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Abstract—Lately, lots of effort has been put into the construc- Some researchers in cognitive robotics have begun to use
tion of robots able to live among humans. This fact has favort  their old architectures as a base for their cognitive raisoti
the development of personal or social robots, which are expeed 1, .oqrams. The idea is to extend these architectures in order
to behave in a natural way. This implies that these robots cdd to imol t f the hiah | | itive functi
meet certain requirements, for example: to be able to decidtheir 0 'mP ement some O, € high level cognitive functions.
own actions (autonomy), to be able to make deliberative plan The first control architecture developed by the authors, a
(reasoning), or to be able to have an emotional behavior in aler  hybrid architecture named AD (Automatic/Deliberativepk
to facilitate human-robot interaction. o the theories of the modern psychology expressed by Shiffrin
architecturs for 4 autonomous and social robot. which e to 210 Schneider [5], 6] as a base. According to these authors,
accomplish some of these features. In order to élevelop thisems two meghanlsms of processing information are established:
architecture, authors have used as a base a prior hybrid conpl ~automatic processes and controlled Oln?s-_Thereforey we can
architecture (AD) that is also biologically inspired. Nevetheless, differentiate between two levels of activity in human being
in the later, the task to be accomplished at each moment is gqutomatic and deliberative.

determined by a fix sequence processed by the Main Sequencer. \jgreover, at the beginning of the Sixties, the artificial

Therefore, the Main Sequencer of the architecture coordinges the . - . . .
previously programmed sequence of skills that must be exeted. intelligence precursor Herbert Simon was convinced that in

In the new architecture, the Main Sequencer is substituted pa  ¢luding emotions in the cognitive model to approximate the
decision making system based on drives, motivations, emotis, human mind was necessary [7]. Later, near the mid Nineties,
and self-learning, which decides the proper action at every Antonio Damasio publisheDescartes’s Errof8]. His studies
moment according to robot's state. Consequently, the robot proved that damage to the brain's emotional system caused

improves its autonomy since the added decision making syste . . PR .
will determine the goal and consequently the skills to be exaited. the patient to make poor judgments despite intact logical

A basic version of this new architecture has been implemente reasqnlng.sknls. A.s.a consequence, t.he positive role ofdmum
on a real robotic platform. Some experiments are shown at the emotions in cognition started to gain prominence among a

end of the paper. group of researchers from the scientific community. Later,
Index Terms—Cognitive robotics, control architectures, auton- Other studies showed that emotions have influence on many
omy, decision making systems, motivations, emotions. cognitive mechanisms, such as memory, attention, peagpti

and reasoning [9], [10], [11], [12]. Besides, emotions péay
very important role in survival, social interaction andrlgag
. INTRODUCTION of new behaviors [13], [14], [15].
L . . . __ Therefore, in recent years, the role of emotional mechasism
N the Nineties, the term “cognitive robotics” was firsf, hatral and artificial cognitive architectures, in peutar in
introduced by Ray Reiter and his colleagues, who hayggnitive robotics, has been considered. According to, [it6]

a research group on this topic at the University of Toror!t?elation to the main question: do robots need emotions? many

According to them, cognitive robotics is concerned W'”ﬂesearchers have answered positively, mainly consideriag

endowing robotic or software agents with higher level cegnjy 3 aspects of emotion: the external (social) one and the
tive functions that involve reasoning about goals, peioept internga| (individual) one. It seems to be obvious that in o
actions, mental states of other agents, collaborative éask ot social interaction, expression of emotions helps &dxen
cutlgn, ete. , , ) _interaction more natural [17]. On the other hand, the irgkrn

Since the Seventies, robotics has evolved trying to providgpects of emotion, i.e., its role in the behavioral orgativn
useful services .to humans. Today, robots.wh|ch carry out dat an individual cognitive agent, are essential for the aatoy
gerous [1], assistance [2], or transportation tasks [3]prgn jssye, and this is the main concern of many researchers.
others, are a reality. Traditionally, robotic research hasn  Tpe concept of autonomy has been treated by several
centred on contr(_)l architectures, planning, _navigatim, €authors such as Arkin [18], Gadanho [10], Bellman [14],
Neyerthele;s, during t_he last few years, th_e interest iwtob g, Cafiamero[15]. In general, they state that an autonomous
which are integrated in our everyday environment, personglent must be self-sustained, which implies a decision mgaki
robots, has increased [4]. Human-robot interaction is dne Qsiem. Moreover, it must have some goals and motivations
the main characteristics of these robots. and these must be oriented to maintain its internal eqjtitibr

. . . (homeostasis).
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need to take into account homeostatic/emotional dynamiesid the system, are described. Next, section VI shows how a
i.e., the interplay between constitutive and interactispezts basic version of this new architecture is being implemented
of autonomy; for example, the need to keep essential systemn- a real robotic platform. Moreover, this platform is also
internal variables within certain viability ranges [19]. briefly described. Section VII presents some results of the

The work presented in this paper tries to consider all the prexperiments carried out. And finally, the conclusions and
vious requisites in order to design a new biologically insgdi future works are summarized in section VIII.

architecture for an autonomous and social rol#dthough mds
the current context of this robot is a laboratory, this February 25, 2010
proposed architecture will be implemented on social robots

Iiving with human beings and Sharing common spaces with II. HOMEOSTASIS DRIVES, AND MOTIVATIONS

complex configurations. In these situations, autonomy and
friendly human-robot interaction are essential. Therefore,
as previously stated, in order to implement those features

In this section we give a brief review of the basic concepts
related to the decision making system. As stated previpusly
we will follow an homeostatic approach when designing this

in our robot, this new bio-inspired architecture is required. ; L
s . system and terms such as drives and motivations must be
In order to fulfill this goal, we started our approach using 1 ced

the previous hybrid control architecture developed by the Homeostasis was discovered by Claude Bernard in the mid-

auth_o_rs, the AD _architecture_ [20]. This architecture hasnbewe XI1X century when he observed that the body variations
n}gggiege'hf\,ﬁﬁcg}gthtgiomlT,viieiuggggoah?;amnasge:teﬁ“ae‘j as an objective to give the stability back to the body. In
9 9 SySteifiner words, we could say that homeostasis means maingainin

based on drives, motlvgtlons, emotions, and self-learfay 2 stable internal state, see [26]. According to the homé&osta
Following a homeostatic approach, the goal of the robot @n o : :
approach, the human behavior is oriented to the maintenance

to satisfy its needs maintaining its necessities within@ept- . I
. . . of the internal equilibrium.
able range. The learning process is made using a well-know . .
reinforcement leaming algorithm, Q-learning [22]. By ni ne of the oldest theories about drives was proposed by
’ ’ 8 Hull in [27]. Hull suggested that privation induces an ai@ns

this algorithm, the robot learns the value of every state&sac . . L ) . .
. o . . . : state in the organism, which is termed drive. According ® hi
pair through its interaction with the environment. This mga ] . L
theory, the drives increase the general excitation levedrof

it learns the value that every action has in every possiatest _ ) ; -
. - . animal and they are considered as properties of deficitsstate
The highest value indicates that the correspondent actitirei . : :
. S hich motivate behavior.
best one to be selected in that state. At the beginning of t o . .
learning process these values, called the g-values, che a#t he word motivation derives from the Latin wonabtusand
gp ’ q ' hndmates the dynamic root of the behavior, that means those

to zero, or some of them can be fixed to another value. In tmﬁEernaI, more than external, factors that urge to actidi.[2

first case, this implies that the robot will learn from schatc C .
) . . In other words, the motivational state is a tendency to cbrre
and in the second, that the robot has some kind of previous ) : .
the error (drive) through the execution of behaviors.

information about the behavior selection. These initiduga Many drive theories of motivation between 1930 and 1970

WI”BS]% rip?itﬁgrgzggg thtehilseasrn;rggrﬁrgﬁesas.real robot. as posited that drive reduction is the chief mechanism of rewar
P 9 Y ’ IT” motivation is due to drive, then, the reduction of deficit

revious step, this work was successfully implemented on . L0 .
\F/)irtual agents [23], [24], [25]. In those worzs hgw the agenS|gnals should_satlsfy_ thl_s drive and essentially could Hee t
learned the right action to execute in every situation prese goal of the entire motivation [26].

