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Juan Miguel Garćıa Haro made TEO the humanoid robot available and

operative, taking time he could have spent with his own thesis. Hope to see

your thesis too!

Carlos Balaguer and Alberto Jardón have been great doctoral advisors,

and have given me the opportunity of being part of the Robotics Lab research

group. Thank you so much.

v



vi ACKNOWLEDGEMENTS



Abstract

This thesis presents the Robot Imagination System (RIS). This system pro-

vides a convenient mechanism for a robot to learn a user’s descriptive vo-

cabulary, and how it relates to the world for action. With RIS, a user can

describe unfamiliar objects to a robot, and the robot will understand the

description as long as it is a combination of words that have been previously

used to describe other objects.

One of the core uses of the RIS functionality is object recognition. Allow-

ing requests with word combinations that have never been presented before

together is well beyond the scope of many of the most relevant state of the art

object recognition systems. RIS is not limited to object recognition. Through

the use of evolutionary algorithms, the system endows the robot with the ca-

pability of generating a mental model (imagination) of a requested unfamiliar

object. This capability allows the robot to work with this newly generated

model within its simulations, or to expose the model to a user by project-

ing it on a screen or drawing the mental model as feedback so the user can

provide a more detailed description if required.

A new paradigm for robot action based on consequences on the envi-

ronment has been integrated within the RIS architecture. Changes in the

environment are continuously tracked, and actions are considered complete

when the performed effects are closest to the desired effects, in a closed

perception loop. Experimental validations have been performed in real en-

vironments using the humanoid robot Teo, bringing the Robot Imagination

System closer to everyday household environments in the near future.
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Resumen

Esta tesis presenta el Sistema de Imaginación para Robots (RIS, por sus siglas

en inglés). Este sistema proporciona un mecanismo conveniente para que un

robot aprenda el vocabulario que un usuario utiliza para descripciones, y

cómo esto se relaciona con el mundo. Con RIS, un usuario puede describir

un objeto desconocido, y el robot entenderá la descripción mientras ésta sea

una combinación de palabras que hayan sido utilizadas previamente para

describir otros objetos.

Uno de los usos principales de la funcionalidad de RIS es el reconocimiento

de objetos. Permitir consultas con combinaciones de palabras que nunca han

sido presentadas juntas con anterioridad sobrepasa el alcance de una gran

porción de los sistemas relevantes de reconocimiento de objetos del estado

del arte. RIS no está limitado al reconocimiento de objetos. A través de

algoritmos evolutivos, el sistema proporciona a un robot la capacidad de

generar un modelo mental (imaginación) a partir de la consulta de un objeto

desconocido. Esta capacidad permite que el robot trabaje con este modelo

nuevamente generado en sus simulaciones, o exponer el model a un usuario

proyéctandolo en una pantalla o dibujando el modelo mental para cerrar un

lazo donde el usuario puede proporcionar una descripción más detallada si

esto se requiere.

Un nuevo paradigma de la acción en robots, basado en las consectuencias

en el entorno, ha sido introducido en la arquitectura RIS. Los cambios en el

entorno se monitorizan continuamente, y las acciones se consideran completas

cuando los efectos realizados maximizan su parecido a los efectos deseados, en

ix



x RESUMEN

un lazo cerrado de percepción. Se han realizado validaciones experimentales

en entornos reales utilizando el robot humanoids Teo, acercando el Sistema

de Imaginación para Robots a entornos domésticos cotidianos para un futuro

cercano.
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Chapter 1

Introduction

Modern technologies are progressively being incorporated into our everyday

lives. We find ourselves immersed in environments that are flooded with

advanced embedded electronics and the latest software upgrades. Technol-

ogy is everywhere: home entertainment systems, computers, mobile phones,

tablets, netbooks, ebooks. The scope of growing domestic technologies is

also growing beyond electronics and software: domotic actuators and small

robots have been making their move into our home environment. Iocchi et

al. pointed out that there are already several millions of robots used for basic

household chores (e.g. vacuum cleaning) [7].

1.1 Origin of this Thesis

One question that arises is if this growth has been matched by comfort of

use across this wide range of devices. Inexperienced people and even infants

are able to interact with touch screens and buttons, navigating through tabs,

menus, and icons. However, as complexity of scenarios and user specifications

increase, the complexity of command interfaces also increases. For instance,

one could devise a 42-button controller for the movement of a 21 degree-of-

freedom humanoid robot, but this happens to be impractical to perform real

world tasks. A work of Ariki et al. is focused on mapping high-dimensional

1
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movements to low-dimensional controllers [8]. However, a drawback within

Ariki’s approach is that the mapping is tedious and task-specific. The author

of this thesis has also worked on enabling robot task creation on devices with

which users may be previously acquainted, such as mobile phones, tablets,

or video-game controllers [9][10][11]. In these works, users recorded words

or sentences, and separately programmed sequences of robotic movements as

tasks. Then, the users linked the recorded words or sentences to trigger the

execution of these pre-programmed tasks. These publications, while novel

and useful to a certain extent, also depict a number of severe shortcomings

of classical robot programming when it comes to programming tasks that

will be performed in domestic environments.

A. There are no perceptual links or semantic relationships between the phys-

ical characteristics of objects and the words used to describe them.

B. There is a lack of inference capabilities for interpreting commands that

include combinations of words that have never been taught together, but

have been taught separately.

C. There are no bindings between actions and their effects. If there are

changes in the environment, the robot’s program must be modified in

order to achieve the same effect.

Certain modern approaches overcome some of these limitations of classi-

cal robot programming. For instance, supervised learning, a subset of ma-

chine learning algorithms, allows training a system with data that has been

“labeled” by a user [12]. In the context of computer vision in a domestic

environment, a user can train a system that incorporates supervised learning

techniques by providing it with images of the objects to work with and their

names (hence “labeled” data). While such a classifier provides a basic im-

plementation of (A), the knowledge reuse capability of (B) requires superior

inference capabilities.
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Similarly, techniques such as robot imitation, also known as robot learning

by demonstration (LbD) or programming by demonstration (PbD) [13], aim

to overcome the need for teleoperation and manual hard-coding of every

robot behavior [14]. These techniques simplify programming robot actions.

However, in general they do not solve the issue of (C). Tasks are usually

encoded as trajectories in the robot motor joint space, where effects on the

environment are not stored or asserted.

1.2 Main Objectives

With the previously presented list of shortcomings of classical robot pro-

gramming and modern techniques in mind, this thesis aims to overcome

these general problems by providing specific solutions.

A. To develop a framework that allows linking physical characteristics of

objects and the words used to describe them.

B. To enable inference mechanisms that allow a robot to work with combi-

nations of words used to describe objects, even if these words have never

been previously taught together.

C. To allow a robot to act according to the effect desired on an object,

instead of relying on pre-programmed trajectories alone.

D. Development, integration, experimentation and validation will be consid-

ered essential in determining success.

In a broader sense, this thesis also attempts to be a review on the author’s

most relevant and recent works in the field of robotics, providing published

and previously unreleased material. This work as a whole attempts to be

an objective yet critical retrospective, analyzing errors from the past, paving

the way for the future.
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1.3 Target Scenario

Imagine the following scenario: A woman has bought a robot companion,

and has activated a system that complies with the objectives of this thesis.

She spends an initial period of time teaching the robot her own vocabulary,

centered on objects of her home environment, with sentences such as “this

is a red pen” and “this is a blue eraser”. This initial phase, which could be

similar to teaching a child, is depicted in the first two frames of Figure 1.1.

This is a red pen This is a blue eraser

Fetch a blue pen
Draw a blue pen

Figure 1.1: Sketch of the Robot Imagination System target scenario.

Once the robot has acquired enough vocabulary, she may benefit from

the system’s inference capabilities. For instance, she could ask the robot to

fetch her “blue pen”, and the robot might be able to find it without ever

having seen that or any other blue pen in the past, as seen in the third frame

of Figure 1.1. Note that she never has to indicate any kind of category with

sentences such as “red and blue are colors” or “pens and erasers are objects”.
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As an additional feature, the robot can be asked to draw a sketch of the

object for which it is looking, as depicted in the last frame of Figure 1.1. It

may also display it on a screen if available.

1.4 Expected Novelties

While a broader view of all the related works will be seen in chapter 2 of

this thesis, a number of expected novelties can already be listed. The final

developments will be tested on a real humanoid robotic platform, Teo [15],

which can be seen performing a task in Figure 1.2.

Figure 1.2: Teo is a full-sized humanoid robot that has been developed by
the Robotics Lab research group of Universidad Carlos III de Madrid.

1. Imagination. While other works present images generated from hard-

coded rules [16], or small gray-scale images (that do not represent

shapes or objects) generated from similar images [5] as computational
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creativity, this thesis aims at endowing robots with the capability of

generating human-understandable mental images that have never been

seen before, given human language descriptions.

2. Grounded language. The priority from the robot’s perspective is to

obtain knowledge that is “hooked” to reality. The aim is to learn the

descriptive vocabulary of a user, so human language descriptions may

be given in existing or even invented languages.

3. Spatial language. While other works hard-code forms such as “my

left” or “your left” to set cameras on actors in a virtual environment

[17], this thesis presents mechanisms to distinguish and understand

egocentric and allocentric language directly from spoken interaction.

4. Execution. In contrast to the popular approach of robot imitation

[14], which relies on encoding robot motor joint parameters alone, task

execution in this thesis will be goal-oriented. Specifically, tasks will be

encoded based on the continuous variation of the effects of each robot

action on the environment.

5. Integration. All of these ingredients are combined to result in the design

and implementation of the final presented system.

1.5 Document Structure

Though this work can be read in a sequential fashion, the chapters are mainly

self-contained. Therefore, the interested reader may also decide to concen-

trate on single parts.

Chapter 2 introduces the background concepts and related works that are

interesting to understand the topics of this thesis. This chapter is recom-

mended for all readers, especially for those without a background in symbol

grounding, mental imagery, computational creativity or goal-directed actions.
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Chapter 3 presents the proposed architecture, providing an overall view of

its three main blocks, and its internal components and connections.

Chapter 4 is dedicated to the proposed architecture’s perception block and

its components.

Chapter 5 explains the core algorithms of the proposed architecture’s infer-

ence block and certain implementation specifics.

Chapter 6 deals with the strategies of the proposed architecture’s execution

block.

Chapter 7 presents the experiments, validations and final demostrations.

Chapter 8 depicts the conclusions and future lines of research.
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Chapter 2

Background

The growing trends of robotics in domestic environments have been described

in chapter 1. Three different shortcomings of classical robot programming

were identified, and two different modern techniques for overcoming these

shortcomings were introduced. This chapter aims to introduce a more ex-

tensive review on the scientific literature that is relevant to the theme topics

of this thesis. We begin by briefly introducing artificial cognitive systems

in section 2.1. We then introduce the symbol grounding problem in section

2.2 in response to shortcoming (A) identified in chapter 1. Shortcoming (B)

identified in chapter 1 inspires the literature on mental models and mental

imagery of section 2.3. Finally, shortcoming (C) will lead to the literature

review on robot task execution of section 2.4.

2.1 Artificial Cognitive Systems

Artificial cognitive systems in general subscribe to one of two different par-

adigms of cognition [18]: the “cognitivist” approach based on symbolic in-

formation processing representational systems, and the “emergent” systems

approach, embracing connectionist systems, dynamical systems, and enac-

tive systems, all based to a lesser or greater extent on principles of self-

organization.

9
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According to F.J. Varela [19], the origin of the pure cognitivist vision

comes from cybernetics (1943–1953), with the idea of an intelligence only

based on logic. The catalog of cognitivist tools includes, among others, the

ones from automated planning and knowledge and logic-based tools such as

expert systems, case-based reasoning, or ontologies1. Alternative mechanisms

also include co-occurrence statistics of word counts among documents, such

as those used by Latent Semantic Analysis (LSA), capable of “learning words

at the rate of school-aged children” [24], or the Hyperspace Analogue to

Language (HAL), capable of “inferring semantic, grammatical, and abstract

distinctions” [25]. Examples of originally cognitivist architectures include

ACT-R [26] and Soar [27].

ACT-R is composed by several specialized modules. Each module pro-

cesses a different kind of information: a vision module, a manual module

for controlling hands, a declarative module for retrieving information, a goal

module which changes its internal state when a task is accomplished. There

is also a coordinator module, which manages all of the other modules. Rea-

soning is a cyclic process where patterns of information are identified, and

new rules are produced. The perceptuo-motor system of ACT-R does not

encode direct sensor information, but assumes that the vison module has

translated the visual data into objects (symbols), centering only on atten-

tion and recognition.

Soar’s behavior is a combination of rules produced by the system, in the

form of IF-THEN states. To solve a problem, a search in the problem space

(the set of states) is performed to cyclically move closer to a solution. Every

cycle is composed by two phases: elaboration (knowledge recollection) and

decision (choosing next action to be taken).

1An ontology is a knowledge representation system where the main elements are a cat-
egorization structure and a set of rules among the elements belonging to these categories,
which allow to exploit parent-child relationships [20]. Popular ontology languages include
CycL for its use in Cyc [21], and the semantic web’s OWL [22] which is also currently used
in the robotic cloud computing project RoboEarth [23].
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2.2 The Symbol Grounding Problem

“A. There are no perceptual links or semantic relationships between the

physical characteristics of objects and the words used to describe them.”

This issue was first identified by S. Harnad in 1987 [28], and then formally

defined by Harnad in 1990 as the “symbol grounding problem” [29]. The

discussion in which he was involed was about the scope and limits of purely

symbolic models of the mind, and about the proper role of connectionism

in cognitive modeling. As an extension to Searle’s Chinese room argument

[30], Harnad believes it is impossible to learn a language (e.g. Chinese)

with just a dictionary of that language (e.g. Chinese/Chinese). The trip

through the dictionary would amount to a merry-go-round, passing endlessly

from one meaningless symbol or symbol-string (the definiens) to another

(the definiendum), never coming to a halt on what anything meant. Deb

Roy refered to this as “circular definitions”, and depicts an English version

of this issue in Figure 2.1 [1].

