH with the Kuka

robot. The obtained results are comparable with the

results obtained with the Universal robot, but the in-

sertion is generally smoother and more robust due to

the Cartesian impedance control. The ability to execute

the desired behaviors faster is an important advantage

of impedance control.

Square peg insertion has also been tested with Kuka

robot (Fig. 24–26). By observing the phase evolution in

Fig. 26, we can see that the algorithm is gradually de-

creasing the execution time, which becomes quite com-

parable to the execution time after training.

4.2.3 Statistical Evaluation

Further experiments were carried out with Kuka LWR

robot arm to statistically evaluate the algorithm’s effi-

ciency. PiH execution was tested using 120 experiments

on 8 recorded trajectories with both square and round

pegs. The base plate was randomly put at different lo-

cations in the area of 0.25 m2 on the table within the

robot’s workspace. The poses of the base plate were es-

timated by vision. The statistics of results for square
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Fig. 15 Positional part of the learned offset in 5 consecutive
cycles. Cycle 1 denotes zero offset execution.
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Fig. 16 Forces measured during the round PiH task in 5
consecutive learning cycles.
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Fig. 17 Phase evolution during the round PiH task in 5 con-
secutive cycles.

and round pegs are shown in Fig. 27 and 29, respec-

tively. We can observe that most of adaptation is per-

formed in the first three cycles, which indicates the fast

convergence of the algorithm.

The statistical summary of these experiments shows

that the force discrepancies are reduced by more than

56% percentage on average over 5 trials. Moreover, by

analyzing the execution time in Fig. 28 and 30 we can
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Fig. 18 Positional part of the learned offset in 5 consecutive
cycles. Cycle 1 denotes zero offset execution.
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Fig. 19 Forces measured during the separator placement in
5 consecutive learning cycles.
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Fig. 20 Phase evolution during the separator placement in
5 consecutive cycles. Since in this experiment the base plate
was moved to a new location and its location was estimated
by vision, the initial performance is much slower in this case.

see that it drops by more than 30% after the first trial,

where most of the adaptation has occurred. However,

the execution time can still be significantly improved

in subsequent adaptation steps. Final reduction of the

execution time reaches up to 50% over 5 trials.

50 additional experiments were performed with Kuka

LWR robot arm to compare the success rate of the al-

gorithm with phase stopping and without it. PiH exe-
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Fig. 21 Positional part of the learned offset in 5 consecutive
cycles. Cycle 1 denotes the execution of the trained trajectory
(zero offset).
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Fig. 22 Forces measured during the execution of the square
PiH task. Dashed lines (cycle 1) correspond to the original
DMP trajectory and solid lines to the adjusted trajectories
in 5 consecutive learning cycles.
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Fig. 23 Phase evolution during the execution of the square
PiH task. Dashed line corresponds to the ideal phase evolu-
tion achieved after training and solid lines to the actual phase
in 5 consecutive cycles.

cution was tested on 5 recorded trajectories with round

pegs. The base plate was randomly put at different lo-

cations in the area of 0.25 m2 on the table within the

robot’s workspace. The poses of the base plate were es-
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Fig. 24 Positional part of the learned offset in 5 consecutive
cycles for square PiH.
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Fig. 25 Forces measured during the execution of the square
PiH task in 5 consecutive learning cycles.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

time [s]

 

 

1

2

3

4

5

6

Fig. 26 Phase evolution during the execution of the square
PiH task in 5 consecutive cycles.

timated by vision. The comparison of the success rate

with and without phase stopping are shown in Fig. 31.

It can be clearly observed that the application of phase

stoping improves the reliability of the approach. Fig. 32

depicts how the robots follows one of the trained tra-

jectories with and without phase stopping. Successful

tracking in z-coordinate, which is parallel to the hole’s

axis, indicates successful insertion. The deviations in x
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Fig. 27 Mean force errors of the square peg insertion.
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Fig. 28 Percentage of the average time needed for the square
peg insertion.

and y coordinates show the corrections made to achieve

successful insertion. In this case peg insertion was not

achieved without phase stopping, as demonstrated by

much shallower value of z. Failures in the cases with

phase stopping were all due to the peg totally missing

the hole. In this case force sensing does not provide

any information about how to move to achieve success-

ful insertion. 100 % success rate could be achieved in

this experiment with the additional search algorithms

briefly described in (Savarimuthu et al, 2013), but this

is beyond the scope of this paper.