: : ) . . . Hull [27] also proposed the idea that motivation is de-
in the environment by using reinforcement learning aldonis : , . .

. ) ) termined by two factors. The first factor is the drive. The
with no previous knowledge is shown.

In this paper, we present the first results of our work bsec:ond one is the incentive, that is, the presence of annaxtter

. . . . Yimulus that predicts the future reduction of the need. For
showing the implementation on a real robotic platform of a

simplified version of this new architecture, with neitheram example, the presence of food consitutes an incentive for a

. . . . . _._hungry animal.
tions nor self-learming. The robot is working with a decisio In our work, the robot has certain needs (drives), that need

making system based on drives and motivations, which sends o L : .
. . . be satisfied, and motivations. Following the homeostatic
the information about what to do in every moment to the A . . : )
approach, the proposed decision making system will be ori-

architecture. s -
ented to maintain those needs within an acceptable range.

The paper is organized as follows. The next section, SECII(IIH : . - ; 7
. . ._.These needs will not be just limited to physical ones (as it
II, introduces some basic concepts needed for the decision

making system. Next, in section Il the questishy do robots IS stated in the classical point of view of the homeostabis),

need emotions® answered from a functional point of view psychological and social necessities too. In the next ecti
. . ) . , oo ‘the reasons why emotions should be included in this decision
In section IV, a brief review of biologically inspired contr

architectures, some of them based on traditional mechaxnisrrrr11aklng system will be analyzed.

of processing information, and others based on emotions and
motivations, is given. Section V shows the approach progose

in this paper: the AD architecture, modified by adding a Several authors have expounded their reasons to include
decision making system. In this section, both the architect emotions in robots besides their importance in the human-

IIl. WHY DO ROBOTS NEED EMOTIONS®



robot interaction. Moreover, others have studied theiregan agents which live in a simple environment. In a near futue, o
tion as well as the optimal number that should be implementedention is to define new emotions when the complete control
on virtual agents or real robots. In this section, a briefewv architecture is implemented on a real robot. Thereforehas t
of these ideas is given. functionality of our robot and its environment become more
According to Arkin, motivations/emotions provide two po-complex, it will have to cope with new situations and maybe
tential crucial roles for robotics: survival and interacti[13]. new emotions, or a redefinition of the existing ones, will be
Cafiamero considers that emotions, or at least a sub-groumeéded.
them, are one of the mechanisms founded in biological agents
to confront their environment. This creates ease of autgnom IV. RELATED WORK
and adaptation. For this reason she considers, similarly to ) ,
Arkin, that it could be useful to exploit this role of emotipn A Classical control architectures
to design mechanisms for an autonomous agent [15]. Classical architectures are mainly focused in navigation
On the other hand, Ortony explains that robots need entasks. Early robots, in the Sixties and Seventies, usedplgn
tions for the same reason as humans do: one of the flrased architectures [41][42]. Any movement of these robots
damental functions of emotions is that they are a requisited to be planned in advance. Planners needed models to
for establishing long-term memories. The second functn predict the results of each action. The main goal of these
that emotions provide opportunities for learning, from gien robots was motion, and therefore, the models were maps of
forms of reinforcement learning to conscious and compléRe environment and the planners were motion planners.
planning [29]. Poor results of planning-based architectures obliged to
In the same line, Bellman [14], Fellows [30], and Kelleysearch for other alternatives. In the mid Eighties, reactiv
[31] state that, since emotions allow animals with emotior@chitectures began to be developed [43], [44], [45]. |ctiga
to survive better than others that lack emotions, robotsilsho architectures, the use of planners and models was minimized
be provided with features related to emotions in a funclionbn fact, there were neither maps nor planners in most robots
way. with reactive architectures. Decisions were based on real
Different models of emotion systems have been proposgaie information from sensors, making the creation of maps
to be implemented in artificial agents. One of the maiwith that information unnecessary. At this time, this agmio
differences among them is the mechanism used to generaiteduced very good results in comparison with planning hase
emotions. architectures. For instance, robots were able to move tpste
Currently, most experts agree that emotions are producedibydynamic environments, avoiding obstacles.
an appraisal of the situation of the agent in its relatiorlite Reactive architectures meant a significant advance in the
world. Therefore, different emotions are associated tiediht development of robots, although not everything was pasitiv
situations. Many researchers think that the relation betwein reactive architectures. They also have some drawbacks.
situations and emotions is mediated by a set of intermedidehaviors of robots with reactive architectures usuallyndo
variables. These variables act as dimensions of an aféectinclude the achievement of an explicit goal as in the plagnin
space and each emotion is associated to a different zdr@sed architectures.
of the affective space [17] [32]. Lazarus [33], on the other In sum, both approaches, reactive and planning-based, offe
hand, considers emotions as discrete categories. In theetis some advantages, but they also show some drawbacks. Trying
emotional approach, dimensions of emotional intensity ate get the best of both, in the mid Nineties hybrid archi-
still employed, but these are applied within each emotioni@ctures began to appear. These architectures usuallyt adop
category. a reactive approach at the low level (the modules closer to
In our work, we follow a discrete emotional approach ansensors and actuators), and a planning-based approadhat hi
we consider that the relation between situations and emetidevel. That means that motion control loops are close to low
is specific for each emotion. Therefore, each emotion requidevel producing different behaviors, and at the same time
a particular study to establish this relationship. it is possible to reach planned decisions based on models.
According to Spinola and Queiroz [34], another importarReactive modules make short term decisions in local areas
issue related to the implementation of artificial emotions i(e.g. immediate movements in the area close to the robot) and
robots is: How many and which emotions must be selectegfanning modules make mid and long term decisions at global
In this work many different approaches are described, froaneas (e.g. future movements to distant areas).
authors that defended the idea of implementing a varyingAmong hybrid architectures, the next ones can be high-
number of “basic” or “primary” emotions, from 4 to 22, [35]lighted. Firby establishes three levels: a planner whickesa
[36] [37], to others that decided to implement just one or twplans according to the goal to be reached, a controller which
emotions [38], [39]. Finally, one very different point ofews interacts with the environment, and an executor (RAP) that
is presented by Caflamero in [40]: “Do not put more emotidimks the planner and the controller, giving the detailefbin
in your system than what is required by the complexity of thmation which the controller requests from the planner’siinf
system-environment interaction”. mation [46] [47]. Bonasso, in the 3T architecture, consder
Following this last point of view, currently, our researcla layer consisting of reactive skills, a sequencer that lesab
focuses on three emotions: happiness, sadness, and fdir. WWn disables the skills, and a deliberative planner capable o
now, the implementation of emotions has been done on virtuiliding the robot to the target goal [48] [49]. Gat, in the