Push: To press forcefully against in order to move

Force: Energy or strength

Energy: Strength of force Strength: The power to resist force

Figure 2.1: A network of definitions extracted from Webster’s Dictionary con-
taining circularities. To make use of such symbolic networks, non-linguistic
knowledge is essential to ground basic terms of linguistic definitions [1].

The notion of linking words with physical objects, actions and abstract

concepts is called “symbol grounding”. It provides words with the “hooks” to
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reality that enable understanding language, and even other words that can be

involved in circular definitions. Symbol grounding has also been commonly

referred to as language grounding [31][32], semantic grounding [33][34], the

anchoring problem [35][36], or bridging the semantic gap [37][38]. Decades

of research have provided different views ranging from psychology [39] to

information retrieval for the semantic web [40] and, more recently, cognitive

systems in robotics [41]. Note that symbol grounding is not an issue for

all problem statements related with artificial intelligence. For instance, the

Turing Test [42] can be passed by a purely symbolic artificial cognitive system

if it is given the correct set of rules. However, in computer vision and robotics,

linking words to perceptual input is essential for tasks as complexity increases

and language is involved.

A number of visually grounded systems have been developed throughout

the years. They have mainly focused on generating descriptions of synthetic

and real scenarios, based on previously grounded information. One of the

first works in linking grounded information to language was VIsual TRAns-

lator (VITRA) [43]. Dynamical situations are provided via video to VITRA,

which in turn analyses and performs automatic generation of natural lan-

guage descriptions for the movements it recognizes. Another approach [44]

uses simple user-robot interaction and language games to conceptualize an

object, though no further language grounding or inference possibilities are

studied. DESCRIBER [2], see Figure 2.2, adds learning techniques to as-

sign ranges of values of features to words. To achieve this task, the system

is trained by manually transcribing human-made descriptions of computer-

generated coloured rectangles. Then, every word is considered a potential

label, and they are filtered to use only relevant ones. The system assigns a

subset of features to each word. Then, an algorithm compares feature distri-

butions between descriptions formed with these words. Finally, the system

finds the subset of features for which the distributions are maximally diver-

gent when the word is present and when it is not, and assigns these features
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to the word. The results achieved by this system allow generating seman-

tic descriptions of objects selected by a user on a screen, including spatial

relationships with respect to other objects. The system’s tests account for

10 non-overlaping rectangles. The features used are: red, green, blue, hight

to width ratio, area, X and Y position of upper left corner, and ratio of

maximum dimension to minimum dimension.

Figure 2.2: Given this task, DESCRIBER [2] could generate the description
“the horizontal purple rectangle below the horizontal green rectangle”.

DESCRIBER’s internal mechanisms were later adapted to Newt, which

provided real-world recognition capabilities based on end-user spoken de-

scriptions [45]. These and similar contemporary visually grounded systems

can be found throughout literature [46]. In the present, traditionally cogni-

tivist architectures such as Soar are starting to develop language grounding

extensions [47][48].
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2.3 Mental Models and Mental Imagery

“B. There is a lack of inference capabilities for interpreting commands that

include combinations of words that have never been taught together, but

have been taught separately.”

In the present, human inference is far from being well understood. On

the other side, a general purpose computational inference motor that could

emulate human inference does not exist either. Instead, a great variety of

“narrow” artificial intelligence algorithms exist, many of which are used to

provide inference within specific domains. The specific inference capability

described in (B) has been rarely studied within robotic literature. However,

literature from different fields focused on mental models, mental imagery,

and creativity actually shed some light on this issue.

The term “mental model” was first proposed by K. Craik in 1943, to

describe a “small-scale model of external reality” carried by an organism,

additionally presenting some biological advantages [49]. P.N. Johnson-Laird

more formally described a mental model as the stabilized representation of

reality an agent perceives [50]. This representation is usually contrasted to

the noisy and unstable nature of sensory systems. The notion of a mental

model as an agent’s stabilized representation of reality is further established

by the “object persistence” concept studied in philosophy and psychology,

which refers to the awareness of an object when it is not visible [51]. In

reasoning in artificial intelligence, object persistence has been implemented

through “epistemic fluents” (dynamic properties that express an agent’s be-

lief rather than actual sensation) [52]. Epistemic fluents have also inspired

object persistence in video-game research [53]. In the field robotics, object

persistence has been called “object permanence” by K.-Y. Hsiao et al., who

developed a computational implementation of through a simulator [54]. In

Hsiao’s work, visually-detected objects are instanced as their virtual equiva-

lents, and stored for a certain period of time even when they are not sensed.
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In cognitive science lingo, the acquisition of a mental model through sen-

sation is considered a bottom-up process. Sensory signals are received from

the “bottom”, and go “up” into mental constructs2, where higher-level cogni-

tive processes such as inference may occur. Following this taxonomy, the term

“mental imagery” refers to a top-down process, where high-level mechanisms

such as inference result in experience that resembles perceptual experience,

but which occurs in the absence of the appropriate stimuli for the relevant

perception [56]. In humans, a recent clinical psychology review situates gen-

erated mental images within a topographically organised area of the brain

known as the visual buffer [57], which subscribes to the description given by

S.M. Kosslyn in 1980 [58]. R.H. Logie’s alternative model postulates that

mental imagery occurs in a dedicated area called the visuo-spatial sketch-

pad, which is itself composed by a visual cache for shape and color and an

inner scribe which stores spatial information and is related to movement [59].

Logie’s model is based on A.D. Baddeley and G.J. Hitch’s working memory

model [60], see Figure 2.3.

Visuospatial
sketchpad

Central
executive

Phonological
loop

Central
executive

Visuospatial
sketchpad

Visual
semantics

Episodic
LTM Language

Phonological
loop

(a)

(b)

Figure 2.3: (a) The initial three-component model of working memory pro-
posed by Baddeley and Hitch. (b) A further development of the working
memory model [3].

2Note that alternative interpretations of perception, such as J.J. Gibson’s “ecological
approach” [55], may criticize the assumption of pre-existing mental constructs.
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As a top-down process, mental imagery is capable of generating mental

images that have not been previously perceived. The ability to come up

with ideas or artefacts that are new, surprising and valuable is precisely the

definition of “creativity” given by M. Boden [4]. Novelty is measured relative

to the agent’s previous knowledge (this is called psychological creativity, or

simply P-creativity by Boden) rather than relative to the complete history of

science and innovation (historical creativity, or simply H-creativity). Boden

further groups creativity in the following three categories.

• Combinational creativity. This first type of creativity involves making

unfamiliar combinations of familiar ideas. Mental imagery that gener-

ates mental models from commands that include combinations of words

that have never been taught together, but have been taught separately,

would be a complex manifestation of combinational creativity.

• Exploratory creativity. This second type of creativity can come from

adding a new trick to a repertoire within a specific domain or conceptual

space (in a real sense it’s something that fits in an established model,

but without previous awareness of its existence). Boden states that

this is the type of creativity that is most performed by researchers and

artists, who explore within the rules established by a state of art, and

produce novel contributions that generate only a marginal degree of

surprise.

• Transformational creativity. In contrast to exploratory creativity in

which a specific domain or conceptual space is explored, transforma-

tion involves knowing the rules, but moving outside of them. Examples

are Picasso’s Cubism (where a disruptive surprise comes from intro-

ducing a diversity of perspectives within the same picture) or Kekulé’s

account on insight about benzene molecules (imagining molecules as

snakes chasing their tails rather than the classic view of open chains of

atoms).
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Theory and implementation of a working computational creativity is,

however, sparse throughout literature. An ungrounded example (and there-

fore, of relatively small value for robotics) of combinational creativity can be

found in the JAPE system, that generates jokes of a general type familiar

to every eight-year-old [61]. JAPE can generate puns such as “What’s the

difference between money and a bottom? One you spare and bank, the other

you bare and spank.” using a dictionary and a hard-coded model based on

the pun “What do you get when you cross a sheep and a kangaroo? A woolly

jumper.”. A very different example of computational creativity (not neces-

sarily combinational creativity) is AARON, which “automatically generates

novel line drawings of different styles” [16]. AARON’s image generation is

based on large sets of IF–THEN rules, that must be manually hard-coded for

each style and drawing topic, but result in surprising images such as those

of Figure 2.4.

Figure 2.4: AARON generated these antropomorphic images from IF–THEN
rules and planning algorithms in 1989 [4].

A prominent example of combinational creativity (equivalent, at least in

intention, to a mental imagery process to create unfamiliar images based on

familiar images) is the “AHA! experience” developed by P. Thagard et al.
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in 2011 [5]. Thagard’s connectivist approach for combination is based on

artificial neural networks to achieve convolution. Figure 2.5 depicts result of

the convolution of two familiar images (far left images) to generate a novel

image (far right image). Furthermore, Thagard additionally evaluated the

surprise generated within a population of human judges.

Figure 2.5: Thagard’s (2011) “AHA! experience” connectivist approach com-
bines images through convolution achieved with artificial neural networks [5].

Moving away from the field of computational creativity, a number of

systems that can somehow perform mental imagery can also be observed.

For instance, a work from the field of multi-modal inference has provided

tools to discover unknown properties of an object from limited views of it

[62]. Although it is highly focused on multi-modal categorization, it provides

direct cross-feature mappings that allow it to infer certain missing features,

such as auditory information when only visual information is available.

In existing robotics computational models, however, mental imagery is

usually limited to the capability of “recalling” previous sensations. However,

the work of N. Mavridis and D. Roy in 2006 on Grounded Situated Models

is of great interest [63]. Inspired by Probabilistic Occupancy Maps (a video-

game research model of object persistence [64]), Mavridis incorporates the

possibility to “imagine” the position of an object on a 2-dimensional plane.

This “imagination” command in turn increment’s the robot agent’s belief on

the object occupying a given square cell.
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2.4 Robot Task Execution

“C. There are no bindings between actions and their effects. If there are

changes in the environment, the robot’s program must be modified in order

to achieve the same effect.”

In classical robot programming, users program sequences of robotic move-

ments. A common method is to move the robot’s end-effector to each point

of interest and record it, and then program a sequence of instructions which

additionally include velocity, precision and type of movement. The robot’s

movement is teleoperated using buttons, or sometimes a joystick (e.g. a 3

degrees of freedom joystick that can switch behavior through menus). The

coordinates of points of interest can also be directly hard-coded, which re-

quires a full knowledge of the environment and absolute certainty that there

will be no external perturbations.

Techniques such as robot imitation, also known as learning by demonstra-

tion (LfD) or programming by demonstration (PbD) [13], aim to overcome

the need for teleoperation and manual hard-coding of every robot behavior

[14]. These techniques simplify programming robot actions. The way these

methods generalize an action is by recording the kinematics of a demonstra-

tor when performing the action, and then applying different machine learning

algorithms. The demonstrator can either be the guided robot itself, a human

with sensors attached, or video sequences with human movements.

In [65], a human demonstrator performs a task several times (e.g. hit-

ting a ball) using a robotic arm. Positions, orientations and velocities of

the arm are recorded, and the number of representative states of the action

are estimated with Hidden Markov Models (HMM). HMM are used to han-

dle spatio-temporal variabilities of trajectories across several demonstrations.

Finally, and in order for the robot to execute the trajectory, Gaussian Mix-

ture Regression (GMR) is used to create a regression function using previous

HMM states. This reconstructed trajectory is the one the robot reproduces
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to imitate the human movement. Another common technique used, along

with HMM [66][67], is Gaussian Mixture Models (GMM) as in [68][69].

Recognizing an action through external measurements is called direct ac-

tion recognition. In [70], they perform a neuro-fuzzy classification of optical

flow features between consecutive frames of human movement in video se-

quences. Neuro-fuzzy is a combination of fuzzy logic with neural networks,

using the classified output of a fuzzy system as an input to the neural net-

work. In [71], they track and filter human hand and feet trajectories through

Principal Component Analysis (PCA). First, they record trajectories of key

points from a video. Then, they split them into sub-units called basic mo-

tions. Next, they extract some features of the basic motions, and project

these feature vectors into a reduced space generated by PCA, resulting in

the formation of clusters of similar actions. For recognition purposes, they

record an action, transform it with the same process explained, project its

vector onto the reduced space, and finally, associate it with the closest cluster.

As shown, the focus in these types of research is on learning the kinemat-

ics of actions. By using only kinematics, actions are limited to be executed

exactly as taught. Any disturbance, e.g. an obstacle along the trajectory or

a displacement of the target object, would make task completion impossi-

ble. They do not solve, in general, the issue of adapting a robot’s behaviour

depending on changes in the environment. Tasks are usually encoded as

trajectories in the robot motor joint space, so expected effects on the envi-

ronment are not stored. An approach used by some authors is using Dynamic

Movement Primitives (DMP) [72][73]. DMP encode tasks as superposed mo-

tor primitives that are control policies to reach a certain Cartesian space

goal. As control policies, motor primitives are robust to perturbations on a

robotic arm, and limit cycle movements may also be superposed, achieving

movements such as drumming or tennis swings [73]. However, the actual ef-

fects in the environment are not asserted, as goals are encoded as Cartesian

space targets and trajectories are encoded in the robot motor joint space.
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Until now we have seen that there is a lack of codification of action effects

in classical robot programming and several examples of modern approaches

(namely robot imitation and dynamic motor primitives), and only the kine-

matic aspects of a robot’s movements are considered. Roughly speaking, we

can say that sequences of movements are blindly performed by robots during

task execution. Robots can, effectively, repeat the same movements, but the

consequences remain a mystery for them [74]. However, humans can under-

stand the effects an action can have on an object. What is more, scientific

literature indicates that the human brain encodes actions as end-goals. A

psychological experiment shows how when children imitate others grasping a

person’s ear, they tend to imitate the action goal (which ear to grasp) rather

than the kinematic aspects of the action (which hand is used to grasp) [75].

Neuroscience has discovered evidence supporting goal encoding of actions,

especially with the study of neurons endowed with mirror properties (“mirror

neurons”) [76]. Mirror neurons fire when an action is performed, and also

upon observation of the same action performed by another subject. When

macaque monkeys were trained to grasp food with a tool, their mirror neurons

fired when they performed the action, and also fired when they observed the

same action performed by an experimenter, even when using a different tool

[77]. This too demonstrates the relevance of the goal as opposed to motor

trajectories. The F5 cortical area of macaque monkeys has been found to

contain mirror neurons. Research has found evidence of an analogous area

of mirror neurons in human inferior frontal gyrus [78].

