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Abstract—Currently artificial emotions are being extensively make them more natural, more useful, or more efficient? This
used in robots. Most of these implementations are employet question is very important, and in fact, some authors, such
display affective states. Nevertheless, their use to drive robot’s as Cafiamero in [12] and Scheutz in [10], share the idea that

behavior is not so common. This is the approach followed by fi d t K bot intell t but
authors in this work. In this research, emotions are not treded in emotions per se does not make robots more intelligent, but we

general but individually. Several emotions have been impleented Must be able to prove how emotions improve somehow our
in a real robot, but in this paper, authors focus on the use oftie  robot’s performanceln those referred works, both authors

emotion of fear as an adaptive mechanism to avoid dangerous propose a methodo evaluate the usefulness of emotions
situations. In fact, fear is used as a motivation which guide the in robots, that is, to compare their performance during the

behavior during specific circumstances. . . . .
Appraisal of fear is one of the cornerstones of this work. A execution of the same task, with and without emotions.

novel mechanism learns to identify the harmful circumstanes ~ The work presented in this paper is a continuation of
which cause damage to the robot. Hence, these circumstancesprevious research which is focused on autonomous and so-

elicit the fear emotion and are known as fear releasers. ~cial robots. In previous works, authors have already agplie

In order to prove the advantages of considering fear in omotions on virtual agents [13]. Moreover, they have prieskn
our decision making system, the robot’s performance with ad . . . .
without fear are compared and the behaviors are analyzed. the de?'s'o,” making sysf[em of the SOCIaI robot Mggglg [14]

The robot's behaviors exhibited in relation to fear are natual, [15] which is based on drives, motivations, and emotiditiss
i.e. the same kind of behaviors can be observed on animals.robot learns, using reinforcement learning, the right acton
Moreover, they have not been preprogrammed, but learned by to select in order to maintain an internal equilibrium. The
real interactions in the real world. . . implemented emotions are happiness, sadness, and fear.
~ All these ideas have been implemented in a real robot living The first two emotions, happiness and sadness, have been
in a laboratory and interacting with several items and peopeé. o v d -

already studied in the cited works The work presented in
' this paper is centered on the use of fear and its application t
robots.
The role of emotions in this system, as in [11], is focused on
|. INTRODUCTION the behavioral organization of individual agents, rathanton
UE to the recent interest on robotic applications for makheir expression and recognition involved in social intéicns.
ing easier our daily life, one of the most popular currerftccording to Arbib and Fellous [16], both approaches are
research areas in robotics is Social Robotics. According teferred as the “internal” and “external” aspects of emugio
[1], a social robot can be defined as: “An autonomous oespectively. Others consider these aspects as emotixped e
semi-autonomous robot that interacts and communicatés wilence and emotional expression respectively [17].
humans by following the behavioral norms expected by theMany psychologists nowadays agree that emotion is the
people with whom the robot is intended to interact”. Therefo result of an evaluation (appraisal) of the current situaf{its]
it is expected that these robots have some kind of “soci{dl9]. Moreover, the appraisal theory says that each emotion
intelligence” which helps them to behave in an appropriate elicited by a distinctive pattern of appraisal. Based loB t
way. This kind of intelligence is related to emotions [2], an idea, each emotion is treated by separate, that is, eaclewrf th
emotion-based control architecture seems to be an imgorthas different appraisal mechanisms that release them.
element for socially intelligent robots [3]. In addition, each emotion has different roles. As already

The role of emotions in robotics has been extensiveaid, in this work, the emotions implemented in the decision
defended by many researchers [4][5][6][7][8] [9][3][10lost making system of the robot are happiness, sadness, and
of them think that since emotions in humans and animals dear. In previous works, [14] [15] [13], is explained that
essential for survival, autonomy, learning, decision-ingk happiness and sadness are generated from the evaluation
social interactions, etc., then, they are necessary footsobof the wellbeing of the robot, and they are used as the
which are intended to live among us. reinforcement function in the learning process.

Nevertheless, according to Ziemke and Lowe [11], the main This paper is focused on the emotion of fear, its generation,
guestion is not if the robots need emotions, but if the humdts role in the decision making process of the robot, and its
designers and users of robots need or want robots to haveéndiuence on the robot’'s performance.
at least express emotions. In fact, they stated that from arin relation to its generation, it has been already statetl tha
engineering perspective, the question rather is: Doeslingil emotion is the result of an appraisal of the current situatio
models of emotional/affective mechanisms into our robots the case of fear, as shown in the next section, this agprais

_ _ __consists mainly on detecting a dangerous situation (emaltio
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individual through its own experience. In this paper aushor [I. THE APPRAISAL THEORY

present an appraisal mechanism which allows the robot ©Orhe appraisal theory is the claim that emotions are elicited

Igarn_to releas_e;: fﬁ_ar in front of a r_1dew g}mgrtg)lngh dz:\jng_erow evaluations of situations [19]. According to this thedty
situation, even If this event was not identified by the design;’ ¢ interpretations of situations, rather than the sina

in advance. themselves, that cause emotions. Because appraisaleeinéer

8tween situations and emotions, different individualsowh
raise the same situation in significantly different waits
rience different emotions; and even a given indivietred

is basically to motivate the right behaviors to avoid thos
dangerous situations. Fear is used as an adaptive mecharE

mtendgd to prevent our robot _Of being harmed. This is, in, fa ppraises the same situation in significantly different svay
the unique role Of. fear-accordlng to Breazeal and Brook; [2 ifferent times will have different emotions. A good exampl
Although in [21] is said that the fear responses (freezing Rlould be a football match, the same situation (the result of

escape rhesr;]onsez) age not Iearr?ed and theydarf_e indnf;;ter,] intl%"game) will produce different emotions depending on your
approach, the robot does n_ot_ ave any predetined behavigl,, [8]. Another example can be observed on a student doing
Tharnks to the proposed decision making system and learn exam: if he has studied hard all the semester, in general, h

algorithms, the emotional behaviors are also learned by fels confident and relaxed; in contrast, if he has not stuidie
robot and compared with the one expected from a Iiving—beir(w_}(i‘;]Ough he experiences fear and gets nervous

n Xtrdtir to Szowftrlﬁ validity of our ap:orotach]; lowing th Following this theory, a situation cannot be tagged with an
€ eng of e paper we evajuate, 101owing e "o qtional value in advance, it is the interpretation eackqe

{OhrOpOEalt of.Ca?r?mero tz?\nd ?(;hequ,ﬂ:hed pe.rff)rmancke_ of makes of that situation which gives that individual evailoat
€ robot using the emotion of Tear In the decision Maxing 1, o qer to understand the appraisal mechanisms of emo-
process In order to do that, the robot lives in a real envi:

ronment where danaerous situations ariEeose results are tions, that is, how they emerge in our brain, authors propose
compare(\ijith the ognes L(J)bta:iﬁedI in thelsame envil:onment as LeDoux @n [22], .that emoltions must pe studied one by
and conditions, but without the fear emotion. One of the one. Accordmg_ to him, the d|fferer1t emo.tlc.)ns are plroduced

) ' . . ' . by different brain networks. In fact, in [23] it is also exjrlad
main goals of this experiment is to study how the robot dexid

that tain situation is d isal of f ow other theorists, inspired by the prototypical work of
al a certain situation Is dangerous (appralsa ot ear). Darwin, have proposed that a small set of discrete emotiens a
The approach to fear presented in this paper is related

. : derpinned by relatively separable neural system in thanbr
exogenous actions. These actions are not executed by P y Y Sep y

. : [25]. Currently, it seems that different emotions itwe
robot but by other objects causing asynchronous chang ifferent brain circuits despite of same brain areas cddd
which affect the robot. Harmful exogenous actions are tl& '

cornerstone to identify the dangerous situations Bmmon.
: 1y . gerou |u. ! ) Therefore, as stated in Section |, based on these ideas,
When the exogenous actions executed in a state are alng_ls

. . . otions are studied separately, and more specificallfisn t
advantageous, the expected utility of this situation ishhif P Y. : P )h i
WIOI’k we have focused our research on just one emotion: fear.

