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Abstract

Apraxia of speech is a motor speech disorder in which messages from the

brain to the mouth are disrupted, resulting in an inability for moving lips or

tongue to the right place to pronounce sounds correctly. Current therapies for

this condition involve a therapist that in one-on-one sessions conducts the ex-

ercises. Our aim is to work in the line of robotic therapies in which a robot is

able to perform partially or autonomously a therapy session, endowing a social

robot with the ability of assisting therapists in apraxia of speech rehabilitation

exercises. Therefore, we integrate computer vision and machine learning tech-

niques to detect the mouth pose of the user and, on top of that, our social robot

performs autonomously the different steps of the therapy using multimodal in-

teraction.

Keywords: Apraxia of Speech, Social Robotics, Robotic Therapy, Machine

Learning, Face Recognition, Human-Robot Interaction

1. Introduction

Apraxia Of Speech (AOS) is a neurological disorder that causes that mes-

sages from the brain to the mouth are disrupted, and the person cannot move

his/her lips or tongue to say sounds properly. This condition is caused by a
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damage in the left hemisphere of the brain generated by strokes, Alzheimer’s5

or brain traumas, among others. The severity of the apraxia depends on the

nature of the brain damage. AOS is also known as acquired apraxia of speech,

verbal apraxia, and dyspraxia [1].

The focus of intervention is on improving the planning, sequencing, and co-

ordination of muscle movements for speech production. The muscles of speech10

often need to be “retrained” to produce sounds correctly and sequence sounds

into words. Exercises are designed to allow the person to repeat sounds over

and over and to practice correct mouth movements for sounds [2]. Currently,

there are three different interventions for AOS rehabilitation: (i) Intervention

based on motor control: these exercises consist of producing phonemes and15

sequences of phonemes through accurate, controlled and concious movements.

The aim of these therapies is to automate such movements to be subsequently

performed unwittingly; (ii) Intervention based on augmented systems: these

methods include several input channels to improve the therapy results. Au-

dio and images are traditionally mixed to help remembering how to pronounce20

difficult and long words; and (iii) Interventions based on melodies: these ther-

apies are adopted in patients that preserve an auditive comprehension of the

language. In these cases, the patient has to imitate different melodies proposed

that remark the stressed syllables of the wards, establishing the rhythm of the

melodies [3]. These interventions are frequently planned as intensive, one-on-25

one speech-language therapy sessions for both children and adults. Thus, the

repetitive exercises and personal attention needed to improve AOS are difficult

to deliver in group therapy [4].

In recent years, robots are gaining popularity in rehabilitation therapies,

mainly in traumatology, where the robot holds the user’s weight or helps moving30

a determined limb. Robots have proved to be effective in assisting the therapist

to provide safe and intensive rehabilitation training for the stroke subjects. Nev-

ertheless, in the general setting of these systems, a therapist is still responsible

for the non-physical interaction and observation of the patient by maintaining a

supervisory role of the training, while the robot carries out the actual physical35
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interaction with the patient. In most applications, rehabilitation robots have

been mainly employed in lower and upper limbs therapy [5, 6, 7, 8].

Rehabilitation using robotics is generally well tolerated by patients, and has

been found to be an effective adjunct to therapy in individuals suffering from

motor impairments, especially due to stroke. Therefore, we believe that robotics40

can be introduced to other rehabilitation areas such as AOS. To the extent of

our knowledge, this proposal is innovative as robotic technologies have not been

applied to this field so far. We propose following the first kind of intervention

presented in this section in which the user repeats exercises to practice mouth

movements, in our case, we take inspiration from mouth poses associated to the45

five vowels in the Spanish tongue. Here, “a” is pronounced like the “a” in the

word “father” (/a/); “e” is pronounced like the “a” in the word “date’ (/e/),

except that it is shorter and crisper; “i” is pronounced like the “ee” in the word

“see” (/i/); “o” is pronounced like the “o” in the word “no”(/o/); and “u” is

pronounced like the “e” in the word “new”(/u/). Thus, we propose using some50

of these sounds because their pronunciation imply different poses of the mouth,

associated to a range of muscular movements.

