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Abstract: Mobile robot navigation has been studied for a long time, and it is nowadays widely
used in multiple applications. However, it is traditionally focused on two-dimensional geometric
characteristics of the environments. There are situations in which robots need to share space with
people, so additional aspects, such as social distancing, need to be considered. In this work, an
approach for social navigation is presented. A multi-layer model of the environment containing
geometric and topological characteristics is built based on the fusion of multiple sensor information.
This is later used for navigating the environment considering social distancing from individuals
and groups of people. The main novelty is combining fast marching square for path planning and
navigation with Gaussian models to represent people. This combination allows to create a continuous
representation of the environment from which smooth paths can be extracted and modified according
to dynamically captured data. Results prove the practical application of the method on an assistive
robot for navigating indoor scenarios, including a behavior for crossing narrow passages. People are
efficiently detected and modeled to assure their comfort when robots are around.

Keywords: sensor fusion; social navigation; multi-layer map; fast marching square; mixture
Gaussian model

1. Introduction

Nowadays, there is a rising popularity of mobile robots for multiple applications,
both outdoors and indoors. Advances in technology have turned robots into a powerful
tool for multiple applications, such as preventing people from performing demanding
and repetitive tasks or assisting them when their capacities have deteriorated. The work
performed to date in this field has reached a point where robust algorithms for mobile
robot navigation are available, especially when talking about 2D techniques. Robots can
map environments with algorithms such as SLAM and then localize themselves in the
resulting map to plan a trajectory using a single sensor, typically a 2D LiDAR or a depth
camera. However, these tasks are purely based on geometric information. Even though
they can be adapted to dynamic environments where moving obstacles need to be avoided,
a meaning is not assigned to any of these events. Situations in which robots and people
need to coexist are highly acclaimed in locations such as museums, hospitals or residences
for elderly people. For these cases, a differentiation is required between people and any
other object because social conventions must be kept. In particular, in the case in which
robots need to interact with people, their social distance must be respected. This is known
as social navigation. In contrast to traditional navigation, the aim is to reach a goal while
following social conventions [1]. One of the main challenges mentioned on the cited work is
modeling social space or proxemics, defined as the space around a person that, if intruded
upon, could cause discomfort.

In this paper, we propose a multi-sensor approach for solving the traditional robot
navigation problem with the advantage of detecting and modeling people. Initially, the
environment is mapped using 3D information, which broadens the data-capturing range
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with respect to traditional 2D techniques. Then, a topological map is extracted to locate
rooms and narrow passages, allowing the application of different navigation approaches
depending on the robot location. This is especially helpful for high-dimensional robots,
which need to traverse narrow passages carefully. Additionally, the resulting map is directly
understandable by humans, providing robots with higher-level concepts that are closer to
how we interpret our surroundings so that they become integrated in the scene [2]. Finally,
people are detected, and their personal space is modeled during navigation to keep the
dynamic behavior of the system. The resulting navigation strategy is applied on a practical
case in which an assistive robot needs to navigate an indoor scenario. A key detail of the
proposed architecture is using fast marching square for planning and navigating, which
defines the geometric space in a continuous mode. This allows to apply Gaussian functions
to model people since their continuous space can be fully considered and easily integrated.

State-of-the-art works have already approached the social navigation problem. One
of the main research lines on the field is based on social force models (SFM). Similar to
potential field approaches, this method models people as a repulsive force, whereas the goal
is considered an attractive force. The main issue of this method is that peoples’ discomfort
is not considered because their motion is not taken into account. This is corrected in some
approaches, including techniques such as defining motion primitives [3] or predicting their
trajectories [4].

Another well-known approach is modeling the social distance using Gaussians. In [5],
a similar approach to ours is proposed in order to consider socially acceptable behaviors
when the robot navigates. People are clustered and modeled using a Gaussian mixture.
However, the Gaussian is simplified by a polygonal chain, losing its continuous values.
Additionally, only discrete planners are applied, which could derive into uneven paths
or the requirement of an extra step to smooth them. People found on a scenario are also
defined by Gaussians in [6]. In this case, only the closest person is considered and modeled.
Hence, no distinction is performed between individuals and groups. The same authors
in [7] grouped people using Delaunay triangulation and modeled them using asymmetric
Gaussians. Again, as it happened in previously cited works, the Gaussian is discretized
with level curves in both works so that the initial path, calculated with A*, is modified to be
inside a certain region. Authors in [8] proposed the use of human emotions to determine
how close the robot can navigate from people. Although this is a promising approach,
the provided results are only virtual. No specifications about how to determine peoples’
emotions are provided, especially when their facial expressions cannot be observed (i.e.,
when a person is standing with their back to the robot). Moreover, the path planning
strategy is discrete, so the resulting paths are not smooth.

Other techniques include the usage of external devices placed on individuals. Users
in [9] are provided with a wearable haptic interface which vibrates depending on the robot
intention. These methods are highly dependent on the device range and are limited to the
number of people wearing it, so they are not generalizable to crowded situations.

In contrast, our approach provides the following contributions:

• Multiple sensors are fused for mapping and socially navigating scenarios: a 2D LiDAR,
a 3D LiDAR and an RGBD camera.

• Three-dimensional information is captured to extract a geometric and topological map,
which will serve as the basis for path planning and navigation.

• A navigation strategy using the fast marching square method is designed, considering
static and dynamic objects.

• A behavior for narrow passage trespassing is designed to avoid collisions in robots
with high dimensionality.

• People are detected and modeled using Gaussian functions considering social dis-
tance. A differentiation is made between individuals and groups. Additionally, the
Gaussian model is fully considered, with no discretization step required. The use of
fast marching square facilitates the addition of Gaussians into the model.

• The method is tested on a real scenario in which a domestic robot coexists with people.
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In the following sections, the proposed architecture will be explained in more detail.

2. Materials and Methods
2.1. Robotic Platform

The robotic platform used in this work is a mobile bimanipulator robot named ADAM.
Its design is thought for assisting elderly people in tasks that require manipulation, mostly
cooking. It is part of the HEROITEA project (Heterogeneous Social-Mobile Manipulator
Robot Intelligent Teams for Elderly-People Assistance). Apart from manipulating capa-
bilities, it is essential for the robot to navigate the environment, being conscious of where
people are. That is why it was chosen as the experimental platform for the proposed social
navigation strategy.

ADAM is formed by an omnidirectional mobile base, a torso and two 6 DoF industrial
arms, as shown in Figure 1. Its total height is 1.6 m, and its base has a 0.6 m diameter.
This means that the robot has a similar height with respect to a person, but its width is
bigger, especially when the robotic arms are not very close to the torso. This fact needs to
be taken into account when navigating narrow zones, which mostly correspond to doors in
indoor scenarios.