When talking about goal-directed actions in robotics, a goal encoding is

found in [79] where, despite they learn the kinematic trajectory to perform

an action, they also encode some goals to be achieved. They recreate a

version of the previously cited psychological experiment with children [75]

with colored dots on a table, which are touched by a human with both arms

in alternation. When the dots stay on the table, children tend to imitate the

goal (which dot to touch), and not the arm used to do it. In the recreated
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experiment, the demonstrator repeats the same task and, while observing

the demonstration, the robot tries to extract a set of constraints for the task.

Later, the robot computes the trajectory that best satisfies the constraints

and generates a motion.

In a recent co-authored work [80], two different types of goal-directed

actions were identified.

• Goal only: When the information used is only the difference between

the initial and the final state of the element. A different co-authored

work studied this type of goal-directed actions using several different

machine learning algorithms [81].

• Continuous tracking: When the whole process of change is taken into

account. This may be achieved with a continuous trajectory in a high-

dimensional space.

Notions of continuous tracking can be found in [82], which uses a com-

bination of object spatial and demonstrator-hand movement tracking. They

build a system with a set of primitive actions (inverse models). When the

human demonstrator performs an action, they continuously track the object

and the hand spatially through time. At the same time, they run all inverse

models during action stages to find the best performance of each model in

each stage. Finally, they construct a high-level inverse model composed by

those selected primitives, being able to imitate the action goal with similar

spatial movements. Note that the parameters to be imitated are not robot

motor joint positions, the only target is the hand position.

In the previously mentioned recent co-authored work [80], inspired by neu-

ronal behavior, we presented the Continuous Goal-Directed Actions3 (CGDA)

infrastructure and defined CGDA as actions in which the parameters ana-

lyzed are the ones belonging to the object (or more generally, elements)

3The term Continuous Goal-Directed Actions was coined by the first author Santiago
Morante of this contribution to the ICRA 2013 major international robotics conference.
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affected by actions continuously in time. By using CGDA, an action can

be encoded in a complementary way, by learning, not only by how it is

performed (kinematic parameters), but also the effects of the action. This

“double learning” may allow the robot to complete the action, even when

the scenario changes or when elements block its usual path of execution, by

generating alternative motions which accomplish the encoded goals. Gener-

alizing, recognizing, and executing CGDA is however complex and in ongoing

research.
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Chapter 3

Robot Imagination System

This thesis presents a novel system, called “Robot Imagination System”

(RIS), that aims at fulfilling the proposed main objectives. Figure 3.1 depicts

its basic architecture. The RIS’s components are grouped in three blocks:

A. Perception, B. Inference, C. Execution.
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Figure 3.1: The Robot Imagination System’s three blocks of components.

The term robot imagination has been incorporated in the system’s name

to depict its strong focus on creative inference. The term was actually first

coined by the author in the recent IROS 2013 major international robotics

conference [83] to denote a robot’s capacity to “imagine” or generate mental

models through mental imagery given combinations of words that have never

been taught together, but have been taught separately.

25
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3.1 The RIS as a Computational Model

The proposed architecture can also be seen as a computational model for emu-

lating certain human abilities, such as imagination. Two important premises

should be taken into account regarding this interpretation.

• If we classify computational models as either scientific or technological

models (similar to how Thill et al. classify affordance models [84]),

the RIS falls into the second category. It aims to allow more efficient

intelligent machines and robots. It is inspired by experimental evidence,

but is not strongly constrained by it.

• As such, despite theories of direct perception [85] and enaction [86]

that tend to claim that the border between perception, inference and

execution is diffuse or inexistent, the architecture accommodates to a

Classical British empiricist model [87], where boundaries between com-

ponents are clearly defined. This serves for organizational purposes and

also promotes the reuse of existing components within the architecture.

3.2 Description of Blocks

The RIS’s components are grouped in three blocks. Each of these blocks is

focused on overcoming one of the shortcomings of classical robot program-

ming presented in section 1.1: A. Perception, B. Inference, C. Execution.

The following is a brief description of each one of these blocks that compose

the system.

A. Perception: The input block of the system. This block includes visual

and auditory systems, along with a language grounding component.

B. Inference: The core imagination block of the system. Recognition ca-

pabilities will also be enabled through this component.
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C. Execution: The output block of the system. This block includes visual

and auditory output, along with the core execution component.

3.3 Component Breakdown

The RIS blocks may be depicted as groups of individual interconnected com-

ponents. Figure 3.2 presents this breakdown into components, and the inter-

connections between these components. The components that are depicted

in light red belong to the perception block, and are the following: Computer

Vision, Grounding Core, and Speech Recognition. The component that is

depicted in light green belongs to the inference block, and is the Imagination

Core, which provides imagination and recognition capabilities. The compo-

nents that are depicted in light blue belong to the execution block, and are

the following: Visual Output, Execution Core, and Speech Output.

Figure 3.2: The RIS component breakdown and interconnections.

An independent component, the State Machine (located at the bottom

of Figure 3.2 with a white background), manages the system as a whole

and also enables spoken interaction with the end-user. While a number of

mechanisms could perform this management task, a Finite-State Machine
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(FSM) [88] is fit for this purpose. Figure 3.3 depicts an FSM state diagram

that implements a basic functional system management.

Figure 3.3: Finite-State Machine example state diagram.

With this example FSM state diagram implementation, the components

of the RIS collaborate according to the following scheme.

• The Computer Vision component receives a continuous stream of im-

ages from a 2D or 3D camera. It segments objects from each frame,
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and then extracts a fixed set of features (height, area, color, etc.) from

each object. It sends an output stream of this extracted data upon

arrival and processing.

• The Speech Recognition component waits for user input. Once words

have been heard, it repeats these words to the user and requests user

confirmation.

• If the confirmed words match the keywords “this is”, the State Machine

forwards the rest of the words to the Grounding Core with a “push”

command. The Grounding Core is synchronized with the Computer Vi-

sion component, and merges these words with the instantaneous Com-

puter Vision output.

• The Imagination Core always has access to the Grounding Core to

perform inference, and may also access the Computer Vision component

to discover the Cartesian coordinates of a described object in a certain

instant.

• If the confirmed words match the keywords “touch a”, the State Ma-

chine forwards the rest of the words to the Inference Core, and queries

it for the coordinates of the object to touch. The State Machine then

forwards these coordinates to the Execution Core with a “touch” com-

mand.

• If the confirmed words match the keywords “imagine a”, the State

Machine forwards the rest of the words to the Inference Core, and

queries it for the coordinates to draw a sketch of the object it has

imagined. The State Machine then forwards these coordinates to the

Execution Core with a “draw” command.

• If the confirmed words do not match any known keywords, the State

Machine returns to its initial state.
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3.4 Chapter Summary

In this chapter we have described the Robot Imagination System (RIS), a

novel system proposed for overcoming shortcomings of classical robot pro-

gramming and also modern techniques. We have seen its interpretation as

a computational model under specific premises, and presented high-level de-

scriptions of component behaviors and interconnections. Additionally, we

have seen how the system as a whole is much more focused on language and

the objects of action than on pure robot motor joint positions or end-effector

coordinates as seen in classical schemes. This agrees with the proposed main

objectives of this thesis.

In the next three chapters, we intend to give full insight on theoretical,

algorithmic and implementation issues of the described components of each

block, guiding the reader to understand the integrated robotic system.
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Perception Block

Human perception is the complex process that begins with an external (“dis-

tal”, or far) stimulus, and ends with a final “percept” or mental represen-

tation [89]. The receptors of external stimuli may be rod or cone cells of a

retina (for visual stimuli), or the inner ear’s components (for auditory stim-

uli). Different theories of psychology [90] and neuroscience [91] debate upon

the nature of the final “percept” within human perception. Despite this

debate, Figure 4.1 depicts a generally accepted model of human perception.
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Figure 4.1: The steps in the perception process are arranged in a circle to
emphasize that the process is dynamic and continually changing [6].
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As illustrated in Figure 4.1, we can speak about Perception as a complete,

dynamic and continually changing cycle that includes recognition and action,

or also as a subprocess within that same cycle. An interesting appearance

is that of “knowledge” as a subproduct of Perception as a whole. In RIS,

sensation (which corresponds to Electricity in the previous diagram, and is

composed by transduction, transmission and processing) currently includes

vision and audition. Section 4.1 of this chapter will be dedicated to the

system’s Computer Vision component. Existing robotic components will be

used for Speech Recognition. Knowledge plays a fundamental role in RIS,

and is implemented within the Grounding Core component, which will be

seen in section 4.2 of this chapter.

4.1 Computer Vision

Computer vision started out in the early 1970s, and was viewed as the visual

perception component of an intelligent robotic system that would be rela-

tively simple to achieve [92]. In fact, early assumptions supposed that the

computer vision problem could be solved within the scope of months [93].

However, decades in, artificial vision is a highly active field of research. A

great portion of academic institutions and industrial research centers have

dedicated computer vision groups.

Our interest is in segmenting objects from each camera frame, and then

extracting features from these objects. These extracted features can then be

stored by the Grounding Core, and also used by the Imagination Core. Due

to the scale and complexity of computer vision, only minor contributions to

its state of the art as a field have been performed in this thesis. A review of

the techniques that have been used to perform object segmentation in 2D and

3D camera images will be given in subsections 4.1.1 and 4.1.2 respectively.

Concepts and mathematical expressions corresponding to the extraction of

features from segmented objects will be seen in subsection 4.1.3.
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4.1.1 Object Segmentation in 2D Camera Images

In line with conventional approaches, our first objective is to distinguish

between foreground and background, because objects are potentially part of

the foreground. Our intention is to create a binary mask, where all foreground

pixels are activated and background pixels are null, to ultimately detect

object contours. Either of the following different methods may be applied

given an RGB color image.

1. Directly in the RGB color space. If the color of the objects to segment

or background is known, we can operate directly in the RGB color

space, avoiding the computational implications of edge detection or

converting images to other color spaces. In [94], the author of this

thesis proposed a simple method where a layer of low relevance (e.g.

G or B to find red) is subtracted from the layer of highest relevance to

find a color (e.g. R to find red). This subtraction reduces the effects

of light variation. The image may then be transformed into a binary

mask by applying a band pass filter to obtain the objects, or a band

reject filter to remove the background.

2. Transformation to the HSV color space. While transformation of RGB

images to the HSV color space may be computationally expensive for

slow machines, this is less of an issue for modern desktop hardware. If

computationally viable, and the color of the objects or background to

segment is known, the following method may be applied. Knowing the

color of the objects to segment, the image can be transformed to the

HSV color space, and a band pass filter can be applied to the hue (H)

layer. If instead the color of the background to segment is known, a

band reject filter can be applied to the hue (H) layer.

3. Edge detectors. Working with objects and background of unknown and

diverse colors requires more sophisticated solutions, such as the use of
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edge detectors for arbitrary edge profiles. A well-known edge detector

that fits this description is the Canny edge detector [95]. The masks

obtained with edge detectors contain “hollow” objects (not all of the

internal pixels of the objects are activated), but these masks are equally

useful to determine the contours of the objects.

The binary masks that result from the previous methods are usually im-

perfect for obtaining object contours. A process of morphological closing (an

erosion followed by a dilation) is used to remove noise. Since morphological

operations act on a pixel-level, the number of pixels is set as a percentage

of the original image’s width and height. The curves joining all the continu-

ously activated pixels (along the boundary) are the detected object contours.

Figure 4.2 depicts binary images generated using method (1) layer B minus

layer G, that was used to detect a blue marker to teach spatial language.

The contours of the object are highlighted in the figure (pink), and rotated

bounding boxes surround the detected objects (dark blue).

Figure 4.2: Object segmentation performed on a stream of 2D camera images.
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4.1.2 Object Segmentation in 3D Camera Images

Stereopsis, or the impression of depth that is originated from binocular vi-

sion, is a high-level cognitive process in human beings. The issue of stereo-

scopic vision has been computationally treated through the complex study

of disparity among paired images. The development of low-cost electronic

sensors that directly measure depth has created a renewed interest in 3D im-

age processing. These sensors use technologies such as structured light and

time-of-flight measurements.

Following the same premises as for 2D object segmentation, our first ob-

jective is to distinguish between foreground and background, because objects

are potentially part of the foreground. 3D images that arrive from low-cost

electronic depth sensors tend to be extremely noisy. An early visual process-

ing stage must remove bogus data, which computationally correspond to 3D

pixels with “NaN” or “not-a-number” values.

These 3D images, or “point clouds” (a name that has become popular

upon the arrival of these low-cost sensors) are still noisy and computationally

difficult to handle. To filter and reduce the computational load of a point

cloud, a technique called “voxelization” is used. A voxel or volume-pixel

is a small-sized 3D cube in space. The voxelization technique creates a 3D

voxel grid over the input point cloud data. Then, in each voxel, all the points

present are approximated (and thus, downsampled) with their centroid. This

approach is slightly slower than approximating them with the center of the

voxel, but it represents the underlying surface more accurately1.

An extremely popular assumption in 3D computer vision is to consider

that the background is integrally composed by planes (floor, tables, shelves).

The Random Sample Consensus (RANSAC) paradigm allows fitting point

clouds to geometrical models [96]. The common practice followed is to use the

1This description is based on the description of a computer algorithm that performs
voxelization, available at http://docs.pointclouds.org/trunk/a01645.html#details last ac-
cessed May 29, 2014.

http://docs.pointclouds.org/trunk/a01645.html#details


36 CHAPTER 4. PERCEPTION BLOCK

RANSAC paradigm to discover planes among the point cloud. The 3D pixels

that correspond to these planes are believed to be part of the background,

and ultimately removed.

The resulting point cloud will be composed by disjointed clusters of 3D

pixels in space. These 3D pixel disjointed clusters may be gathered by us-

ing a process called Euclidean Clustering, that consists in grouping given

an Euclidean distance threshold. This Euclidean distance threshold can be

given as a percentage of the known resolution of the electronic depth sensor.

For aesthetic detail and efficient collision computation, a triangle mesh may

be obtained based on projections of the local neighborhoods using a greedy

surface triangulation algorithm [97], or a Poisson surface reconstruction algo-

rithm [98]. Figure 4.3 depicts resulting object triangle meshes (blue), where

the object of the center of the robot’s gaze is highlighted (red).

