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Abstract. Floating offshore wind turbines (FOWT) are exposed to hard environ-
mental conditions which could impose expensive maintenance operations. These 
costs could be alleviated by monitoring these floating devices using UAVs. 
Given the FOWT location, UAVs are currently the only way to do this health 
monitoring. But this means that UAV should be well equipped and must be ac-
curately controlled. Rotational inertia variation is a common disturbance that af-
fect the aerial vehicles during these inspection tasks. To address this issue, in this 
work we propose a new neural controller based on adaptive neuro estimators. The 
approach is based on the hybridization of feedback linearization, PIDs and artifi-
cial neural networks. Online learning is used to help the network to improve the 
estimations while the system is working. The proposal is tested by simulation 
with several complex trajectories when the rotational inertia is multiplied by 10. 
Results show the proposed UAV neural controller gets a good tracking and the 
neuro estimators tackle the effect of the variations of the rotational inertia. 
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1 Introduction 

In recent years, new and valuable applications of unmanned aerial vehicles (UAV) have 
emerged in different sectors such as defense, security, construction, agriculture, enter-
tainment, shipping, etc. One of the most recent applications is the inspection and 
maintenance of offshore wind turbines and, particularly, floating devices (FOWT) [1]. 
Due to their location in deep seas, to take images and to get those places, efficient and 
robust UAV controllers are necessary. To address this complex task, soft computing 
has been proved an efficient approach [2-5], even more when internal parameters of the 
system changes during the operation. 

In this work we address the problem of UAV rotational inertia variations while the 
system is working. There are few works that study the effect of payload or inertia var-
iation on the quadrotor dynamics. In [6], an adaptive control is used to estimate the 
parameter variation. In [7], adaptive parameter estimation is used to update the control 
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action according to the current UAV mass and inertia moment. More recently, Wang 
[8] estimates the variations in the UAV payload and the effect of the wind gusts. But 
this topic demands further research. 

We propose the design of a control strategy based on neural networks to cope with 
variations in the UAV mass and the rotational inertia. The controller combines feedback 
linearization, PIDs and adaptive neural estimators. This approach is tested by simula-
tion for several trajectories giving good results. 

The paper is organized as follows. Section 2 is focused on the description of the 
system and the modelling of the UAV inertia variation. The neural controller and the 
neuro estimators are studied in Section 3. Results are discussed in Section 4. Conclu-
sions and future works end the paper. 

2 System and Disturbances Models 

A quadrotor is composed by four rotors which lift and propel it. Its dynamics is de-
scribed by the position (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and Euler’s angles (𝜙𝜙,𝜃𝜃,𝜓𝜓). The angular and transla-
tional dynamics of the system are given by the following equations [9]: 

 𝜏𝜏 = 𝐽𝐽�̇�𝜔 + 𝜔𝜔 × 𝐽𝐽𝜔𝜔,            𝐽𝐽 = �
𝐼𝐼𝑥𝑥 0 0
0 𝐼𝐼𝑦𝑦 0
0 0 𝐼𝐼𝑧𝑧

�,         𝑚𝑚𝑄𝑄�̇�𝑣 = 𝑅𝑅𝑅𝑅 −𝑚𝑚𝑄𝑄𝑔𝑔𝑒𝑒3 (1) 

Where 𝜏𝜏 is the torque vector (N.m), 𝐽𝐽 is the inertia tensor (Nm2), 𝜔𝜔 is the angular ve-
locity (rad/s), 𝑚𝑚𝑄𝑄 is the UAV mass (Kg), 𝑅𝑅 is the rotation matrix, 𝑔𝑔 is the gravitational 
acceleration (m/s2), 𝑅𝑅 is a vector of forces (N). Vectors τ and T are related to the pro-
peller speeds, 𝛺𝛺1, … ,𝛺𝛺4, velocities of the rotors 1 to 4 (rad/s), the thrust coefficient 𝑏𝑏 
(N.s2), the drag coefficient 𝑑𝑑 (N.m.s2), and the longitude of each arm 𝑙𝑙 (m). 

Instead of using the rotor speeds to control the UAV, it is a common practice to use 
the control signals 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3 and 𝑢𝑢4, as defined by (2).This matrix is invertible, hence 
we can calculate velocity references for the rotors from a set of control signals. 