Figure 1. ADAM robot: (a) general overview of the mobile robot, where the robotic base, the torso
and the two arms can be observed, (b) 3D LiDAR and RGBD camera placed at the top of the torso,
(c) 2D LiDAR placed on the robotic base.

With respect to sensors, ADAM is a multi-sensor robot. For this application, a total of
four sensors are used, one of them being propioceptive and the other three, exteroceptive.
The first one is the set of encoders placed on the robotic base wheels. They will serve
for calculating the odometry, which is required in the mapping and localization modules.
Regarding exteroceptive sensors, the three selected ones are a 2D LiDAR, a 3D LiDAR and
an RGBD camera. The 2D LiDAR, a Hokuyo UST-20LX [10], is integrated in the robotic base,
slightly displaced above ground. Due to its position, large objects, such as tables, cannot
be fully detected. That is why its main objective is detecting objects on a low-level basis
during navigation. It has a total of 987 light rays, which cover 270◦ and a mid-detection
range of 10 m/20 m. The 3D LiDAR, an Ouster OS0 [11], is placed at the top of the torso,
so it is capable of measuring objects at multiple heights for mapping. It has a total of
128 channels with a 90◦ field of view and a 35 m range at 10%. Finally, the RGBD camera is
a RealSense L151 [12], consisting on a 2MP RGB sensor with a resolution of 1920 × 1080 px
and a depth sensor with LiDAR technology with a range from 0.25 m to 9 m and 70◦ × 55◦

(±3◦) field of view. It is placed below the 3D LiDAR on the front part of the robot. Its main
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objective is detecting people when the robot is navigating so that it does not traverse their
personal space.

Given these characteristics, each sensor has a different application. The 3D LiDAR
has a wide range for capturing data since it captures information at 360◦ horizontally and
90◦ vertically with a mid-detection range of 10 m/20 m. Hence, it is used for mapping the
environment. The mapping procedure is sped up because a wide range of data is available
with small robot displacements. The 3D camera could be also used for this task, but its
field of view and range are highly reduced with respect to the Ouster sensor, so more
time would be required for mapping, and some data would still be missing. That is why
its functionality is applied for people detection while navigating, fusing RGB and depth
information. The 2D LiDAR complements the camera information because it has a wider
detection angle and range, so a higher number of collision threats can be detected. The 3D
LiDAR is not used during navigation because of its high data quantity, which, combined
with the people detection module, could reduce the system time response, so the task may
not be achieved in real time.

Regarding software, the selected platform for exchanging information among sensors,
actuators and the mapping and navigation algorithms is ROS. The robot is made of elements
from diverse companies, so ROS allows to communicate every part with no synchronization
issues. Moreover, additional elements can be easily integrated in the robotic system. This is
the case of the 3D LiDAR and the RGBD camera. The mobile robot only counts with a 2D
LiDAR on its base, so the other two sensors were mounted on the robot using customized
3D-printed pieces. When performing this task, it is essential to correctly define the frame
tree so all sensors are referenced with respect to the same reference frame. Figure 2 shows
an example of aligned data from the 2D LiDAR and the RGBD camera, proving that the
frame tree is properly configured. Mapping and navigation algorithms are programmed in
MATLAB, which can be easily connected to ROS using the ROS toolbox.

Figure 2. Side view (left) and top view (right) of aligned data from multiple sensors. Greenish dots
correspond to the 2D LiDAR, and the colored point cloud corresponds to the RGBD camera. The
robot pose is represented with the red arrow. The two U-shaped elements captured with the 2D
LiDAR at the center of the room (person feet) are correctly aligned with the person captured in the
point cloud.

2.2. Navigation System

Robot navigation has been defined by multiple authors in the literature. The authors
in [13] define mobile robot navigation as the capability of passing a test in which the robot
is placed in an unknown environment that it has to explore and then go to a specified
place, minimizing a cost function such as time or distance. In [14], the problem of achieving
an autonomous robot navigation is divided into four subtasks: identifying the current
robot location, determining a path to the objective, avoiding collisions, and resolving any
conflicts between the previous two subtasks. More recently, works such as [15] are starting
to include higher-level information in the robotic navigation systems. In order to achieve
a better autonomy level in robots, it is not enough to only indicate a geometric target
that the robot has to reach. New trends propose to create navigation systems, taking into
account how humans interpret their surrondings, so in addition to the classical notion of
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autonomous navigation, the system needs to be designed in a human-friendly manner.
According to these definitions, the proposed navigation system is formed by four modules:

• Mapping: the robot needs to construct an environment representation based on sensor
information. For this application, a multi-map system is proposed. It is formed by two
layers, geometric and topological.

• Localization: a precise localization is required to know where the robot is placed. In
this work, it is applied on the geometric map level.

• Path planning: since this module is highly influenced by the selected mapping pro-
cedure, it is based on a geometric and topological level as well. The planner finds a
global topological plan and local geometric paths.

• Plan execution: once the three above-mentioned modules are available, the robot needs
to follow the calculated instructions. Hence, this module is performed in real time.
This implies taking into account unknown static and dynamic objects that interfere
with previous knowledge. Additionally, given the high dimensions of the robotic
platform, specific behaviors need to be defined to avoid collisions in narrow zones.
Finally, this module includes the social navigation perspective by detecting people
and modeling their personal space.

These modules are explained in a more detail in the following subsections.

2.2.1. Mapping Based on 3D Information

The most common way of representing the environment for mobile robot navigation
tasks is using geometric information. Traditionally, 2D SLAM techniques are applied.
However, these methods are very limited to the height in which the 2D LiDAR sensor is
placed. Given that it is normally positioned at the robot base, measurements are captured
at a height slightly displaced above ground, so obstacles such as tables or chairs are not
fully captured. Hence, there are obstacles that are not being captured but which represent a
collision threat. In this work, it is proposed to use a 3D LiDAR for obtaining information at
multiple heights. The main objective is finding a 3D representation of the environment from
which 2D occupancy grid maps can be created by taking 3D information slices. The selected
algorithm for creating the 3D point cloud representation is SLAM based on Harmony
Search, as described in [16].