ATLANTIS architecture, distinguishes among a controllér aconsists on maximizing the positive emotions and miningzin
reactive primitive activities, a sequencer that manageseh the negative ones. In later works, [58], the emotional syste
primitive activities according to the deliberative comgiidns, was substituted by a goal system. This system is based on a
and a deliberator which is in charge of the planning [5Get of homeostatic variables which must be maintained withi
[51] [52]. Lastly, Chatila considers a functional level whi a certain range. The goals are explicitly associated to the
includes perceptive and motor capacities, an executiosl,levhomeostatic variables.
without reaction capacity, which controls them, and a deci- Another approach was developed by Velasquez [59], [60],
sional level in which the planning and supervision are ideldl who proposed an architecture called Cathexis. This archi-
[53]. tecture was developed for autonomous agents and contains
The three layer architectures mentioned above have #we emotion generation model. Moreover, it also has simple
sequencing layer between the deliberative and reactive. onmodels for other motivations and a decision making algorith
This fact leads to a rigidity in the planning-sequencingrac Later, this architecture was completed by a drive system in
paradigm. order to develop a decision making model based on emotions.
On the other hand, our AD (Automatic/Deliberative) arin this model, the emotional system is the main motivation of
chitecture [54] was designed trying to avoid rigidity in théhe agent. The drive system even exploits its influence ierord
mentioned planning-sequencing-acting paradigm. It is -corn® select specific behaviors. For example, the Hunger dride a
posed by only two levels: one for deliberative activitieslan the Distress caused by it motivate the agent to obtain faod. |
second one for automatic activities. The sequencing psesesthis model, the behaviors compete among each other to take
are distributed between the Deliberative and Automatielev the control. Therefore, only one behavior is active at a time
providing more flexibility to the hybrid architecture. Currently, this work has been continued by Cynthia
Breazeal, whose main research interest is the study of human
. L . __robot interaction. The developed robots, Kismet and Ledmar
B. Control architectures based on motivations and emotions e a cognitive and an emotional system. The cognitive
More recently, as previously stated, some authors hasgstem is formed by the perception, the attention, the drive
implemented cognitive-related concepts in their controha and the behavior systems. The behaviors are selected based
tectures, such as motivations, emotions, learning, etthi;n on the values of the drives and the external stimuli. These
section, we present a review of the works that have inspiredhaviors are also related to every drive and they compete
our research. to determine which need must be satisfied. The role of the
The work developed by Lola Cafiamero is one of the firgimotional system is to influence the cognitive system to
researches done in this area [55], [56], [15]. The origidehi promote appropriate and flexible decision making, and to
was that the behaviors of an autonomous agent are directethmunicate the robot internal states, see [61], [62], &3{l [
by motivational states and its basic emotions. As it is said Nowadays, many efforts have also been put on autonomous
before, motivations can be viewed as homeostatic procesagents for characters in computer games. Sevin, in [64],
that maintain inner variables controlled within a certainge. developed a motivational model of action selection foruatt
A detector of errors generates an error signal, the drivenwhhumans. The model chooses the appropriate behavior accord-
the value of this variable is not equal to its ideal value.fEadng to the motivations and the environmental information.
motivation is modelled as a function of its related drive anith other works, there are actions associated to motivations
an external or incentive stimulus. The motivation with th&@herefore, the actions related to the highest motivatiaobe
highest value becomes active and it will organize the bemaviactive. Most of the time, the action receiving activity frdne
of the agent in order to satisfy the drive. Emotions in thisighest internal variable is the most active one, and thés it
approach influence the decision making process in two wagfiosen by the action selection mechanism.
First, they can modify the intensity of the current motieati  Until this point, most of the presented works use a moti-
and, as a consequence, the intensity of the related behawational system in order to select the behaviors and, in some
In fact, in extreme cases, they can avoid the execution of tbethem, emotions are only used to influence this decision
behavior. Second, they can modify the reading of the sensamaking in one way or another. Nevertheless, there are other
that monitors the variables affected by emotions. Theesfompproaches that use emotions as the central aspect of the
they can alter the perception of the state of the body. Thlecision making system. This is the case, for example, of the
implemented emotions work as monitoring mechanisms work presented by Hirth et al, [65]. They propose an emotion-
cope with important situations related to survival. based control architecture which consists of three maitspar
Another interesting approach is the one presented bghavior, emotion, and cognition. All possible movements
Gadanho [10], [57]. In this work, the research is focuseaf the robot, from simple reflexes up to high level motor
on how artificial emotions can improve the behavior of askills, are located in the behavior group. These behavias a
autonomous robot. In her approach, the robot adapts to atstivated in different ways, e.g., directly depending onsse
environment using an adaptive controller adjusted by usidgta, depending on the emotional state, or deliberatehhéy t
reinforcement learning. Emotions are used to influence pepgnition part. In this architecture, the high level bebasiare
ception, as Cafiamero does, and to provide a reinforcemamistly activated by the emotions and specially by the cagnit
function. This is because, according to the authors, it [Ert, whereas low level behaviors are activated directlyhey
frequently assumed that the human decision making processisor input.



In [32], Hollinger et al present another robot using emotiorOn the other hand, other emotions are defined as motivations
based decision mechanisms. These mechanisms are basesbpthe behaviors will be completely oriented to cope with th
the Mehrabian PAD (pleasure, arousal, and dominance) scsiteiation that generated those emotion.
that determines emotions using an affective space. Thet robo
state is translated into a particular set of sound and moneme v OQuR APPROACH AD ARCHITECTURE WITH A
responses. In this approach, the emotion state of the robotg;o ocICALLY INSPIRED DECISION MAKING SYSTEM
varies according to its interaction with people. In factsth _
gets modified when the robot sees different color shirts. A. AD architecture

Finally, another approach is the one presented by LissetiAs stated in section |, the previous control architecture
and Marpaung in [66], where the behavior of the robot ideveloped by the authors is the AD architecture. This bielog
selected according to its current emotional state. Thegigea cally inspired architecture is based on the ideas of the mmode
this emotional state based on the data received from the inpgychology expressed by Shiffrin and Schneider [5], [6]itso
sensors of the robot. In fact, each emotion is related taicertconsiders two levels, the automatic and the deliberativelde
external events, e.g., the parameter of the Sad emotionagshown in Figure 1.
increased if the door is closed or the robot does not recegniz

someone. Once the emotional state is determined, the robot Long term Memory
will execute the proper action tendency, i.e., the robatiifies
the most appropriate (or a set of) actions to be taken fromn tha MAIN I
emotional state. Deliberative level
The presented work has been inspired mainly by SEQUENCER - i
Canamero’s, Gadanho's, and Velasquez's works. As will be po— Short tarm
shown in the next section, we use homeostatic drives that are : Memory
related to motivations, as those authors do. In our approach I
the motivations, and not the behaviors (as referred to in * _
Velasquez's and Breazeal's approaches) compete among each Autometilovel
other following the point of view of Cafiamero. Nevertheless I l I
in her approach, the winner motivation has a related behavio Sensors  Actuators

that satisfies the associated need, as Sevin also proposes.