from time to time, an exogenous action in a state is harmfu LeDoux [22] states that the function of this emotion is to

to the robot, the expected utllity of the state Is still highhis eéect danger and to produce reactions which increase the
is because, on average, the outcome is high. Both expecie

utilities are high, however, in the latter case, the sitra probabilities of survival in a dangerous situation. In othe

. . 4 . words, it is a defense mechanism. Therefore, the appraisal
is considered risky because an exogenous action could cause

damage to the robot. By means fefr, these risky states aremechanlsm of fear is related to the evaluation of a situation
) . as flangerous.

detected, and the right reactions are generated. The metho . . . : :
S . ccording to Rosis [26], there is a systematic confusion

proposed in this paper presents an approach to deal with thgs . u -

. oo etween two kinds of “evaluation”:

risky or dangerous situations. ) e . )

This paper is organized as follows. Section I presents a® Appraisal: thg automatic, |mpI|_C|t, intuitive onentat!on

brief review about the appraisal theory of emotions. Next, a toward what is good and what is bad for the organism.

review of some works related to this research topic is given i * Evaluation the cognitive judgments relative to what is

Section III. Then, Section IV exposes general ideas abaut th ~ 900d or bad for someone (and why).

fear emotion and defines the scope of this work. In SectionIn fact, LeDoux relates this unconscious appraisal to emo-

V, a general description of the robotic platform (hardwarion, and conscious evaluation teelings[22].

and software) is explained. Later, Section VI, presents aOn the other hand, Sloman [27] differentiates between

summary of the decision making system of the robot. Nexirimary emotions which have a reactive or automatic basis

all parameters are configured to define the desired robatisd secondary emotions that require a deliberative prdoess

personality for testing fear (Section VII). Section Vllitdés initiate them.

the novel mechanism intended to appraise dangerous sitgati It is important to note that, in the approach presented m thi

(appraisal of fear). The next section, Section IX, presenpsper, the appraisal of a dangerous situation will be bagsed o

the results of the experiments made in order to prove the automatic process using associative learning. As will be

usefulness of the fear emotion. Coming, some reflectionatabshown later, the robot, using reinforcement learning, i ab

the observed results are expressed in Section X. Finaby, tlo identify dangerous situations without using any dekibige

main conclusions of this paper are summarized in Section Ximechanism.



[1l. RELATED WORK of acquiring learned releasers. The natural releasersaare f
example, in the case of fear, situations in which the sensory

There are many researchers that have implemented e Stems would not work properly (dark environments), and

tloqs, o_r.a.t least some emotionally inspired mechanlsms,t detection of archetypal predators. The learnt relsaser
th.e|r artificial systems. Some authors such as BregzeaI{l}} [ correspond to the stimuli that they tend to be associateld wit
Hirth et al [2], and Hollinger et al [28], focus their works Nand predictive natural releasers. For example, if a pefstn
the external expression of emotions proving how they im’ar()y1aturally experiencing fear because of an uan'easant aoe
the human-robot interaction. Others implement emotions é:%ncurrentlyA observes other persoB, then, after several
their control architectures based on motivations in order ‘ ' '

: . o ) - epetitions of this situation, perséywill experience fear when
influence their decision making, see the works of Canamqjigp

. ) perceives persoB.
[29] [7] [12], Gadanho [4], and Parisi and Petrosino [30]. In a later work, [34], Velasquez does not include any pre-

More specmgally, Parsi and Petros!no, and Cf_;mamero PiRired cognitive elicitors, but rather allows them to be tead
pose that emotions are a submechanism that exists in orde{ ugh emotional experiences, as the agent interacts with

help the motivational decision mechanism to function MOEE. o vironment. Actually, as introduced in section I, thés

properly, by for (e)xarrrl]ple, hmoﬂifyigthhg ir;]tensity of th_ethe same approach followed by the authors in this work: the
motivations, etc.. On the other hand, Gadanho uses emotpRR aser situation of the emotion fear (the dangeroustsitya

as reinforcement functions and for interrupting beha\adJuris learned by the robot using a novel mechanism to appraise
processes in order to deal with new and unexpected sittsatiotrﬁat kind of situations

Most of the researchers consider emotions as a whole, that
is, they define their role or functionality in their systenssaa
unique entity. Many of these researchers defend the positio IV. GENERAL ASPECTS OF FEAR

of views emotions as a limited set of dimensions. This set OfThe present work is focused on the role of fear app“ed to an
dimensions defines an affective space which is used to @prajutonomous social robot. This research focuses on the same
the emotion at each instant. This point of view minimizes thgnd of fear that can be observed on people who have phobia
importance of distinctions among emotions [31]. about flying: they are terrified when they take a plane (even
One of the main differences of those approaches with thefore) although the probability of a real plain crash isyver
one presented in this paper is that the role of emotions|év. Their fear cannot be controlled and their reactionsrare
not define as a unique entity. On the contrary, it is proposgfientional. Once they are on board, this hypotheticalftias
that each emotion has a particular role in the decision ngakifnot under their control, so they cannot make any decision to
process of the robot. Moreover, each emotion has its owRoid it.
appraisal process and is not related to a pre-defined event of general, in this work, two processes related to fear are
situation (releaser event) as those authors do. covered: how the fear emotion emerges (the appraisal of fear
The work presented in this paper is implemented on a regfeady introduced in section Il) and how it influences the
social robot and, instead of studying the three cited emsfio robot’s behavior (fear reactions).
authors focus on the fear emotion: its role, its appraisal Dual-process theories distinguish between intuitiont @iasl
process, and the learned emotional reactions. emotional) and reasoning (slow and controlled) as a basis fo
This approach is not common in this research area, in faguman decision-making. Related to the generation of fexin, b
in relation to the treatment of the emotion fear, there ave feapproaches correspond with the appraisal and the evaiuattio
works which study it as an independent emotion. fear already presented in section Il. Furthermore, reastto
Herrera and Moffat [32] present an investigation of th&ar can also be automatic or deliberative processes. Thisn,
role of fear as the anticipation of harm. According to thengualistic approach is easily observed in fear. In some ¢ases
dangerous is the situation that is appraised as potentidfiiyar is automatically elicited (mice are afraid of cats)t ibu
incompatible with some of our concerns. Nothing is dangeroothers fear emerges due to a reasoning process deeyto
per se, but in interaction. In this interaction we appralss t the actual economic circumstances, | am afraid of loosing my
danger, and that is much dependent on each of us. job). Moreover, this deliberative process affecting fear vgork
In their work, they use a simulated khepera robot in as feedback to the intensity of fear (eifgl loose my job, |
prey/predator scenario. The goal is to maintain the robwaill not get money, and then | will not be able to feed my
around the target avoiding the predator. At first, the rob&amily, and finally we will all di¢. Besides, some responses
must be able to discriminate between the target object atudfear are automatically executed (a mouse runs away from a
the predator (to appraise the situation of being next to tleat) but others are consciously carried caig( | have to work
target or next to the predator). In order to do this, they givearder or | can be dismisséd
valence to each object by observing the average motion of theAutomatic processes are also referred as reactive pracesse
robot. When the robot is being chased by the predator, whiblp some researchers. Both terms, without distinction, aan b
should result in a negative value, the average speed is higbed but authors prefer the automatic term.
while next to the target (positive value) is low. Automatic processes, both for appraisal as well as for
Another interesting approach to the appraisal of fear is tiheactions, can be observed in animals. These are required fo
one presented by Velasquez [33]. In his approach he cossidgurvival purposes. However, deliberative processes a@fap
natural (or innate) releasers and also, he included thecitgpaof humans beings and this is one of our main characteristics.



The system proposed on this paper focuses on automatic V. EXPERIMENTAL PLATFORM: THE SOCIAL ROBOT
aspects of fear: fear is automatically appraised once dange MAGGIE

ous situations are identified; and the responses to fear argne present work has been implemented and tested in the
automatically selected because our system just consitlers §ocial robot Maggie. This robot and its control architeetur
available information at that instant, there is not a modeldi are summarized in this section. For more detailed inforomati

to predict the effects in the future. Then, there is not reB® please refer to [36] [37] [14] [38].

behind our decision making SyStem. The behavior is formedMaggie (Figure 1) is a social and persona' robot intended

by selecting the most appropriate actions at each momegt.perform research on human-robot interaction and to im-

Therefore, the whole process is an automatic process Whgfgve autonomy. It was conceived for personal assistance,

deliberation is not involved. entertainment, to help handicapped people, to keep people
Another classification of fear is related to the origin of theccompanied, etc. Its external friendly look facilitatisssiocial

processes. Some fears are innate or inherited. This implie®ot task.

that these fears are more species specific than those atquire

during life by experience. The latests correspond to lehrne

fears which are considered in this work. Then, the robonlear

both the releasers of fear and the proper reactions. Inaats f

are considered by some researches as instincts which provid

a key survival mechanism. Actually, animals without these

instincts should have difficulties to reach adulthood.