For the proposed application of navigating indoor environments, two 2D occupancy
grid maps can be useful. The first one is the traditional occupancy grid map used for
navigation tasks (localization and path planning). For that reason, it is proposed to use
a slice of 3D data from the robotic base to the total height of the robot, collecting every
geometric information that represents a potential geometric limitation. The second one is
focused on describing the layout of the indoor environment in which the robot is placed.
The aim is finding a geometric segmentation of the environment based on narrow passages,
mainly doors. Given that removing objects such as furniture significantly improves results,
in this case, the 3D slice is taken above the robot’s height and below the ceiling. The result
is an occupancy grid map in which the core structure of the indoor scenario is represented.
This procedure is visually represented in Figure 3, where the 3D slices are marked on an
indoor scenario, and the two proposed occupancy grid maps are extracted.



Sensors 2022, 22, 8728 6 of 26

Figure 3. The 3D slices for 2D mapping: (a) initial scenario, where the slices are marked in blue
(layout space) and orange (navigation space), (b) location of the 3D slices inside a room, where the
layout space is empty and the navigation space contains furniture, and (c) resulting 2D occupancy
grid maps.

It has already been stated that geometric maps are useful for robots to navigate
indoor scenarios. However, this representation is far from how people understand their
surroundings. When we think about moving around an indoor location, we tend to first
identify the different rooms and narrow passages, or doors, that we need to traverse. By
analyzing the geometric properties of occupancy grid maps, these can be divided into
meaningful regions. More precisely, the aim is finding narrow passages representing
separations. In this way, robots are brought closer to our way of thinking. Additionally,
tasks such as path planning are sped up when combining a topological global planner
with a geometric local planner, as proved by many works, such as [17,18]. The selected
method for segmenting the environment is presented in [19], where Voronoi diagrams are
extracted from both free and occupied regions in an occupancy grid map to determine
region separations. The provided results prove the effectiveness of the method. The outcome
is a labeled map, which will be used for extracting the final topological map.

The proposed topological map is formed by nodes representing indoor locations,
mainly rooms, corridors and narrow passages or doors, and edges representing their
connectivity. Initially, nodes are defined for both rooms and doors. With respect to rooms, a
node is assigned to every labeled region, additionally saving their perimeter values. As for
doors, located in label boundaries, two nodes are created, one on each side of the separation.
This will be useful for traversing doors when navigating due to the large dimensions of
the experimental robotic platform. One node will serve for approaching the door, and
the second one will serve as the reference point for moving. This navigation strategy is
explained in more detail in Section 2.2.4. In the case of door nodes, their corresponding
geometric coordinates are saved. Finally, edges are created by checking with labels that
coincide on each separation. Figure 4 summarizes this procedure.

Figure 4. Topological map extraction: (a) initial occupancy grid map, (b) segmented map, where each
color corresponds to a different location, (c) topological map, where colored nodes correspond to
rooms and black dots indicate door nodes.

2.2.2. Localization

Localization is carried out in the geometric level using sensor information from the
2D LiDAR placed on the robot base. It was decided to apply the localization tools pro-
vided by ROS navigation stack [20]. The selected method is AMCL (adaptive Monte Carlo
localization), a probabilistic method based on particle filter.
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2.2.3. Path Planning

Planning on large geometric maps is time-consuming. For this reason, it is proposed
to first plan on the global topological map and then plan geometrically on each separate
location. Given the coordinates in which the robot is placed (provided by the localization
algorithm) and target point, room perimeters are checked to see if they contain the points.
The node containing the localization point will be the starting node, and the one containing
the target point will be the end node for the topological planner. Then, Dijkstra [21] is
applied to obtain the sequence of rooms and doors that need to be traversed. For this
application, weights for Dijkstra are defined by the distance between nodes.

Then, geometric paths are locally planned for each room. This step is only focused on
open areas given that doors are only separations and they will be traversed in a different
manner to avoid collisions with door frames. The selected planner is FM2 (fast marching
square) [22]. The original concept of Fast Marching is based on the way in which light
is propagated in space, which, applied to an occupancy grid map, results in a matrix,
where each cell indicates the arrival time of the wave. This matrix is called velocity map
and it is denoted by F. Velocity map values range from zero to one, where zero values
indicate occupied space, and one corresponds to zones of the maximum allowed velocity
for the robot because they are far enough from obstacles. FM2 is capable of finding the
shortest path on F while optimizing speed, that is to say, time. Some major highlights
of this method are the capability of finding the fastest possible path, being smooth and
avoiding the local minima.

Figure 5 summarizes the planning steps. Once the geometric and topological maps
are available, and hence aligned, the global topological plan is calculated, as well as
the geometric paths on each individual room, each one corresponding to a topological
room node.

Figure 5. Planning steps: (a) initial scenario representation, where red signs indicate the starting and
goal positions, (b) global topological plan (highlighted part of the map), and (c) local geometric plans.
The same colors are used on the topological and geometric plans to indicate the relation among them.

2.2.4. Plan Execution

The third module for robot navigation is executing the planned path. It is based on
the definition of two main robot behaviors, one for moving on wide areas and another one
for traversing doors. In the first case, the robot follows the trajectory provided by FM2
using Pure Pursuit controller [23]. If an unknown obstacle is detected by the 2D LiDAR, it
is added to the map. If it interferes with the path that is being followed, FM2 is applied
again in the updated map. This method allows to avoid obstacles in real time. In the case
of including dynamic obstacles in the map, such as people passing by, a situation in which
the robot is trapped on the map can happen. However, it can occur that mapped people
are not there anymore. When this happens, the map is returned to its original values and
the path is replanned. If obstacles are found again three consecutive times and a path is
not feasible, the whole process stops. This could happen, for instance, if the robot was
surrounded by people for a long time. A summary of the robot behavior during plan
execution is represented by the flowchart in Figure 6.
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Figure 6. Robot plan execution including dynamically detected objects.

The second robot behavior occurs when the robot needs to traverse a narrow passage.
Given the large dimensions of the robotic platform, its movements need to be continuously
checked to avoid collisions. For that reason, a low level functioning based on the 2D LiDAR
is proposed. It counts with two steps: approximation and crossing. Initially, the robot
moves to the closest door node and is rotated toward the next node, symmetrically placed
at the other side of the door. Then, the crossing step is performed by assigning a constant
linear velocity to the robot wheels. Due to irregularities in real scenarios, such as floor
bumps, the robot tends to leave the straight line that it has to follow. To avoid lateral
collisions, the 2D LiDAR measures distances to the closest obstacles on each side. More
specifically, five LiDAR rays are checked on this step, as shown in Figure 7. LiDAR rays are
numbered on the robot platform from left to right, starting at 1 and ending at 987. For this
application, rays 293 and 393 are selected on the left side, corresponding to r1 and r2 on
the drawing, and rays 593 and 693 are selected on the right side, corresponding to r4 and
r5 on the drawing, respectively. r3 is placed at the central part, corresponding to ray 493.
Hence, the selected rays are symmetrically placed on each of the LiDAR sides. Initially,
r1, r2, r4 and r5 hit the wall surrounding the door, so rays r2 and r4 are checked. If the
measured distance is smaller on one of the sides, an angular velocity is added with the
opposite direction to compensate for the error. When the robot gets closer to the door, these
rays stop hitting the wall, so rays r1 and r5 are used instead. These are not checked from
the beginning because they are further away from the door, and other obstacles nearby
could interfere in the performed comparisons because distances are affected. Finally, the
distance information at the front ray r3 is also checked to see if a dynamic object, such as a
person passing by, is found. In such a case, the robot stops until the space is again free.