𝜏𝜏 = �
𝑏𝑏𝑙𝑙(Ω42 − Ω22)
𝑏𝑏𝑙𝑙(Ω32 − Ω12)

𝑑𝑑(Ω22 + Ω42 − Ω12 − Ω32)
�, 𝑅𝑅 = �
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Finally, from equations (1) and (2), the following system of equations is derived: 

 �̈�𝜙 = �̇�𝜃�̇�𝜓 (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧) 𝐼𝐼𝑥𝑥 +⁄ (𝑙𝑙𝑏𝑏 𝐼𝐼𝑥𝑥)𝑢𝑢2⁄ , �̈�𝜃 = �̇�𝜙�̇�𝜓 (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥) 𝐼𝐼𝑦𝑦 +⁄ (𝑙𝑙𝑏𝑏 𝐼𝐼𝑦𝑦)𝑢𝑢3⁄  (3)
 �̈�𝜓 = �̇�𝜙�̇�𝜃 (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦) 𝐼𝐼𝑧𝑧 +⁄ (𝑑𝑑 𝐼𝐼𝑧𝑧)𝑢𝑢4⁄ , �̈�𝑋 = −(𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙) (𝑏𝑏 𝑚𝑚𝑄𝑄)𝑢𝑢1⁄  (4)
 �̈�𝑌 = (𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙) (𝑏𝑏 𝑚𝑚𝑄𝑄)𝑢𝑢1, �̈�𝑍 = −𝑔𝑔 + (𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙) (𝑏𝑏 𝑚𝑚𝑄𝑄)𝑢𝑢1⁄⁄  (5) 

The values used to simulate the model, extracted from [9], are the following: 𝑙𝑙 = 0.232 
m; 𝑚𝑚𝑄𝑄 = 0.52 Kg; 𝑑𝑑 = 7.5e-7 N.m.s2; 𝑏𝑏 = 3.13e-5 N.s2; 𝐼𝐼𝑥𝑥 = 6.23e-3 Kg.m2; 𝐼𝐼𝑦𝑦  = 6.23e-3 
Kg.m2; and 𝐼𝐼𝑧𝑧 = 1.121e-2 Kg.m2. 

Handling of a load by a UAV produces three main effects: the total mass is increased, 
the inertia changes and so does the center of gravity. Assuming the center of mass is 
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invariant, we have focused on the influence of the total mass increment and mostly on 
the variation of the inertia. 

The rotational inertia of a set of objects is given by 𝐼𝐼 = ∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝑖𝑖2𝑖𝑖 , where 𝑚𝑚𝑖𝑖 is the 
mass (Kg) of object 𝑠𝑠 and 𝑟𝑟𝑖𝑖 is the distance (m) between its center of mass and the 
turning axle [10]. We consider an object with mass 𝑀𝑀𝐿𝐿 that is taken to a distance 𝐿𝐿𝐿𝐿 
from the center of the quadrotor in the Z axis.  

If the object is infinitesimal and the mass is concentrated in one point, the Z axle 
rotational inertia is invariant. The object is attached to the UAV by a without-mass rigid 
structure. Thus, the total rotational inertia, 𝐼𝐼𝑥𝑥𝑇𝑇 , 𝐼𝐼𝑦𝑦𝑇𝑇 , 𝐼𝐼𝑧𝑧𝑇𝑇  is: 

 𝐼𝐼𝑥𝑥𝑇𝑇 = 𝐼𝐼𝑥𝑥 + 𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿2 ,                𝐼𝐼𝑦𝑦𝑇𝑇 = 𝐼𝐼𝑦𝑦 + 𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿2 ,            𝐼𝐼𝑧𝑧𝑇𝑇 = 𝐼𝐼𝑧𝑧  (6) 