In fact, one of the main differences of our work with otheFig. 1. AD architecture levels
authors’s approaches is that the behaviors are not neitgssar
previously linked with a need or an emotion. This means In AD architectures [54], both levels are formed by skills,
that there are no motivational or emotional behaviors. Thehich endow the robot with different sensory and motor ca-
agent/robot can learn, using a reinforcement learning -algeacities, and process information. Skills can be coordihay
rithm, which behavior to select in order to satisfy the mosiequencers and the Main Sequencer manages the deliberative
urgent drive. In Caflamero’s and Sevin’s works, it is assumetills according to a predefined sequence. This sequender wi
that there is only one behavior able to satisfy one need. Thie explained later in more detail.
fact can be seen as a disadvantage, since it limits the fligxibi 1) Deliberative level:In the natural world, humans delib-
of the decision making system. It could happen, as in oarative activities are characterized by the fact that these
approach, that several behaviors satisfy the same neesd. Tarried out in a conscious form. Moreover, temporal dimemsi
point of view seems to be more bio-inspired since, in naturis,an important property: deliberative processes requiaegee
in order to satisfy for example, hunger, we can eat somethifggantity of time to be dedicated to the analysis. Theseitietv
but also, drinking some water can reduce this need. are carried out sequentially, that is, one after anothet,itais

The second difference is that in our approach, the way eawbt possible to carry out more than one deliberative agtivit
emotion is defined in the architecture is different. This nseaat a time.
that emotions are not defined as a whole as most authors do. AB1 our AD architecture implementation, deliberative Kill
can be observed, there are two points of view in relation ¢o tlare based on these activities and the authors considerrilyat o
role of emotions in the decision making process. Cafiamemme deliberative skill can be activated at once.
Gadanho, Velasquez, and Breazeal used emotions to influencg) Automatic level:Living beings’ automatic activities are
the decision making process, not for selecting the behavidraracterized by the fact that their actions and perception
directly according to them. On the contrary, others, such ase carried out without the necessity of having consciossne
Hirth et al, Hollinger et al, and Lisseti and Marpaung coesid of the processes responsible for controlling those ais#uit
emotions as the central aspect of their decision makingsystExamples of this would be the heart beat, the hand movement
so, in some cases, the behavior is selected according to wWien writing, or that of legs when walking. An automatic
current emotional state. In our approach, we do not liméctivity can be carried out in parallel with other automatic
the role of emotions to one of them, but we exploit bothctivities and with a deliberative activity. For example, a
points of view. On one hand, some emotions are used as fiegson can be driving a vehicle and maintaining a convensati
reinforcement function in the learning process, as Gadansimultaneously. The level of complexity of automatic aitités
also proposed, not determining directly the action sedecti may be very variable and goes from the "simplicity" of moving



a finger to the complexity of playing a sonata previously Long term Memory
memorized on the piano.

In the AD implementation, the automatic level [67] is I
mainly formed by skills which are related with sensors an = Deliberative level
actuators. Automatic skills can be performed in a parali@y w x i
and they can be merged in order to achieve more complex GECISKIN
skills. MAKING events : Short term
. , - SYSTEM : Memory
3) AD Memories:One of the main characteristics of human :
beings is their ability to acquire and store informatiomfrthe | . 3 I
world and from their own experiences. Memory can be defined L — Automatic level
as the capacity to recall past experience or informatiomén t
present P]. I 1 I

Based on the memory model proposed by Atkinson and Sensors  Actuators

Shiffrin [68], the AD architecture considers two different _ ' N _

memories: the Short-Term Memory and the Long-Term Menfld- 2. AD architecture with the decision making system

ory, see Figure 1. In our architecture, Short-Term Memory

is defined as a temporary memory. This memory is regarded . . . .
. porary y . 'y 15 Te9arteliables differs from the ideal one, an error signal occurs

as a working memory where temporal information is shar(?ﬁe drive [55]

among processes and skills. On the other hand, Long-Term '

Memory is a permanent repository of durable knowledge — - )

This knowledge can come from learning, from processini| Decision making system

the information stored in Short-Term Memory, or it can be

given a priori. In AD architecture this memory refers to a | Wwellbeing Happi Self-reinf
permanent memory where stable information is availablg onl r{> Faness j

; ; ; AD
for dehberanvg skills. _ o AREHITE ETUE
4) The Main SequencerThe Main Sequencer, as it is ] ]
. . . . . . Drives State-action
shown in Figure 1, is the element in charge of coordinating Bl i
deliberative skills in order for a robot to fulfil a task. The
Main Sequencer performs a sequence of skills that must t \ J

carried out by the robot. This sequence is a fixed script where N _
all possible situations that the robot can face are consitlerFig- 3. The decision making system

This means that this script has been programmed in advance )
and it is exclusive for certain objectives. In our approach, the autonomous robot has certain needs

A relevant feature of this architecture is, as already dtatddrives) and motivations, and following the ideas of HulrJ2
that all possible options must be considered in the sequanc@d Balkenius [69] [70], the intensities of the motivatiasfs
priory. Depending on the definition of autonomy, this can K€ robot are modeled as a function of its drives and some
considered a negative factor since, in bio-inspired syst¢ne €xternal stimuli. For this purpose we used Lorentz's hytitau
fact that it is the proper agent/robot who must decide its owROdel of motivation as an inspiration [71]. In Lorenz's mbde
objectives it is assumed. Therefore, since this is our ¢ibjec the internal drive strength interacts with the externahatus
the Main Sequencer has been replaced with a decision mak@tgngth. If the drive is low, then a strong stimulus is nekede

system based on drives, motivations, emotions, and séf-trigger a motivated behavior. If the drive is high, then a
learning. This system is described in the next section. mild stimulus is sufficient [26]. The general idea is that we
are motivated to eat when we are hungry and also when we

have food in front of us, although we do not really need it.
B. Adding the biologically inspired decision making systemTherefore, the intensities of the motivations are cal@das
As shown in Figure 2, the decision making system hasshown in (1)
bidirectional communication with the AD architecture. Omeo
side, the decision making system will select the behavier th
robot must execute according to its state. This behavidr wil
be taken by the AD architecture activating the correspandiwhere M; are the motivationsD; are the related drivesy;
skill/s (deliberative or automatic one). On the other sithe, are the related external stimuli, aig is called the activation
decision making system needs information in order to upddevel.
the internal and external state of the robot. According to Balkenius [69] [70], all excited motivational
The general idea of the proposed decision making systetates can not be allowed to direct the robot at once since
is shown in Figure 3. As explained in section II, the terrthis would generate incoherent behaviors. In his opinibis, t
homeostasis means maintaining a stable internal state [38blem cannot be handled solely by behavioral competition
This internal state can be configured by several variabldésit must be resolved at an earlier stage of processing. The
which must be at an ideal level. When the value of thesslution proposed is a motivational competition, as Cafftame