We believe that a social robot could help in AOS therapy offering a new

and eye-catching way of assisting in the exercises. The robot adds to the ther-

apy some new resources such as a screen to stimulate the patient, offering a55

visual reinforcement to the exercises. Additionally, the Human-Robot Interac-

tion (HRI) capabilities of a social robot could enhance the traditional therapy,

maximizing the human resources whilst keeping a personalized treatment. That

is, a therapists could take care of more patients having robots develop parts of

the treatments.60

We propose using Machine Learning techniques for vowel pose recognition

and identification. The input information is collected by an RGB-D device, a

Microsoft KinectTM, and with this information the system obtains mouth poses

which are used in the exercises to guide the users. Interaction is performed

through a multimodal system that integrates body expressions, voice interaction65

as well as a Graphical User Interface (GUI), all of these modalities are developed
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to give instructions to the patient as well as encourage him/her during the

exercise.

The rest of this manuscript is structured as follows: Section 2 provides the

insights of current therapies for AOS, presents new robotic developments for70

physical therapy and cognitive rehabilitation and analyses some face detection

and classification techniques related to our approach. Next, Section 3 presents

the details of our proposal, describing its main phases. Section 4 present the

experiments conducted to validate our work along with the robotic platform, the

social robot Mini, and the metrics for evaluating the approach. This section also75

present the preliminary results from integrating and testing the AOS exercises

in the social robot. Finally, Section 5 analyses the main contributions or our

work and draws the main conclusions.

2. Related Work

The ability of speech is commonly affected after suffering Alzheimer’s, de-80

mentia or a stroke. Traditional speech therapies focus on mitigating this prob-

lem in case of cognitive impairment, or rehabilitating in case of cerebrovascular

accidents. The recovery time in these cases is around three years [9] in which

speech therapy yield positive results in most cases. Apart from this line of ther-

apy, there are others such as music therapy that are usually applied to patients85

with neurological problems, generally elders. In the case of music, the therapy

consists of patients emitting singing and emitting sounds from given melodies

in order to improve pitch, variability and intelligibility of speech [10]. Sacks and

Tomatino [11] demonstrated that music therapy helps reorganizing the brain

function in patients with brain alterations.90

Apart from traditional therapies, technology is being incorporated to health

environments. More precisely, robotics is gaining importance, mainly in the

fields of physical therapy and cognitive rehabilitation. In these cases, exercises

are supervised by therapists who are in charge of selecting the tasks to perform

and monitor the procedure [12]. The robot Paro is a good example of the ap-95
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plication of robots in cognitive therapy. It imitates a baby harp seal and has

been used in therapy with elder people with dementia, increasing the willingness

of patients to communicate and a steady increase in physical interaction, not

only between patients and the robot but among patients as well [13, 14]. An-

other robotic platform used in cognitive therapy is Babyloid, a baby-like robot100

designed to be taken care of [15]. This robot is intended for recreational ther-

apy in which the robot becomes a pet instead of an animal. These proposals

are mainly intended for interaction with elderly people with moderate cognitive

impairments.

Other robotic platforms provide a higher degree of interaction in therapies105

with people mild cognitive problems. This is the case of Eldertoy [16], a robot

developed to achieve both entertaining and gerontological capabilities. This

robot offers different interaction channels to communicate with users: gestures,

voice, touch-screen, and external actuators. Therapy with this robot is con-

ceived through manipulation and display multimedia content. Therefore ther-110

apy specialists are furnished with a tool able to run games by using the sensors

integrated in the platform. The robot Mini is another proposal for therapy with

elders in early stages of Alzheimer’s or dementia [17, 18]. Mini is a plush-like

desktop robot that offers functionalities related to safety, personal assistance,

entertainment and stimulation. In this work, we aim to extend the capabilities115

of Mini to conduct speech therapy. More details about the robot design and

features can be found in Section 3.

Another research area integrated in our work is Computer Vision. The

literature offers several approaches for face detection and recognition [19, 20].

Applications range from people recognition [21], surveillance [22] to emotion de-120

tection and regulation [23, 24]. Although there are several techniques to retrieve

facial features, this problem is still challenging since most of the approaches are

highly dependent on the face orientation. In this work we have integrated Stasm,

an Active Shape Model-based approach coupled to a Support Vector Machine

(SVM) classifier that retrieves facial features [20]. Out of these features, the125
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Figure 1: Proposed approach pipeline. The upper path corresponds to the offline analysis for

assessing the best classifier. The lower path corresponds to the software running in the robot

with the speech therapy exercise.

user’s mouth is represented with 18 3D points, which will be the input for the

machine learning algorithm.