The terms 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑚𝑚 and 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼  are introduced in (3-5) to represent the influence of the 
mass and rotational inertia variation in the UAV dynamics. These disturbances are 
modelled as a step function at the moment when the object is grabbed by the UAV, 
𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑. After 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 the total mass of the system is 𝑚𝑚 + 𝑀𝑀𝐿𝐿 = 𝐾𝐾𝑚𝑚 ∙ 𝑚𝑚 and the rotational 
inertias are, respectively, 𝐼𝐼𝑥𝑥 + 𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿2 = 𝐾𝐾𝐼𝐼𝑥𝑥 ∙ 𝐼𝐼𝑥𝑥 and 𝐼𝐼𝑦𝑦 + 𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿2 = 𝐾𝐾𝐼𝐼𝑦𝑦 ∙ 𝐼𝐼𝑦𝑦, where 𝐾𝐾𝑚𝑚, 
𝐾𝐾𝐼𝐼𝑥𝑥 and 𝐾𝐾𝐼𝐼𝑦𝑦 are multipliers gains, with the constraint (𝐾𝐾𝐼𝐼𝑥𝑥 − 1) ∙ 𝐼𝐼𝑥𝑥 = (𝐾𝐾𝐼𝐼𝑦𝑦 − 1) ∙ 𝐼𝐼𝑦𝑦. 

 �̈�𝜙 = (�̇�𝜃�̇�𝜓 �𝐼𝐼𝑦𝑦 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧� + 𝑙𝑙𝑏𝑏 ∙ 𝑢𝑢2) (𝐼𝐼𝑥𝑥 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑥𝑥)⁄ , (7) 

 �̈�𝜃 = (�̇�𝜙�̇�𝜓 (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥 − 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑥𝑥) + 𝑙𝑙𝑏𝑏 ∙ 𝑢𝑢3) (𝐼𝐼𝑦𝑦 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑦𝑦)⁄  (8) 

 �̈�𝜓 = �̇�𝜙�̇�𝜃 (𝐼𝐼𝑥𝑥 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦 − 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑦𝑦) 𝐼𝐼𝑧𝑧 +⁄ (𝑑𝑑 𝐼𝐼𝑧𝑧)𝑢𝑢4⁄  (9) 

 �̈�𝑋 = −(𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙) (𝑏𝑏 (𝑚𝑚𝑄𝑄 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑚𝑚))𝑢𝑢1⁄  (10) 

 �̈�𝑌 = (𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙) (𝑏𝑏 (𝑚𝑚𝑄𝑄 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑚𝑚))𝑢𝑢1⁄  (11) 

 �̈�𝑍 = −𝑔𝑔 + (𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙) (𝑏𝑏 (𝑚𝑚𝑄𝑄 + 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑚𝑚))𝑢𝑢1⁄  (12) 

 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝑚𝑚 = 𝑀𝑀𝐿𝐿 ∙ 𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠(𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑), 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑥𝑥 = 𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑𝐼𝐼𝑦𝑦 = 𝑀𝑀𝐿𝐿 ∙ 𝐿𝐿𝐿𝐿2 ∙ 𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠(𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑) (13) 

3 Description of the neural controller 

3.1 Description of the architecture of the control system 

Figure 1 shows the control system based on neuro-estimators architecture. It is made 
up of a position controller, an attitude controller and two neuro-estimators for the mass 
and the inertia. 

The position controller has as input the desired trajectory (𝑋𝑋𝑟𝑟𝑒𝑒𝑋𝑋,𝑋𝑋𝑟𝑟𝑒𝑒𝑋𝑋,𝑍𝑍𝑟𝑟𝑒𝑒𝑋𝑋) and 
three output: 𝑢𝑢1, Φ𝑟𝑟𝑟𝑟𝑟𝑟  and θ𝑟𝑟𝑟𝑟𝑟𝑟 . It is based on feedback linearization and three PIDs, 
one for each coordinate axis, to stabilize the trajectory. It requires the mass value that 
is changing so it is estimated with a neural network. The Z coordinate is directly con-
trolled by 𝑢𝑢1 while the control of X and Y coordinates is carried out by first obtaining 
the roll and the pitch references (Φ𝑟𝑟𝑟𝑟𝑟𝑟 ,θ𝑟𝑟𝑟𝑟𝑟𝑟). These are the inputs of the attitude con-
troller, plus an external reference of the yaw (Ψ𝑟𝑟𝑟𝑟𝑟𝑟). The attitude controller has the 
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same structure as the position one. The rotational inertia directly affects the angular 
dynamics and indirectly the translational dynamics. For this reason, the rotational iner-
tia values (𝐼𝐼𝑥𝑥𝑒𝑒𝑠𝑠𝑑𝑑, 𝐼𝐼𝑦𝑦𝑒𝑒𝑠𝑠𝑑𝑑) are real-time estimated by the inertia neuro-estimator and intro-
duced as inputs of the controller. Assuming that the inertia in the Z axis does not suffer 
variations during the operation, the attitude controller generates three outputs: 𝑢𝑢2,𝑢𝑢3 
and 𝑢𝑢4. The roll angle is controlled by 𝑢𝑢2, the pitch angle by 𝑢𝑢3 and the yaw angle by 
𝑢𝑢4. 