Figure 4.3: Object segmentation performed on a stream of 3D camera images.

4.1.3 Feature Extraction

The following features are extracted and streamed from each flat contour (2D)

or triangle mesh (3D), and may be used at convenience. These definitions will

correspond to the flat contour case for simplicity, but analogous definitions

exist for the 3D case.
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• Centroid. The centroid is obtained from the image moments of the

contour. The centroid coordinates are computed using the expressions:

Cx = M10

M00
and Cy = M01

M00
. These expressions result in pixel values.

Even though the RIS can work directly in the pixel space, this point

can be expressed in metric values given the depth Cz (e.g. obtained

by direct depth sensor measure corresponding to this pixel) and the

camera’s intrinsic parameters, resulting in CCDP = (Px, Px, Pz, 1)T .

This point can further be defined with respect to the robot’s origin using

the homogeneous transformation matrix relation OP =O HCCD ·CCD P .

• Area. The number of pixels contained within a contour, which is also

given by the image moment M00.

• Rotation. The orientation of a minimum bounding box corresponding

to the contour.

• Maximum Axis. The measurement, in pixels, of the largest side of the

previously obtained minimum bounding box.

• Minimum Axis. The measurement, in pixels, of the shortest side of the

previously obtained minimum bounding box.

• Aspect Ratio. The Aspect Ratio is calculated as the ratio between the

Minimum Axis and the Maximum Axis.

• Rectangularity. Rectangularity is calculated as the ratio between the

area of the contour and the area of the minimum bounding box.

• Solidity. Solidity is calculated as the ratio between the area of the

contour and the area of its corresponding convex hull.

• Arc. The arc of the contour corresponds to the length, in pixels, of the

perimeter of the object.
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• Radius. The radius, in pixels, of the minimum bounding circle corre-

sponding to the contour.

• RGB. Average and standard deviation of red, green, and blue directly

obtained from the original RGB pixels within the original contour.

• HSV. Average and standard deviation of hue, saturation, and value

obtained from the transformation of the original RGB pixels within

the original contour.

Note that while scale-invariant features such as SIFT [99] or SURF [100]

descriptors have obtained popular use within the computer vision community,

the initial aim of feature extraction in RIS has been to obtain human-readable

and human-understandable information.

4.2 Grounding Core

The global architecture of RIS has been seen in chapter 3 of this thesis. A di-

agram and description of the flow of data between components was included

in section 3.3. Following this description, the Grounding Core receives a

continuous flow of features extracted from the Computer Vision component,

which are stored in a database upon the arrival of descriptive words from

the State Machine with a “push” command. The Grounding Core is actually

a flexible infrastructure that can work with sensory information of diverse

nature (visual, haptic, or even auditory) and origin (e.g. real or synthetic).

The Grounding application will be formally defined in subsection 4.2.1. The

Grounding Core stores data in the Feature Space, which will be introduced

in subsection 4.2.2. The Semantic Point Cloud will be presented and for-

mally defined in subsection 4.2.3. Finally, how this Semantic Point Cloud is

populated will be seen subsection 4.2.4.



4.2. GROUNDING CORE 39

4.2.1 The Grounding Application

Let E be the space of External stimuli from the robot’s perspective, and W be

the space of Words of a given society (which plays a crucial role in language

acquisition [101]), the process of grounded semantic knowledge acquisition in

Perception is the Grounding application G, which can be seen in Eq. 4.1.

G : (E ×W )→ K (4.1)

Where K is Knowledge. Knowledge in RIS is stored in the Semantic

Point Cloud S, which will be seen within the following subsections.

4.2.2 The Feature Space

The Feature Space is one of the semantic storage spaces of the Ground-

ing Core component. Formally, let the Feature Space be FεRn, where n

corresponds to the dimensionality of F and also to the maximum quantity

of scalar features that arrive from the sensory components. For instance,

n automatically reaches 22 dimensions when connecting the Computer Vi-

sion component and activating all of its feature extraction possibilities for

2D camera images (except for the centroid’s depth and related conversions).

This is because 22 is the sum of individual extracted features taking into

account that the 2D centroid is two-dimensional, that average red, green and

blue each generate different dimensions, and so on. Before any grounded

semantic process is performed, the dimensionality n of F is null.

4.2.3 The Semantic Point Cloud

The Semantic Point Cloud is a finite set of points, where each point is as-

sociated with a position in the Feature Space and also with a discrete label

that represents a specific descriptive word. This is similar, but generalized

to Rn, to the notion of “labeled point cloud” in R3 Cartesian space recently
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defined by Fober et al. for visual classification in the field medical imagery

[102]. Formally, the Semantic Point Cloud S is a set of points {s1, s2, ..., sp}

with two associated functions, Eq. 4.2 and Eq. 4.3.

RF : S → FεRn (4.2)

Where the application RF denotes a feature retrieval function that cor-

responds to retrieving the labeled point’s associated features or coordinates

in F (the sensory data of an object that has been described to the robot).

RD : S → D (4.3)

Where D is the semantic storage space for the robot’s acquired dictionary,

and the application RD denotes a word or symbol retrieval function that

corresponds to retrieving the labeled point’s name (the associated descriptive

word) from this dictionary D.

In terms of labeled data points in the Semantic Point Cloud, the point

cloud of n-dimensional labeled points that share the same label constitute

a Semantic Subspace. Let d be words which are actually the maximum set

of non-repeated words that have been registered in the dictionary D. The

number of words d will always be less or equal to p (the number of labeled

points in S), and corresponds to the number of Semantic Subspaces.

4.2.4 Populating the Semantic Point Cloud

The Semantic Point Cloud is initially empty. The Grounding Core generates

and stores new n-dimensional labeled points given < w, f > incoming pairs

and a “push” command, where w is a vector of descriptive words, and f

is a vector of scalar features extracted from sensory data upon description.

Given one < w, f > incoming pair, let m be the number of descriptive words

contained in w, then m new labeled points populate the Feature Space (F ).

Each word wi becomes the label in the dictionary (D) of one the newly
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generated points of the Semantic Point Cloud (S). For the given < w, f >

incoming pair, the newly generated points all share the same coordinates,

which correspond to the direct mapping without permutation of each scalar

feature fj on F . The dimension n of FεRn is increased if the number of scalar

features contained in f is greater than its current value. This functionality

of dynamically growing is useful to adjust F to the number of scalar features

contained in f of the first incoming pair. However, on-line dynamic growth

should be used with care, as the definition of old points becomes incomplete

in FεRn when n grows, and algorithms should take this into account.

Figure 4.4 depicts an example where a < {green, square}, {0.97, 120} >

first incoming pair arrives with a “push” command. The vector of descriptive

words w contains the two words “green” and “square”, so m = 2 and there-

fore two new points populate the Semantic Point Cloud (p = 2). The vector

of scalar features extracted from sensory data f contains the two scalars

“0.97” and “120”, so the dimension n of F grows to n = 2 if it was less

than 2 (which is the case, as it is a first arriving pair). The word “green”

becomes the label of the first point created in S and thus the first entry in

the dictionary D, and the “square” becomes the label of the second point

created and thus the second entry in D. The coordinates in F of the two

new points are identical and precisely {0.97, 120} in F , which matches with

f , as the two points originate from the same sensory input.

This is a 
green square.

+
Grounding

O

Rectangularity

green

square

Hue

0.97

120

Figure 4.4: Populating the Semantic Point Cloud with labeled points.
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It is interesting to highlight that although Figure 4.4 depicts that “0.97”

corresponds to “rectangularity”, and “120” corresponds to “hue”, the Seman-

tic Point Cloud does not know about “rectangularity” or “hue”, nor does it

need to not know about these concepts. This agnosticism provides flexibility

with respect to the nature and origin of sensory data.

4.3 Chapter Summary

In this chapter, focus has been given to the Computer Vision component and

the Grounding Core component. Each of these components play a fundamen-

tal role in the Perception block. Within Computer Vision, methods for object

segmentation in 2D and 3D camera images have been described, as well as

concepts and mathematical expressions for extracting human-understandable

features from segmented objects. The Grounding Core has lead to the defi-

nitions of the Feature Space, the Semantic Point Cloud, and the process of

grounded semantic knowledge acquisition in Perception. In RIS, the Ground-

ing Core enables embodied semantic knowledge and thus cognitive processes

that are grounded in perception.



Chapter 5

Inference Block

Inference is studied within philosophy, cognitive and developmental fields

of psychology and neuroscience, and several branches of computer science

such as artificial intelligence and the semantic web. Within the robotics

community, a great variety of large-scale research projects have been funded,

and a growing number of publications can be found within the proceedings

of recent major international conferences.

A specific kind of inference that lacks in existing non-robotic and robotic

systems was identified in in section 1.1 of this thesis. This shortcoming was

further incarnated into main objective (B): “To enable inference mechanisms

that allow a robot to work with combinations of words used to describe

objects, even if these words have never been previously taught together”.

In chapter 3, we introduced the term robot imagination to denote a robot’s

capacity to “imagine” or generate mental models through mental imagery

given combinations of words that have never been taught together, but have

been taught separately. Robot imagination precisely tackles our second main

objective, and is the aim of the the Inference block in RIS. The Inference block

is composed by a single component, the Imagination Core. This component

will be further described in the next section.

43
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5.1 Imagination Core

Let the Robot Imagination application be I, which can be seen in Eq. 5.1.

Robot Imagination has the potential to create previously unexisting Knowl-

edge K ′ from existing Knowledge K and Words W .

I : (K ×W )→ K ′ (5.1)

Robot Imagination in RIS involves a sequence of processes. The first

process performed within the Imagination Core is Prediction. In the context

of objects in RIS, this is the process of determining the features of an object,

given a query of words that describe it. Prediction in RIS currently looks for

a single solution in the Feature Space FεRn, the point that best represents

the words of the query. The Prediction application is I1 in Eq. 5.2.

I1 : (K ×W )→ F (5.2)

The subset of words W contained in a query should have been previously

taught to the robot and thus contained in the robot’s acquired dictionary

D (this notation follows the one given in section 4.2.3). Recall that Robot

Imagination becomes interesting when generating mental models from com-

binations of words that have never been taught together, but have obviously

been taught at some time. Two different algorithms to perform the Predic-

tion process will be presented. First, the basic prediction algorithm, which

was presented by the author in [83], will be reviewed in subsection 5.1.1.

Then, a new enhanced version of the original algorithm will be presented in

subsection 5.1.2.

Once the features of the object of query have been predicted, the Imagina-

tion Core may perform either Object Recognition or Object Reconstruction.

Object Recognition in the Imagination Core is a relatively straightforward

process. The Computer Vision component streams the extracted features



5.1. IMAGINATION CORE 45

of objects in a scenario. These features can be directly compared to the

predicted features in FεRn using, e.g. an n-dimensional Euclidean distance

as a metric. Finally, the Imagination Core returns the 3D Cartesian space

position (obtained from the Computer Vision component) of the object of

that minimizes the selected metric. The Object Recognition application is

I2A in Eq. 5.3.

I2A : F → R3 (5.3)

Object Reconstruction is a more complex process, that will be seen in

subsection 5.1.3. The Object Reconstruction application is I2B in Eq. 5.4,

which maps to a set of k 3D Cartesian space positions that represent the

reconstructed object.

I2B : F → (k × R3) (5.4)

Newly generated KnowledgeK ′, which is composed by 3D Cartesian space

coordinates in both Eq. 5.3 and Eq. 5.4, is not stored in RIS. It passed on

to the Execution Core for real world action, which will be seen in chapter 6.

5.1.1 Basic Prediction Algorithm

In a nutshell, the basic prediction algorithm can be described as a sequence

of the following four specific steps.

1. Generalization. Queries to the Imagination Core contain words that

describe an object. Supposing they have been previously taught (even

if not taught together, each can be found in D), each word denotes a

Semantic Subspace in S. Each point cloud in F corresponding to each

Semantic Subspace is generalized by fitting a hyperplane to it.

2. Intersection. The intersection of these hyperplanes creates the geomet-

rical construct of valid solutions, M .
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3. Projection. The center of masses of the original point clouds are or-

thogonally projected on M .

4. Averaging. An equally-ponderated average of the projected points re-

turns the final predicted point in F .

The rest of this subsection will be dedicated to explaining the assump-

tions that lead to these four steps, the mathematical artifacts involved in

implementing such a prediction, and certain special cases where steps can be

skipped for optimization.

Generalization

Generalization in the RIS basic prediction algorithm is performed by fitting

a hyperplane hw of order n−1 to each point cloud in FεRn that corresponds

to the Semantic Subspace of a given query word. The use of hyperplanes

can be criticized for several reasons (e.g. it is possible that the shape of a

given point cloud may not resemble a hyperplane, and there are also risks of

over-generalization since hyperplanes extend to infinite). However, fitting to

hyperplanes provides the following three benefits.

• From the algebraic definition of a hyperplane, and with the assump-

tion that the n-dimensional points of a given Semantic Subspace fit

relatively well to this selected model, all the linear dependencies and

couplings that can occur between features for the word w are simulta-

neously captured, represented, and “extended” across FεRn.

• Hyperplanes are defined in all space, so the “meanings” of words are

also extended across, and along, all features. While artifacts of machine

learning typically seek for similarity upon elements of a clustering task,

an important aspect of RIS is on generating new knowledge, extending

meanings to explore the unexplored, even if that means generalizing

towards infinite values.
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• Another practical benefit, which involves the intersection step per-

formed after generalization, is that we assure the existence of inter-

sections between these representations and thus “meanings” of words.

This is precisely because hyperplanes hw are of order n − 1 in FεRn.

Lower order geometrical constructs would not assure intersection, e.g.

intersection of 1D lines in 3D Cartesian space.

Let q be the number of words of a given query, a total of q hyperplanes

are generated. An example of three generalized words (q = 3) as hyperplanes

in a 3D Feature Space (n = 3) can be found in Figure 5.1. Hyperplanes are

equivalent to planes in this example. Extra emphasis should be given on the

fact that the generalized representation of words are the actual hyperplanes,

and not the resulting divisions of n-dimensional space.