Apart from detecting the mouth, recognizing the mouth pose is crucial to

have an algorithm that can be integrated into a speech therapy application.

Machine Learning have been widely applied in face recognition and recognition130

of facial expressions [25, 26]. Within the number of techniques, SVM, Adaboost,

Linear Discriminant Analysis or, more recently, Deep Learning [27], among oth-

ers, try to cope with known problems such as different poses, illumination, ages

and occlusions that nowadays still pose a challenge. In our work we test several

classifiers integrated within Sci-Kit learn [28], an open source machine learning135

library written in Python language. It provides features classification, regression

and clustering algorithms.

3. Materials and Methods

This section presents the details of the proposed approach that allows a social

robot, equipped with a 3D camera, to conduct an AOS exercise autonomously.140

Figure 1 shows the main steps of our proposal, which is roughly divided into two

operation modes. First, we need to asses the classifier that performs best for

our kind of data. In this process we acquire information from users, pre-process

it and train a set of classifiers to select the best-performing one. This classifier
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Figure 2: Mouth detection pipeline using Stasm.

is used next online, thus integrated in the robotic platform where the speech145

therapy application uses the mouth pose detected to conduct the exercises. Note

that the four first steps are the same in both approaches.

3.1. Mouth Detection from RGB-D data

The system described here uses a Microsoft KinectTM, which provides RGB

images and depth data synchronized both in terms of time and field of view.150

After information acquisition is performed, the system extracts face features

in 2D using the Open Source library Stasm [20]. Then, those features are

translated into 3D points which are finally classified to recognize the mouth

pose (see Fig. 2).

The mouth detection process is composed by two main steps. Data ac-155

quisition is performed through a middleware specifically designed to work with
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RGB-D devices, OpenNI 1. Two information flows are generated from the Kinect

device: an RGB image stream and a point cloud containing depth information.

Next, the system processes the RGB data to identify the mouth within a de-

tected face using Stasm. This library characterizes a face with 77 points of160

which 18 belong to the mouth. These points are next matched to the depth in-

formation from the camera and formatted to be used in the next phase, mouth

poses classification. A more detailed description of the mouth detection system

can be found in a previous work [29].

3.2. Machine Learning tools for Mouth Pose Classification165

In our approach for mouth pose recognition we aim to test a series of classifi-

cation techniques integrated within Scikit-Learn [28]. For the classifier selection

we take as a starting point a previous work [29] in which mouth detection

was evaluated using WEKA [30], a well known data mining tool that allows

pre-processing, classification, regression, clustering, association rules, and visu-170

alization of data. In this case, we wanted to take the study one step further

and integrate the best-performing classifier in our robotic platform (WEKA

was not directly integrated within the framerowk ROS). Thus, we compared

the performance of the following classifiers:

• k-Nearest neighbours (k -NN) is a non-parametric method used for175

classification and regression in which the input consists of the k closest

training examples in a feature space [31]. In our problem, the output is a

mouth pose where a sample is classified by a majority vote of its neighbours

with the object being assigned to the most common class among its k

nearest neighbours180

• Support Vector Machine is a supervised learning technique for classi-

fication and regression that builds a hyperplane or set of hyperplanes in a

high- or infinite-dimensional space [32]. An SVM can perform linear and

1OpenNI website: http://openni.ru/
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non-linear classification mapping the inputs into high-dimensional feature

spaces.185

• C4.5 is an algorithm that generates a decision tree from a set of train-

ing data using the concept of information entropy [33]. At each node of

the tree, the algorithm chooses the attribute of the data that most effec-

tively splits the set of samples into subsets enriched in one of the classes.

The splitting criterion is the normalized information gain (difference in190

entropy).

• Random Forest is an ensemble learning method for classification and

regression that construct multiple decision trees at training time and out-

puts the class that corresponds to the mode of the possible classes (mouth

poses). An advantage of Random Forest is that this technique mitigates195

the overfitting problem caused by traditional decision trees [34].