 
Fig. 1. Architecture of the neural controller. 

The internal equations of the position controller are (14-19): 

 𝑟𝑟𝑍𝑍(𝑑𝑑𝑖𝑖) = K𝑃𝑃Z �Z𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − Z(𝑑𝑑𝑖𝑖)� + K𝐷𝐷Z �Ż𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − Ż(𝑑𝑑𝑖𝑖)� (14) 

 𝒖𝒖𝟏𝟏(𝑑𝑑𝑖𝑖) = �
(𝑟𝑟𝑍𝑍(𝑑𝑑𝑖𝑖) + 𝑔𝑔)𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏
                               𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖−1𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑖𝑖−1 = 0

(𝑟𝑟𝑍𝑍(𝑑𝑑𝑖𝑖) + 𝑔𝑔) � 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏∙𝑐𝑐𝑐𝑐𝑑𝑑𝜃𝜃𝑖𝑖−1𝑐𝑐𝑐𝑐𝑑𝑑𝜙𝜙𝑖𝑖−1
�         𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖−1𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙𝑖𝑖−1 ≠ 0 

 (15) 

 𝑟𝑟𝑌𝑌(𝑑𝑑𝑖𝑖) = K𝑃𝑃Y �Y𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − Y(𝑑𝑑𝑖𝑖)� + K𝐷𝐷Y �Ẏ𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − Ẏ(𝑑𝑑𝑖𝑖)� (16) 

 𝚽𝚽𝒓𝒓𝒓𝒓𝒓𝒓(𝑑𝑑𝑖𝑖) = �
Φ𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖−1)                                          𝑢𝑢1(𝑑𝑑𝑖𝑖) = 0

−asin�𝑟𝑟𝑌𝑌(𝑑𝑑𝑖𝑖) �
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏∙𝑢𝑢1(𝑑𝑑𝑖𝑖)
��               𝑢𝑢1(𝑑𝑑𝑖𝑖) ≠ 0 

 (17)  

 𝑟𝑟𝑋𝑋(𝑑𝑑𝑖𝑖) = K𝑃𝑃X �X𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − X(𝑑𝑑𝑖𝑖)� + K𝐷𝐷X �Ẋ𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − Ẋ(𝑑𝑑𝑖𝑖)� (18) 

 𝛉𝛉𝒓𝒓𝒓𝒓𝒓𝒓(𝑑𝑑𝑖𝑖) = �
θ𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖−1)                                                     𝑢𝑢1(𝑑𝑑𝑖𝑖)cos (Φ(𝑑𝑑𝑖𝑖)) = 0