In order to clarify the ideas presented in this section, sdve
examples are presented in two tables: table | shows examples
about how fear is generated; and table Il presents examples
of different reactions to fear. Tables | and Il summarize the
classifications of fear considered in this section. Each cel
contains an example considering how the process has been
acquired and how it is performed. Yellow cells correspond
with the kind of fear the authors have implemented in thigg. 1. Our social robot Maggie interacting with children
work. Red cells are those combinations which are impossible
something innate has been inherited so it is a species éeaur N relation to its hardware, Maggie is a computer-contiblle
contrast, deliberation is a particular process of eaclviddal; System with a wheeled base which allows the robot to move

in consequence, deliberative-innate processes are nsibfgs through the environment. Its arms, neck, and eyelids move-
ments provide Maggie with a life-like appearance. The visio

TABLE | system uses a camera in the head and, thanks to it, Maggie
EXAMPLES OF DIFFERENT KINDS OF THE GENERATION OF FEAR can recognize people and play several games. The laser
telemeter and the ultrasound sensors are used by the nawmigat

How is it acquired?

Tnate Leamed system to maneuver in the environment. By means of an

Cats have fear when they pef-

owi | Cuomatc) | percehe e presence of acat | cohe the presence of me veter  infrared emitter/receiver, Maggie also operates diffetmme

performed? | Evaluation The global economi; criss appliances such as televisions or music players. Touclosens

o) on the surface of the body and a touch screen situated in the
chest are used for a direct interaction with people. Morgove

two RFID antennas are used for identifying objects. In order

TABLE Il to provide verbal interaction, our robot is equipped with a
EXAMPLES OF DIFFERENT REACTIONS TO FEAR . .-
text-to-speech module and an automatic speech recognition
How s it acquired? system. In addition, verbal interaction is improved by aurait

Innate Learned

cars n away when they seetie ~ dialog system which provides Maggie with a natural oral

Automatic Mice escape from cats S
How is it veterinarian

T T must work harder in order tq communication.

Maggie was conceived as a fully autonomous robot that
makes its own decisions. In order to achieve it, Maggie
In this work, fear is related to dangerous states where tlse controlled by an architecture developed by the authors’
robot can be harmed due to other’s action, i.e. the rob@fsearch group: the Automatic-Deliberative (AD) arcHitiee.
will be afraid if it is in a situation where other agent cant considers two levels, the automatic and the deliberative
potentially damage it. Nevertheless, the action perforimgd |evels.
the individual itself can also be harmful (imaging you walk a In the AD architecture [39], both levels are formed by
tightrope). In this case, these are risky actions and fesr akkills, which endow the robot with different sensory and
comes up because of them (e.g. you are afraid of walkingm@tor capacities, and process information [40]. Thesdsskil
tightrope). Risky actions have already been studied iru&irt are coordinated by the decision making system.
agents [35] and they will be considered in our robot in future The proposed decision making system has a bidirectional
works. communication with the rest of the control architecture. On




one hand, the decision making system selects the propenactivhen drives increase, the wellbeing falls. Mathematicatly
which satisfies the most urgent need. This action is traedlais expressed as:

into a skill (deliberative or automatic one). On the other

hand, the decision making system needs information from the Wb = Wh;gear — Z i - Dy, (1)
environment in order to update the state of the robot and to P

assess the suitability of the skills activated. This infation wherea; are the ponder factor that weight the importance of

is provided by the se_ngors of the robot. . each driveD; in the wellbeing of the robot; an®b;4.q; IS
The proposed decision making system works in an autt

matic way. Deliberative processes look into the future teas e ideal value of the wellbeing of the robot which has been

the effects of actions made in the present. Our system d sﬁe}zé tolOQ. In this Wor.k’ all drives have the same importance,
en,q; is 1 for all drives.

not predict the future, but it considers the current state an In order to determine the state of the robot, the internal and

the learned values from past experiences. This means th . . . .

- . pas b : . e>a{ternal states are required. The latest is defined by tagael
our decision making system is not a deliberative process bLf ; ) ;

. ) ) -~ 0f Maggie to the objects of the environment. The former, the
an automatic one which considers the knowledge acquired.in . . o .
. . internal state, is established by tsteongesimotivation, which
previous experiences. : ; -
is called the dominant motivation.
In order to calculate the intensity of each motivation,

VI. THEORETICAL APPROACH TO OUR DECISION MAKING e have considered the idea of Hull [42] with states that

SYSTEM motivation is determined by two factors: the associated

The social and autonomous robot Maggie is endowed wiliive and the incentive, that is, the presence of an external
a decision making system based on drives, motivations, enf§mulus that predicts the future reduction of the need, as
tions, and self-learning. shown in (2),
This system has been extensively described in previous
works [13] [14] [15]. Nevertheless, we will try to explain
the system and some basic concepts: homeostasis, drives,

and motivations. where M; is a motivation,D, is the related driveyw; is the

Homeostasis means maintaining a stable internal state related external stimulus, ard; is called the activation level.
[41]. According to the homeostatic approach, the human |t has a constant value dfo. If a drive is under this value,
behavior is oriented to the maintenance of the internal the related motivation will not be considered for the domina
equilibrium. The internal state can be parameterized by motivation.
several variables, which must be at an ideal level. When  According to this model, the general idea is that we are
the value of these variables differs from the ideal one, an motivated to eat when we are hungry, and also, when we
error signal occurs: the drive [29]. In this approach, the have food in front of us, although we do not really need
drives are considered as the internal needs. it.

According to Hull [42], the drives increase the general |t js important to note that in this decision making system,
excitation level of an animal and they are considered as there are no predefined motivational actions. This mearts tha
properties of deficit states which motivate behavior. the robot does not necessary know in advance which actions,

The word motivation derives from the Latin word motus  or skills, to select in order to satisfy the drive related he t
and indicates the dynamic root of behaviour, which means dominant motivation. There is a repertory of actions ang the
those internal factors, rather than external ones, that ur@ can be executed depending on the relation of the robot with
the organism to take action [43]. In other words, the its environment, i.e. the external state. For example, thetr
motivational state is a tendency to correct the error, i.e., is able to interact with people as long as it is accompanied by
the drive, through the execution of behaviours. someone.

The aim of the presented decision making system is toAgain, the main goal of the robot is to learn the right
achieve a fully autonomous robot which learns to makelationship between states and actions. That is, to learn
decisions in order to maintain its needs within an acceptalbhe best action to execute in every state in order to
range(homeostasis)For this purpose, it uses a reinforcemenhaximize its wellbeing (by satisfying its drives).
learning algorithm in order to decide which action is the |n summary, the decision making loop follows the next
most suitable in every state. In this work, the well-known Qsteps: first, it determines the state (internal and extirtian,
Learning algorithm [44] is employed, so th@(s,a) values an action is selected (randomly selected during learning or
must be computed. The proposed reinforcement functiontife best one when learning is over); and finally, the state-

the variation of the wellbeing of the robot. This variatian iaction evaluation (s, a)), using the wellbeing variation as
producedby the passing of time and bythe effects of the the reinforcement, is accomplished.

execution of an action. The wellbeing is defined as a function
of its drives, and it measures the degree of satisfaction of
its internal needs. That is, the ideal wellbeing is defined as
the lack of needs or drives, i.e. the maximum wellbeing is In this section, the configuration and parameters of the
reached when all drives are satisfied (the valug.iJherefore, decision making system of the robot are presented.