Figure 5.1: Generalized words in a 3D Feature Space are planes that represent
the area that is relevant to each word.

A fair amount of machine learning regression algorithms can be used to

obtain a hyperplane which fits to a set of points (e.g. orthogonal distance

regression, which requires an initial guess and may result in local minima).
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We make use of the linear Principal Component Analysis (PCA) algorithm

due to its statistical and non-recursive nature. By definition, PCA is made

to convert a set of observations into a set of uncorrelated representative vari-

ables called Principal Components (PC) [103]. The statistical point model

of linear PCA assumes that the set of permissible shapes form a Gaussian

distribution, i.e., all possible shapes can be written as a linear combination of

a set of eigenshapes obtained by doing principal component analysis on the

training data set [104]. The linear assumption is the most common variant of

PCA, so the term “linear” will be dropped within the rest of this document.

PCA is mathematically identical to ANOVA-simultaneous component anal-

ysis (ASCA) [105], but differs in semantics and purpose. The most common

use of PCA is to supply a lower-dimensional representation space of an n-

dimensional multivariate dataset with the minimum loss of information. For

this purpose, the dataset is projected on a hyperplane that is defined by the

Principal Components (PC). PC are the vectors that explain the maximum

variances of the original dataset. We do not need to perform the whole PCA

process of projection in space; we simply exploit one of the intermediate

steps. We take advantage of PC computation and use the n − 1 generated

components as the defining vectors of each hw hyperplane. A summary of

PCA computation for a word query w is performed as follows.

1. Mean Subtraction. Given a point cloud that corresponds to the word w

(its corresponding Semantic Subspace in F ), its mean for each feature

is calculated as in Eq. 5.5.

f̄ =
1

pw
·

pw∑
i=1

fi (5.5)

Where pw is the number of points of the Semantic Subspace that cor-

responds to w. This process is repeated for every query word w. With

this calculation we obtain the center of mass of each point cloud, which

is each subtracted from the original point cloud.
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2. Covariance Matrix Calculation. It discovers the relation between the

features. As previously, F is the Feature Space, and we now denote the

data of all the words for a single feature as Fi (Eq. 5.6).

F =


F1

...

Fq

 (5.6)

Where q is the number of words of the query. We define the covariance

between two features as in Eq. 5.7.

cov(Fi, Fj) = E
[
(Fi − E(Fi))(Fj − E(Fj))

]
(5.7)

Where E(Fi) is the expected value of the corresponding feature Fi.

Currently, all our features weight the same in the calculation, so the

expected value can be substituted by the previous average. The covari-

ance matrix Σ is expressed as in Eq. 5.8.

Σ =


cov(F1, F1) · · · cov(F1, Fq)

cov(F2, F1) · · · cov(F2, Fq)
...

...
...

cov(Fq, F1) · · · cov(Fq, Fq)

 (5.8)

3. Eigenvectors and Eigenvalues. The eigenvectors of the covariance ma-

trix represent the directions of the variances of the data, and their

associated eigenvalues inform about the quantity of the variance ex-

plained by each eigenvector. These eigenvectors, in descending order of

variance explanation, are the previously described PC. We also order

the eigenvectors in descending order by means of their eigenvalues. An

eigenvector is defined as a vector that, when multiplied by a matrix,

results in a vector equivalent to the original one multiplied by a scalar
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(called eigenvalue). An eigenvector of a square matrix A is a non-zero

vector v that, when multiplied by A, gives as a result the same vector

v multiplied by a single number λ. This is expressed in Eq 5.9, the

“eigenvalue equation”.

Av = λv (5.9)

Where λ is a scalar called eigenvalue of v. Eigenvectors are actually

the vectors for which matrix A elongates or shrinks. This amount

of modification is represented by the eigenvalue. So, eigenvectors are

those vectors which are most elongated by the original data of the point

cloud. As the covariance matrix represents couplings between features,

the maximally elongated vectors are the best vectors explaining the

dispersion.

These sorted eigenvectors are the PC. We extract the largest ordered

n− 1 components, from which we generate the corresponding hw. The main

hypothesis of the author, that leads to discarding the smallest component, is

that objects are characterized by invariants, and object descriptions explain

the invariants of objects1. The smallest component represents invariance

of features across training samples that correspond to the same descriptive

word. We want to conserve this invariance when we extend “meaning” of

each word. This occurs if the hyperplane is not extended upon the smallest

components (passing from n to n− 1, this refers to only the smallest of the

components). On the other hand, we extend along the components with

greater variance, because the same hypothesis indicates it is safe to vary

where there is already variance, because this does not represent to object

and in turn greatly promotes generalization and exploring the unexplored.

1The author’s additional lemma is that high variance could be used to understand
and automatically acquire action names, e.g. “move” would imply principal components
with strong decompositions along axes related with object centroid positions, and “paint”
would have strong decompositions along axes related with object colors.



5.1. IMAGINATION CORE 51

Formally, a hyperplane can be constructed with a perpendicular vector

ā = (a1, a2, ..., an) and a scalar b. This combination defines the general scalar

equation of a hyperplane (Eq. 5.10), with n being the highest dimension.

a1x1 + a2x2 + · · ·+ anxn = b (5.10)

This equation can be expressed in matrix form as Ax = b. Therefore, our

aim is to obtain this perpendicular vector and the point, in order to obtain

the hyperplane. To achieve it, we use the properties of the dot product (Eq.

5.11).

c̄ · d̄ =
n∑

i=1

cidi = c1d1 + c2d2 + · · ·+ cndn (5.11)

According to the dot product definition, two non-zero vectors are orthog-

onal if their dot product is equal to zero. To define a hyperplane of n − 1

dimensions, in an n dimensional space, we need n− 1 vectors v contained in

the hyperplane. From PCA, we obtained a set of vectors which are contained

inside the hyperplane. A dot product is performed for each of these vectors

with a, because a must be orthogonal to each of them. Let us remember

that a is the vector we want to find, the vector that is orthogonal to the

hyperplane. These Principal Components multiplied with a lead to a system

of linear equations defined as in Eq. 5.12.

v̄1 · ā = 0⇒ v11a1 + v12a2 + · · ·+ v1nan = 0

v̄2 · ā = 0⇒ v21a1 + v22a2 + · · ·+ v2nan = 0

...
...

...

v̄k · ā = 0⇒ vk1a1 + vk2a2 + · · ·+ vknan = 0

(5.12)

Where k = n − 1. This system of equations is indeterminate, because it

has n unknowns and n− 1 equations. To cross this gap, we include an extra

constraint a1 = 1, which is equivalent to elongating one variable of a and
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letting the rest get adapted, obtaining a system with a unique solution. This

trick does not affect to the solution, and it only changes the magnitude of

the resulting vector. The vector’s direction is maintained, which is in what

we are interested. The obtained vector ā is orthogonal to the hyperplane.

The only remaining unknown parameter is b, which is a scalar. If we

substitute A in Ax = b (the hyperplane equation) with ā, and substitute x

with one point in the hyperplane, b is directly obtained and the hyperplane

is now completely defined. The point in the hyperplane selected has been

the previously calculated center of mass of the point of the cloud (Eq. 5.5).

Intersection

Up to this point we have defined the steps followed to generalize words in the

Feature Space. This second step in the prediction algorithm is achieved by

determining the geometrical figure that contains all of the valid solutions. In

this basic prediction algorithm, this geometrical figure is the construct that

results from the intersection of the hyperplanes that represent the words of

the query. In the resulting geometrical construct, the “extended meanings”

of different words meet. Given a query composed by q words (q would be

2 in a query such as “Imagine a yellow square”), we define the geometrical

figure that contains all of the valid solutions M as the one resulting from the

intersection of the hyperplanes of the corresponding query words. Formally,

M(w1, ..., wq) = hw1 ∩ ... ∩ hwq (5.13)

With q being the number of query words. This geometrical figure that

results from the intersection of hyperplanes may vary in its number of dimen-

sions, depending of the number of hyperplanes intersecting. The intersection

of q hyperplanes can lead to different figures, in function of the number of

hyperplanes, and the order of the space.



5.1. IMAGINATION CORE 53

Projection

The order of M can be calculated as n− q, and the possible resulting figures

are points, lines, planes, or high-dimensional hyperplanes (this is, M is in

fact always a (q − n)-dimensional “flat” surface). No matter what “shape”

the resulting figure has, we orthogonally project the center of mass of each

n-dimensional point cloud, corresponding to each query word, on M . There

are two reasons behind this orthogonal projection of the center of mass.

• Orthogonal projection gives us the solution on the valid solution geo-

metrical construct that is closest to the original data of a given point

cloud.

• Projecting the center of mass promotes ranges of values that are com-

mon in objects, which is useful when not all features are specified by

words (e.g. when the number of query words q is much smaller than

the dimension n of the Feature Space).

A number of algorithms can be used to orthogonally project a point on

a high-dimensional “flat” surface (e.g. Gram-Schmidt). The technique used

is the Modified Gram-Schmidt process for orthogonalization (MGS), due to

its numerical stability properties with respect to the original Gram-Schmidt

process. MGS performs an orthogonal projection of a vector onto another

one, aimed at constituting an orthogonal base. A simple projection of a

vector v into another vector u is defined as in Eq. 5.14.

proju (v) =
〈u,v〉
〈u,u〉

u (5.14)

Where 〈·, ·〉 represents the dot product. But, when the searched projec-

tion must be orthogonal, MGS states that a vector v orthogonally projected

into u, is defined as in Eq. 5.15.

u = v − proju (v) (5.15)
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This equation involves only two vectors, but this formula can be recur-

sively applied to create an orthogonal base u from k non-orthogonal vectors

v (Eq. 5.16). This multivector projection is necessary because M can be

highly dimensional.

u
(1)
k = vk − proju1

(vk)

...

u
(k−1)
k = u

(k−2)
k − projuk−1

(u
(k−2)
k ) (5.16)

The projection is obtained by subtracting the final uk from the center of

mass to project, because this uk is perpendicular to the hyperplane and its

modulus is the orthogonal distance between the two. For q query words, q

points are projected on M .

Averaging

Prediction in RIS currently looks for a single solution in the Feature Space

FεRn, the point that best represents the words of the query. The projected

points will be on different zones of M . An average with equal weights is

applied to these points, obtaining a single solution, which is also contained

in M (see an example in Figure 5.2). The weight of specfic words can be

augmented, if stress in speech can be detected and quantified. The follow-

ing three advantages of the solution obtained in the Feature Space F are

highlighted.

1. Complete. Because it is completely defined in all the Feature Space.

2. Relevant. Because it is contained in the area where the extensions of

meanings intersect.

3. Balanced. Because all the words influence the same way in the final

solution.
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Figure 5.2: Unique solution using MGS for two query words but three di-
mensions. The augmented region shows the orthogonal projection of centers
of mass.

Special Cases

The basic prediction algorithm can be used regardless the dimension n of F

and the number of query words q. However, in order to reduce computation

time, some special cases for optimization can be defined. We consider special

cases, those where the order ofM leads to situations that can be simplified. It

is important to notice that following cases are pure simplifications to improve

efficiency, but could be also solved with the previous method.

• Special case: q=1

In this case, there are no intersections, because a single hyperplane is

generated from a single query word. In absence of more information,

the center of mass of the point cloud becomes the solution. The reason

behind this decision is that we suppose that for a point cloud, the

center of the cloud will be the most relevant area possible. Note that

the effects on non-convex point clouds should be studied.
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• Special case: q=n

In this situation, the order of M is null (remember that its dimension-

ality is q − n = 0), so the resulting figure is a point. Thus, further

computation is not necessary, and the solution is this point. The inter-

pretation of this situation is that in the description provided as query,

there is one word representative of at least one of the features in the

space, so no further interpolation is required to supply undefined fea-

tures. Figure 5.3 depicts an example of this special situation, where

n = 2 and q = 2. Figure 5.4 depicts a different example of this special

situation, where n = 3 and q = 3.

Figure 5.3: In this special case where n = 2 and q = 2, the intersection point
(black) becomes the solution in the Feature Space.

The mentioned special cases are pure simplifications for efficiency. Specif-

ically, for q = n we avoid orthogonally projecting the center of masses of the

words on a point, as it will return the same point. Similarly, we save several

steps in the case of q = 1. In this case, only one hyperplane is generated. The

center of mass of the word is contained on M , so its orthogonal projection is
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Figure 5.4: In this other special case where n = 3 and q = 3, the intersection
point (black) also becomes the solution.

again itself. Note that q > n is currently not treated.

It is important to notice that our systems improves the results through

time as it gets more samples. The more dense a point cloud is, the better

the analysis that can be performed, with better regressions and intersection.

When more training is performed, the extended algorithm presented below is

also more robust. Note that training can be performed in concurrence with

inference queries that involve prediction.

5.1.2 Enhanced Prediction Algorithm

The presented basic prediction algorithm has established the basis for pre-

diction in Robot Imagination, but some issues may be outlined.

• Context dependency: The basic prediction algorithm is not capable of

correctly managing words that change depending on the context. An

example of this could be the word “green”, which could refer to an
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object’s color, or to its state of ripeness. This may affect the Robot

Imagination System as it can represent a total loss of linearity of the

words with respect to any of the features.

• Periodicity: The basic algorithm is susceptible to malfunction in the

presence of repeating patterns. For example, in the HSV color space,

the hue “red” can be represented as 0◦ or as 360◦. A hyperplane fit to

these values can tend to settle at 180◦, which is obviously wrong.

To solve these limitations, or at least, reduce their influence, we have

developed two extensions which enhance the algorithm solving capabilities:

Context Detection, and Hyperspherical Shape Detection through Eigenvalue

Analysis. The rest of this subsection will be dedicated to explaining these

extensions.

Context Detection

To avoid the context dependency and periodicity explained, we have created

a context detector, which selects the appropriate point cloud to model, in

function of previous experiences. This context detector implies two modifica-

tions of the basic prediction algorithm: one in generalization, and the other

in the intersection finder.

In the previous basic prediction algorithm, when generalizing a word, we

used all of the points labeled with this word to perform the generalization.

This is, all of the points of a Semantic Subspace were treated as a single

cluster. We now perform a previous step of clustering of these points, to

enable an independent generalization of each cluster. Points are clusterized

using Aglomerative Single-Linkage Hierarchical Clustering [106]. For the

whole raw data, the algorithm will look for the two most similar data points

and merge them to create a new pseudopoint (the average of both points).