asin�𝑟𝑟𝑋𝑋(𝑑𝑑𝑖𝑖) �
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒

𝑏𝑏∙𝑢𝑢1(𝑑𝑑𝑖𝑖)cos (Φ(𝑑𝑑𝑖𝑖))
��       𝑢𝑢1(𝑑𝑑𝑖𝑖)cos (Φ(𝑑𝑑𝑖𝑖)) ≠ 0 

 (19) 
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controller 

𝑋𝑋𝑟𝑟𝑒𝑒𝑋𝑋 

𝑍𝑍𝑟𝑟𝑒𝑒𝑋𝑋 
𝑌𝑌𝑟𝑟𝑒𝑒𝑋𝑋 

Ψ𝑟𝑟𝑒𝑒f 

𝑢𝑢1 𝑢𝑢4 

𝑢𝑢3 

𝑋𝑋,𝑌𝑌,𝑍𝑍,𝜃𝜃,Φ 

�̈�𝑍,𝜃𝜃,Φ, u1 

Inertia 
Neuroestimator 

Φ𝑟𝑟𝑒𝑒f 
𝜃𝜃𝑟𝑟𝑒𝑒f 𝑢𝑢2 

𝑚𝑚𝑟𝑟𝑑𝑑𝑑𝑑 

𝑋𝑋,𝑌𝑌, Z,𝜃𝜃,Φ 

Φ̈, �̈�𝜃, Φ̇, �̇�𝜃, Ψ̇ 

𝐼𝐼𝑥𝑥𝑟𝑟𝑑𝑑𝑑𝑑 , 𝐼𝐼𝑦𝑦𝑟𝑟𝑑𝑑𝑑𝑑 

𝑢𝑢1 



5 

Where 𝑚𝑚𝑟𝑟𝑑𝑑𝑑𝑑 is the estimated mass (Kg) and (K𝑃𝑃X, K𝐷𝐷X, K𝑃𝑃Y, K𝐷𝐷Y, K𝑃𝑃Z, K𝐷𝐷Z) ∈ ℝ6 are 
the gains of the internal PIDs. If the neuro-estimator is not used, the value 𝑚𝑚𝑟𝑟𝑑𝑑𝑑𝑑 is sub-
stituted by the mass of the quadrotor 𝑚𝑚𝑄𝑄. 

The equations of the attitude controller are obtained in a similar way, but in this case 
the angular dynamic is considered in the linearization (20-25): 

 𝑟𝑟Φ(𝑑𝑑𝑖𝑖) = K𝑃𝑃Φ �Φ𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) −Φ(𝑑𝑑𝑖𝑖)� + K𝐷𝐷Φ �Φ̇𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − Φ̇(𝑑𝑑𝑖𝑖)� (20) 

 𝒖𝒖𝟐𝟐(𝑑𝑑𝑖𝑖) = �Ix𝑟𝑟𝑑𝑑𝑑𝑑 ∙ 𝑟𝑟Φ(𝑑𝑑𝑖𝑖) − (Iy𝑟𝑟𝑑𝑑𝑑𝑑 − Iz) ∙ θ̇(𝑑𝑑𝑖𝑖)Ψ̇(𝑑𝑑𝑖𝑖)� /(𝑙𝑙 ∙ 𝑏𝑏) (21) 

 𝑟𝑟θ(𝑑𝑑𝑖𝑖) = K𝑃𝑃θ �θ𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − θ(𝑑𝑑𝑖𝑖)� + K𝐷𝐷θ �θ̇𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − θ̇(𝑑𝑑𝑖𝑖)� (22) 

 𝒖𝒖𝟑𝟑(𝑑𝑑𝑖𝑖) = �Iy𝑟𝑟𝑑𝑑𝑑𝑑 ∙ 𝑟𝑟θ(𝑑𝑑𝑖𝑖) − (Iz − Ix𝑟𝑟𝑑𝑑𝑑𝑑) ∙ Φ̇(𝑑𝑑𝑖𝑖)Ψ̇(𝑑𝑑𝑖𝑖)� /(𝑙𝑙 ∙ 𝑏𝑏) (23) 

 𝑟𝑟Ψ(𝑑𝑑𝑖𝑖) = K𝑃𝑃Ψ �Ψ𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) −Ψ(𝑑𝑑𝑖𝑖)� + K𝐷𝐷Ψ �Ψ̇𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖) − Ψ̇(𝑑𝑑𝑖𝑖)� (24) 

 𝒖𝒖𝟒𝟒(𝑑𝑑𝑖𝑖) = �Iz ∙ 𝑟𝑟Ψ(𝑑𝑑𝑖𝑖) − (Ix𝑟𝑟𝑑𝑑𝑑𝑑 − Iy𝑟𝑟𝑑𝑑𝑑𝑑) ∙ Φ̇(𝑑𝑑𝑖𝑖)θ̇(𝑑𝑑𝑖𝑖)� /(𝑑𝑑) (25) 

Where Ix𝑟𝑟𝑑𝑑𝑑𝑑  and Iy𝑟𝑟𝑑𝑑𝑑𝑑  (Kg.m2) are the rotational inertias in the X and Y axis, respec-
tively, estimated by the inertia neuro-estimator and (K𝑃𝑃Φ, K𝐷𝐷Φ, K𝑃𝑃θ, K𝐷𝐷θ, K𝑃𝑃Ψ, K𝐷𝐷Ψ) ∈
ℝ6 are the gains of the internal PIDs. The values Ix𝑟𝑟𝑑𝑑𝑑𝑑  and Iy𝑟𝑟𝑑𝑑𝑑𝑑  are substituted by Ix and 
Iy when the neuro-estimator is not used. 