Figure 7. Door-crossing behavior where LiDAR rays, marked in green, are used for correcting the
robot pose: (a) r2, r4 and r3 are checked (b) r1, r5 and r3 are checked.
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2.2.5. Modeling People for Social Navigation Strategies

Up to this point, no differentiation has been made between objects and people. When
the robot detects a collision threat with the 2D LiDAR, it is automatically inserted into the
occupancy grid map without checking whether it is a person or not. In this section, the
social navigation module is integrated with the above explained navigation system. More
specifically, people are considered during navigation on wide zones in the plan execution
phase since, initially, no information about people location can be obtained. Only when the
RGBD camera detects a person is the social navigation module activated. A summary of
the proposed modification is shown in Figure 8. Apart from including detected objects, the
camera indicates whether people are found in front of the robot. In such a case, they are
modeled and considered in the path following behavior. Hence, two steps are performed
in this phase: people detection and personal space modeling. An additional verification
before including people is performed to avoid modeling the same person multiple times.
An explanation of how these steps work can be hereunder found.

Figure 8. Modification of the plan following technique, marked with a red discontinuous rectangle.
Camera data are used for locating people and modeling them.

People Detection

Real-time people detection has had a great development in recent years, with diverse
techniques and applications in several research fields [24–26]. In this paper, it was decided
to combine MediaPipe [27] and YOLO [28]. MediaPipe is an open source library developed
by Google for human pose estimation. It can be easily integrated with multiple platforms,
such as ROS, and it can be GPU accelerated. It extends the 17 body markers from the
COCO topology (green dots in Figure 9) to 33 markers defined in BlazePose, improving
pose prediction. However, it can only detect one person at a time. In order to enable
multi-person skeletonization, people are initially detected using YOLO. YOLO(You Only
Look Once) is a real-time object detection system. The main difference with other systems
is that it does not perform a search by regions in the image determining whether there are
objects to be detected or not. In contrast, it is able to perform a global search within the
whole image. In this paper, YOLOv5 version is chosen, given that it counts with better
accuracy than its predecessors [29]. It calculates bounding boxes where people are found.
Then, MediaPipe is applied on each box separately.



Sensors 2022, 22, 8728 10 of 26

Figure 9. List of 33 markers used by MediaPipe and their position in the human body to estimate
their pose [30].

3D Pose Estimation

In order to perform social navigation, 3D people poses are required to define their
personal space. The process can be divided into three main tasks: 2D pose estimation, 3D
correspondence and reference frame change.

The first task consists of detecting people and estimating their pose in the 2D plane
corresponding to the RGB image. As mentioned before, YOLO finds the bounding boxes in
which people are found, and MediaPipe estimates their skeleton. Only three markers are
selected, and their pixel coordinates are saved—0, 11 and 12, corresponding to nose, right
shoulder and left shoulder, respectively. This choice was made according to the camera
location. It is placed at the height of the robot shoulders (1.3 m high approximately), so
these points are better detected than, for instance, those corresponding to the hips, which
could be under the image boundaries. Shoulder points are used for estimating the central
point of the person with their mean value. Detecting the nose is particularly important in
cases in which the person’s orientation cannot be estimated using the point cloud, as it will
be later explained.

The second task consists of turning each 2D point of interest from pixels to a 3D
point in meters with respect to the camera reference frame. For this purpose, the pinhole
camera model and the image point cloud are used. Given a pixel coordinate (u,v), the
function projectPixelTo3dRay from the image_geometry ROS package [31] returns the 3D
ray passing through (u,v), represented as a 3D vector. Then, the function cKDTree from the
Python Spatial Algorithms and Data Structures library [32] finds the closest point on the
point cloud to the estimated 3D location. The result is the desired 3D point with respect
to the camera reference frame. A schematic representation of this procedure is found in
Figure 10. This is applied using a region of interest around the desired pixel so that an
average depth value is obtained, filtering out errors.

The third and last task is changing the 3D points from the camera reference frame to
the robot base reference frame. These are visually represented in Figure 10. Two rotation
transformations are required: a +90◦ rotation in the X axis followed by a +90◦ rotation in
the Z axis. Finally, there is a translation in the Z axis corresponding to the difference in
height between the robot base and the camera as well as a translation in the X axis because
the camera is slightly in front of the center of the robot base, where the reference frame
is positioned.
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Figure 10. System reference frames: (a) camera (top) and base (bottom) frames placed on the robot,
(b) camera frame (Xc,Yc,Zc) and base frame (Xr,Yr,Zr), where tx,r and tz,r indicate translations. The
line joining the camera origin and the pixel (u,v) is defined by projectPixelTo3dRay, and cKDTree finds
the 3D point (Xp,Yp,Zp).

After performing the three tasks, the result is a set of 3D points corresponding to the
person’s central point and the two shoulders with respect to the robot base. These data
are finally used for calculating the person pose in the map plane, which is parallel to the
floor. The pose has two components: position and orientation. The position of a person
is easily extracted by selecting the XY components of the 3D point corresponding to the
person central point. In the case of orientation, some extra steps are required. The XY
components of the shoulders are selected and are joined by a line segment. The aim is
extracting the orientation of the normal vector from the segment, which coincides with
the person orientation, for which trigonometry is applied (see Figure 11a). A special case
occurs when a person is placed sideways to the camera. In this case, the 3D points extracted
from the point cloud could coincide for both shoulders, given that one of the shoulders
is hidden (see Figure 11b). If only the shoulders information was used, an estimation of
the orientation could not be performed because a slight change in depth measurements
causes considerable changes in orientation. That is why the third point, corresponding to
the nose, is used in these cases. Its position with respect to the shoulders is checked on the
RGB image, as shown in Figure 11c. A different predefined orientation value is assigned to
orientation depending on whether the nose is to the left or to the right of the shoulders.

