Neural controller of UAVs with inertia variations
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Abstract. Floating offshore wind turbines (FOWT) are exposed to hard environ-
mental conditions which could impose expensive maintenance operations. These
costs could be alleviated by monitoring these floating devices using UAVS.
Given the FOWT location, UAVs are currently the only way to do this health
monitoring. But this means that UAV should be well equipped and must be ac-
curately controlled. Rotational inertia variation is a common disturbance that af-
fect the aerial vehicles during these inspection tasks. To address this issue, in this
work we propose a new neural controller based on adaptive neuro estimators. The
approach is based on the hybridization of feedback linearization, PIDs and artifi-
cial neural networks. Online learning is used to help the network to improve the
estimations while the system is working. The proposal is tested by simulation
with several complex trajectories when the rotational inertia is multiplied by 10.
Results show the proposed UAV neural controller gets a good tracking and the
neuro estimators tackle the effect of the variations of the rotational inertia.
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1 Introduction

In recent years, new and valuable applications of unmanned aerial vehicles (UAV) have
emerged in different sectors such as defense, security, construction, agriculture, enter-
tainment, shipping, etc. One of the most recent applications is the inspection and
maintenance of offshore wind turbines and, particularly, floating devices (FOWT) [1].
Due to their location in deep seas, to take images and to get those places, efficient and
robust UAV controllers are necessary. To address this complex task, soft computing
has been proved an efficient approach [2-5], even more when internal parameters of the
system changes during the operation.

In this work we address the problem of UAV rotational inertia variations while the
system is working. There are few works that study the effect of payload or inertia var-
iation on the quadrotor dynamics. In [6], an adaptive control is used to estimate the
parameter variation. In [7], adaptive parameter estimation is used to update the control
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action according to the current UAV mass and inertia moment. More recently, Wang
[8] estimates the variations in the UAV payload and the effect of the wind gusts. But
this topic demands further research.

We propose the design of a control strategy based on neural networks to cope with
variations in the UAV mass and the rotational inertia. The controller combines feedback
linearization, PIDs and adaptive neural estimators. This approach is tested by simula-
tion for several trajectories giving good results.

The paper is organized as follows. Section 2 is focused on the description of the
system and the modelling of the UAV inertia variation. The neural controller and the
neuro estimators are studied in Section 3. Results are discussed in Section 4. Conclu-
sions and future works end the paper.

2 System and Disturbances Models

A quadrotor is composed by four rotors which lift and propel it. Its dynamics is de-
scribed by the position (x, y, z) and Euler’s angles (¢, 8,1). The angular and transla-
tional dynamics of the system are given by the following equations [9]:
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Where 7 is the torque vector (N.m), J is the inertia tensor (Nm?), w is the angular ve-
locity (rad/s), my, is the UAV mass (Kg), R is the rotation matrix, g is the gravitational
acceleration (m/s?), T is a vector of forces (N). Vectors t and T are related to the pro-
peller speeds, 024, ..., ,, velocities of the rotors 1 to 4 (rad/s), the thrust coefficient b
(N.s?), the drag coefficient d (N.m.s?), and the longitude of each arm [ (m).

Instead of using the rotor speeds to control the UAV, it is a common practice to use
the control signals u,, u,, u; and u,, as defined by (2).This matrix is invertible, hence
we can calculate velocity references for the rotors from a set of control signals.
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Finally, from equations (1) and (2), the following system of equations is derived:

qlb. = 91[) (Iy - Iz)/lx + (lb/lx)uzr 6= d)ll) I, - Ix)/ly + (lb/ly)uS (3)
115 = ¢9 (Ix - Iy)/lz + (d/lz)u4 'X = —(Sin9C05¢) (b/mQ)ul (4)
Y = (sing) (b/mg)us, Z = —g + (cosbcosgp) (b/my)uy (5)

The values used to simulate the model, extracted from [9], are the following: [ = 0.232
m; mqy = 0.52 Kg; d = 7.5¢" N.m.s% b = 3.13e® N.s? I, = 6.23e”® Kg.m?; I, = 6.23¢”
Kg.m? and I, = 1.121e? Kg.m?.

Handling of a load by a UAV produces three main effects: the total mass is increased,
the inertia changes and so does the center of gravity. Assuming the center of mass is



invariant, we have focused on the influence of the total mass increment and mostly on
the variation of the inertia.

The rotational inertia of a set of objects is given by I = ¥, m;7?, where m; is the
mass (Kg) of object i and r; is the distance (m) between its center of mass and the
turning axle [10]. We consider an object with mass M, that is taken to a distance L,
from the center of the quadrotor in the Z axis.

If the object is infinitesimal and the mass is concentrated in one point, the Z axle
rotational inertia is invariant. The object is attached to the UAV by a without-mass rigid
structure. Thus, the total rotational inertia, Ixy, [yy, [z iS:

IXT :Ix+MLL%, IyT :1y+MLLi' IZT:IZ (6)

The terms dist,, and dist, are introduced in (3-5) to represent the influence of the
mass and rotational inertia variation in the UAV dynamics. These disturbances are
modelled as a step function at the moment when the object is grabbed by the UAV,
taise- After tg;, the total mass of the system is m + M; = K,,, - m and the rotational
inertias are, respectively, Ix + M, L7 = K, - Ix and Iy + M, L7 = K;,, - Iy, where K,,,,
K, and K, are multipliers gains, with the constraint (K;,, — 1) - Ix = (K}, — 1) - Iy.