 
3.2 Description of the neuro-estimators 

The generic structure of the neuro-estimators is show in Figure 2. They need an analytic 
model of the UAV and a neural network. The model is used to obtain a measurement 
of the value to be estimated in order to train the network. But even when the model 
does not find a right value due to any singularity, the neural network is still able to 
provide a valid output, generating new knowledge. 

Fig. 2. Structure of the neuro-estimators. 

First, the neural network is offline trained with the outputs of the model (𝑚𝑚𝑠𝑠𝑑𝑑𝑐𝑐𝑢𝑢𝑑𝑑) as 
targets and the outputs of the UAV (𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑢𝑢𝑑𝑑) as inputs. Then, while the UAV system is 

Adaptive 
Neural 

Network 

Model 

+ - 

𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 

𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑢𝑢𝑑𝑑 

𝑚𝑚𝑠𝑠𝑑𝑑𝑐𝑐𝑢𝑢𝑑𝑑 

𝑁𝑁𝑁𝑁𝑐𝑐𝑢𝑢𝑑𝑑 

𝑒𝑒𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟 

𝑁𝑁𝑒𝑒𝑢𝑢𝑟𝑟𝑠𝑠𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑚𝑚𝑁𝑁𝑑𝑑𝑠𝑠𝑟𝑟 
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working, the network is on-line learning from new inputs and targets. So it adapts to 
changes in the system parameters, and the controller can reject these disturbances. 

The equations that represent the performance of the neuro-estimator are given by: 

 𝑁𝑁𝑁𝑁𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖) = f𝑁𝑁𝑁𝑁�w𝑁𝑁𝑁𝑁(𝑑𝑑𝑖𝑖),𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖)� (26) 

 w𝑁𝑁𝑁𝑁(𝑑𝑑𝑖𝑖) = f𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑(w𝑁𝑁𝑁𝑁(𝑑𝑑𝑖𝑖−1),𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖−1),𝑚𝑚𝑠𝑠𝑑𝑑𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖−1)) (27) 

 𝑚𝑚𝑠𝑠𝑑𝑑𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖) = f𝑚𝑚𝑐𝑐𝑑𝑑(𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖(𝑑𝑑𝑖𝑖−1),𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖−1)) (28) 

Where f𝑁𝑁𝑁𝑁 represents the neural network during the simulation phase, w𝑁𝑁𝑁𝑁 is the set of 
internal parameters of the network, f𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑 is the adaption function, f𝑚𝑚𝑐𝑐𝑑𝑑  is the analytic 
model, UAV𝑖𝑖𝑖𝑖 is the set of inputs from the UAV and UAV𝑐𝑐𝑢𝑢𝑑𝑑 the set of UAV. For each 
estimator (mass or inertia), 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖, 𝑈𝑈𝑈𝑈𝑈𝑈𝑐𝑐𝑢𝑢𝑑𝑑, and the f𝑚𝑚𝑐𝑐𝑑𝑑  are different. 

• Mass adaptive neuro-estimator: 

𝑋𝑋𝑚𝑚𝑐𝑐𝑑𝑑 = b/((𝑍𝑍 + 𝑔𝑔) (𝑢𝑢1 cos 𝜃𝜃 cos𝜙𝜙)⁄ ), 𝑁𝑁𝑁𝑁𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖) = f𝑁𝑁𝑁𝑁�w𝑁𝑁𝑁𝑁 , �̈�𝑍, cos 𝜃𝜃 , cos𝜙𝜙�  (29) 

• Inertia adaptive neuro-estimator: 

 𝑋𝑋𝑚𝑚𝑐𝑐𝑑𝑑 = �̈�𝜙𝑙𝑙𝑏𝑏𝑢𝑢3+�̈�𝜙�̇�𝜙�̇�𝜓𝐼𝐼𝑧𝑧−�̇�𝜙�̇�𝜓𝑙𝑙𝑏𝑏𝑢𝑢2+�̇�𝜙�̇�𝜓�̇�𝜃�̇�𝜓𝐼𝐼𝑧𝑧
�̇�𝜙�̇�𝜓�̇�𝜃�̇�𝜓+�̈�𝜙�̈�𝜃

,𝑁𝑁𝑁𝑁𝑐𝑐𝑢𝑢𝑑𝑑(𝑑𝑑𝑖𝑖) = f𝑁𝑁𝑁𝑁�w𝑁𝑁𝑁𝑁, �̈�𝜙, �̈�𝜃�. (30) 