The outcome of this procedure is a set of people poses that will be used for personal
space modeling. However, an extra step needs to be performed before. Given that the
robotic system contains multiple sensors, people are not only captured by the RGBD camera,
but also by the rest of the sensors. That is why distance data captured by the 2D LiDAR
corresponding to people need to be removed. For that purpose, 2D data inside a region
of interest centered at each people’s position are removed. In this way, people are only
accounted for once, and their location is not additionally seen as an obstacle.
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Figure 11. Extracting orientation from skeletonization: (a) if shoulders are clearly distinguishable,
coordinates (x, y)RIGHT and (x, y)LEFT are checked to calculate the desired angle, (b) when the person
is sideways, both shoulder coordinates coincide, so an extra point needs to be checked, (c) the RGB
image is used to see where the nose (green dot) is placed with respect to the shoulders (red and blue
dots), assigning a different predefined value depending on if it is to the left or to the right.

Modeling Personal Space

The representation of personal space for a person or a group of people is a subject that
has been studied and debated for a long time. Depending on various factors, such as the
number of people, social aspects (age, culture, gender) or the relationships that humans
have with each other, different types of distances are stipulated in which we humans
communicate [33,34]. In general, four different types can be established, which are divided
according to the user comfort level. These types are as follows:

• Public distance: This distance is defined for values over 210 cm. In this distance the
communication needs to be with high voice volume and eye contact is minimized.

• Social distance: It is maintained during more formal interactions. Its value is between
122 and 210 cm and prevents all kinds of contact, except visual and auditory.

• Personal distance: This distance is maintained during interactions with people with a
higher level of confidence than in the other two cases, for example, with friends. The
value of this distance is 46–122 cm, generating a better capacity to interact, without
any opposition.

• Intimate distance: The value of this distance is 0–46 cm. It is commonly used in close
relationships, given that a clear invasion of the personal space of the other person
occurs. Due to proximity, the vision is blurred and other sensory signals are used,
such as touch.

For this project, setting distance limits are essential for two main tasks: differentiating
individuals from groups and modeling their personal space mathematically during robot
navigation. These values need to assure an equilibrium between avoiding bothering people
and engaging them during interaction.

It was decided to set the minimum social distance as the group limit. This choice
was established on the basis of different factors. One of them is the attempt to generalize
the proposed method for all types of cultures that the robot may encounter. There is a
clear difference between cultures [35], with Mediterranean cultures being more prone
to relationships with smaller interpersonal distances, and Northern European or Asian
cultures with larger interpersonal distances. Therefore, a number of people are considered
to belong to the same group as long as there is a distance of at most 122 cm between two of
the members. In the case of a person, the selected distance limit to model personal space is
the minimum personal distance, setting 46 cm as the closest allowed distance during the
human–robot interaction.
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In order to work with these values, it is necessary to make a series of mathematical
statements. First of all, it is considered that the whole navigation process will take place
in a two-dimensional environment, represented by the Euclidean space, where a set of N
people can be found, represented as H = [Hi . . . HN ]. The state of a person i is composed
by its position, heading and velocity Hi =

[
xi

H , yi
H , θi

H , vi
H
]
.

As previously described, two cases can occur: individuals and groups. Individuals are
named Hind, and their personal space is represented by Φi. A group of people is represented
by Hgroup. In this case, as the group shares a common space, they are modeled together.
The O-Space represents the center space of the people that belong to a group. The P-Space
represent the outer space that surrounds the O-Space and contains the people that belong
to a group. The R-Space is the rest of space. This representation is visually explained in
Figure 12.

Figure 12. Representation of the different parts of the space for a group of people.

After naming every element, the mathematical formulations for modeling each of the
two cases are described below.

One Person Case

For the representation of one individual, the two-Gaussian mixture model was used,
given that it is one of the most used techniques in the literature [36]. The main idea of this
method is to define the personal space that surrounds a person i with the mixture of two
Gaussian functions, one of them to define the front of the individual ΦF

i and the other to
define the rear of the individual ΦR

i. The mathematical expression for a Gaussian function
Φ is defined as follows:

Φ(q) = e(−
1
2 (q−p)τ ∑−1(q−p)) (1)

where p defines the center of the Gaussian, representing the human position p =
(

xi
H , yi

H
)
,

∑ represents the covariance matrix and q is every point that surrounds a human. The
personal space using Equation (1) is defined as follows:

Φi(q) = δ(yq)ΦF
i (q) + (1 − δ(yq))ΦR

i (q) (2)

where q = (xq, yq)T and δ(yq) = 1 if yq ≥ 1, which corresponds to the front of the
person, and is 0 otherwise. For the Gaussian model, the covariance matrices are described
as follows:

F

∑
i
=

(
σ2

x 0
0 4σ2

x

) R

∑
i
=

(
σ2

x 0
0 σ2

x

)
(3)

where the value of σ2
x is set using the individual distance limit, which is the minimum personal

distance. Therefore, to model each of the axes, it is established that σ2
x = 0.46/2 = 0.23 m.

In this way, a Gaussian is obtained in which the person is defined to a greater extent by
the frontal part due to the fact that it is considered that the frontal personal space has a
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greater weight in human interaction since it is through it that humans can manipulate
the environment, move around and perceive the surroundings. Figure 13 shows the
representation of one person using the described model.

Figure 13. Representation example with two-Gaussian mixture model. The person is generated with
different orientations in space.

Group of People Case

As it was mentioned before, people closer than the specified distance limit are treated
as a group. Depending on the number of people, groups will be modeled differently.
Initially, groups are described by their simplest flat geometric structure. This means that
each person is identified with a vertex, and they are joined such that the polygon edges do
not intersect with each other. Using this definition, we call neighbors those people who are
directly related with an edge. Therefore, the method is generalizable for any number of
people. Figure 14 shows a visual example for the generation of the geometric entities. In
the case of Figure 14b, H2 and H4 are neighbors of H1, but H3 is not because they are not
directly related.

(a) (b)
Figure 14. Examples of geometric entities for the description of a group of people. (a) For two people,
the only geometric entity is a line; (b) For multiple people, the geometric entity will depend on
their position.

For the generation of the final model, the position of each person, represented by
Hi = (xi, yi), is required. In contrast to previous methods, the orientation of a person in a
group is not taken into account. It is decided because, after several comparisons, results
obtained with and without taking orientation into consideration generate almost identical
results. Therefore, it is assumed that it is not a factor whose relevance should be considered,
so a person belongs to a group only if the distance requirement is met. This distance,
denoted as Dv, is calculated using the Euclidean distance between the neighbors of the
person and has to fulfill Dv ≤ 1.22 m. That restriction must be complied with by at least
one of the neighbors of each person of the group. For the correct O-Space representation,
it is decided to additionally consider an estimation of the mean distance between each
neighbor, DH .