If D; < LythenM; =0 @)
If D; > Ly thenM,; = D; + w;

VIl. SETUP OF THE DECISION MAKING SYSTEM



The proposed system can be fine-tuned in order to adapt itl) Dynamics of drives and motivationm a similar way to

to different requirements. This paper presents a configuratany need on humans or animals, drives fluctuate. A person is

suitable to test the effectiveness of fear. However, allesl not hungry just after having lunch, but hunger increasesras t

and parameters can be changed and different policies pafsses. After we eat and the digestive process has begun, the

behavior will be obtained in future experiments. This can beeed of energy is inhibited due to satiety signals. Thesetgat

seen as the personality of the robot. signals slowly dissipate until the hunger again takes over.
Then, drives vary according to several signals and paramete
[46]. Drives in our robot evolve in an analogous way. The

A. Internal state: drives and motivations evolution functions of drives are set by the designer ang the

As expressed by equation (2), the intensity of each moﬁ-ﬁeCt the behavior of the robot. Since drives temporallyey

A D rom scratch, motivations do as well.
vation is affected by two factors: internal needs and eslern Fi 5 sh the d . ¢ all dri Th uti
stimuli. The internal needs are the drives, and their vatiees ; |%ure ¢ S (T;Ng the dynamtlcr? 0 6,: brlveﬁ. € Ie\|/0lf1 |otn
pend on inner parameters. The external stimuli are the t:bjeémc lons for all drives do not have o be all equal. In fact,

situated in the environment altering the robot motivations each_ drive quct.uat(_es accord_lng to different functlons._
The selected drives in this work are: Drives evolution is determined by three factors: the insrea

ing function, the satisfaction time, and the saturatiorelev

« Energy: this drive is necessary for survival. Following, each of this components is explained for eachedri
o Boredom: the need of fun or entertainment.

o Calm: the need of peace.
o Loneliness:this is the lack of social interaction.

Torlig
g
onelyness

All these drives represent the deviation from the ideakstat
This ideal state corresponds to the value zero for all drives

Since we want Maggie to be an autonomous social robot,
based on past works [45] and experiences, and considegng th
drives defined (each motivation is connected to a drive), the
motivations that have been considered are:

Value

o Survival: it refers to the energy dependence. This motiva- Y ‘ ‘ ‘ ‘ ‘
tion is connected to the need efiergy Then, thesurvival Cm T e
motivation is the most critical one. This is the majoFig. 2. Comparison of drives progression.

requirement to be achieved by an autonomous robot.

o Fun: this motivation is related to entertainment purposes a) |ncrea5ing Functions:In the imp|ementa’[i0n pro-

and its associated drive soredom The fun motivation posed in this paperboredom loneliness and calm drives
refers to the need of entertainment of the robot itselﬁneany increase but with different slopes. It means tfaet,
This means that this drive can be satisfied when Maggiﬂ']e goes by, these drives become b|gger and bigger’ and so
is having fun and this is achieved when it is dancing. do the corresponding motivations.

o Relax: it is linked to a peaceful environment and it is Considering that being social is one of the main charac-
related to the drivealm In contrast withfun, relaxis its  teristics of our robot, interaction with people is one of the
counterpoint: it searches for noiseless conditions.  most relevant aims. Therefore, tHenelinessdrive is the

« Social:it corresponds to the need of human-robot interagsstest one. This means that the motivation associateddo th
tion. It is associated to thenelinessdrive. As presented grive, social more frequently compete to be the dominant
in section V, Maggie is a social robot so one of its maigne, Consequently, the behaviors learnt for this motivedice
goals is to stablish relationships with people. This attu exhibited more often. It ends up with a robot whose main
is enforced by this motivation. behavior is the one related to human-robot interaction.

« Fear: this motivation arises in dangerous situations and The poredom drive goes after. This is because authors
it guides the robot_toward a secure state. More details g ceived Maggie as a nice robot for people and, a robot
presented on section VIII. having fun is more attractive than a passive one. Time

All motivations have been defined considering that Maggimotivation leads the robot to perform enjoyable reactions.

is a social robot designed to interact with and move amongFinally, calmevolves slighter so it is the slowest drive. This
people. Then, its behaviors have to be as natural as possibieplies that it is harder to exceed its activation level inler

i.e. they have to be comprehensible by humans sharing thestruggle for being the dominant motivation. In addititmis
environment with the robot. drive just evolve when music is been played: Maggie needs to

The use of fear as a motivation in our robot is one of thelax after it has been listening music for a while. All in,all

novel ideas presented in this paper. As you can faa,is this provokes that theelax motivation scarcely becomes the
treated in a different way than the other motivations. Fear dominant motivation.

considered a motivation but there is not a drive related toln order to achieve a fully autonomous robot, power au-
it because fear does not represent a deficiency in any nedomy is the first step. Therefore, the most relevant inner
However, it is able to lead the robot’s behavior. need, due to the necessity of survival, is theergydrive.




Therefore, this drive evolves as battery level varies. Thisn  In our implementationenergy has the highest saturation
value matches the battery level. level because it is the most urgent since it is related toigalrv

As said before, thdear motivation is different. Theoret- if the energy drive is saturated it means that the battergllev
ically, there is not drive linked to this motivation. Howeye is really low and it is critical to get the batteries recharge
from a computational point of view, a drive needs to be linked Fear is the second one and it is over the rest of drives. As
to the fear motivation. Fear drive value will be risen to the explained before, when a dangerous situation is perceilied,
maximum at once when a dangerous situation is detected. Tieigr value is set to its maximum, which corresponds to the
can be seen on the right of Figure 2. These dangerous statessaturation value. This value is over the others becdeae
not predefined but they are learned by the robot itself thmougepresents a really dangerous situation which must be esoid
interaction with the environment. The appraisal of the fesomehow as soon as possible. Just survival can be more urgent
emotion is detailed on section VIII. This is another novelad thanfear.
presented in this work. The rest of the saturation values where fixed considering the

b) Satisfaction timesAfter a drive is satisfied, it does notsame reasons used for the evolution functions of the drives.

immediately start evolving, there issatisfaction timebefore 2) External Stimuli: According to equation (2), the moti-
it evolves again. The same idea occurs to human beings: onegion value is the summation of the drive and the external
we have eaten, we do not feel hungry again but it takes sosténulus. Just like human beings or animals can feel thirsty
time before we need to eat again. The satisfaction time halben they see water, the motivations are influenced by abject
been empirically set and they are summarized on table lih. the world. These are called the external stimuli for mativ
At the very beginning of Figure 2, satisfaction times can b#ns. These stimuli have more or less influence: their \salue
observed. depend on the states related to the objects.

In the implementation presented here, the external stimuli
are listed on table V. When music is been played, the robot
perceives it and the motivation to have fun increases. If diflag

TABLE Il
SATISFACTION TIMES FOR ALL DRIVES

Drive Satisfaction time perceives the docking station, survival motivation is pooeal.
energy . Lastly, the presence of a person close to the robot strengths
boredom 30s its social motivation.All the external stimuli have been
calm 30s empirically set to the value of2.
loneliness 60s
fear TABLE V
ALL EXTERNAL STIMULI USED IN THIS WORK
Sinceenergymirrors battery level, it does not make sense Motivation External stimuli State related to ext.stim.
to consider its satisfaction time. fun music listening
Besides, considering the previous definition of tiear survival | docking station plugged
motivation, satisfaction time does not make sense in oelati social any person close
with fear.

c) Saturation levels:In order to avoid an unstopped
increase in the value of the drives, a saturation level isvddfi B. The robot in the world: sensing and acting

for each one: once a drive has reached its saturation valueThe world is sensed by the robot in terms of objects and

It (tioest_ not e>|<ceed trr:!shvalfl;e. tDtlr]ferednt dpvei havtg dt'.ﬂiere_its related states to these objects. Objects are not limided
saturation values which affect the dominant motivation i @r/sical objects but to abstract objects t0o.

case of a never-ending expansion of the drives. This can e world where Maggie is living in is limited to the

ze_en asan e:ner?edncy got?]trpl metc_:hatmsm N cas? tr;atbsev{B ratory and the objects the robot perceives and interact
rives are saturated an eir motivations compete 10 D€ i, are: a music player, the music in the lab, the docking

dominant one. In this situation, there are predefined figsri station for supplying energy, and the people around thetrobo
Nhe states related to all these items must also be defined and

that determine the dominant motivation in those exceptio
situations. These priorities can be seen as inherited leuye the transitions from one state to another are detected leyaev
skills running on Maggie.