3.3. Assessing the best classifier: Offline analysis

Before addressing the logic of the speech therapy exercise, it was necessary

establishing which classifier offered better performance with our input data.

This operation mode, depicted in the upper path of Figure 1, starts with a200

Data Acquisition phase in which the RGB-D device provides colour images and

Point Clouds with the 3D representation of the scene. The next step, Mouth

Detection works as described in Section 3.1, using Stasm to generate a 3D array

of 18 points corresponding to the mouth detected in the input data.

Since the head position in the image varies as the user moves, it is important205

to normalize the data to establish a common frame for reference. Thus, the

Normalization step computes the centroid of the mouth, setting it as the origin

of coordinates for the 18 points (see Equations 1, 2 and 3). Each one of these

points is defined by its < x, y, z > components and therefore the normalization
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for each of them is calculated with respect to the centroid as shown in Equations210

4, 5 and 6.

xcentroid =
1

18

18∑
1

xi (1)

ycentroid =
1

18

18∑
1

yi (2)

zcentroid =
1

18

18∑
1

zi (3)

xiNormalized
= xi − xcentroid ∀i ∈ [1, 18] (4)

yiNormalized
= yi − ycentroid ∀i ∈ [1, 18] (5)

ziNormalized
= zi − zcentroid ∀i ∈ [1, 18] (6)

These normalized points are formatted in tuples for the classifier. Each tuple

composed by 54 values plus the class for each pose recorded. After the data is

formatted, we trained the classifiers previously described in Section 3.2.

3.4. Online execution215

The best-performing classifier identified in the previous section is integrated

in the online execution mode of our system, described in the lower path of Figure

1. The fourth first steps are common to both offline and online execution as

they are intended for data acquisition, detecting the points corresponding to

the mouth and normalize them as well as formatting the data for classification.220

In the online mode, the data formatted is then processed in a classifier which

output is used in the AOS exercise to assess the user performance and guide

him/her during the session.

When one of the three poses reaches a number of detections the system

selects that pose as the current one and interacts with the user, expressing225
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Figure 3: Images to give feedback about the mouth pose and the user’s performance. First,

image to indicate how to make the “a” pose. Second, image to indicate how the closed mouth

pose should be. Third, image to indicate how to make the “u” pose. Fourth, image to

congratulate the user.

congratulations in case the pose detected was the one expected, or correcting

the user if another pose is detected. A repertoire or corpus of utterances has

been created for congratulate and correct the user (see Table 1) as a complement

to the images shown in the tablet (see Fig. 3). Additionally, the robot expresses

gestures with its body to help engaging the user in the exercise. When the user230

fails to perform the pose, a sad expression is performed whilst otherwise the

robot shows a happy expression2.

In the current version of the system, the process of detecting a mouth pose

and congratulate/correct the user is repeated three times although the system

is flexible enough to change and adapt the exercise logic.235

4. Results and Discussion

4.1. Robotic Platform: Mini

The system developed in this work was integrated in Mini, a desktop social

robot designed and built at RoboticsLab research group from Carlos III univer-

sity of Madrid (see Fig. 4). Originally, this robot was designed to interact with240

elder people with mild cognitive impairment [18]. Nevertheless, the capabilities

of this platform allows other users and applications such as our current goal.

Mini is equipped with multiple HRI interfaces including Automatic Speech

Recognition (ASR) [35], Voice Activity Detection [36], Emotion Detection [37],

2Instead of defining here what the are about, a demo video has been released in which

those gestures are clearly demonstrated. The video link is presented at the end of Section 4.4.
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Table 1: Set of utterances to convey messages during the exercise (approximate translation

from Spanish).

Situation Sentence Details

Congratulating Very good

Keep Going

You are doing great

General congratulations ut-

terances

Correcting Open a little less your mouth

Open your mouth less

Please, close your mouth a bit

Corrections in case the user is

opening the mouth more than

expected

Open your mouth more

Open your mouth a bit more

Make a bigger mouth

Corrections in case the user is

opening the mouth less than

expected

You are almost there

Keep trying

Utterance to encourage the

user during the exercise

Starting Exercise Let’s try to say ‘a’ correctly three times Practicing with ‘a’ pose

Let’s try to say ‘u’ correctly three times Practicing with ‘u’ pose

Try to keep your mouth closed for three

rounds

Practicing with mouth closed

pose

In 3, 2, 1... Now! Start signal

a Text to Speech (TTS) system, a tablet and an RGB-D device. Moreover,245

Mini possesses 5 degrees of freedom to allow moving its arms, base and head.