Another necessary element is the center C of the group. In previous works, it was
represented as the point where all the bodies are pointing. However, in our method, the
center is generalized as the centroid of the polygonal shape, assuming that every component
of the group is looking in that direction. In the case in which the group is only formed by
two people, the middle point of the line joining them is selected.

Finally, distance Di is defined as the Euclidean distance corresponding to the person
of the group that is further away from the center, which is represented as H f ar.
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Knowing the previous values, the O-Space can be modeled using a two-dimensional
Gaussian Φi as follows:

Φi(Q) = e(−
1
2 (Q−C)τ ∑−1(Q−C)) (4)

where C is the center of the Gaussian and Q represents the point which is being evaluated.
The covariance matrix ∑ is defined as

∑ =

(
σ2

x 0
0 σ2

y

)
(5)

with σx = DH/4 and σy = Di/2. In order to obtain the value of DH , the mean distance
between neighbors is used, as long as they meet the maximum distance condition. The
equation that describes this value is

DH =
1
N
(

N

∑
i,j=1

(Dvi,j)) (6)

where Dv represents each of the sides of the polygon that are created for the group (distance
between each pair of neighbors), and N represents the total number of sides of the polygon.

The equation that defines Di is

Di =

√
(H f ar

x − Cx)2 + (H f ar
y − Cy)2 (7)

where H f ar represents the further person of the group. This person is considered as the
pivot of the Gaussian model, generating the angle Θ that is needed to rotate to have the
correct model orientation. Θ is calculated using the following equation:

Θ = arctan
H f ar

x − Cx

H f ar
y − Cy

(8)

This value allows to correctly orientate the Gaussian model. The idea of using H f ar and
Θ allows the method to accommodate any person within the Gaussian model regardless of
their position. This is especially relevant when the method generates an irregular polygon,
allowing to delimit all persons under the same Gaussian. A schema of the proposed model
is described in Figure 15.

Figure 15. Example of polygonal representation. To simplify the explanation, a regular polygon is
described. The same color scheme as in Figure 12 has been applied.

An example of the method applied for groups of three people and four people is
shown in Figure 16. It can be noticed that the Gaussian models are rotated according to the
people location, so all group members are included.
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(a) (b)
Figure 16. The method group together the different humans under the same Gaussian model.
(a) Example of a Gaussian generated for a group of 3 people; (b) example of a Gaussian generated for
a group of 4 people.

Inclusion of the Gaussian Models to the Velocity Map

The next step to obtain a social-aware path is adding the previously explained Gaussian
model into the velocity map derived from the FM2 planner. The novelty of the method is
the idea of distinguishing between the addition of an object to the occupancy grid map
and the addition of a person or a group of people to the velocity map. Normally, when an
obstacle is detected by any sensor during robot navigation, it is included in the occupancy
grid map as an object, directly adding its shape, so the local planner can reconfigure the
planned path. By contrast, our method allows to add the person or the group directly in
the velocity map (F) in the shape of their personal space. If instead of adding the person
or the group to the velocity map, it was added to the occupancy grid map, each person
would be treated individually as an object, generating a modification on the velocity map
derived from their individual shapes that does not assure a social-aware path. An example
of that is modeled in Figure 17, where the path calculated by treating people as objects
(blue line) goes through a group, interfering unnecessarily in their social interaction. With
our method, the path surrounds the group (orange line).

Figure 17. Advantages of using the proposed Gaussian model method. For the environment pre-
sented in (a), the velocity map F is extracted, interpreting humans as objects (b) and as a group (c).
When the path planner is applied (d), the calculated path goes between the two individuals in the
first case (blue line), whereas for the second case, the social space is respected (orange line).

For the addition of the Gaussian model to the velocity map, it is necessary to transform
from the robots frame to the global reference. For that purpose, its necessary to know the
R = [xR, yR, θR] global reference frame. Once that the pose of the Gaussian model in the
global frame is known, the addition of this model is performed using an image mask. That
image mask is defined as the local model of the Gaussian. The equation for that process is
the Haddamard product [37]:

(A � B)i,j (9)
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where A and B are the global map and image mask, respectively, and i, j represent each of
the elements for each matrix. For that process, two other requirements are necessary. First
of all, it is necessary to re-scale the local map. For that, the resolution of the global map is
known, and the resolution of the mask applied is selected as a standard value for all the
possible cases.

Second of all, for the Haddamard product, both matrices have to be the same size.
Normally, the global map is bigger than the local matrix or mask applied. A local frame
of the global map is selected with the same size that the mask applied. To determine the
exact part of the global map where the mask needs to be applied, is necessary to know the
orientation of the robot. Knowing that value, with respect to the global frame, the method
is able to orientate the Gaussian model correctly with respect to the robot.

3. Results

The aim of this section is validating the proposed method on a real scenario. The
selected scenario is a working zone with a long corridor and several offices, as shown in
Figure 18. This zone has several challenging characteristics. The floor has no roughness,
which could cause wheel drifts, and a high number of rotations are required to enter
rooms, which causes cumulative errors in odometry. Additionally, the corridor is almost
symmetric, and offices are cluttered with multiple furniture pieces, which may cause
issues when localizing the robot and executing path-following techniques. Finally, multiple
dynamic elements, mostly people, are expected.

Figure 18. Real scenario for testing the proposed method: (a) corridor, (b) office.

Initially, the robot was teleoperated through the scenario, where only some of the
office doors were open. Three-dimensional data were captured to map the environment.
Once the map system is available, three experiments are performed: the navigation strategy
without the social module is tested, people detection and modeling is performed while
the robot is standing still, and finally everything is integrated in the navigation system to
consider people dynamically, proving that their personal space is preserved.

3.1. Mapping an Indoor Scenario

The first step for performing experiments is to map the scenario in which the robot
will be moving. As mentioned before, the robot was teleoperated around the scenario while
capturing data from odometry and the 3D LiDAR. Results from applying SLAM based
on Harmony Search are presented in Figure 19a, where the ceiling is removed to better
appreciate the results. Thanks to this algorithm, robot poses are corrected, and scans are
aligned. The result is a global point cloud with benefits, such as thin walls, well-defined
doors and aligned rooms. Multiple objects can also be observed in the figure, where blue
colors correspond to lower zones and yellow ones are data captured at higher heights.
The second stage on the mapping procedure is extracting 2D occupancy grid maps from
the global point cloud. The selected slice for defining the layout of the zone is between
the robot’s height and the ceiling. The resulting map is shown in Figure 19b. Rooms are
clearly defined, and noise is highly reduced with respect to traditional occupancy grid
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maps, which helps with identifying narrow passages. The second data slice defines the
navigation space for the robot. In this case, data are selected from the floor to the robot’s
height. The resulting map, illustrated in Figure 19c, includes all objects in the specified slice.
This is a relevant aspect since multiple offices are found in the selected scenario, where a
high number of tables and chairs are found. Hence, not only legs are included in the map,
benefiting the following applied navigation techniques.