é = 09 (I, + dist;y, — L) + b - uy) /(I + distyy), (7
6 = (dy (I, — I, — disty,) + b -us)/ (I, + distyy) (8)
P = O (I, + disty, — I, — dist;,) /1, + (d/1)u, 9)
X = —(sinBcosd) (b/(my + dist,,))uy (10)

¥ = (sing) (b/(mg + disty))uy (11)

7 = —g + (cosOcosp) (b/(mg + disty,))u (12)

dist,, = My, - step(t — tas), disty, = dist;, = My - L} - step(t — tgise)  (13)

3 Description of the neural controller

3.1  Description of the architecture of the control system

Figure 1 shows the control system based on neuro-estimators architecture. It is made
up of a position controller, an attitude controller and two neuro-estimators for the mass
and the inertia.

The position controller has as input the desired trajectory (Xref, Xref,Zref) and
three output: u,, @, and 6,.. It is based on feedback linearization and three PIDs,
one for each coordinate axis, to stabilize the trajectory. It requires the mass value that
is changing so it is estimated with a neural network. The Z coordinate is directly con-
trolled by u, while the control of X and Y coordinates is carried out by first obtaining
the roll and the pitch references (®,.r,0,.f). These are the inputs of the attitude con-
troller, plus an external reference of the yaw (W,.,). The attitude controller has the



same structure as the position one. The rotational inertia directly affects the angular
dynamics and indirectly the translational dynamics. For this reason, the rotational iner-
tia values (Ix.q, Iy,,,) are real-time estimated by the inertia neuro-estimator and intro-
duced as inputs of the controller. Assuming that the inertia in the Z axis does not suffer
variations during the operation, the attitude controller generates three outputs: u,, us

and u,. The roll angle is controlled by u,, the pitch angle by u; and the yaw angle by
u4_.
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Fig. 1. Architecture of the neural controller.
The internal equations of the position controller are (14-19):
rZ(t) = Kpg (Zrep (t) — 2(t) ) + Koz (Zrep () — 2ty) ) (14)
rZ(t) + g)=et c0s0;_;cosp;_1 = 0
alt) = {(rZ(ti) +9) (m) 050;_1c05P;_1 # 0 (19)
rY(t) = Kpy (Yrep (t) = Y(t)) + Kpy (Vrer (6 = V(2)) (16)
Drep(tiog) u (t;) =0
Pres(t) = {—asin <rY(tl-) (b_’;jg;i))> uy () # 0 ()
rX () = Kpx (Xrep (8 = X(2)) + Kpx (Xrep (8 — X(2)) (18)
Orer(ti-1) uy (t;)cos(P(t)) =0
Orer(ti) = { asin <rX(tL-) (W)) uy (t)cos(@(t;)) # 0 (19)



Where m,g, is the estimated mass (Kg) and (Kpx, Kpx, Kpy, Kpy, Kpz, Kpz) € RE are
the gains of the internal PIDs. If the neuro-estimator is not used, the value m,; is sub-
stituted by the mass of the quadrotor m,.

The equations of the attitude controller are obtained in a similar way, but in this case
the angular dynamic is considered in the linearization (20-25):

r®(t;) = Kpg (®rep(t) — @) + Kpo (Prer (t) — & (t1)) (20)
up(t) = (Iese - 7®(t) = (Iyee = 12) - B W(8)) /(L b) (21)
r0(t;) = Kpg (Orer (¢) — 6(£) ) + Kpo (Brer (8 — 8(2) ) (22)
w3 (£) = (Wese - 70(t) — (12 = Ixgge) - D)W () /(L - b) (23)
() = Ko (Wrep (t) = () + Ky (Wrep (8 = (&) (24)
uy(t) = (12 19(t) = (Kest — est) - P()O(E)) /() (25)

Where Ix,; and Iy, (Kg.m2) are the rotational inertias in the X and Y axis, respec-
tively, estimated by the inertia neuro-estimator and (Kpe, Kpo, Kpg, Kpg, Kpw, Kpw) €
R are the gains of the internal PIDs. The values Ix,, and ly,, are substituted by Ix and
Iy when the neuro-estimator is not used.

3.2 Description of the neuro-estimators

The generic structure of the neuro-estimators is show in Figure 2. They need an analytic
model of the UAV and a neural network. The model is used to obtain a measurement
of the value to be estimated in order to train the network. But even when the model
does not find a right value due to any singularity, the neural network is still able to
provide a valid output, generating new knowledge.

Neuroestimator

UAV,

UAVoue | |, | | J

Fig. 2. Structure of the neuro-estimators.