4 Discussion of the simulation results 

Simulation results have been obtained during 16 seconds. The tuple of multipliers (𝐾𝐾𝑚𝑚, 
𝐾𝐾𝐼𝐼𝑥𝑥, 𝐾𝐾𝐼𝐼𝑦𝑦) has been set to (2, 10, 10) and 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 to 5 seconds. The neural controller is 
offline trained during the first 3 seconds; from them on the online learning is applied. 
In both neuroestimators the neural network is a MLP with one hidden layer of 30 neu-
rons. The Levenberg-Marquardt algorithm has been used for the training with 𝜇𝜇=0.001. 

Figure 3 (left) shows the UAV tracking of a helical lemniscate trajectory (reference 
in blue and trajectory with neuro-estimators in red). Without neuro-estimators (blue 
line) the trajectory tracking was wrong (Figure 3, right). 

 

 
Fig. 3. Tracking of a helical lemniscate (left) and tracking error (right). 
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Figure 4 shows the UAV trajectory tracking of each coordinate. The results with neuro-
estimators (red line) and without them (blue line) regarding the reference (yellow line) 
proves the efficiency of the neuro-estimators and how the error grows and the system 
becomes unstable without them. The worst error is in the y-axis. 
 

 
Fig. 4. UAV tracking of X, Y and Z coordinates, respectively, with mass and inertia variation. 

Results for different trajectories are shown in Table 1. The columns labelled “Neur” 
means results with the neuro-estimators vs “Nest”, without them. Values below 0.0001 
have been fixed to 0. The best results per column have been underlined. The evaluation 
criteria are the MSE, U1 (control effort), and PERF (performance of the controller). 
The latter is calculated multiplying the inverse of MSET, MAXT, and U1, therefore big-
ger values indicate better results. 

For every trajectory and evaluation criteria the best results are obtained with the 
neuro-estimators. In general, the best performance is obtained for the helical lemniscate 
trajectory that also shows the biggest difference depending on the application of the 
neuro-estimators; indeed, regarding the MAXT criterium, this value is up to 80 times 
smaller with the neuro-estimators. 

Table 1. Tracking error, control effort and performance comparison for different trajectories. 

Trajectory 
MSEX MSEY MSEZ MSET MAXT U1 PERF 

Neur Nest Neur Nest Neur Nest Neur Nest Neur Nest Neur Nest Neur Nest 
Linear 0,094 0,098 0,094 0,098 1,208 2,362 1,223 2,377 10,10 10,10 8,650 8,681 0,009 0,004 

Circular 0,192 0,226 0,098 0,172 1,208 2,362 1,246 2,418 10,24 10,24 8,656 8,736 0,009 0,004 

Helical 0,161 0,350 0,037 0,452 0,040 1,120 0,185 1,557 1,007 4,642 8,644 9,993 0,618 0,013 

Cyc. helical 0,140 0,192 0,012 0,151 0,574 1,335 0,651 1,476 1,141 5,850 8,685 8,832 0,154 0,013 

Lemniscate 0,098 0,271 0,013 0,219 1,208 2,363 1,220 2,521 10,05 10,05 8,652 9,201 0,009 0,004 

Hel. lemnisci 0,156 3,029 0,037 6,635 0,025 1,098 0,180 8,629 1 82,32 8,684 42,34 0,638 0 

Step 0,983 1,018 0,985 1,012 1,212 2,367 2,011 3,173 17,32 17,32 8,949 8,993 0,003 0,002 

5 Conclusions  

In this work a new control strategy based on the hybridization of feedback linearization, 
PIDs and adaptive neural network estimators is proposed. This approach helps to deal 
with changes in the rotational inertia of UAV while flying. 
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The neuro-estimators combine an analytic model of the UAV and MLP neural net-
works. Online learning of the neural network allows the system to improve the estima-
tion of the changing mass and inertia of the quadrotor. 

Simulation results with different trajectories prove the validity of this control strat-
egy with neuro-estimator to stabilize the UAV even under noticeable variations in the 
mass and in the rotational inertia of the quadrotor. 

Among other possible future works, we may highlight the study of the influence of 
other disturbances such as the ones generated by the engines and the desirable applica-
tion of this methodology to a real system. 
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