5 Conclusion

We proposed a new approach for learning of force-based

manipulation skills. The main feature of our approach

is that it takes into account Cartesian space trajectories

and force/torque profiles arising during the execution

of the task. The main contributions are:

– An algorithm that uses force feedback and DMP

phase stopping to modify the trained trajectories

within the robot’s servo loop so that the result-
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Fig. 29 Mean force errors of the round peg insertion.
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Fig. 31 Success rate comparison between the cases of PiH
execution with/without phase stopping.

ing forces and torques become more similar to the

forces and torques obtained during training. The

DMP phase stopping mechanism is essential to en-

able smooth and reliable adaptation. It gives to the

integral term in the force adaptation loop enough

time to diminish the tracking error.

– An iterative adaptation algorithm based on the cur-

rent iteration causal learning that gradually trans-

fers the force/torque feedback error term to the off-
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Fig. 32 Comparison of position trajectories originating from
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set trajectory, thus minimizing the difference be-

tween the measured and the trained forces and tor-

ques. If noise is introduced into the system, e. g.

by vision, the proposed learning algorithm initially

slows down the execution to ensure success, but af-

ter learning the speed of execution can again be sig-

nificantly increased.

– Modification of DMP differential equations in unit

quaternion space and the introduction of DMP phase

stopping for quaternions based on the logarithmic

map.

– Experimental evaluation of the proposed approach

including the use of 3-D vision and workpieces with

different geometry and different number of holes.

Our experimental results show that the developed sys-

tem can effectively learn complex manipulation tasks

that involve contact with the environment. New ma-

nipulation behaviors can quickly be learned by human

demonstration and later be adapted to different con-

figurations of the workspace. The flexibility of the ap-

proach is demonstrated by training a variety of assem-

bly tasks involving different workpiece geometries and

different number of holes. Finally, we have shown that

the proposed approach is suitable both for robots that

allow impedance control and for robots where only ad-

mittance control is possible.

Especially in industry, there are a lot of operations

that need to be executed many times in exactly the

same configuration. Our algorithm provides a method-

ology that firstly, enables the robot to quickly acquire

new force-based skills by human demonstration, and

secondly, to apply the new skill in the robot’s workspace

using 3-D vision. In this way we provide tools to dras-

tically reduce setup times of robotic workcells in indus-

try. Even in natural environments some tasks need to

be repeated. Our approach ensures that the task will

be successfully executed already in the first attempt,

but slower and sub-optimal. In the next attempt (not

necessarily next time, the robot might do other work

in the meantime) the robot will improve the policy as-

sociated with this position (orientation) and will there-

fore learn the optimal policies for any (many) position

of the workpiece. Generalization from multiple demon-

strations is the subject of our future work.

A related approach was presented by Pastor et al.

(Pastor et al, 2011), where the interaction with the en-

vironment is implemented as modulation of DMPs at

the acceleration level, allowing for reactive and com-

pliant behaviors. Unlike in our approach, feedback re-

sponse to the environment changes was learned only

from user demonstration and no additional parameters

were introduced into the system. Hence iterative learn-

ing to improve the initial response to the environment

changes could not be implemented in this approach.

Besides adapting the demonstrated trajectories, it

is also possible to refine the demonstrated force/torque

profiles and learn the optimal stiffness parameters. The

initial force/torque profiles can be refined by means of

reinforcement learning as suggested by (Kalakrishnan

et al, 2011). Optimal stiffness parameters can also be

obtained by reinforcement learning (Buchli et al, 2011).