If D; < LgthenM; =0 (1)



also proposed in [55]. Therefore, in our approach, ondetroduced in section Il where, according to this theorg th
the intensity of each motivation is calculated, they corapetlrive reduction is the chief mechanism of reward.
among themselves for being the dominant one, and this ondn summary, the decision making process is cyclic and it
determines the inner state of the robot. It could happenithatan be described in the following points:
none of the drives is greater than the activation ldvekhen, 1. Updating the drives and motivation intensities.
there is no dominant motivation. 2. Motivation competition and selection of the inner state.
As stated in previous sections, in this decision making3. Determining the external state.
system, there are no motivational behaviors. This mearts th&. Updating the wellbeing function.
the robot does not necessary know in advance which behaviofs Generating the reinforcement function (happi-
to select in order to satisfy the drive related to the domtinan  ness/sadness).
motivation. There is a repertory of behaviors and they carb. State-action evaluation (reinforcement learning).
be executed depending on the relation of the robot with its/. Behavior selection.
environment, i.e. the external state. For example, thetnoblo As said at the beginning of this paper, this decision making
be able to interact with people as long as it is accompanisgstem has been successfully implemented on autonomous
by someone. virtual agents [23], [24], [25]. These agents live in a vaitu
The objective of this decision making system is havingnvironment created using a text-based game availablaeonli
the robot learn how to behave in order to maintain its needad called CoffeMud [74]. Next, in this section, we give a
within an acceptable range. For this purpose, it uses the IQief review of this implementation and the results obtdine
learning algorithm to learn from its bad and good experisnce The environment where the agent has to live is a simple
As previously stated, the autonomous robot can learn, fromoms-corridor stage. In these rooms, it can find several
scratch or using some a priori information about some gesluobjects, such as food, water, etc., which are needed in order
of the state-action pairs, the proper behavior to selecvémye to satisfy the drives of the agent. Moreover, the agent has a
state through its interaction with the environment. limited set of actions related to every object, for example,
Besides, as shown in Figure 3, happiness and sadness‘treeat food”, or “to take water”. In this implementation,
used in the learning process as the reinforcement functiath the initial g-values are set to zero, therefore, the agen
and they are related to the wellbeing of the robot. Next, wioes not have any previous information about the behavior
justify this decision but first, let us introduce this concepe selection. It is important to note again, that the actiores ar
wellbeing of the robot is defined as a function of its drived amot related to motivations. This means that the agent does no
it measures the degree of satisfaction of its internal needs know in advance that, for example, it must eat in order to
satisfy its hunger. The drives and motivations implemented
_ _ _ . are: Hunger, Thirst, Weakness, Loneliness, and Fear. Hunge
Wb = Whideat ZZ: o+ Dsy @) Thirst, and Weakness, are related to the consumption of, food
water, and medicine respectively. Loneliness is relatesbtial
whereq; is the set of the personality factors that weight thgteraction and in order to satisfy it, the agent must intera
importance of each drive on the wellbeing of the robot angith other agents that will be sharing the same environment.
Whigea is the ideal value of the wellbeing of the robot. Asvioreover, those agents (opponents) are able to behave badly
observed, as the values of the needs of the robot increaseojtkindly with our agent.
wellbeing decreases. In relation to the emotions, happiness and sadness are the
In order to define happiness and sadness, we took #eénforcement function, as previously explained, and the-e
definition of emotion given by Ortony [36] into account. Intion fear, based on some theories that state that emotions ca
his opinion, emotions occur due to an appraised reactigiotivate behaviors [12], [17], [75], is defined as a motivati
(positive or negative) to events. According to this point ofherefore, according to our decision making process, fear
view, in [72], Ortony proposes that happiness occurs becausuld be the dominant motivation and, in that case, the agent
something good happens to the agent. On the contrary, sadn@suld be “scared”. When this happens, the agent must learn
appears when something bad happens. In our system, this right action to execute in order to cope with the situatio
can be translated into the fact that happiness and sadreessti@it caused this inner state.
related to the positive and negative variations of the vedtip The results obtained showed that the agent, using this
of the robot. decision making system, is able to learn the right sequence
On the other hand, the role of happiness and sadness asathactions in order to satisfy its needs by maximizing its
reinforcement function was inspired by Gadanho’s works, agllbeing. This means, for example, that in the case the
shown in section IV-B, but also by Rolls [73]. He proposeagent is hungry, it learns that it must go where the food is,
that emotions are states elicited by reinforcements (@svathen take it, and finally eat it. These results can be seen as
or punishments), so our actions are oriented to obtainiogvious, but it was the right selection of the reinforcement
rewards and avoiding punishments. Following this point déinction which allows the agent to learn properly, without
view, in this proposed decision making system, happineds amy previous knowledge about which action to select at every
sadness are used as the positive and negative reinforcenmemient. Another important result is the one obtained with
functions during the learning process, respectively. Moee, the emotion fear. How the agent is able to generate a “run-
this approach seems consistent with the drive reducticoryhe away” behavior that was not previously programmed is shown



of an infrared emitter/receiver, Maggie also operatesdiffit
home appliances such as televisions. Touch sensors on the
surface of the body and a touch screen situated in the breast
are used for a direct interaction with people. Inside thedhea
an RFID antenna is placed for identifying objects. In oraer t
provide verbal interaction, our robot is equipped with attex
to-speech module and an automatic speech recognitiomsyste

The required energy for all devices is received from two
batteries which provide a power supply of 25 V. During its
working life, the robot needs at least 20 V. The purpose is
to achieve a robot working continuously in a never-ending
working life. This means that the battery should always be
over this threshold.

B. AD architecture

Considering the ideas previously stated, the software is
based on the two levels of the Automatic-Deliberative ar-
chitecture [20], [54], previously described in section \heT
automatic level is linked to modules that communicate with
hardware, sensors, and motors. At the deliberative level,
reasoning processes are placed. As shown in Figure 2, the
Fig. 4. Our social robot Maggie interacting with children communication between both levels is bidirectional andsit i

carried out by the Short-Term Memory and events [77].
] ] ) ) ] . Events are the mechanisms used by the architecture for
in [25]. Moreover, the agent is able to identify the situatio\yqorking in a cooperative way. An event is an asynchronous
that scared |t._Th|s fact is quite important since mo_st ana;thczsigna| for coordinating processes by being emitted and cap-
have an emotlonal_releaser, as for example, to be in PresepfRd. The design is accomplished by the implementation of
of an enemy, but in our case the agent, after several trigi§e pyplisher/subscriber design pattern so that an element
learns to identify that dangerous situation. that generates events does not know whether these events are
received and processed by others or not.
VI. IMPLEMENTATION ON A SOCIAL ROBOT The Short-Term Memory is a memory area which can be

In this section, the developed system is presented. First, fccessed by different processes, where the most important
robotic platform is briefly introduced. Then, the generai-el data is stored. Different data types can be distributed aed a
ments in the architecture are presented. Later on, theidecisvailable to all elements of the AD architecture. The curren
making module is shown, explaining how it interacts with th8nd the previous value, as well as the date of the data capture
architecture. As already stated, the decision making systé'® stored. Therefore, when writing new data, the previous
implemented on the robot is a basic version, and currentlyd@ta is not eliminated, it is stored as a previous versior Th
is being improved and extended. In this first approach, aeitn>hort-Term Memory allows to register and to eliminate data

emotions nor learning have been implemented on the robogtructures, reading and writing particular data, and sgver
skills can share the same data. It is based on the blackboard

pattern.