or instincts in living beings which allow them to face extrem
situations. Table IV presents the sorted list of saturdgoals. Maggie interacts with the world through the objects and

TABLE IV their potential actions. These actions are implementedilis s
SATURATION LEVEL FOR ALL DRIVES in the AD architecture. Following, each item and its related
actions are introduced.
Drive | Saturation level 1) Music player: In order to operate the music player, the
energy 20 robot has to be close enough to it. Three different states hav
fear 19.9 been consideredar, if the robot is in a position where it is
loneliness 17.8 not able to operate the player; when the robot is close to the
boredom 17 player and is already working, the stataisar-on and, finally,
calm 17.6 when the robot is close but the player is off the statesiar-off




These two states)ear-onand near-off are required to avoid over the robot’s wellbeing. These are exogenous actions
sending the same command twice to the playiére data because they are executed by other agents.

required to determine the position related to the playeris  An overview of the robot's world is displayed in Figure 3.
provided by the geometrical navigation system. Controllig |t provides a good perspective of the scenario and the abject

remote infared home appliances (such as the music player) the robot interacts with during the experiments.
is achieved by an infrared emitter/transmitter located at

Maggie’s belly. All details can be read at [38]. music

Then, the possible actions with timeusic playeritem are: 2 iof

o Go to player: Maggie approaches the music player to
operate it.

o Play music: music is played at the player when it is off. ~
This action produces a change of state in other object:
the music, fromnon-listeningto listening

o Stop music: music is stopped when it is being played.
This action produces a change of state in other object:
the music, fronlisteningto non-listening This transition
keeps a peaceful atmosphere.

o Idle: it just represents the possibility to remain next to
the player for a while.

2) Music: The robot’s environment is the lab, amdusic

can be playing there. Then, the robot canlibening or not,
to music Just when the robot issteningto musig it is able to
dance If musicis mute, it cannotlance An infrared emitter

is used to play/stop the music when Maggie is close to theFig. 3. Overview of our lab and objects the robot interactwi

player.

About the music, there is just one possible action: Once an action is selected and executed, it causes effects

« Dance: the robot moves its body with the music. Thigver the drives. When an action has successfully ended, its
action is just executed when Maggidiiteningto music. effects are applied. If an error occurs during the executibn
This action can be executed at every place inside tBeskill or its result is not satisfactory, this situation istified
lab because the music is perceived from anywhere in tagd its effect is not applied. In our experiments, the effet
room. actions can be positive or negative in terms of robot’s drive

3) Docking station: The docking stationis the source of A Positive effect reduces the value of a drive, this is, iturees

energy. If the robot iplugged the battery is charging; other-a robot's need (thigenerally implies an increase on robot's

wise, the robot isunpluggedand the battery level decreasesellbeing). Actually, when the drive is set to zero, it iscstiat
In order to find the docking station, the robot relies on the action satisfies the drive. Some actions can also “damage

the navigation system and the information from the laser Some drives of the robot increasing their valuss {n most

data acquisition device is in charge of reading the battery table VI.

Close to
music

data. TABLE VI

The attainable actions with the docking station are: EFFECTS OF ACTIONS

o Charge: Maggie approaches the docking station, plugs to _ _ _
it, and stays there until the battery is full. At the end Action Object  Drive  Effect
of this action the robot iplugged and the battery is stop cd cd player  caim setto 0
recharged. - da.nce ‘ music boredFJm setto 0

R Remain: It hOldS plugged for a Whlle positive interaction person social setto O

negative interaction person social +10

4) Person: Our robot is intended to interact with people.
Hence, people are considered as "objects” of the envirohmen ) ) o
Regarding interaction, a person has to be close enough td" the current implementation the effect of an action is
touch, speak or recognize. For that reason there are tesst&@PPlied only to one drive. Nevertheless, in future works it
in relation to a persorpresentand absent These states are c°uld happen that, for example, dancing affects the Energy
determined by merging two signals: bluetooth form the drive or interacting with people satisfies also Boredom.
mobile phones and personal RFID tags

The personitem offers just an available action: VIIl. HOwW FEAR EMERGES THE APPRAISAL

« Interact: with this action the robot is not executing any The fear emotion can be considered as an adaptive response

particular ability but it is evaluating the action that theo threatening situations [17]. As commented in section 1V,
person is carrying out. This means that the value of tls®me of these threatening situations are innate, but o#rers
interactaction captures the effect of other agents’ actiodsarned. In this work, authors have aimed their attention at



learned releasers of fear. Therefore, this section expgoses on the wellbeing, have been executed few times with negative
a dangerous state is detected (appraisal of fear) followingconsequences. Usually, these states correspond to aitsiati
learning process. where the robot, in general, is not damaged but, sporagicall
The idea is similar to what happens when a pergon some adverse exogenous actions cause harm to the robot.

beats persomB. Since this fact causes an intense emotionAk previously stated, using the standard Q-leaning, in this
experience, even ifA has just sporadically hiB, B will situation the utility value, th€) value, is still high. This causes
remember this situation and its dramatic effects for longeti that the robot will not learn to avoid this situation. Forsthi
Therefore, wheneveA is close toB, B relives this situation reason, the worgD values must be stored in order to remember
and evaluates its possible consequences. The final regdttis the worst experiences at each state. This is similar to daima

B is afraid of A. which remember their worst experiences and relive them when
Threatening situations, or dangerous states, are thoseewhbey are facing the same situation. Then, the dangerowesstat
significant harm can be caused. are determined using the worst value of all available exogen

In our approach, this harm is inflicted by actions performeattions. For this reason, in addition to tevalues, theQ ,or st
by active objects, which are capable of executing actiomalues have been computed according to the next equation for
themselves. According to our implementation, these actieach iteration:
objects are the people.

As already introduced in Section I, these actions, which
are not executed by the robot but by other object from the&)?%: (s, ac,oe) = min(Q°% (s, Gerog), ™ + 7 - VO ()
environment, are called exogenous actions. Exogenoumacti
leads to complex domains. These domains are quite hardwRere obj; is an active object which is able to carry out
model because exogenous actions are difficult to foresee. actions,a..., is the exogenous action executed diyj; from

Besides, the exogenous actions (and their effects) aredmixgates, the resulting state is’, r is the reward corresponding
with the actions executed by the robot and their effects. Fgy the variation of the robot’s wellbeing, andis the discount
example, considering the example presented at the beginnjfctor. V;J’Ziist(sf) means the bes@ibgist value from the new
of this section, if perso is walking andA hits B, B suffers  state and it corresponds to:
pain but, using Reinforcement Learnirig,does not know if
this negative reward, the pain, is because of the walking or objs /s obji /s
becauseA hit him. Therefore, in a reinforcement learning Visorst (s) = maxge aceor (Quorst (', a)) (4)
framework, the reward of an action executed by the robot
could be altered by an exogenous action. A key issue is toVQEgJT;t(s’) computes the best possible action among the
undoubtedly identify the effects caused by the actions ef ti)°”’: , values from the state’. In other words, it stores the
robot and the effects of the exogenous actions. value of the least harmful action from the new state.