Each iterative step takes the next two closest points (or pseudopoints) and

merges them. This process is generally continued until a stop criterion is
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reached. In our case, the stop criterion is executed when the distance between

the two most closest clusters ω is bigger than a threshold ωmax.

Once the clusters have been detected, we have to decide which cluster to

use for the hyperplane intersection, among those available. For that purpose,

we use an adaptation of word bigram co-occurrences. A bigram is a sequence

of two adjacent elements in a set of elements (e.g. red:big), and the co-

occurrence CO() is the frequency of occurrence of two elements in a series of

elements (e.g. CO(red:blue) = 0.5). Bigrams and co-occurrences are broadly

used in semantic analysis [107]. Our adaptation is called “Cluster Bigram

Co-Occurrence”. For this, we associate a new function to the Semantic Point

Cloud S (in addition to Eq. 4.2 and Eq. 4.3), which can be seen in Eq. 5.17.

RA : S → A (5.17)

Where A is the Accompanying words list, which itself contains lists of

words present in the description from which the point was generated. This

can be seen in the following example.

1. An n-dimensional point is generated from sensor information, with the

description: “red”, “big”, “long”.

2. Three points with the same coordinates are created in the Feature Space

F , and three entries are created in the Dictionary D: “red”, “big” and

“long”, respectively.

3. The first entry in A will contain the words “big” and “long”.

4. The second entry in A will contain the words “red” and “long”.

5. The third entry in A will contain the words “red” and “big”.

The number of Bigram Co-Occurrences (the number of times an accom-

panying word appears for the set of points of the cluster) are counted for
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each cluster of a query word, and the cluster for which the sum of its Bigram

Co-Occurrences of accompanying words (of the query) is biggest is selected.

This is best understood with the example depicted in Figure 5.5. In this

example, we have set two clusters. Both clusters are formed with points

containing the word “red”. The accompanying words of some points are

shown, which we will use for counting (in practice, all of the points and

words are taken into account). The Context Detector algorithm must decide

which of the two clusters will be used for regression. For solving this, it sums

the number of accompanying words present in each of the clusters. If, for

instance, we are using “big” and “long” as accompanying words, it has to

compare the number of points containing “long” or “big” as accompanying

words. For the 5 points depicted in the figure, the left cluster would have a

score of 4 (3 from “big”, plus 1 from “long”) and the right cluster would have

a score of 1 (from “long”). Our algorithm, only considering these depicted

points, would choose the left cluster.

Figure 5.5: The Context Detector accumulatively counts the accompanying
words of a query word within each cluster.

Continuing with the same example, and setting two clusters for the word

“red”, the selected one for hyperplane generation and intersection would be:
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Cluster = arg max
c∈C

(CO(redc : big) + CO(redc : long)) (5.18)

Where C is the set of all clusters for the word “red”, and “redc” is the

name given to each cluster of word “red”. The points belonging to the se-

lected cluster will be the ones used for hyperplane generation in this partic-

ular request. The selected cluster may vary depending on the accompanying

words.

Hyperspherical Shape Detection through Eigenvalue Analysis

Sometimes, when calculating the Principal Components of a point cloud,

we detect that the points are extended in all spatial directions with similar

length, as in a hypersphere, so the point cloud cannot be extended in any

meaningful direction. This detection is computed by comparing all sorted

eigenvalues v ∈ E, in the set of eigenvalues E for a point cloud. We sort

them in descending order and, for a n-dimensional space, we check Eq. (5.19).

∀v ∈ E, j = [0, n− 1] : |vj| − |vj+1| < Θmin (5.19)

Where Θmin is a manually set parameter. In the case that all eigenval-

ues evaluated are similar (Eq. (5.19) would be true for all eigenvalues), we

reduce the point cloud to the single point, formally the center of mass of the

cloud. Words where this ocurrs do not participate in hyperplane generation

and intersection, and instead the center of mass is directly projected on the

intersection element M resulting from the intersection of the rest of the hy-

perplanes generated from the query words. This mechanism helps work with

Semantic Subspaces that have a shape resembles more of a hypersphere than

a hyperplane, respecting this shape while maintaining compatibility with the

rest of the algorithms.
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5.1.3 Object Reconstruction

From Eq. 5.4, we have seen that Object Reconstruction is the process of

generating a set of k 3D Cartesian space positions that represent the re-

constructed object, given the features of the object. Up to this step in the

process, we have obtained the values of the features of the object of imagina-

tion through the basic or enhanced prediction algorithm. However, we have

not obtained a “mental model”, or at least not a human-understandable

mental model of the object as a product of Robot Imagination.

To achieve this, the features values inferred in the previous prediction

step are set as inputs to an evolutionary computation algorithm (EC), which

performs a steady state selection algorithm [108]. The particularity of this

algorithm is that, in each generation, after the selection and crossover pro-

cess, the resulting individuals replace only a few other individuals at a time,

instead of other algorithms which replace most of them. The following is a

summary of the algorithm’s operator details.

1. Selection. A tournament is performed between random individuals.

Their fitness values are compared, and winners are selected for crossover.

2. Crossover. Winners are crossed, and their children substitute the worst

values from the previous tournament.

3. Mutation. Finally, each child may be mutated with a certain degree of

probability.

The termination condition can be set to a certain number of generations

without improvement in the fitness value. For the process of generating the

mental model, the EC controls the coordinated Cartesian space positions of

a set of points inside a 2D or 3D canvas. These points are linked to form

a shape. Then, we extract features from the generated image and compare

them with the target features. Termination comes once these points are
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considered “fit” according to the fitness function, a weighed cost function on

the feature errors.

To accelerate the process, we can also act on two levels, similar to the two

levels of the visuo-spatial sketchpad presented by R.H. Logie [59]. First, the

EC can control the coordinated Cartesian space positions of a set of points

inside a small 2D or 3D canvas, the equivalent to Logie’s “visual cache”.

These points are linked to form a shape. Then, omitting spatial features,

the rest of the features are extracted from the generated image and compare

them with the target features. Termination comes once these points are

considered “fit” according to the fitness function, a weighed cost function on

these feature errors. Finally, these points are spatially plotted on a larger

canvas equivalent to Logie’s “inner scribe”. The algorithm can converge

without this two-level scheme, but times may increment significantly as it

reduces computational efforts.

5.2 Chapter Summary

The Inference block has been introduced in this chapter, which is composed

by the Imagination Core. Robot Imagination first involves prediction of

object features, given a query of words. A basic prediction algorithm and

an enhanced prediction algorithm have been presented. These predicted

features can be used in a straightforward manner for Object Recognition,

or to generate “mental models” through Object Reconstruction. The next

chapter will present how these products of Robot Imagination can be used

to perform execution of tasks in real world environments.
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Chapter 6

Execution Block

The Execution block is composed by three components: the Visual Output

component, the Speech Output component, and the Execution Core compo-

nent. Existing components can be used as the Visual Output component,

as 2D and 3D visualizers can be found within a number of robot architec-

tures. Similarly, several existing text-to-speech components can be used as

the Speech Output component. The Execution Core component per se has

no equivalent within robotic architectures. It requires a detailed description,

which will be given in the following section.

6.1 Execution Core

In RIS, the Execution Core is in charge of Action, which is executed given

Knowledge K ′, potentially creating external stimuli E that close the Percep-

tion cycle seen in chapter 4. The Action application is A in 6.1.

A : K ′ → E (6.1)

Where K ′ maps to the knowledge that has been generated in the Inference

Core. Commands that come from the State Machine modify the Execution

Core’s behavior, invoking different actions.

65
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The fact that the chain of Action ends in the environment, and not within

the robot itself, makes us subscribe to the recently co-authored paradigm

of Continuous Goal-Directed Actions (CGDA). In section 2.4 we presented

this paradigm as a useful way to teach robots the consequences of an action,

which is in line with what is required in the Execution Core. Throughout this

section, we will present the intrinsics of the algorithm of this work presented

in [80], and describe how this paradigm merges with the fabrics of the RIS

architecture. Subsection 6.1.1 explains how actions are encoded in CGDA,

which corresponds to an action generalization process. The algorithm for

recognition of performed actions is described in section 6.1.2. Execution,

which will be explained in subsection 6.1.3, is performed through evolutionary

computation, that includes action recognition in every iteration.

6.1.1 Action Generalization

In order to teach the Execution Core a new action, we must demonstrate

the action we want to teach the robot with several repetitions. This is cur-

rently performed off-line, and action names are currently hard-coded. These

practices are in line with trends within the robot imitation [14] presented in

section 2.4, where the demonstrator could either be the guided robot itself,

a human with sensors attached, or video sequences with human movements.

In CGDA, the environment is continuously tracked (segmented objects, and

optionally, the human’s movements) in a Feature Space FεRn, analagous to

the Feature Space for objects which has been presented in subsection 4.2.2.

Since the nature of electronic camera sensors is in practice discrete (sam-

ples are taken at a given rate), the result of several repetitions is actually a

point cloud in F . For generalization purposes, we need to extract a repre-

sentative n-dimensional trajectory from the point cloud that is formed after

several repetitions. This generalization process itself is composed by a se-

quence of three subprocesses: time rescaling, average in temporal intervals,

and Radial Basis Function (RBF) interpolation.
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Time Rescaling

Before inserting a new action repetition in the point cloud, it is normalized

in time (range [0, 1]). With this time rescaling, every action execution gets

bounded by the same temporal limits, making the algorithm independent

of the speed of the repetition. These normalized trajectories are the ones

introduced in the Feature Space F to form the action point cloud.

Average in Temporal Intervals

To model the point cloud, we split it up in temporal intervals, fixing one

interval per second. The number of seconds is computed from the average

duration of the original repetitions. Each interval contains points of all repeti-

tions, in the same percentage of execution. As the repetitions are normalized

in time, each interval represents a percentage of action execution, and the

number of intervals allows preserving a notion of the original action duration.

The representative point of each interval is extracted as the average for each

dimension of all points of the interval, as seen in Figure 6.1.

Radial Basis Function Interpolation

These temporal averaged points of the previous step must be joined to form

a generalized action, i.e. an object feature trajectory we can consider a

generalization. An interpolation in robot motor joint space could create a

jerky joint trajectory, so literature, e.g. [65], commonly uses regressors such

as Gaussian Mixture Regression (GMR). However, working in the Feature

Space, we use an interpolator to assure the trajectories pass through the tar-

get points (which are the states of the object in an instant). We use a Radial

Basis Function (RBF), which is an interpolation technique based on mea-

suring the influence of every known point over the queried point [109]. The

RBF interpolation f(x), which will become the final generalized trajectory,

is mathematically expressed as a sum of radial basis functions, Eq. 6.2.
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Figure 6.1: Plot representing a three feature trajectory. Black lines are
training action repetitions. The blue line is the generalization of all the
repetitions.

f(x) =
N∑
i=1

wi φ(r) (6.2)

Where the radial basis function is denoted as φ, and N is the number

of radial basis functions, equal to the number of intervals. We have selected

the linear radial basis function, seen in Eq. 6.3, as opposed to other alter-

natives (e.g. Gaussian, multiquadratic, polyharmonic spline...), because the

smoothness of the trajectory in the feature space is not relevant.

r = ‖x− xi‖ (6.3)

Where xi represents the coordinates of each interval’s known point, so

the linear function radial basis r is the distance between the known point

xi and the queried point x measured with the L2 norm. Eq. 6.2 is further

expanded to Eq. 6.4 with the linear radial basis function of Eq. 6.3.
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f(x) =
N∑
i=1

wi φ(‖x− xi‖) (6.4)

Where the coefficients wi are the weights of the specific known points over

the queried point x, and are the values to be solved. As the interpolation

is known at known points, the weight problem is solved as a set of N linear

equation with N unknowns, Eq. 6.5.

f(x1) =
N∑
i=1

wi φ(‖x1 − xi‖)

...

f(xN) =
N∑
i=1

wi φ(‖xN − xi‖) (6.5)

Once the interpolated function is returned, we consider this output as the

generalized function of an action. Its physical meaning is how the state of

the object, regarding its features, changes across the execution of the action.

6.1.2 Action Recognition

Here we aim to recognize an action by comparing a query action with the

previously generalized or synthetically created ones. Action Recognition in

CGDA is achieved by comparing feature trajectories, which is equivalent to

comparing the evolution of feature changes “continuously in time”. Given a

set of generalized or synthetically created actions, the one with the highest

score of feature trajectory similarity with respect to that of a query action

is the one that is returned as the recognized action.

The initial treatment of the query action is the same as explained. As

they are normalized in time, t values along time can be taken for each action

for comparison. The technique used in the comparison is Dynamic Time

Warping (DTW). DTW is an algorithm usually used to optimally align two
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temporal sequences [110]. Our use of DTW is to compare two time-dependent

sequences of points X = {x1, .., xN} and Y = {y1, .., yM} with N,M ∈ N. To

compare two elements, a local cost measure (a distance d(x, y)) is needed. A

lower cost represents a bigger similarity of the sequences. Evaluating all pairs

of points between the sequences, using in this case a L2 norm, we obtain a

cost matrix CM , with a size of N ×M , Eq 6.6.

CM =


d(x0, y0) · · · d(xN , y0)

...
...