On the other hand, the Long-Term memory has been im-

The presented work has been implemented on the resegsldmented as a data base and files which contain information
robotic platform named Maggie [76]. Maggie is a social ansuch as data about the world, the skills, and grammars for the
personal robot intended for performing research on humaaitomatic speech recognition module.
robot interaction and improving robots autonomy (Figure 4) As already stated, the essential component in the AD
It was conceived for personal assistance, for entertaibni@n architecture is the skill [77] and it is located in both lessdh
help handicapped people, to keep people accompanied, &ttms of software engineering, a skill is a class that hida da
Its external friendly look facilitates its social robot ka8oth and processes that describes the global behavior of a robot
software and hardware have been developed by the Robot&sk or action. The core of a skill is the control loop which
Lab research group from the University Carlos 11l of Madridcould be running (skill is activated) or not (skill is bloake

In relation to its hardware, Maggie is a computer-contblle Skills can be activated by other skills, by a sequencer, or
system with a wheel base which allows the robot to moVay the decision making system. They can give data or events
through the environment. Its arms, neck, and eyelids moveack to the activating element or other skills interestetthém.
ments show signs of life. The vision system uses a cameraSkills are characterized by:
the head and, thanks to it, Maggie can recognize people an@ They have three states: ready (just instantiated), aetivat
play several games. Laser telemeter and ultrasound seargors  (running the control loop), and locked (not running the
used by the navigation system to avoid collisions. By means control loop).

A. Framework



o Three working modes: continuous, periodic, and by i —
events. L ey

o Each skill is a process. Communication among processes
is achieved by Short-Term Memory and events.

o A skill represents one or more tasks or a combination of
several skills.

« Each skill has to be subscribed at least to an event and

it has to define its behavior when the event arises.

The AD architecture allows the generation of complex skills
from atomic skills (indivisible skills). Moreover, a skitlan be
used by different complex skills, and this allows the deifinit
of a flexible architecture.

Value

Time

C. The decision maklng system Fig. 5. Temporal evolution for all drives.

The decision making system proposed in preceding sections
is intended for achieving a full autonomous robot. Therefor _ ) )
the decision making module is the one in charge of selectingBase(_j on the previous drives, the .followmg non-
the most appropriated skill at each moment for maximizirgy tf nventional motivations have been defined:
robot wellbeing. Choosing the right skill depends on theigal ~ * social it means the need of interaction with a human and
of the motivations, previous experiences, and the relakigm its drive isloneliness
with the environment. All these elements have been modelled® €creational this motivation is related to entertainment
in order to be processed by the implemented decision making PUrposes. Its associated drivebisredom
module. « survival it refers to the energy dependence. This motiva-

The whole process can be summarized in the next steps: ~ tion is connected to thenergyneed.
1) Selecting the dominant motivation All drives, and consequently motivations too, temporally

2) Determining the state in the world evolve from their initial values. In our implementation ¢bire

3) Selecting the feasible skills and executing the best orad: €ach drive can havesatisfaction timeThis represents the

In the followi . h il b lained period of time the drive remains at its initial value after it
n the following sections, these steps will be explained. 1,5 heen satisfied (look at the beginnindarfelinesdrive in

AII.t_he paramgters setin this implemc_entation will shape I"—s‘igure 5). During this time the drive does not evolve. After
specific perso_n_ahty for the ropqt. Changing these paramiet&y, s saistaction timelonelinessand boredomdrives linearly
new pers_onal_mes will be eXh_'k_"tEd _by the ropot._ The IoerfO\rncrease but with different parameters. It means that,rmas ti
mance W.Ith dlfferent personglltl_es will be studied in theufe. goes by, these drives become bigger and bigger, and so do the
~ 1) Which drives and motivations'As expressed by equa-cqresponding motivationt.onelinesss the fastest drive and
tion (1), each motivation is repr.e.sented by an integer valyg e qomevolves slighter. This is because in social robots, as
and it is affected by two factors: internal needs and externg, s interaction with people is one of the most relevantsaim
stimuli. Internal needs are the drives and their values WP o ce satisfaction time is very short and it is likely teatial
on inner parameters. External stimuli are the objects titla ., jtivation will become the dominant motivation.

in the environment that alter the robot motivations. In &ddj The energydrive is significantly different. This is the most
egch drive has its activation level: beI(_)W it, motlvatlo.ram,res relevant inner need due to the implicit necessitgfvival If

will be set to zero and hence, they will not be considered fgfe \yant to achieve a fully autonomous robot, power autonomy
being the dominant motivation. is the first step. Therefore, it will keep its initial valuetilira

As mentioned, the internal needs, the drives, represent gy, battery level is detected. Then, at this point, its vakii
internal value. Each motivation is connected to a drive. Th&er a drastic raise.

choice ab_out which drives (and consequen_tly m_otivatiqn$ 0 In order to avoid an unstopped increase in the value of
must be implemented, were made at design time. Since $i¢ of the motivations, a saturation level is defined for each
system has to be running on a robot intended to interagte: once a motivation has reached its saturation valuellit w
with people, somesocial motivation is needed to "push” thept grow more. Different motivations have different satiana
robotinto human-robotinteraction. Moreover, the autivaast  \4yes which will determine the priority of the dominant ot

the robot to be endowed with play-oriented aspects, hencg;aion in case of a never-ending expansion of the motivation
recreationalnature is required by the robot. Nevertheless, thg oy implementationsurvivalis the first one, and thsocial
first primitive drive for all entities is tosurviveand, in our 5nqrecreationalmotivations go after.

case, it is translated to the need of energy. 2) Sensing the world:The world is perceived by the
Therefore, the selected drives are: robot in terms of objects and the states in relation to these
« lonelinessthe need of companion. objects (the external state). As a first approach, the world
o boredom the need of "fun" or entertainment. where Maggie is living in is limited to the laboratory. In shi

« energy this drive is necessary for survival. environment three objects have been defined: the peophglivi
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than getting closer to the TV is possible; then, it is able to
operate the appliance.

Person object

For the personitem, three states are determineadong
accompaniedand commandedFigure 6.b).Alonerepresents
when no people are around the robot, and this is the initial
state with respect to peoplagcompanieaneans that someone
is around Maggie but no direct interaction exists; and, final
commandedtate corresponds to a direct interaction between
a person and Maggie where the user asks the robot to do
something. The transitions from one state to another are
detected by two skills integrated in the control architeetu
a face detection skill and a speech recognition skill. Ttoe fa
detection skill notifies if the robot is alone or accompanied
by searching for faces. The speech recognition skill lsten
to any word through a microphone and it distinguishes if the
dialogue is directed to Maggie or not, determining if theabb
is accompaniedr commandedlf no words are received and
no faces are found for a long time, the robot changes its state
related topersonto alone In the experiments, this time is set
to 10 seconds.

It needs to be mentioned that actionscammandedstate,
obey and disobey are a bit special. These functions are
designed to execute what a person has ordered to do or td rejec
the user's command. This implies that Maggie can disobey a
instruction from the user and the robot will inform the user
about it, reason why a direct dialogue between Maggie and the
user is needed. Therefore, tbemmandedtate is required for
these actions.