Figure 19. Mapping results: (a) global point cloud, where red dots are corrected robot poses, (b) layout
grid map, and (c) navigation grid map.

The last step is extracting the topological map from the layout occupancy grid map to
represent the location of rooms and doors. Results are provided in Figure 20, where the
resulting topological graph is overlapped with the labeled map and annotated for a better
understanding. Labeled nodes starting with an R correspond to geometrically segmented
rooms, whereas nodes starting with a D correspond to door nodes. It is worth recalling that
every door is comprised of a set of two symmetrically placed nodes, but for representation
purposes, they are merged into a single one. Finally, edges are marked with letter E and
clearly indicate connectivity among regions.

Figure 20. Resulting topological map overlapped with the segmented scenario. R and D correspond
to room and door nodes, respectively, and E corresponds to edges.

3.2. Single-Sensor Navigation Strategy

In this section, the proposed navigation system based on the geometric and topological
maps is launched on the robot to move around the indoor scenario. In this case, only the
2D LiDAR is used to detect discrepancies between the map and real-time detected objects.
This is useful for both static and dynamic objects. It will be also used for door trespassing
when required.

The robot is initially placed in one of the office rooms and is commanded to go to
another one in the opposite side of the corridor. Hence, the topological planner indicates
that the robot needs to geometrically navigate in three different rooms (two offices and one
corridor), connected by two doors. Results of the local geometric plans can be observed
in Figure 21. It can be noticed that the paths do not reach the center of the narrow zones.
This space will be later traversed using the corresponding topological nodes with the door
trespassing strategy.
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Figure 21. Calculated local geometric paths. The robot is located in room 1 and it needs to reach
room 3, so a path in room 2 is also computed to connect both locations.

Room number 2, corresponding to a corridor, is selected to test the dynamic behavior
of the navigation system. While the robot is moving, a box is placed in the middle of the
planned path, as shown in Figure 22, where (a) and (b) correspond to the initial test scenario
and (c) and (d) show the box location and the replanned path. The 2D LiDAR, marked in
green, successfully detects the new object and replans to avoid it.

Figure 22. Replanning behavior: (a) initial scenario, (b) initial planned path (yellow) on the velocity
map, where green is 2D LiDAR data, (c) modified scenario with an unmapped box, (d) modified path
considering the box.

Finally, the door-crossing behavior is tested along several runs. The robot is com-
manded to move from one side of the door to the other, and its geometric location is
saved. The distance between the commanded path and the executed one is calculated and
analyzed as shown in Figure 23. The robot successfully traverses doors without colliding,
with a deviation from the original plan of less than 0.15 m in 75% of cases. Bigger values
correspond to the robot approaching the planned path, so it is not close to the door yet and
the collision risk is minimal. A comparison between this method and purely using FM2
is not possible. When trying to cross a door with the geometric planner, the majority of
the times, the robot hit the walls near the door because it does not go through the exact
door center.
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Figure 23. Box plot representing the deviation distance in meters of the robot with respect to the
desired path joining the two door nodes.

3.3. People Detection and Modeling Performance

The third performed experiment consists on checking the performance of the people
detection and modeling module. In this case, only the RGBD camera is used. The robot is
standing still while checking for people around to include it in the velocity map F. Two
situations are selected for checking how people are considered: a person and a group
of people talking in front of the robot. This is depicted in Figure 24, where both the
2D LiDAR (top images) and the RGBD camera (bottom images) data are provided for
ensuring that they are aligned. The robot pose is represented by the red arrow in the map,
whereas greenish dots correspond to LiDAR measurements. Regarding bottom images,
they correspond to captured data from the RGBD camera, where green dots represent
noses, red dots indicate where the right shoulder is placed, and the left shoulder is marked
with a blue dot. This is invariant to the person orientation, so left and right shoulders are
always differentiated.

Figure 24. People detection: (a) a person approaches the robot, so its feet are detected by the 2D
LiDAR (top, where the red arrow is the robot position and green/blue zones are 2D LiDAR data)
and its shoulders and nose are detected by the RGBD camera (bottom, where the red dot is the right
shoulder, green is the nose and blue is the left shoulder), (b) a group is formed, so two sets of feet
(top) and two torsos (bottom) are detected.

Results corresponding to the first case are shown in Figure 25. The person is first
detected and its 3D pose is estimated using the camera point cloud. Then, it is locally
modeled using Gaussian mixture model considering the robot base as the reference frame.
This is depicted in Figure 25a, where the red star is the center of the Gaussian. It can
be observed that the person orientation is considered and the Gaussian is oriented with
its bigger side corresponding to the front part of the person. On a second stage, the
Gaussian model is included in the velocity map considering the robot pose. This is shown
in Figure 25b, where the blue arrow indicates where the robot is located and the red star
marks the center of the Gaussian. Velocity around the red star is reduced using the Gaussian
shape, ensuring that the person space will not be traversed during navigation.
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Figure 25. Detection and modeling of a person: (a) Gaussian model, in meters, defined in the
robot reference frame, (b) inclusion of the Gaussian model in the velocity map using the map
reference frame.

In the second case, two people are detected, so the Gaussian model varies. In this
case, no information about people orientation is required. However, the Gaussian model
is oriented according to the location of each of the participants in the group. Results are
shown in Figure 26a, where the green and red stars indicate where people are detected.
Given that the person on the left is slightly further away from the robot, the Gaussian is
rotated so that the two detected people are symmetrically placed inside it. This model is
included in the velocity map as shown in Figure 26b. It can be noticed that the central
part between both people corresponds to almost zero velocity. This means that the robot
will always respect the space between them, so the calculated paths will only go around
the group.

Figure 26. Detection and modeling of a group: (a) Gaussian model, in meters, defined in the
robot reference frame, (b) inclusion of the Gaussian model in the velocity map using the map
reference frame.

3.4. Multi-Sensor-Based Social Navigation

Once the navigation strategy and the people detection module performance have been
tested, the final experiment merges all sources of sensor information for social-aware robot
navigation. The following shows how the robot performs when dealing with multiple
dynamic events. Additionally, results can be seen in the following link: https://youtu.be/
qCg3jC__fO4 (accessed on 10 October 2022).