...

d(x0, yM) · · · d(xN , yM)

 (6.6)

Once having this matrix, the goal is to find the lowest cost alignment

path, which intuitively should run along the lowest cost cells. This alignment

is called the warping path. DTW includes some constraints in the path

calculation to assure a monotonic advance of the path and to assure that the

first elements as well as the last elements are connected to each other. The

total path cost cP (X, Y ) is calculated as the sum of the local costs c, Eq 6.7.

cP (X, Y ) =
L∑
l=1

c(xnl, yml) (6.7)

Where L is the length of the path. For programming reasons, the path is

usually calculated in an accumulated cost matrix, where each cell represents

the cost of the correspondent pair (x, y) plus the cost to reach this cell. In the

accumulated matrix, the normalized cost cPnorm(X, Y ) of the optimal path is

expressed as in Eq 6.8.

cPnorm(X, Y ) =
c(xn, ym)

N +M
(6.8)

In our case, we use this normalized cost of the optimal path as a measure

of discrepancy between dimensions. Figure 6.2 depicts an example accumu-

lated matrix, with its optimal path in red. As DTW is computed between

two signals for one dimension only, we consider the total cost of alignment
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Figure 6.2: Example of accumulated cost matrix for two sequences. White
cells represent high cost, while dark cells are low cost ones. The red line is
the lowest cost path.

between two n-dimensional trajectories as the sum of the costs of the optimal

paths of each dimension, obtaining a single score d.

d =
n∑

i=1

cPnorm(Xi, Yi) (6.9)

This score is used as the measurement of discrepancy between two tra-

jectories in the n-dimensional space. The highest score of feature trajectory

similarity for Action Recognition is given by the compared Feature Space

trajectory with the smallest discrepancy measurement with respect to the

action of a given query.
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6.1.3 Execution

The Execution Core, fueled by CGDA, has allowed to learn actions in the

Feature Space, and also to compare actions in terms of trajectories in this

space. However, at this point, we actually lack the robot motor commands

for executing an action that generates the desired effects on the environment.

A similar situation was seen in Object Reconstruction of section 5.1.3.

We had a reached a solution in the Feature Space, an n-dimensional point,

but had no way of porting this solution to the real world. Finally, Evo-

lutionary Computation (EC) algorithms were adopted to find solutions in

Cartesian space. While the Object Reconstruction problem presented an n-

dimensional point, in Execution we have an n-dimensional trajectory in the

Feature Space. With this analogy in mind, EC is again used to to perform a

steady state selection algorithm (few individuals are replaced after the selec-

tion and crossover process), this time to discover full robot motor trajectories

that allow executing a given action.

Instead of using the location of a set of 2D or 3D points in Cartesian

space as the parameters that evolve in EC, the robot motor joint positions

(the joint space values) are the parameters that evolve to achieve the effects

of the action on the environment at each step. To achieve a trajectory com-

posed by k n-dimensional Feature Space points, k times the number of used

robot motors evolve. At each cycle of the evolution, the effect of the per-

formed action is measured through one of the steps of Action Recognition:

the discrepancy score d is used as the fitness parameter of the EC.

As performed in Object Reconstruction, the termination condition is set

to a number of generations without improvement in the fitness value. An

example fitness evolution for a given action can be found in Figure 6.3. A

summary of the operator details of this algorithm (selection, crossover, mu-

tation) was given in section 5.1.3. For practical concerns (e.g. time given

the high number of iterations, and danger for the robot or environment),
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Figure 6.3: Fitness value through evolution. The red point is the minimum
value achieved by evolution.

this evolution may be performed in a virtual environment. This virtual en-

vironment can be synchronized with the real world and implement object

persistence, as studied in section 2.3. The final solution, a full robot motor

trajectory, can be executed in the real world environment.

6.2 Chapter Summary

In this chapter, the Action application has been seen, as well as how it is

performed in the Execution Core. To accomplish Execution as expected,

we have incorporated the recently co-authored Continuous Goal-Directed

Actions (CGDA) paradigm. Action Generalization of CGDA has been ex-

plained, as well as how Action Recognition is performed. Finally, we explain

is computation and performance of Execution through an Evolutionary Com-

putation approach, which uses Action Recognition within the cycles of the

evolutionary computation algorithm.
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Chapter 7

Experiments

To evaluate the system, we have performed several experiments. Compu-

tational implementation aspects that have been shared among experiments

will be seen in section 7.1. The Imagination Core’s basic prediction algo-

rithm and object reconstruction will be put to work through an experiment

that consists in having a manipulator robot draw an imagined object in a

simulated environment in section 7.2. Spatial language will be taught to the

humanoid robot Teo in section 7.3, proving the benefits of the Imagination

Core’s enhanced prediction algorithm. The Execution Core’s functionality

through CGDA will be seen with the replication of a waxing task in section

7.4. A final global validation experiment will be performing a version of a

psychological experiment, the Token Test [111], in section 7.5.

7.1 Computational Implementation

Each RIS component has been implemented as a YARP module [112]. These

modules are independent and interconnected, interchanging relevant infor-

mation through YARP ports, and are direct software implementations of

the mathematical formalizations explained throughout the previous chap-

ters. For all experiments, object segmentation and processing on 2D images

has been implemented using the OpenCV library through the Travis wrap-

75
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per [113], obtaining a periodic transduction and processing loop within a 20

millisecond margin. Object segmentation and processing on 3D images has

been implemented using the PCL library [114], additionally accessing to the

underlying 3D vision library called Visualization Toolkit (VTK) and devel-

oped by Kitware [115], obtaining a periodic transduction and processing loop

within a 10 second margin.

7.2 Basic Prediction Algorithm: Drawing

To test the Imagination Core’s basic prediction algorithm, we have a robot

draw an object it has never seen before. A fundamental aspect of this process

is enabling the robot to externalize a mental model of an object it has never

seen before. This experiment is performed using the ASIBOT robot [116] in

an OpenRAVE-based [117] simulated environment. This robot is a 5 degree-

of-freedom medium sized manipulator arm, developed to assist disabled and

elderly people in domestic environments.

For the application, a training dataset has been composed, consisting in

300 synthetically generated flat images (Figure 7.1). To accelerate the pro-

cess, this initial population has been generated automatically. These images

are colored figures, which vary in shape and position, over a black back-

ground. Linked to the images, 7-word automated descriptions are attached

to each image (only representative words, e.g. top-left-dark-blue-fat-straight-

box). These words are nouns and adjectives automatically added when the

image is generated. Each descriptive word could take upon 3 different val-

ues, thus this training population of 300 images represents less than 13.7%

of all of the possible combinations. This fact is deliberate, to prove that our

algorithms do not need to be trained with all of the existing possibilities, and

that even the basic prediction algorithm can manage this type of situation of

incomplete knowledge. An additional Gaussian noise of 1% has been added

on all features to emulate real world noise.
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Figure 7.1: Example of training images used to populate the space. For
instance, the first image is labeled top-left-dark-blue-fat-straight-box.

In this experiment, 12 features are extracted (see subsection 4.1.3) from

the training images. The first two correspond to the vertical and horizontal

position of the centroid of the object in the image. The average hue and

value are used to define the color, and another 8 features (aspect ratio, area,

rectangularity, maximum and minimum axis, solidity, arc, and radius) are

used to characterize the contour of the object.

For generating the mental model from a query, the Evolutionary Com-

putation (EC) algorithm of object reconstruction controls the 2D coordinate

positions of a set of points inside a flat canvas. These points form a shape

together, and the features of the generated image are extracted. The fitness

is calculated as the simple sum of feature differences between the target data

and the generated one. These target values of the EC are the values of the

features returned from the basic prediction algorithm of subsection 5.1.1.

The EC tournament size is set to 3 individuals, the mutation probability is
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set to 70%, and the termination condition is set to 50 generations without

improvement in the fitness value. Several generated mental models can be

seen in Figure 7.2.

Figure 7.2: Mental models generated from different queries: (a) “bottom
right”, (b) “bottom left”, (c) “top right”, (d) “top blue”.

Notice that unnamed features in the query words, such as color or shape,

remain uncertain but bounded in their values. Despite they can be also

modified in the mutation process, the target values with which they are

compared are undefined values from the intersection of hyperplanes, but take

intermediate values due to the orthogonal projection step of the prediction

algorithm. These mental models are composed by sets of 2D coordinate

points. Fixing a height for a flat painting surface, these points can be used

directly as a trajectory for the drawing application. Figure 7.3 depicts a

screenshot of the simulated ASIBOT robot performing the drawing task.

Figure 7.3: Simulation of the ASIBOT robot arm drawing the mental model
generated from a “bottom left” query.
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7.3 Enhanced Prediction: Spatial Language

To test the Imagination Core’s enhanced prediction algorithm, we perform a

spatial language experiment. Spatial language is complicated to understand,

because its meaning depends on the person describing and the used possessive

adjectives. This is the case of “my left side” as opposed to “your left side”. In

this experiment, we teach the robot how to distinguish between perspectives

(the egocentric versus allocentric problem), and obtain a real spatial meaning

from the descriptions.

7.3.1 Synthetic Test

The training phase is performed using computer-generated samples of a white

circle on a black background (Figure 7.4). The white circle is randomly

situated in each image, which is then automatically classified according to

its coordinates. The samples, whose circle centroid coordinates are their

features, are labeled with their spatial characteristics.

Figure 7.4: Synthetic samples used for training and testing spatial language.

Images are 100 by 100 pixels size and the classification is carried out as

follows: height and width are virtually divided in 3 equal parts (resulting

in 9 areas). Words are assigned to the samples, based on circle coordinates,

and they are: “top”, “bottom”, “right”, “left” and “middle”. This last word,
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“middle”, is used twice, or in with two different “meanings”, because it can

represent vertical but also horizontal middle space. The dataset is composed

of 300 samples, of which 70% are used for training. The test phase uses the

remaining 30%. In this case, all possible combinations of words are fed to

the grounding database, except for contradictory pairs (e.g. “left-right”).

The first result, shown on Figure 7.5, represents the basic prediction algo-

rithm (subsection 5.1.1) output, in 2D coordinates, for queries that combine

the different spatial words (“top”, “middle”, etc.).

Figure 7.5: Basic prediction algorithm. Visual output (circle at x, y) for
two-word queries. Every image is positioned in its respective place in the
figure. For instance, the upper left image corresponds to a “top-left” query.
For a better comprehension of the results, the dotted gray lines represent the
approximate margin for different areas in each square.

Once having these values, they can be now compared with the samples

reserved for the test phase. For this task, Root-Sum-Square (RSS) results

are compared (Eq. 7.1), once for each coordinate x and y.

f(x) =

√√√√ n∑
i=1

(xi − µ)2 (7.1)



7.3. ENHANCED PREDICTION: SPATIAL LANGUAGE 81

Where n is the number of samples, xi is the single coordinate value for

a test sample, and µ is the result obtained of the training phase (shown on

Table 7.1) for these words combination.

Table 7.1: Basic prediction algorithm. Numerical output (x, y) for a “word-
word” query.

top bottom left right middle
top 51.3 , 78.0 * 21.0 , 78.5 76.1 , 77.6 -40.7 , 79.5

bottom * 51.5 , 21.3 20.9 , 21.6 78.3 , 12.1 111.4 , 20.8
left 21.0 , 78.5 20.9 , 21.6 20.9 , 50.6 * 20.9 , 55.7

right 76.1 , 77.6 78.3 , 21.1 * 77.1 , 50.1 77.8 , 33.8
middle -40.7 , 79.5 111.4 , 20.8 20.9 , 55.7 77.8 , 33.8 46.7 , 45.8

Eq. 7.1 results on Table 7.2, where values marked with (*) correspond to

undefined fields because of the absence of samples to compare with (e.g. no

“left-right” sample).

Table 7.2: RSS results in x, y when test dataset samples are compared with
the basic prediction algorithm output.

top (t) bottom (b) left (l) right (r) middle (m)
t 105.8 , 37.1 * 16.5 , 19.9 9.4 , 7.2 342.8 , 31.6
b * 131.7 , 39.3 24.5 , 28.8 14.2 , 16.5 190.5 , 20.3
l 16.5 , 19.9 24.5 , 28.8 42.5 , 130.2 * 30.5 , 40.1
r 9.4 , 7.2 14.2 , 16.5 * 23.7 , 85.8 13.6 , 37.8
m 342.8 , 31.6 190.5 , 20.3 30.5 , 40.1 13.6 , 37.8 134.6 , 155.7

A closer look to the figures reveals some interesting details:

• The initial automatic sample classifications were performed dividing the

100 pixels in three equal parts, so any value lower than 33 (for “bottom”

and “left”), or higher than 66 (for “top” and “right”), represents a

correct parameter generation for unambiguous words. These correct

values are marked in bold in Table 7.2.

• When the word “middle” is present, values are misplaced due to their

ambiguity in terms of the used vertical and horizontal features.
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• Best results are given when both words are clearly defined and unam-

biguous (e.g. “top-right”, “bottom-left”, etc.).

The same database is used to test the enhanced prediction algorithm

(subsection 5.1.2), which includes the context detector and the hyperspherical

shape detector. In order to check the context dependence robustness of

the system, we add a flip coin probability for every generated image in the

database to be described using an egocentric spatial reference (“this is my

left”), or an allocentric spatial reference (“this is your left”). Both spatial

feature values are similar for vertical positions, but opposite for horizontal

descriptions. Results from the demonstrator point of view (egocentric) of

spatial positions using “my” as descriptor are shown in Figure 7.6.

Figure 7.6: Enhanced prediction algorithm. Visual output (circle at x, y) for
three-word queries. Demonstrator point of view. “My” used as descriptor
(egocentric). Every image is positioned in its respective place in the figure.
For instance, the upper left image corresponds to a “my-top-left” query. For
a better comprehension of the results, the dotted gray lines represent the
approximate margin for different areas in each square.

Results from the robot’s point of view (allocentric) of spatial positions

using “your” as descriptor are shown in Figure 7.7.
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Figure 7.7: Enhanced prediction algorithm. Visual output (circle at x, y)
for three-word queries. Robot point of view. “Your” used as descriptor
(allocentric). Every image is positioned in its respective place in the figure.
For instance, the upper left image corresponds to a “your-top-left” query.
For a better comprehension of the results, the dotted gray lines represent the
approximate margin for different areas in each square.

With the enhanced prediction algorithm, there is an improvement in the

description containing “middle” word, as can be seen in Tables 7.3 and 7.4.