Docking station object

In relation to the docking station, Maggie has two states:

Fig. 6. States and actions for items: (a) TV, (b) person, addocking charging and discharging If Maggie is connected to the
statipn. The dashed arrows represent the skiII_s that mo_th"@ states, the station, then the battery level is increasing, so itfmrging
g?gtt'ﬂgoslgtggﬁzlg?ggqoﬂgfﬁti'feﬁexeCUted with the obgetiihe circles e nyise, if the robot is unplugged, it dschargingand the
battery level decreases. This information is read by theehat
sensor skill. When the robot @ischarging it can justgo to
around the robot, a television/radio appliance, and th&idgc charger. After that, it is plugged in and, once in tferging
station for supplying energy. state, just one action is possible: ¢bargethe batteries. If a
In Figure 6, the states related to each object, the actioks, &kill that moves the robot around is selected when the robot
the transitions from one state to another are shown. Dasliea¢harging it will leave the docking station andischarging
arrows represent the skills that monitor the states, coatie  will be the state.
ones mean the actions executed with the objects, and thé&xternal stimuli
circles are the states related to each item. If an actiondoes Just like human beings can feel thirst when they see water,
appear at one state, it means that it is incoherent to exé@cutthe motivations can be influenced by some objects present in
from that state, e.g., Maggie canmdqy musidf it is far from the environment. These are called the external stimuli or in
the TV or it cannofollow a person if it isalone Figures 6.a, centives. These stimuli may have more or less influencer. thei
6.b, and 6.c represeii, person anddocking statiorobjects, values depend on the states related to the objects (thissnean
and their states and actions, respectively. if they are near or far from the robot). In our implementation
Television object all external stimuli values have been fixed empirically, and
Since Maggie can control the TV appliance by means of a@nese values are shown in table I.
infrared interface [78], the robot must be placed at a certai Due to the fact that Maggie is a very friendly robot and it
distance and facing the appliance in order to be able to tperlmves people, theocial motivation is affected when a person
it. Therefore, two states related to thelevisionitem are is near the robot, i.e., when the state of Maggie with resfoect
defined:closeandfar, which symbolize the position where thethe personitem isaccompanie@r commandedTherefore, the
robot is able to command the TV or not, respectively (Figuttetal social motivation value will be increased by five units.
6.a). In this case, these states are monitored by a skill ti&hce our robot likes playing with people and dancing while
reads information from the navigation system which knowstening to music from TV, theecreational motivation is
where the TV position is. From thiar state, no other action increased by 10 units when people are around the robot or



TABLE |
THIS TABLE SHOWS EXTERNAL STIMULI, OBJECTS STATES LINKED TO
THEM, THEIR VALUE, AND THE AFFECTED MOTIVATIONS

TABLE Il

ACTIONS EFFECTS

Action Object Effect Drive
Motivation | Ext. stim. | State related to ext. stim. | Value follow person setto 0| loneliness
social person accompanied 5 -5 boredom
commanded 5 self-introduction person -10 loneliness
recreational person accompanied 10 -1 boredom
v near 10 play with person setto 0| loneliness
survival - set to 0| boredom
Obey person -15 loneliness
Disobey person +15 loneliness
when it is close to the TV. Up to now, theurvival motivation Get closer to TV
does not have any external stimuli, but in the future, when th Play music TV setto 0| boredom
docking station is seen by the robot, it could feel the need of Stop music TV +5 boredom
energy. Go to docking station
3) Acting in the world: Maggie interacts with the world Charge docking station| setto 0| energy
through the objects and their potential actions. Thes®mrsti Leave docking station

are implemented as skills in the AD architecture. The pdessib
actions with thepersonitem are:

« following a person: Maggie will move following the lower factor (minus five and minus one respectiveBgsides
closest person to it. loneliness is influenced by obey and disobey as well. When

« self-introduction: the robot will introduce itself infolimy  the robot complies with a user’s requestloneliness is
about its history and abilities. reduced by fifteen units. On the other hand,disobeying

« playing with: our robot will play several games with thean instruction rises the loneliness by fifteen units. At last,
user, such as tic-tac-toe, hangman, and animal-tri?jal [ the energydrive is satisfied when the batteries are recharged

« obey: Maggie will comply with the user request. The useand this happens when the robot iscairgestate.
can ask the robot to execute one of the previous actions4) What does Maggie do now?nce the world has been

« disobey: Maggie will deny the user request and it wilpresented, how the decision making system operates will be
inform the user about it. explained. First of all, when the system starts, the drives

About the TV appliance, its actions are: begin to evolve in(_jep_endently from their initigl value, and

. getting closer to: the robot moves towards TV. the skills start r_n_onlt_orlng the states rel_a_ted to |t_ems. Whe

. play music: Maggie turns on the TV and changes to ew state tran5|t|_on |s_detected, a specific event is ennﬂlmﬂ_
music channel. the states are written in the Short-Term Memory. The degisio

« stop music: music is stopped and the TV is switched Oﬁr)aklng modul.e receves Fh|s_ event and .the data 9f thg states
is updated. Within robot lifetime, the action selectionpas

In relation to the docking station, the possible actions Al@xecuted in order to determine the next skill to be activated
« go to: the robot plugs itself in the station. At each iteration, the dominant motivation is computed as
« charge: Maggie keeps connected until batteries are fulhe maximum motivation whose value (internal needs plus
The actions cause effects over the drives. When the actiandernal stimulus) is over the activation level. This pagsen
have ended, i.e., when the associated skill has been blocked been fixed ta0 for every motivation. Using the dominant
because it has reached its goal, the effects are applied. Ifraotivation, the current states related to objects, andahmt
error occurs during a skill execution, or it is not succelssfualues, the next action will be chosen.
this situation is notified and its effect is not applied. Ireth As briefly described in section V, this approach has already
experiments presented in the last section, most of theteffelseen implemented on virtual agents. During these simulatio
affect one or more drives, which become zero, decreaseamd using the Q-learning reinforcement learning algorithm
increase their value. [22], the agent learnt the right g-values for maximizing its
All effects are presented in Table Il. These effects haweellbeing. Taking those values as an inspiration, for theent
been defined by the designer and any other values coirftplementation on Maggie, we propose a set of initial g-
have been selected. As it is shown, ttlomelinessdrive is values that represent the best possible actions at eacld worl
satisfied after thdollow and play with actions are executed configuration (the dominant motivation plus the state eslat
because both actions suggest a bidirectional interact@®n Io each object). The tuple formed by the dominant motivation
tween the robot and a person. Howewalf-introductioncould the object, the state related to the object, and the actitim wi
be accomplished without any response from the person sotfie highest g-value, will decide the selected action. it
effect decreases tHenelinessdrive by 10 units. Our robot's implementations, the learning process will be carried out o
hobbies are playing and listening music, therefg@lay with line by the robot itself and the initial g-values will be upel
and play music satisfy the boredomdrive. Moreoverstop through the learning process.
musicincreasedoredomby five units. Other actions where As already stated, the available actions at each state depen
a person is requireddllow and self-introduction affect in a on the state itself. Hence, each object-state pair will Iseas
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TABLE Il