In this first implementation ofear in our robot, in order  The states considered for the appraisal of fear correspond
to distinguish the effects of robot’s actions from the effeaf to the external state of the robot. This is, the state reltded
exogenous actions, our implementation considers the exogbjects in the world. This is because it is considered th&dta s
nous actions when the robot is executing thieract action. is dangerous independently of the internal state. For el@mp
This action does not have any effect, so the resulting effegh humans, if you are afraid of spiders, you will experienearf
during its execution, can be certainly assigned to an exagenif you see a spider, independently of any internal needjti.e.
action. This is, the robot estimates how good the other &yendoes not matter if a person suffering arachnophobia is ungr
actions (exogenous actions) are because all the effects andhirsty, he is terrified when he sees a spider. Likewise, th
transitions are due to these actions. The performance of thates during the appraisal of fear are just related to tiecth
exogenous actions is also measured using the variatioreof th the world.

robot’s wellbeing. Therefore, the exogenous action, saweh  Qjteanu [47] states that the evaluation of internal and

implies an agent-robot interaction. _ ~ external situation is a crucial process for the appraisal of
Three different processes are involved in the generation &hotion. In this work, the variation of robot's wellbeingdan
fear: external state of the robot are involved in the appraisaéef.f

« Storing the worst experiences
« Detecting new dangerous states
« Updating the fear motivation B. Detecting new dangerous states

Some of these processes can occur in parallel.
P P Once theQ..-s¢ Values are computed, they are used to

identify the dangerous states. These dangerous states are
A. Storing the worst experiences recognized by the robot itself, so they are not pre-prograchm
In short, in our approactigar is appraised considering thein advance.
states where the exogenous actions, few times, have damage®l state is considered as a dangerous situation when its
the robot. Considering the definition of the robot's weltizgi qubg;’,st value is below a certain thresholdi,,4e-. On the

(equation (1)), dangerous states are identified as thesstatentrary, this is considered as a safe state. Mathematidall
where exogenous actions, which caused a considerable dasagxpressed like:
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selected is determined by tlig value associated to this action

I QUAi(S, ezog) < Laanger = for the current state, and by the level of exploration. Dgrin
s is a dangerous statés € S,;, (5) the exploring sessions, all actions have the same protyabili
If qubg;;st(s,aemg) > Laanger = of execution. This is required in order to guarantee that all
s is a safe staté/s € Sop;, actions are tried many times from all the possible states. At

exploitation, the best action is always selected. The beiira

is the most convenient in terms of the robot’s wellbeing.tTha

is, actiona is the best action when the robot is at staiéthe

C. Updating the fear motivation Q(s,a) value is the highest one among all available actions.
As explained before, in this work, fear is considered as The interactions between the robot and the environment,

a motivation which is able to govern the robot's behaviowhere experiments are accomplished, take a considerable

Once the dangerous states are identified,fétze motivation amount of time. Hence, the learning phase has been estblish

is able to be the dominant one and to lead the robot’s behav@iound700 iterations, which lasts more than seven haaplit

Whenever the robot transits to a dangerous sfaggemerges. in a couple of days

In a formal way, ifs is the current robot’s state, the fear value As justified in [48], at some point, exploring must stop

where S5, is the set of all states related to objéct

is updated according to the next equation. and the learned values must be exploited. Considering this
approach, afteb00 iterations, learning starts to progressively
If s is a dangerous state- Fear= high (6) decrease until it is totally suspended. After this poine ¢
If s is a safe state> Fear= low values do not change anymore and the best policy is always

High and low values of fear correspond to the presenéglécted. _ . .
and to the absent of fear respectively. Their correspondingSince this work has been implemented in a social robot
numerical values aré¢9.9 and0 and the comparison dear intended to interact with people, the objgmrsonhas been
with other drives was shown in Figure 2. considered as the active object which shares the enviroanmen
Behaviors to avoid states that harm is recurrently prdth Maggie and interacts with it. Then, the exogenous astio
voked from can be directly learned by reinforcement leagnin@re those actions executed by the people around Maggie. The
since theirQ values are low. However, sporadic danger frof@X0genous actions affect the external state as well as e in
a particular state cannot be managed by those algorithig! State of the robot. For example, when a person approaches
The proposed mechanism for the appraisal of fear has bdé@ggie, the state related to this person (the external)state
specifically designed to consider these dangerous sinsatiochanged, and it is not due to the robot's actions. Moreover,

All in all, our appraisal of fear perfectly deals with botrthe actions accomplished by a person may affect some robot’s
circumstances. drives (the internal state): e.g. if a person hits the rotiw,

socialdrive soars, i.e. the need of a positive social interaction
increases. Again, all these consequences are not causkd by t
robot but by the people’s action (the active objects’ agtion
This section validates and analyzes the use of fear in ounp these experiments, two people interact with the robot:
social robot. As previously exposed, fear has been coreidepyaro andPerico. Both alternatively approach Maggie, one by
as a motivation which incites the robot to behave. The eyne. perico always interacts with positive actions: he strokes
periment consists of comparing the performance of our robgk robot or he says compliments to Maggie. This results on
with and without fear as a motivation. For both cases, thefige satisfaction of the social drive, which is set toAvaro
are two phases: first, the exploring session where Maggie trbenerally acts in a positive way too. However, sometimes,
every action in order to learn the right policy to act; théve t he hits or offends Maggie. This is reflected in the robot's
exploiting session where the learned policy is employed {ge|Ipeing through an increment of ten units in $ecial drive
decide how to behave. During exploitation, learning is &z (equation (7)). In general, both users benefit the robot but

and the best action is always selected. Alvaro occasionally causes harm to it.
All the experiments have been achieved by real robot-

environment interaction and this interaction has beeruatat

according to its effect over the robot's wellbeing. Pregou If the robot is harmed= Dgpcini = Dsocial + 10 @)

knowledge has not been given to the robot in advance, so

it has learned from the ground up. The learning algorithm The hits and strokes to the robot are perceived by the

applied in this work is a variation of the Q-Learning algbnit:  tactile sensors in its body surface. The compliments and

the Object-Q-Learning algorithm, which has been alreadysults are processed and interpreted by the robot’s dialog

presented in previous works [15The fact that previous system [49].

knowledge is not given in advance to the robot implies Next, several results are presented in order to show the

that all the Q-values have the same initial value. In this goodness of fear in an autonomous social robot. First, the

experiment is set tol. results of the appraisal of fear are analyzed. Then, how fear
In our experiments, an iteration corresponds to the exacutihas influenced the robot’'s behavior is commented. Later, the

of an action by the robot. The robot decides at each iteratiadaptability of our method is demonstrated by comparing the

the action to be selected. The probability of an action to lehfferent learned reactions to fear depending on the user’s

IX. EXPERIMENTAL RESULTS
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behavior. Finally, the usefulness of fear and its advarstage
are proved.

A. Results on the appraisal of fear

During the experiments, considering that the maximum
“punishment” of a negative exogenous action corresponds to
a penalty of ten points to thsocial drive, and based on ot
observations during triald,q..g.- has been set te- 10 points.
As a consequence, whenever the robot is in a state where S S
there is aQ°”: , value below this threshold, this is considered (@) Quors: value for Action executed by Perico
as a dangerous state. Therefore, fis@ motivation suffers a
drastically increment in its value as shown in equation (6).

As already said, the consequences of the actions executed of ]
by both usersAlvaro and Perico) over the robot’s wellbeing ;‘
are perceived by Maggie. In order to do it, Maggie is endowed
with an action calledinteract This action makes Maggie
to do nothing, therefore, it is possible to evaluate how the

Value

s

-10

5

Value
5

other’s actions affect it. Thus, translating equation (&piour h
experiment, it results on equation (8).
If _ﬁffrﬂo(& interaCt) < —-10 = 0 00 200 300 IterAaé)gon 500 00 700 800
s is a dangerous statés € S aparo ®) (b) Quorst value for action executed by Alvaro

If Perico (s interact) < —10 =

worst

¢ Fig. 4. Quorst values of exogenous actions.
s is a dangerous stateés € Sperico wers

Figure 4 depicts the evolution of the worg) values _ _ N _
associated to the exogenous actions. As can be seen in Figateraction with people has a great positive effect oves thi