The interaction capabilities complete with touch sensors, two uOLED screens

for the eyes, RGB LEDs in the cheeks and heart and a VUmeter as mouth to

create the illusion of a talking robot. All of these interfaces are integrated in

a Natural Dialogue Management System [38] which enables the robot to carry250

out natural interactions. Finally, these components are integrated using ROS

framework [39].

4.2. Metrics for evaluating the classifiers

Since our classifiers have to solve a multi-class problem, the metric selected

for assessing the best one was the Macro-average F-score. Macro-average means255

that the metric is independently computed from each class and then take the

average is calculated. This metric uses the Precision and Recall for each class
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Figure 4: Mini, the social robot involved in the experiments [40]. Apart from its plushy shape,

the robot is equipped with a series of sensors and actuators for HRI.

and calculates the mean Precision and Recall of all classes as shown in Equations

7 and 8, respectively:

Precision =

∑N
i=1 TPi∑N

i=1 TPi + FPi

(7)

Recall =

∑N
i=1 TPi∑N

i=1 TPi + FNi

(8)

Where N is the total number of classes, TPi corresponds to the True Positives260

achieved in class i, FPi are the False Positives for class i, and FNi are the False

Negatives in class i. Then, the Macro-average F-score, is computed as the

harmonic mean of these two values as shown in Equation 9.

Macro− average F − score =
2× Precision×Recall

Precision + Recall
(9)

4.3. Experiments

In our experiments users sit in front of the robot, at 0,5 meters (see Fig.265

5, left). A previous study indicated that at a range of 0,5 meters the detector
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50 cm

Figure 5: Experimental setup. The user was sitting in front of the robot at 0, 5 meters, a

natural distance for interaction that ensures clear images of the face.

performance in order to locate the mouth accurately in the face was high, suf-

fering a degradation with the distance that at 2 meters was too poor to achieve

reliable detections [29]. Moreover, as shown in Figure 5, right, this distance

allows a natural interaction with the robot, for instance with its tablet that is270

usually placed between the robot and the user. Note that in Figure 5 right, the

tablet is on the left side of the robot. In this specific case, the tablet was placed

there just for illustrative purposes. Also, the Kinect camera changed the usual

location (see Fig. 4) to allow a better acquisition of face images.

The following sections detail the experiments conducted to assess the per-275

formance of our system and its feasibility for speech therapy. Also, the aim of

this set of tests was to select the best classifier for our data. We first tested

the performance with the most different poses “a” and “u”, as described in ex-

periment 1. For our second experiment, we added a new “neutral” pose that

corresponded to the mouth closed and carried out experiment 2. 14 users were280

involved in our experiments and the method for dividing the datasets was 1-fold

cross-validation with 60% of the instances for training and 40% for test.

4.3.1. Experiment 1: Training 2 poses

This experiment is meant to assess the feasibility of the classifiers described

in Section 3.2 to distinguish between two mouth poses. Although this set of285

poses may seem reduced, they are different enough as to implement a range of

mouth movements that could be useful in SOA therapy. Moreover, recognising

the mouth is not an easy task, leading to similar representations of different
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(a) “a” pose. (b) “e” pose.

(c) “o” pose. (d) “u” pose.

Figure 6: Mouth points as detected by Stasm. We can see in this example how there is low

variability between some mouth poses.

poses as shown in Figure 6. The two first images corresponds to the poses

associated to “a” and “e” and the two last ones corresponds to “o” and “u”.290

In this test the dataset was composed of 1200 instances for the pose “a”

and 1425 for the “u” pose (see Table 2). After the test, two classifiers, C4.5

and SVM, showed promising results, with a Macro-average F-Score of 0, 82 and

0, 81, respectively, as shown in Table 3. Additionally, Table 4 offers the confusion

matrix for the best classifier in this experiment, C4.5, in which we can observe295

an accuracy that starts to be competitive for our speech therapy application.
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Table 2: Datasets summary for experiments 1 and 2

Pose
Instances

Experiment 1

Instances

Experiment 2

“a” 1200 4623

“u” 1425 5250

Mouth closed N/A 3624

Total 1625 13497

Table 3: Results for experiments 1 and 2. Macro-average F-Score for the four classifiers tested

with two mouth poses.