These kind of approaches can be used to improve the

effectiveness of the proposed algorithm.
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A Impedance control

In general, the dynamics of a robot arm interacting with

the environment is described by

ρ = H(θθθ)θ̈θθ + h(θθθ, θ̇θθ) + J(θθθ)T
[
FT,MT

]T
(48)

where ρ is a vector of joint torques, H ∈ Rn×n is a sym-

metric, positive definite inertia matrix, h ∈ Rn contains

nonlinear terms due to the centrifugal, Coriolis, friction

and gravity forces, J ∈ R6×n is the robot Jacobian,

and F, M ∈ R3 are the vectors of environment contact

forces and torques acting on the robot’s end-effector.

θθθ ∈ Rn denotes the joint angles. The following rela-

tionship holds between joint space and Cartesian space

accelerations (Hsu et al, 1989; Nakanishi et al, 2008)

θ̈θθ = J+
H

([
p̈

ω̇ωω

]
− J̇θ̇θθ

)
+ Nξξξ, (49)
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where J+
H = H−1JT(JH−1JT)+ = H−1/2(JH−1/2)+

denotes the inertia weighted pseudo-inverse of J (Naka-

mura, 1991; Whitney, 1969). ξξξ is any vector from Rn
and defines the null space motion. By inserting (49)

into (48) we obtain a general form control law for a

redundant robot (Nemec et al, 2007)

ρ = HJ+
H

([
p̈

ω̇ωω

]
− J̇θ̇θθ

)
+ HNξξξ + h + JT

[
F

M

]
, (50)

where N = (I − J+
HJ)H−1/2 is the projection matrix

onto the null space of inertia weighted Jacobian (Naka-

mura, 1991), i. e. JN = 0. The first term in Eq. (50)

is the task controller, the second term is the null space

controller and the third and the fourth term compen-

sate for the non-linear robot dynamics and external

forces, respectively. The parameters p̈, ω̇ωω, and ξξξ can

be used as control inputs that should be set so that the

task space tracking errors are minimized. Lets choose

the task command inputs p̈c, ω̇ωωc as follows

p̈c = p̈r + Kd
p(ṗr − ṗ) + Kp

p(pr − p) + Ks1ep, (51)

ω̇ωωc = ω̇ωωr + Kd
q(ωωωr −ωωω) + Kp

q log (qr ∗ q) + Ks2eq, (52)

where subscript r denotes the reference values and vari-

ables without the substrict the current values as re-

ceived from the robot. The force/torque errors ep and

eq are calculated using (28) and (29), respectively. Kd
p,

Kd
q , Kp

p, Kp
q , Ks1 and Ks2 are positive definite, diag-

onal positional and rotational damping matrices, posi-

tional and rotational stiffness matrices, and force and

torque feedback matrices, respectively. The reference

position and orientation are calculated by integrating

(20), (37), (8), (38), and (32), followed by displacement

(28) – (28). The reference velocities and accelerations

are calculated as ṗppr = ∆qw ∗ ṗppDMP ∗ ∆qw and p̈ppr =

∆qw∗p̈ppDMP ∗∆qw, respectively, while the reference an-

gular velocities and accelerations are calculated as ωωωr =

∆qw ∗ηηηDMP /τ ∗∆qw and ω̇ωωr = ∆qw ∗ η̇ηηDMP /τ ∗∆qw,

respectively.

With the above choice of command accelerations we

obtain the well known impedance control law (Hogan,

1985). By choosing the null space command input ξξξc,

one can control the null space motion of the robot. Sim-

ply setting ξξξc to 0 results in non-conservative motion,

i. e. the robot will constantly move in null space mini-

mizing the kinetic energy. To prevent the unnecessary

joint space motion, the desired velocities should be set

to zero, which results in an energy dissipation controller

(Khatib, 1987). The command null space motion vector

is thus calculated as

ξξξc = −KN θ̇θθ, (53)

where KN is the joint space damping matrix. The com-

manded torque ρc is finally calculated by inserting p̈ppc,

ω̇ωωc, ξξξc into (50). All other variables in (50), i. e. H, J,

JH, J̇, h, and N, are calculated at the current values

of θθθ and θ̇θθ.
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