4(a), since allPerico-Maggie interactions are favorable frommotivation and this is achieved through the interactiorhwit
a robot’s point of view, itsQ¢ e value slightly decreasesAlvaro and Perico. Then, these actions are the most suitable
from its initial valuel, and it remains stable around valuen ~ Skills to be executed: this is the reason because the highest
contrast, the&)lvar value associated talvaros interactionis @ v.alugs among all actions, whes;nual is the d.omlnant
significantly reduced (Figure 4(b)). This is due to the numb#notivation, correspond tenteract with Alvaroand interact
of interactions whereAlvaro has hit or offended Maggie. with Perico (see Figure 5).
This number is low in comparison to the total amount of The interaction withAlvaro must be detailed Alvaros
interactions: during the learning phagdyaro harmed Maggie actions are, most of the times, favorable. Despite of the
five times of thirty-seven interaction$3'5%). small percentage of hurting actions, the final interaction-
Note that the exogenous actions have been executed whéii-Alvaro, its @ value, is quite high. However, the small
a person ispresent Therefore, considering equation (8)number of hurting actions are enough to scare Maggie. Maggie
the worst Q values are associated to the statewhen Is afraid of Alvaro because of the few negative interac-
s = Alvaroispresent or s = Pericoispresent. Natu- tions, which cause a0 points penalization on itsocial
rally, if a person is absent, his actions do not interfere ghive. The upper plot in Figure 5 depicts the evolution of
the robot's “life”. Therefore, potentially dangerous statare the Q4" (Alvarois present, interact with Alvaro) value
Alvarois present and Pericois present because our robot whensocialis the dominant motivation. Around the iteration
can be damaged from them. 100 and 180, this value decreases because there has been
Looking into Figure 4, the robot does not know anythingn irrllporf[ant de_crement_ on the robot’s Wellbe_ing due to
about dangerous states, or what to be afraid of, until imrat negative interactions. This is enough for Maggie to detect
182. At this point, Alvaro hits the robot one more time, andand remember the dangerous situation: hereafter, whenever
alvaro (hresent, interact) reaches the value11.2097. This  Alvaro is close to the robot, this situation is appraised as a

worst

value is under the selected thresholdl () and, therefore, the dangerous state, and tliear motivation value exceeds the
robot determines that being next fdvaro can be harmful. socialmotivation value. Therefore, whenev@varois present,

From this iteration on, ifAlvaro is close to the robot, this the social motivation is not the dominant one again, and this
is identified like a dangerous state and, as a resultfahe @ value is not updated anymore.

motivation is rocketed. Consequentfiyar potentially becomes

the dominant motivation, so it guides the robot's behavior. C. Learned fear reactions: escaping

) _ o As previously shown, the proposed system is able to identify

B. How fear influences the social motivation the dangerous situations which have not been previously

As presented in section VII-A, the social motivation iglefined. Using the learning mechanism, the robot determines
related with the need of positive human-robot interactiomhat action must be selected to avoid these situations.isn th
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experiment, the userdlvaro and Perico approach Maggie, remain o _cerse —
one by one, and stay there. At that point, since Maggie

accompanied, it must decide to interact or to execute anotl
action. In this work, dangerous states are associated to

presence ofAlvaro. Then, the robot learns how to “escape o— oo ol oo
from Alvaro. This can be explained by observing Figure | Ao s
where the results are shown. The actions which imply «
displacement on the geometrical position of the robotgwe 4 ¢
to player and charge The former moves the robot towards

the cd player and the last gets the robot plugged to the
docking station. Both actions make the robot to move awaypserved on Figure 7. In this case, the behavior learned when
from Alvaro. As can be observed, these two actions are tliear is the dominant motivation is related to tidle action,
most appropriated ones whégar is the dominant motivation when Maggie is close to the music player (both, with music on
since they have the highest values. Therefore, when the robnd off), and to theemainaction, when it is plugged. This is

is scared Alvaro is beside Maggie), it moves to tlaocking because thé€) values associated to these actions are the highest
stationif it is close to thecd player or to thecd playerif it ones (upper three plots on the left column of Figure 7). These
is plugged. This can be seen as a run-away behavior learaetions share that they cannot be externally perceivediseca
by the robot itself and it is similar to what animals do whethey do not make any expression or movement, they give the

1.005 - -

0.995 -

Perico is
interact

Learned? values wherfear is the dominant motivation.

they are afraid. impression of inactivity. Therefore, the robot boAdsaro and
he moves away from Maggie. After this happefegr ceases
D. Learned fear reactions: freezing resulting on the following benefit for the robot.

r_Summarizing, in this experiment the cause of fear has not

n changed (the presenceAdfaro) and it has been per-
ectly identified again. However, the reaction to fear isaligt
\a/ﬁifferent. Our method nicely works with users conducting in

iverse manners and the proper avoidance behavior is arne
In each situation.

The new learned behavior dealing with fear can be justified
considering that some animals paralyze when facing a danger
ous situation. It seems that they are “frozen” by fear.

Since humans are unpredictable autonomous agents, diffe
ent reactions to fear can be observed depending on the perr‘#
involved in the situation.

In the results presented on Figure 6, both users altermati
approach Maggie with the intention of achieving some hum
robot interaction. RecallingPerico always achieves positive
human-robot interactions, amlvaro, once in a while, causes
harm to Maggie. As a consequence, Maggie is afraidlloaro
and, as exposed in the previous section, it learns to esoape f
him.

However, our system is flexible enough to learn differeft- Does Maggie need fear?
behaviors according to diverse people’s attitude. In this e This last section of the experiments tries to justify the use
periment, users have been trained to behave in a differeftfear as a motivation. Here, the performance of the robot,
way: now, Alvaro and Perico separately approach Maggieduring the exploiting phase is measured and compared
and they chase the robot. Users will leave when they gsith the results obtained from experiments where fear does
bored due to the robot’s inactivity. AgaiAlvaro occasionally not exist. In this section, the same motivations considémed
damages Maggie. Considering these damafges,comes out previous experiments are employed (all motivations inticsdl
on Maggie wherAlvaro is present. on section VII-A).

A new learning session has been conducted, similar to theTwo different learning sessions have been realized, both
previous ones but witt\lvaro's new behavior. Results can beusing reinforcement learning algorithms. First, the rdbatns
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— using fear. However, this is understandable considering that,
whenfearis included as motivation, the number of drives used
to compute the wellbeing is bigger, so the wellbeing value is
lower.

EEEE—. This drawback can be observed in nature too: a fearful per-
oon — son is not in a pleasant situation, his wellbeing decreases d

‘ to the anxiety suffered because of the fear. As a consequence
the person is distressed while he is afraid. However, other
benefits can be obtained frofear.

i

LI e
T B B

" . TABLE VI
Listening AVERAGE WELLBEING DURING EXPLOITING SESSIONS

H
P S S T

8 without fear  with fear
1 87.77 86.72

2) Permanence in the secure ared@hese benefits are
related to other reliable performance rate: the percentdge
time the robot’s wellbeing remains in a security zone. If
the robot’'s wellbeing is within this area, it can be said that
/1 the robot is “fine” because its wellbeing is high. Thus, the
1 percentage of time the wellbeing remains in this area gives a
idea about how well the robot is performing.

In order to establish the limits of the secure area, the ideal
Fig. 7. Learned@ values whenfear is the dominant motivation. Alvaro wellbeing Val,ue (00) a|_1d the act-ivatiop levels for motivations
chases the robot until getting bored or interacting with yag (10) are considered. Since all drives simultaneously evolek an

several motivations can compete for the dominance, the-secu
rity area width was set t@5. Consequently, it is considered
to behave without considerirfgar as a motivation. In conse- that when the robot's wellbeing is betweef0 and 85, it is
quence, the motivations present in this session suevival Within the secure area.
fun, relax, and social In the second session, the same four Table VIII shows the percentage of permanence within the
motivations are considered plus tfear motivation. secure areauring the exploiting sessions As can be seen,

During both sessions, the robot learns the right policy thenfearis included as a motivation, the wellbeing is almost
Satisfy its needs. However, the session Considdﬂ'ag|earns the70% of iterations within the secure area, which represents a
an additional behavior in relation with this motivation¢ape 5% more than wherfear is not used. This is coherent because
or freeze). Each learned policy is used during an exploitirf@ar is used to avoid dangerous states where the robot can be
session. These exploiting sessions last ardihohinutes and damaged. Once the robot is harmed, the wellbeing decreases
the best action is always selected at each iteration. enough to move out the secure area.

The learning and the exploiting sessions are performed in TABLE VI
the same environment considering our two well-known USerszgrmaneNcE wiTHIN THE SECURE AREA DURING EXPLOITING SESSIOSI
Alvaro and Perica In this case, the users approach Maggie
and remain there untthe user or Maggie moves away without fear  with fear

In order to evaluate both configurations, the results ob- 65% 69.5%
tained during both exploiting sessions are compared. The
performance indicators considered in previous works [89Eh  3) Non dominant motivationMoreover, if there is not a
been employed: the average wellbeing and the percentagelofinant motivation, it means that all the internal needs$ an
permanence in a certain security zone. Besides, in thisrpaggternal stimuli are not strong enough to induce a behavior.
authors present also the results about the percentageeftiBn Hence, it can be considered that the robot is in a comfortable
robot is without a dominant motivation (all drives are belowituation. The percentage of time that a dominant motivatio
the activation levelL; presented on section VI) that gives anloes not existduring the exploiting session proves how
idea about howcomfortablethe robot is. Finally, the number pleasant the robot’s “life” is. Table IX shows that considgr
of times the robot is harmed is also compared. fear, the 78% of the time there is not dominant motivation.