Table 7.3: Enhanced prediction algorithm. Numerical output (x, y) for a
“my-word-word” query.

top bottom left right middle
top 21.2 , 81.1 * 21.2 , 81.1 74.1 , 82.2 21.2 , 81.1

bottom * 79.5 , 21.3 14.3 , 19.9 79.5 , 21.3 79.5 , 21.3
left 21.2 , 81.1 14.3 , 19.9 17.4 , 47.6 * 18.4 , 56.1

right 74.1 , 82.2 79.5 , 21.3 * 78 , 38.5 76.6 , 54.7
middle 21.2 , 81.1 79.5 , 21.3 18.4 , 56.1 76.6 , 54.7 76.6 , 54.7

A great improvement comes from the hyperspherical shape detector de-

ciding to use the word “middle” as a hypersphere. The additional capacity

of working with possessive adjectives (“my” and “your”) is provided by the

context detector mechanism of the enhanced prediction algorithm.
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Table 7.4: Enhanced prediction algorithm. Numerical output (x, y) for a
“your-word-word” query.

top bottom left right middle
top 16.8 , 81 * 84 , 82.5 16.8 , 81 16.8 , 81

bottom * 19.8 , 21.1 78.7 , 21.3 19.8 , 21.1 19.8 , 21.1
left 84 , 82.5 78.7 , 21.3 81.1 , 48.5 * 81.2 , 49.8

right 16.8 , 81 19.8 , 21.1 * 18.4 , 46.7 18.3 , 50.8
middle 16.8 , 81 19.8 , 21.1 81.2 , 49.8 18.3 , 50.8 81.2 , 49.8

7.3.2 Real Test

Once tested synthetically, the experiment was taken one step further by

trying the experiment with a real robot. The experiments were performed

with UC3M’s full-sized humanoid robot, Teo [15] (see Figure 7.8), equipped

with a Primesense Kinect depth and RGB camera sensor for vision, and a

microphone and speaker for speech. The objective is to teach Teo spatial 3D

references (X, Y, Z) by showing it a visual marker, and spoken interaction.

After some initial training, the robot can be asked to point to a certain

position in space through a spoken query. The combinations of words may

have not been heard by the robot before, such as pointing to the “front-right”

having learned “front” and “right” separately.

To create the population of training samples, a human operator shows

a colored visual marker to the robot, and, at the same time, describes the

sample. The words used to describe the sample are all the words used in

the previous experiment, plus two additional words that represent the depth

variable (“front” and “back”). Computer Vision uses the 2D method (1)

layer B minus layer G explained in subsection 4.1.1, and additionally uses

the Kinect sensor’s depth measurements. CMU Pocket Sphinx [118] is used

for the Speech Recognition component. The Grounding Core links the user’s

words with the spatial characteristics of the marker. Figure 7.9 depicts the

real process, while Figure 4.2 depicts what the robot actually perceives.

After the training phase, human operator asks Teo, using the Speech

Recognition component, to point to a specific position. The robot obtains a
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Figure 7.8: Teo is a full humanoid robot from Robotics Lab research group,
Universidad Carlos III de Madrid.

representative set of coordinates, and moves its arm to this position (Figure

7.10). Some comments can be made about this experiment.

• The system can generalize a word with as little as 2 training samples

in the 2D case, and 3 training samples in the 3D case.

• The component used for Speech Recognition requires a pre-defined cor-

pus of words to recognize. We have fed the corpus with the words we

knew would be used to describe spatial positions. This temporal hack

currently limits the possibilities of spontaneous teaching and learning.
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Figure 7.9: Human operator teaching spatial positions to Teo. In the laptop
on the background, the streaming object segmentation is shown.

Figure 7.10: Teo pointing in response to a “your-front-right” query.

7.4 Execution Core: Waxing

To test the Execution Core, the action chosen to be learned and executed was

to “wax”. The features used were again purely spatial. Figure 6.1 depicts

the generalized trajectory given 10 real world repetitions of the action.

Evolutionary Computation (EC) was performed in the OpenRAVE-based

[117] simulated environment with a model of the humanoid robot Teo (see

Figure 7.11), evolving 30 values to generate the trajectory (3 joint positions,

times 10 timesteps). Fitness is evaluated when the full robot motor joint
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Figure 7.11: The plot shows the experimental scenario with the robot, the
object (green) and the Kinect camera. The bottom left square is the Kinect
depth map and the bottom right square shows the object segmentation.

trajectory is executed, by measuring the spatial features of an object (the

green box) using a simulated Kinect camera in the environment. The refer-

ence action and the measured one are compared using CGDA recognition,

and the score of discrepancy is used as the fitness value to minimize. After

convergence, the winner action is executed. The performance of the winner

action compared to the generalized reference is depicted in Figure 7.12.

The resulting trajectories, when executed on the robot, are not human

natural movements. This is an expected behavior, as the aim of the ex-

periment was to replicate object states during execution, and not the per-

formance of human-like movements. Note that in this thesis we have only

included spatial features as targets for the Execution Core. However, the

CGDA infrastructure allows more complex tasks such as painting based only

on color features (included in unpublished material, submitted for review).
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Figure 7.12: Unidimensional temporal plots of the generalized action (blue),
and the object feature space trajectory resulting from the execution of the
EC winner robot motor joint trajectory (red). The Z dimension gives the
worst results, the system was not able to reduce the error in this dimension.

7.5 The Token Test

As a final system validation, and inspired by the procedure followed in [119],

the “Token Test” [111] was adapted to be used with a robot. Instead of the

original Token Test, we used a simplified version, the “Shortened Token Test”

[120]. The Token Test was created as an effective tool to diagnose aphasia.

The shortened version differs from the original in that the number of items

is limited to 36, and that the commands have been reduced in several parts

of the experiment. This version includes one part more than the original

test. We have slightly modified the material of the test: squares are used
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instead of rectangles, and black tokens are used instead of blue tokens. The

token set is composed by 20 items, where 10 are circles and 10 are squares.

There are 5 large circles and 5 large squares, and 5 small circles and 5 small

squares. Each set of 5 items includes black, white, red, yellow and green

shapes. Figure 7.13 depicts a possible setup when all of the tokens are used.

Figure 7.13: Tokens used in the Token Test. There are 2 shapes (squares
and circles) and 2 sizes (small and large). The tokens are colored in 5 colors
(red, black, yellow, white and green). All size-color-shape combinations can
be formed (e.g. small-red-circle, large-black-square, etc.).

The experiment is divided into the following six parts.

• Part 1: All 20 tokens are displayed, as in Figure 7.13.

1. Touch a circle

2. Touch a square

3. Touch a yellow token

4. Touch a red one

5. Touch a green one

6. Touch a black one

7. Touch a white one
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• Part 2: The small tokens are removed.

8. Touch the yellow square

9. Touch the black circle

10. Touch the green circle

11. Touch the white square

• Part 3: The small tokens are placed again.

12. Touch the small white circle

13. Touch the large yellow square

14. Touch the large green square

15. Touch the small black circle

• Part 4: The small tokens are removed.

16. Touch the red circle and the green square

17. Touch the yellow square and the black square

18. Touch the white square and the green circle

19. Touch the white circle and the red circle

• Part 5: The small tokens are placed again.

20. Touch the large white circle and the small green square

21. Touch the small black circle and the large yellow square

22. Touch the large green square and the large red square

23. Touch the large white square and the small green circle

• Part 6: The small tokens are removed.

24. Put the red circle on the green square

25. Touch the black circle with the red square
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26. Touch the black circle and the red square

27. Touch the black circle or the red square

28. Put the green square away from the yellow square

29. If there is a blue circle, touch the red square

30. Put the green square next to the red circle

31. Touch the squares slowly and the circles quickly

32. Put the red circle between the yellow square and the green square

33. Touch all the circles, except the green one

34. Touch the red circle - no - the white square

35. Instead of the white square, touch the yellow circle

36. In addition to touching the yellow circle, touch the black circle

Regarding score, in the original paper, they give 1 point for a correct

performance on the first presentation and 0.5 point if the performance is

correct only on the second presentation. We have preserved this evaluation

and give 1 point if the first indicated result is the correct, 0.5 if the correct

solution is the second one and 0 for the rest of the cases. Beyond question 23,

the test evaluates motor actions like “put on”, “put between”, and language

logic like “instead” and “if”. As our system is not designed for this behavior,

nor had it been the aim of the development, we only check up to question

23. Therefore, the results are within the range of [0, 23].

Two different parameters of the enhanced prediction algorithm presented

in subsection 5.1.2 must be fixed, as results vary depending on them. The

Θmin parameter is the threshold to consider the eigenvalues as equal (forming

a hypersphere) or different enough (forming a hyperplane). The ωmax param-

eter is the maximum distance allowed for hierarchical clustering to consider

a set of points as a cluster. Figure 7.14 depicts a schematic representation of

the settings of these parameters in a 2-dimensional space.
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Figure 7.14: Example of parameter setting in a 2-dimensional space.

Teo, the humanoid robot, is trained by showing each printed token at

random distances one single time, provided individual descriptions with three

words (e.g. “red-large-square”, “small-yellow-circle”, etc.). During each step

of the training, the Computer Vision component detects the contour of the

token (through Canny edge detection) and analyses 5 different features for

prediction: area/distance ratio, rectangularity, and mean hue, saturation and

value. All of the 20 tokens are described during the training except for one,

the “small black circle”, left out to provide a proof-of-concept demonstration

of the RIS creative inference capabilities.

Teo is then placed in front of the full printed Token Test, as seen in

Figure 7.15. The testing phase consists in performing the 23 test queries

of the test described above. The Speech Recognition component enhances

realism. Upon object recognition, Teo’s arm moves to the token, using its

centroid position as a spatial feature for reference. The system’s results

varying the parameters Θmin and ωmax are presented on Table 7.5 and 7.6.

As seen on these results, our system can correctly identify all of the tokens

with the particular set of parameters (Θmin : 0, ωmax : 0.75). The low value

of Θmin forces all of the point clouds to be extended as hyperplanes. In the

training and test space, this makes sense, as there are no words that should
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Figure 7.15: Experimental setup with the humanoid Teo for the Token Test.

actually be treated as hyperspheres. On the other hand, our assumption on

an improvement of the results with a lower ωmax is that it serves to filter

outliers that appear during the training and recognition phases with real

sensor data.

Table 7.5: Token Test results in function of Θmin and ωmax.
1 2 3 4 5 6 7 8 9 10 11 12 13

Θmin : 0, ωmax : 1.25 1 1 1 1 1 1 1 0 1 1 1 1 0
Θmin : 0.5, ωmax : 1.25 1 1 1 1 1 1 1 0 0 0 0 0 0
Θmin : 0, ωmax : 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7.6: Token Test results in function of Θmin and ωmax.
14 15 16 17 18 19 20 21 22 23

Θmin : 0, ωmax : 1.25 0.5 1 1 1 0 1 1 0 0 0
Θmin : 0.5, ωmax : 1.25 1 0 0 0 0 0 0 0 0 0
Θmin : 0, ωmax : 0.75 1 1 1 1 1 1 1 1 1 1
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Chapter 8

Results and Conclusions

This thesis has presented a system for providing robots with imagination,

generating mental models through object feature inference and semantic de-

scriptions, and executing actions based on consequences. The system has

been developed to learn the vocabulary of an end-user, grounded in sen-

sory information. Barsalou predicted that cognitive science will increasingly

witness the integration of its different paradigms, with competition between

them decreasing [39]. Pezzulo, Barsalou et al. very recently proposed the al-

liance between grounded cognition and computational modeling as a unified

view of cognition, and emphasize the importance of using the methodology

of Cognitive Robotics [121]. The system presented in this thesis learns and

manipulates values of features extracted from objects that are present in the

environment, and is able to execute actions that transform the environment,

providing it with a grounded and embodied nature.

8.1 Progress Beyond the State of the Art

A novel system has been presented in this thesis, and its components have

been presented. These components are grouped in three blocks that aim

to overcome shortcomings that have been identified within classical robot

programming and certain modern approaches, which are the following.

95



96 CHAPTER 8. RESULTS AND CONCLUSIONS

A. Perception. A framework that allows linking physical characteristics

of objects and the words used to describe them has been developed. It

includes scalable mechanisms that provide grounded acquisition of sym-

bols that the cognitive processes can manipulate to perform actions in

the real world. Grounded symbol acquisition can be performed in con-

currence with inference and execution.

B. Inference. Inference mechanisms that allow a robot to work with com-

binations of words used to describe objects, even if these words have

never been previously taught together have been enabled. Both a basic

word-based feature prediction algorithm an enhanced version have been

presented. Predicted object features are used for directly performing ob-

ject recognition, and also to generate novel robot mental images and as

part of the Robot Imagination process.

C. Execution. Through the use of robot task execution based on action

consequences, in RIS robots can act according to the effect desired on

an object, instead of relying on pre-programmed trajectories alone. The

core of execution uses this paradigm to close the perceptual loop with the

environment.

8.2 Future Lines of Research

The author considers it vital to continue with the evolution of the research

performed in this thesis. The following is a list of elements that have been

identified to help further enhance the presented developments.

1. Origin of data. Sensory information of various nature such as haptic

and rugosity should be involved in the inference algorithm. Addition-

ally, web-based search mechanisms such as the developed “Onewebmi-

crodata” platform (an undergraduate student project development of a
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web crawler based on HTML5 microdata and camera Exif parameters)

[122] should be integrated.

2. Data representation. The YUV color space seems to be more human-

inspired than RGB or HSV. Utterances could be used instead of words.

As mentioned in subsection 4.1.3, SIFT [99] and SURF [100] descrip-

tors have not been used, but this could be attempted without any

modification of the presented algorithms.

3. Techniques from which inference and execution may benefit.

Feature selection (e.g. via LASSO) is considered within the immediate

future of RIS. Similarly, Gaussian Mixture Models instead of PCA seem

to promise generalization without over-generalization, but alternatives

such as manifolds or non-linear PCA (e.g. with Neural Networks) will

also be studied. In fact, Neural Networks as a general approach seems

more bio-inspired. The author has plans to integrate execution with

force control, e.g. integration with Dynamic Motion Primitives.

4. Desired functionalities and specifications. Further extensions

should be able to manage vectorial information (e.g. texture, patterns)

and dynamic properties (e.g. motion). Multi-modal imagery (e.g. au-

ditory output) would also be interesting. As a final general guideline,

future work should include minimizing the number of parameters that

need tuning, such as those of clustering mechanisms and the evolution-

ary computational frameworks.

The author envisions a future where robot imagination systems are used

for advanced tasks and beyond: learning and action grounded in perception,

action, and perhaps even emotion. A first step in this direction has been

robotic recognition and action upon objects that have never been perceived

before, and further steps will be given towards integration in everyday do-

mestic environments. Regarding discussions deep into the future, the time

has come for humans to predict and robots to imagine.
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