First, the neural network is offline trained with the outputs of the model (mod,,;) as
targets and the outputs of the UAV (UAV,,,;) as inputs. Then, while the UAV system is



working, the network is on-line learning from new inputs and targets. So it adapts to
changes in the system parameters, and the controller can reject these disturbances.
The equations that represent the performance of the neuro-estimator are given by:

NNy (t) = fyn (WNN (), UAVout(ti)) (26)
Wiy (t:) = fagape Win (1), UAVGye (ti-1), mod gy (£i-1)) (27)
mOdout(ti) = fmod(UAVin(ti—l): UAVout(ti—l)) (28)

Where fy, represents the neural network during the simulation phase, wy, is the set of
internal parameters of the network, fqq4y, is the adaption function, f,,,,4 is the analytic
model, UAV,, is the set of inputs from the UAV and UAV,,,; the set of UAV. For each
estimator (mass or inertia), UAV;,,, UAV,,;, and the f,,,, are different.

e Mass adaptive neuro-estimator:
fmoa = b/((Z + g)/(uy cos 8 cos¢p)), NN, (t;) = fNN(wNN,Z, cos 8, cos qb) (29)

e Inertia adaptive neuro-estimator:

TR -
frnoa = FPEREL R PR NNy () = fn (W, 6, ). (30)

4 Discussion of the simulation results

Simulation results have been obtained during 16 seconds. The tuple of multipliers (K,
Ky, K;y,) has been set to (2, 10, 10) and t4;, to 5 seconds. The neural controller is
offline trained during the first 3 seconds; from them on the online learning is applied.
In both neuroestimators the neural network is a MLP with one hidden layer of 30 neu-
rons. The Levenberg-Marquardt algorithm has been used for the training with ©=0.001.

Figure 3 (left) shows the UAV tracking of a helical lemniscate trajectory (reference
in blue and trajectory with neuro-estimators in red). Without neuro-estimators (blue
line) the trajectory tracking was wrong (Figure 3, right).

Tracking of a helical lemniscate trayectory Tracking error comparison

X[m]

Fig. 3. Tracking of a helical lemniscate (left) and tracking error (right).



Figure 4 shows the UAV trajectory tracking of each coordinate. The results with neuro-
estimators (red line) and without them (blue line) regarding the reference (yellow line)
proves the efficiency of the neuro-estimators and how the error grows and the system
becomes unstable without them. The worst error is in the y-axis.

““““ o mels] mels)

Fig. 4. UAV tracking of X, Y and Z coordinates, respectively, with mass and inertia variation.

Results for different trajectories are shown in Table 1. The columns labelled “Neur”
means results with the neuro-estimators vs “Nest”, without them. Values below 0.0001
have been fixed to 0. The best results per column have been underlined. The evaluation
criteria are the MSE, U1 (control effort), and PERF (performance of the controller).
The latter is calculated multiplying the inverse of MSEt, MAX+, and U1, therefore big-
ger values indicate better results.

For every trajectory and evaluation criteria the best results are obtained with the
neuro-estimators. In general, the best performance is obtained for the helical lemniscate
trajectory that also shows the biggest difference depending on the application of the
neuro-estimators; indeed, regarding the MAXr criterium, this value is up to 80 times
smaller with the neuro-estimators.

Table 1. Tracking error, control effort and performance comparison for different trajectories.

MSE MSEy MSE, MSE+ MAX+ Ul PERF

Trajector
! y Neur Nest Neur Nest Neur Nest Neur Nest Neur Nest Neur Nest Neur Nest

Linear 0,094 0,098 0,094 0,098 1,208 2,362 1,223 2,377 10,10 10,10 8,650 8,681 0,009 0,004
Circular 0,192 0,226 0,098 0,172 1,208 2,362 1,246 2,418 10,24 10,24 8,656 8,736 0,009 0,004
Helical 0,161 0,350 0,037 0,452 0,040 1,120 0,185 1,557 1,007 4,642 8,644 9,993 0,618 0,013
Cyc. helical 0,140 0,192 0,012 0,151 0,574 1,335 0,651 1,476 1,141 5,850 8,685 8,832 0,154 0,013
Lemniscate 0,098 0,271 0,013 0,219 1,208 2,363 1,220 2,521 10,05 10,05 8,652 9,201 0,009 0,004
Hel. lemnisci 0,156 3,029 0,037 6,635 0,025 1.098 0,180 8,629 1 82,32 8,684 42,34 0,638 0
Step 0,983 1,018 0,985 1,012 1,212 2,367 2,011 3,173 17,32 17,32 8,949 8,993 0,003 0,002

5 Conclusions

In this work a new control strategy based on the hybridization of feedback linearization,
PIDs and adaptive neural network estimators is proposed. This approach helps to deal
with changes in the rotational inertia of UAV while flying.



The neuro-estimators combine an analytic model of the UAV and MLP neural net-
works. Online learning of the neural network allows the system to improve the estima-
tion of the changing mass and inertia of the quadrotor.

Simulation results with different trajectories prove the validity of this control strat-
egy with neuro-estimator to stabilize the UAV even under noticeable variations in the
mass and in the rotational inertia of the quadrotor.

Among other possible future works, we may highlight the study of the influence of
other disturbances such as the ones generated by the engines and the desirable applica-
tion of this methodology to a real system.
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