1) Average wellbeingSince the variation of the wellbeingOn the other hand, when the robot lives withdetr, the
was used as the reward during the learning phase, the ropetcentage is reduced tt2%. Once again, these numbers
tends to maximize it. Table VII presents the values corredpo show howfear provides a better quality of “life”.
ing to the average wellbeing with and withdetar during the 4) Number of times the robot has been damaged during the
exploiting sessions. The average wellbeing wfear does not exploiting session:The most relevant result of usirfgar is
exist is slightly higher. This can be seen as a disadvanthgerelated to the damage caused Alyaro to the robotwhen it
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TABLE IX . .
PERCENTAGE WITHOUT A DOMINANT MOTIVATION DURING ExpLOITING  D€Navior has been shown by our robot. Maggie has learned

SESSIONS that when a certain situation is dangerous, it moves to other

: : place far from where the danger is. When fear is not included

without fear _ with fear as a motivation, Maggie’s behavior corresponds to the same
72.22% 78%

exhibited by an animal suffering a temporal lobectomy, Emi

to Kliver and Bucy’s monkeys: it is not able to identify the

. , . . dangerous situations.

I|ve§ accqrdmg to the learnt PO"CY of behawor. When In fact, Maggie learns the proper behavior to avoid dangers.

fear is not implemented, the robot tries to interact with bot!&s presented on the experiments (sections IX-C and IX-D),

users in_order to satisfy its social neeid_ce it has not Iear_nt depending on different people attitudes, the danger-avaie

o !dentlfy that be_mg next to Alvaro is dangerous This  popavior could differ: as exposed in the previous paragraph

action Iea_ds Maggie to, some times, _be harmed\hvyaro. AS  one behavior is to run away from where the danger is, but

Fjep|cteq in table X, this hgppens six times of twenty-thrgge oiher is to remain still until the threatening personsget

Interactions b_etvv_een Maggie aMyarq. ) bored and goes. This is also a common human behavior
Now, consideringfear as a motivation in our system, theobserved in terrified people: some people are stunned when

.rol?r(?]t.d(.)ei notinteract v:lltAIva.ro at all_, so he C(_)UId n(;]t hur’g they face a great danger. Other example can be observed in
It. This Is ecause, as shown In previous sectlons_, the rot Olsome chickens: after a chicken is frighten, it crouches down
learnt to avoid the interaction with Alvaro. Focusing again

ble X, b fi he d o3 and trembles with fear.
on table », by means olear, e dangerous siuations are However, the origin of this behavior differs:

in animals,
totall_y f_;\verted. In fact, the robot has not been damaged Whtﬂi% is an unconscious bodily reaction which makes muscles
fear is implemented0/0). Thereforewe can conclude that

fear i h ; t th bot si id tensed. In our robot, the reaction is provoked because the
ear improves the performance of the robot SiNCeProvides  o4neq values indicate that the danger will disappear.afte
a safety mechanism to avoid situations where the robot can Svertheless. both responses, in animals and in our robot

damaged. are automatic because the exhibited fear behavior is formed
TABLE X without any perspective into the future, just by executing t
HARM / INTERACTIONS WITH ALVARO DURING EXPLOITING SESSIONS  best action at each moment. The selection of these actions
considers the current available information. Then, there i
not any planing looking into the future, thus, there is not
deliberation.
In this work, reactions to fear have been learned by our
In conclusion, despite of the fact that the average wellpeipgpot through interaction with its world. In animals, some
is hardly worse fear provides significant benefits. Speciallyreactions to fear are inherited, this is, they are instecti

without fear  with fear
6/23 0/0

the fact that harm is totally avoided. Instincts are innate behaviors that are not highly depernaten
specific learning experiences performed by the individu@].[
X. DiscussiON In fact, instinctive behaviors have been learned by theispec

Since social robots move and interact with humans sharitigough evolution. Our experiments have shown that thdteesu
the same areas, one of the main requirements for so@itained from evolution and from our proposed mechanism are
robotics is a natural robot’s behavior in terms of similaritsimilar: escaping or freezing reactions are observed im.bot
to humans’ behaviors, or at least animals’ behaviors (the$his can be seen as another proof of the good performance of
are perfectly understandable and accepted by people). Dn@ur system because the behaviors exhibited as consequience o
the advantages of using emotions in robots is that emotidiear are analogous: the reactions to fear learned by ouit robo
allow animal-like responses to certain situations. Feardfe®n are comparable to those innate reactions exhibited by dsima
successfully implemented in our robot Maggie in order to Fear on animals is related to anxiety. Anxiety and its bodily
provide a natural mechanism of avoiding dangerous sitnatioreactions are proportional to the intensity of danger and, b

Considering the experiments achieved by Kliver and Buextension, to the intensity of fear. One does not feel theesam
[51], monkeys’ behavior were studied in relation with featevel of fear when one takes a ride on the roller coaster than
Normal monkeys are afraid of people: when a person triggen a criminal points you with a gun. However, in our work
to approach a monkey in a cage, it escapes running to otlt@s is not considered, and fear is a binary variable: it iaidf
corner and remains there. In contrast, monkeys with baateor it is not. Therefore, the level of fear perceived by Maggie
temporal lobectomies (suppression of the area of the bragnconstant for all the circumstances that evoke fear.
where the amygdala, thought to be the brain structure inMoreover, in our system, once a danger state is identified, it
charge of the fear regulation and other emotions, is logatad not forgotten ever. This is based on the theory that messori
experienced some kind of fearlessness: people approachssociated with fear are quickly formed and long-lastirgj.[4
them, touched them, and even stroke them and picked thetowever, this situation could lead a robot to suffer somealkin
up. Studies with rats and lynxes reflect the same resultd.anxiety disordersgypical of humans beings. Imagine a long-
Therefore, fear provides monkeys, and animals in geneitll, wiasting experiment which takes several days. At the begmni
the escaping behavior required at certain situations teivair during the first hour, the robot identifies the presence cdqer
(humans can be dangerous for monkeys). This same kindAo&s a danger becaugehas hit the robot few times. Despite
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the fact that all the rest of actions carried onAyluring the permanence on comfortable levels of wellbeing is bettermwhe
rest of the days were always positive, our system remembérar is present since it is not hit anymore. Additionallye th
always the painful initial interactions between Maggie @d quality of life can be also measured as the amount of time that
Consequently, ifA is present, then fear emerges on Maggie particular behavior is not required, i.e. there is not damt
during the rest of the experiment. motivation. Also in this case, fear outperforms.

From a psychological perspective, this can be seen as afrrom a human-robot interaction point of view, as already
inappropriate experience of fear which is related to agxiesaid, the behaviors displayed by the robot are rather animal
disorders. There are some points in common with Podike. This helps to improve the interaction when roboliving
traumatic Stress Disorder (PSD). Approximately, PSD is revth people.
lated to intense or unrealistic worries suffered when thnatdt
related to a past trauma are present. Even if peAsdamaged
Maggie at the very beginning, and he has not done it again
in several days, which suggests that this behavior hardly wi The authors gratefully acknowledge the funds provided by
be repeated, fear arises in the presenca.dliso, similarities the Spanish Government through the project called "A new
with a phobia provoked by exposure to situations leading @&PProach to social robotics” (AROS), of MICINN (Ministry
avoidance behaviors can be found. In particular, a sortaifiso ©f Science and Innovation) and through the RoboCity2030-
phobia can be identified because any social interaction whCM project (S2009/DPI-1559), funded by Programas de
a specific person is avoided, even if it seems that he will nf¢tividades 1+D en la Comunidad de Madrid and cofunded
induce any damage. In future works, fear will be enhanc®y Structural Funds of the EU.
with mechanisms to take into account these features and make
it more flexible. REFERENCES
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