Initially, it is tested with one person, as shown in Figure 27. The scenario is first empty,
with no objects or people around (Figure 27a). FM2 calculates the initial path that the robot
has to follow to reach the specified goal (Figure 27b, where the circle is the robot location).
During the plan execution, a person is placed in front of the robot, interfering with the path
(Figure 27c). The RGBD camera detects the person, and their social space is included in

https://youtu.be/qCg3jC__fO4
https://youtu.be/qCg3jC__fO4
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the velocity map, modifying the initial path (Figure 27d). The velocity map is additionally
saturated to obtain a smoother path. The robot is capable of avoiding the person without
being intrusive.

(a) (b)

(c) (d)
Figure 27. Social navigation example of the robot in a real scenario with a person. (a) Initial scenarios
without people; (b) initial planned path; (c) person detection in front of the robot, standing in the
initial path; (d) path replanning considering the personal space of the person.

The same experiment is performed with a group of two people. The robot has to
follow the same initial path as before but in this case the social space is modeled differently.
Results are shown in Figure 28. People in the scene are close enough to be considered a
group but far enough to leave space so that the robot fits between them (Figure 28a). Using
the proposed Gaussian modeling strategy, the velocity matrix is zero between them, so
planning in that region is prohibited. The replanning procedure successfully surrounds the
group without interrupting their interaction (Figure 27b).

(a) (b)
Figure 28. Social navigation example of the robot in a real scenario with two people. (a) Initial scenario
with two people standing in the initial path; (b) path replanning considering the interaction space.

The case in which a group with more than two people is detected is shown in Figure 29.
As it happened before, the group is standing in the center of the space, interfering with the
initial plan (Figure 29a). Their social space is modeled, and the path is replanned to avoid
them without disturbing their conversation (Figure 29b). It can be seen that the resulting
Gaussian is bigger than in the previously performed experiments, so the robot has to get
very close to the corridor wall. Even so, the robot successfully avoids them and achieves
its target.
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(a) (b)
Figure 29. Social navigation example of the robot in a real scenario with three people. (a) Initial
scenario with a group of three people interfering with the initial path; (b) replanning of the path
acoording to their personal space.

As a final experiment, it is intended to test how fast the social navigation strategy
works once the robot enters a new room. The robot is located in one of the offices and is
commanded to move to a specific coordinate in the corridor. Hence, two local geometric
paths are calculated, one to exit the office and another one, in the corridor, to reach the
final point. The robot starts inside the office (Figure 30a). No people are found at that
time in the place, so the robot directly follows the initial path (Figure 30b). Right after
concluding the subsequent door crossing behavior, a person is detected in the corridor path
(Figure 30c). Its detection could not have been previously done because the person was
occluded by walls. However, once the robot is outside, it immediately detects the person
and finds a path that respects social distancing (Figure 30d). One of the main advantages of
using FM2 and Gaussians is that the path is smooth and the robot is not trapped in any
local minima, so the robot is not required to move backwards or sideways. This is why the
omnidirectional base is well-suited for challenging situations such as the one presented in
this experiment. In the case in which the robot is trapped, it can turn on the spot until the
path is clear and it can move forward.

(a) (b)

(c) (d)
Figure 30. Final experiment with door trespassing and person detection. (a) Robot navigating to exit
the room; (b) path (red) to move to the coordinate corresponding to the door topological node (green
corresponds to LiDAR measurements); (c) detection of a person in front of the robot that stands in
the path.; (d) path replanning considering the personal space of the detected person.
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4. Discussion and Conclusions

In this work, a method for socially navigating a scenario using multiple sensors is
presented. This method is divided into four modules: mapping, localization, path planning
and plan execution. Their results are reported in Section 3.

Mapping results are provided in Section 3.1. It is proven that using a 3D LiDAR
overcomes results from using a single 2D LiDAR for mapping. The versatility of using 3D
data allowed us to extract multiple occupancy grid maps at different heights, as shown
in Figure 20. While data at a higher height create a map with no furniture, using data
at a lower height allows to consider the whole objects structures. Finally, in this module
a topological map is extracted by benefiting from the absence of noise from the higher
occupancy grid map, clearly locating doors.

In Section 3.2, the complete navigation strategy solely based on the 2D LiDAR for
the dynamic behavior is tested. The robot is capable of locally planning on each separate
room and avoiding obstacles when required, as depicted in Figure 22. In the example case,
the unexpected object is a box, which produces a modification of the orange path into the
red one. Even though the robot does not collide with the box, it can be observed that the
red path is very close to it. In the case in which it was a person, he or she could have
felt uncomfortable. Considering door trespassing, it is proven that the proposed strategy
improves the navigation system by avoiding collisions in narrow zones.

Section 3.3 shows the results of detecting and modeling people and Section 3.4 coordi-
nates this with the navigation system. It is proven that the replanning strategy correctly
modifies paths to not only avoid people, but also to respect the specified social distance
while providing continuous and smooth paths. This is tested with one and more than one
person, as well as in challenging situations, such as detecting a person right after trespass-
ing a door. This is a major improvement with respect to state-of-the-art techniques, which
tend to discretize both the Gaussian model and the path. Other works also address the
problem of fusing data from sensors, such as 2D laser scanners or RGBD cameras, to socially
navigate. The work in [38] proposed data fusion from a fish-eye camera, a RGBD camera
and a 2D laser scanner for people modeling and tracking. Additionally, face descriptors
are extracted to re-identify users. Authors in [39] presented a real-time collision avoidance
system in which the fusion of a RGBD camera and a 2D LiDAR is performed. The main
purpose of that sensor fusion is to obtain the model of objects or people to be avoided
and, using the 2D LiDAR, to move through them using empty spaces. In contrast, our
method goes beyond solely modeling people or avoiding obstacles, and it achieves social
convention compliance, in particular, respecting personal and social interaction space.

Overall, it can be stated that navigation strategies highly benefit from using synchro-
nized muti-sensor systems. Additionally, modeling people using the Gaussian mixture
model and considering its continuous values in the fast marching velocity map results in
smooth paths, which can be dynamically replanned.

As future work, it is proposed to include a person tracker to avoid duplicating people
while dynamically detecting them and predicting the next person’s location. In the cases
in which a person moved too fast in front of the robot, it was sometimes considered to be
two individuals or a group of two people. Moreover, the algorithm performance could be
improved by translating it from MATLAB to a faster language, such as Python or C++.
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