Classifier
Experiment 1:

Macro-average F-Score

Experiment 2:

Macro-average F-Score

Random Forest 0.57 0.47

C4.5 0.82 0.95

k-NN 0.54 0.93

SVM 0.81 0.63

4.3.2. Experiment 2: Training 3 poses

In this experiment a new pose was added to the dataset, mouth closed, to

complement the cases for the AOS exercise. Therefore, a new class, mouth

closed, was added to our dataset with 3624 instances. For the previous classes300

new instances were added as well, having in total 4623 instances for the “a” pose

and 5250 instances for the “u” pose. Finally, the classifiers were retrained with

the new data. Results show that C4.5 is again the best classifier, with k-NN

offering competitive performance (see Table 3). Therefore, since C4.5 showed

the best behaviour in both experiments, this classifier is the one selected for the305

online execution.

In this experiment, the results improved with respect to the previous one

as shown in the confusion matrix for C4.5 classifier (see Table 5). Here the

recognition rate for the “a” pose reached 95%, in case of the “u” pose the rate

is 93% and finally for mouth closed pose the rate is 99.67%.310
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Table 4: Experiment 1: Confusion matrix for C4.5 classifier identifying 2 poses.

Predicted A Predicted U

Actual A 86% 14%

Actual U 12% 88%

Table 5: Experiment 2: Confusion matrix for C4.5 classifier identifying 3 poses.

Predicted A Predicted U Predicted Mouth Closed

Actual A 95% 4% 1%

Actual U 5% 93% 2%

Actual Mouth Closed 0.03% 0.3% 99.67%

4.4. Integration in the social robot

This section analyses the performance of the detection and classification

integrated with the speech therapy application. In this case, we first tried to

use the system trained with the dataset described in Experiment 2 (Section

4.3.2), but in this case classifying poses from seven untrained users. Table 6315

shows the performance of our pre-trained C4.5 classifier when offered new data.

We can see how in some cases as in mouth closed pose the performance drops

to the point that the system is not usable.

At this point, we realised that we needed to perform some training with the

new users’ data, but in this case that training should not be as intensive as in320

previous experiments. Since the final application is speech therapy, we cannot

expect that users will be willing to train the robot for long periods of time. In

this case, trained the system with online detections from the users in periods

ranging between 5 to 10 minutes for the three poses together. We believe this

would not cause boredom or fatigue in the users as it only needs to be performed325

once per new user. With this new data, the performance of the system improves

to levels comparable to experiment 1 (see Table 7) and, although not reaching

the scores achieved in experiment 2 with cross-validation, these levels are high

enough to ensure a good detection rate.

In the online execution, we experimentally set the score threshold to consider330

valid detection to 0, 35 and a pose was output after six successful recognitions.
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Table 6: Confusion matrix for the first test with untrained users.

Predicted A Predicted U Predicted Mouth Closed

Actual A 52% 32% 16%

Actual U 36% 40% 24%

Actual Mouth Closed 0% 90% 10%

Table 7: Confusion matrix for the test retraining the classifier with new users data.

Predicted A Predicted U Predicted Mouth Closed

Actual A 85% 12% 3%

Actual U 8% 75% 17%

Actual Mouth Closed 0% 14% 86%

In most cases we noticed that the detection score was close to one, dropping to

low values for missdetections. The number of successful recognitions to consider

a valid pose directly impacts the execution time of our system since a bigger

number would cause a slow response and a smaller number could lead to wrong335

detections. Therefore, six valid detections was considered as a good tradeof

between time of response and accuracy.

Figure 7 offers an overview of the speech therapy proposal with the different

phases where the robot guides the user along the exercise. First, the robot

provides a simple explanation about the exercise (see Fig. 7a) using gestures,340

voice and the tablet to convey the messages. Next, the exercise starts and

the user should start making the desired pose while the system is detecting

and classifying the mouth pose (see Fig. 7b). Finally, after three successful

detections, the robot congratulates the user (see Fig. 7c). There is also the

possibility that the system does not detect the target pose. In this case, the345

robot corrects the user, explaining how to achieve the desired pose (see Fig.