ated to different actions. For example, fuaying withpeople PROPOSED QVALUES
Maggie has to b@ccompaniedvith a person. Therefore, the
play yvith qction can not bg agtivated when the roboalisne Dominant Object States Actions Initial
At this point, these combinations do not exist and therefore | motivation Q-value
they will never be selected for execution. alone - -
follow 10
Vil E person accompanied self-introd_uction 10
. XPERIMENTS play with 10
In this section, some preliminary experiments are presente commanded di‘;zziy 18
showing the performance of our system. social . DTy music z
TV stop music 5
A. Policy of behavior: action selection Ch:;ing gi;;'r‘;zer g
As previously mentioned, in this first implementation, the Docking . I echarging g0 0 5
robot will use a predefined set of initial g-values for maiimta alone -
ing its internal needs within a determined range. In the real _ follow 10
world, each action is connected to a skill. Therefore, dejyen person | accompanied) seff-introduction | 10
on the configuration of the world, Maggie will execute one p'?;:"m 150
action or skill: it chooses the right action from all possibl _ commanded disobiy 5
ones according to asoftmaxaction selection rule [79]. The | recreational play music 10
Softmax algorithm endows the decision making system with v et stop music 5
a certain randomness: the bigger the g-value for an actien, t far get closer 10
more likely this action will be selected. Again, in the futur Docking st. |—Cnarging charge >
. . . . . discharging go to 5
when learning is done on-line, the g-values will changerdyri P -
the working life. person follow 1
In Table 1l all the initial g-values are presented. These accompanied| self-introduction 1
values represent the value for each action at each state. The play with 1
actions in the table are the possible actions accordingéo th commanded obey 1
objects states. Depending on the states, some actions bave n|  surival disobey !
been shown because they are not feasifultlow a person is v near Zz’y) e i
not possible if the robot is alone, or music cannot be played o get closer 1
if it is far from TV. For that reason, they will not be chosen. ] charging charge 10
If socialis the dominant motivation, all actions related to Docking st I ischarging %t 10
the personitem have high values. Actions connected g alone - -
will be executed just when robot &one so no actions with person . follow 0
persons are possible. accompanied self—llntrody;:tlon 0
Focussing on theecreationalmotivation, “fun” skills will p?;xt g
be likely executed whether a person is nearby the robot or commanded disobey 0
Maggie isnear TV Fun skills have been defined by the authors | ™" . play music 0
and they arefollow, self-introduction play with, and play ™v stop music 0
music far get closer 0
Concerning obediencepeywill probably be executed just Docking st. dicsh;rgr'gag C;:’t?)e 2

in the commandedstate. In other cases, all possible actions
have the same probability of being run.

According to the good sense, if the dominant motivation
survival actions concerning the docking station item will b
probably selected. So, if the robot dscharging it will go

j Most of motivations grow uniformly but, sometimes, jumps
appear. These jumps are because of the presence of external
to the docking station and afterwards, when icharging it stimuli as well as due to the effects of the actions on theedriv

will be plugged in until its batteries are charged, igharge g?t?o?]l;mbers located on top of Figure 7 represent the execute
skill. )

The robot also must consider what to do when all its needs':Or example,.focu_smg on thecreatlonal motlvatlon, .we.
are satisfied. In our case, when a dominant motivation does ﬁBF‘ (_)bserve a little m_crease at the beginning of the I|fg1|m
come up, depending on the state, the most reasonable sKiflés IS because Maggie changed its stateearthe TV. This

will be to chargeits batteries or ta@o to the docking station. 'S @n external stimulus of this motivation and tieereational
value is increased by ten units.

) ) During the execution of action number fowocial and
B. Evolution on Maggie recreationalmotivations raise at the same time. This is because
This experiment presents an example of how the motivatitime robot has detected the presence of some peaptoih-
values change with time during Maggie’s lifetime, see Fegupaniedstate).
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Looking at the middle, theocial and recreationalmotiva-

tions jump down quickly. At this point, Maggie wascompa- 350
nied by a person and the executed action whksy. The effects

. . . . 300 effect of
of this action are to set thenelinessand boredomdrives - follow
to zero, and hence thsocial and recreational motivations 250 play with far

fall, respectively. These motivations are not zero at thimip 200 | accompanied
because of the external state of the rolamicompaniedstate 150
adds five points to social motivation and ten to recreational
one. When the robot changes to themmandedstate the

external stimulus for these motivations disappear but a new 50

commanded

Value

on

00 near

=

equivalent one appears for social motivation so no jump come 0 gl

up in this motivation. 5min 10min
Besides, we would like to mention the final part of the Time

graph. Here, how the transition to tHar state affects just social survival

recreational

the recreational motivation because this makes its externa
stimulus d|sappear is shown. Afterwards, the effectatow Fig. 7. Temporal evolution of motivations. Numbers on topresent the

action is pointed: it reduces tihrecreational motivation and executed actions: (1)go to the docking station, (2)getetlds tv, (3)play

satisfies thdonelinessdrive. music on tv, (4)stop music on tv, (5)play with a person, (&8ey, (7)obey,

A h . " ff ﬁ%follow and (9)charge. The vertical white-grey bands f& background
S shown, an action or state transition can afiect seve respond to the execution time of each action. The uppkremb band

motivations, which means that effects are not attacheddb jindicates the dominant motivation. Some action effects erahges of states
one. are pointed.

According to our initial goals, it is easy to appreciate that
socialis the fastest motivation.

At the multicolored band indicating the dominant motivatio This paper shows the implementation on a real robotic
(upper Figure 7), a short black band stands out several timpktform of a basic version of this architecture, where hsit
This is the period of time when all motivations are satisfie@motions nor self-learning are included in the decisionimgk
all drives are below their activation limits, and there is neystem. The experiments made on Maggie, a social robot
dominant motivation. At this time, thgo toaction is executed designed for the interaction with humans, show that the trobo
because it is the most likely. is able to select the most appropriate skill autonomouslsed

Finally, in relation to thesurvivalmotivation, since the most on its own drives and motivations.
part of this experiment was executed with full batteriess th The next step of our work is to implement the learning
motivation is stable and very low almost all the time. But girocess on Maggie. Therefore, the skill selection will beeié
the end, the battery level exceeds the limit and the surviday the robot through its interaction with the environment.
motivation becomes the dominant one. Besides, the initial g-values could be set all to zero or itldo

According to the initial g-values, Maggie knows that thée useful to give some prior knowledge. The last could be
best possible actions ago to and charge Since Maggie is useful to improve the learning time based on some inhertanc
chargingat that moment, the most probable actiorclsrge knowledge as living beings have.

Finally, this is selected and executed. Moreover, the learning process will take the role of some
Moreover, satisfaction time faocial motivation is pomted emotions as the reinforcement function (happinessy sayjnes
at the end of the graph. into account. On the other hand, fear will be implemented as

another motivation for the robot. Nevertheless, it is expec
that, due to the complexity of a real environment, the dedinit
In the last years, due to the increasing interest on socil new emotions, or re-definition of the old ones, will be
robots, cognitive systems have served as an inspiration faeded.
a new design of control architectures. In this work, we
have presented a biologically inspired control architestin
which the main decisions are made based on motivations and ACKNOWLEDGMENT
emotions. This architecture is an evolution from a previous
one, the AD architecture, where the current goal of the robotThe authors gratefully acknowledge the funds provided by
was decided by an external operator, and some predefitieel Spanish Government through the project called “Peer to
sequences coordinated the robot behavior. Peer Robot-Human Interaction” (R2H), of MEC (Ministry of
In the presented work, the new control architecture has beBcience and Education), and the project “A new approach to
endowed with a decision making system based on biologicaligcial robotics” (AROS), of MICINN (Ministry of Science and
inspired concepts such as drives, motivation, emotiond, aimnovation). Moreover, the research leading to these tehak
self-learning. Those concepts are included in order to awgr also received funding from the RoboCity2030-1I-CM project
the autonomy of the robot, as well as to try to imitate a living(S2009/DPI-1559), funded by Programas de Actividades 1+D
being behavior. Up to now, the complete decision makiren la Comunidad de Madrid and cofunded by Structural Funds
system has been successfully tested on virtual agents. of the EU.

VIIl. CONCLUSIONS ANDFUTURE WORKS
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