7d). Along this exercise the robot uses voice, gestures and the tablet to give

instructions and feedback to the user. A video has been uploaded with more

details about the execution of the system can be found in https://youtu.be/

XRrIP3BcwCY.350
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(a) Starting the exercise. The robot shows a ’happy’ expression while giving instructions to

the user through voice. In parallel, the tablet shows the pose that the user should imitate.

(b) The robot tells the user to start performing the pose and in parallel captures and analyses

the mouth features. The tablet keeps showing the pose that should be imitated.

(c) After three valid detections, the robot congratulates the user through voice, gestures and

using the tablet.

(d) If the mouth pose detected does not match the desired one, the robot corrects the user

using voice and gestures while the tablet shows the target pose.

Figure 7: Running example of the speech therapy proposal. The robot leads the user through

the exercise, encouraging him to keep participating.
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Table 8: Numbers summarizing the experimental conditions and results of our proposal

Recognized poses 3 poses (“a”, “u”, mouth closed)

Dataset Instances 1625 for experiment 1 and 13497 for experiment 2

Input features per instance 54 features: 18 mouth points * 3 components (x,y,z)

Users involved in the dataset 14 users for the 2 datasets

Classifiers tested 4 classifiers

Metric for comparison Macro-average F-score

Best algorithm for classifying

poses

C4.5 (0,81 and 0,95 of macro-average F-score in the exper-

iments)

Users involved in the real

tests

7 users

4.5. Discussion

The results and the experimental conditions of the proposed approach are

summarized in Table 8. These results show how our proposal provides high

accuracy for mouth poses classification, up to 0, 95 in the cross-validation test.

It is worth remarking that the experimental phase in this paper is intended as355

a proof of concept and that we are currently working on testing it with real

users. Additionally, we are aware that mouth poses could change when working

with people with motor mouth problems and that this fact could affect the

performance of the classifiers. In this regard, our plan is to add real users data

and retrain the system when deploying it in real scenarios.360

Also, the set of mouth poses recognized may seem too small but for AOS

therapy purposes their differences were considered enough for a first approach.

It is our intention involving experts to evaluate the feasibility of our proposal

both in terms of poses recognized and the dynamic of the exercise.

5. Conclusions365

This manuscript introduced an approach for apraxia of speech therapy using

a social robot. The system consists of two main phases: an offline one in

which we train a set of classifiers after detecting and normalizing the mouth

information from users; and an online one that runs in our social robot Mini.
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This operation runs in realtime, integrating the best-performing classifier, and370

guides the user through an AOS exercise.

The experiments included up to three mouth poses (“a”, “u” and mouth

closed) which we consider are enough for a first approach to therapy for their

differences regarding the mouth positions. The classifiers trained on our dataset,

composed by information from 14 users in our experiments offline, to assess the375

best one. In these offline experiments, C4.5 was the best classifier for our data

(achieving a 0, 95 of Macro-average F-Score) and, therefore it was integrated

within the final approach. In the online tests with the whole system integrated

in the social robot we conducted additional experiments with 7 new users, the

first one running the system with untrained data which showed a performance380

decrease in the mouth poses classification. This motivated the second experi-

ment in which we retrained the classifier adding a small set of samples from the

new users. In this case the performance rose again to competitive values.

We believe that the results achieved in our experiments are promising and

thus we are intended to proceed with the next stage: testing the AOS exercise385

with real users and therapists.

To the extent of our knowledge, this proposal is innovative as robotic tech-

nologies have not been applied to this field so far.
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[36] F. Alonso-Martin, A. Castro-González, J. F. Gorostiza, M. A. Salichs, Mul-

tidomain voice activity detection during human-robot interaction, in: In-

ternational Conference on Social Robotics, Springer, 2013, pp. 64–73.

[37] F. Alonso-Mart́ın, M. Malfaz, J. Sequeira, J. F. Gorostiza, M. A. Salichs,

A multimodal emotion detection system during human–robot interaction,515

Sensors 13 (11) (2013) 15549–15581.
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