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Abstract: Nowadays, most mobile robot applications use two-dimensional LiDAR for indoor map-
ping, navigation, and low-level scene segmentation. However, single data type maps are not enough
in a six degree of freedom world. Multi-LiDAR sensor fusion increments the capability of robots to
map on different levels the surrounding environment. It exploits the benefits of several data types,
counteracting the cons of each of the sensors. This research introduces several techniques to achieve
mapping and navigation through indoor environments. First, a scan matching algorithm based on
ICP with distance threshold association counter is used as a multi-objective-like fitness function.
Then, with Harmony Search, results are optimized without any previous initial guess or odometry. A
global map is then built during SLAM, reducing the accumulated error and demonstrating better
results than solo odometry LiDAR matching. As a novelty, both algorithms are implemented in
2D and 3D mapping, overlapping the resulting maps to fuse geometrical information at different
heights. Finally, a room segmentation procedure is proposed by analyzing this information, avoiding
occlusions that appear in 2D maps, and proving the benefits by implementing a door recognition
system. Experiments are conducted in both simulated and real scenarios, proving the performance of
the proposed algorithms.

Keywords: LiDAR odometry; scan matching; SLAM; scene segmentation; topological; Harmony Search

1. Introduction

Mobile robot applications in indoor scenarios have been rapidly increasing in the last
decades thanks to the advances of new sensor technologies such as LiDARs and depth
cameras. Because of these sensors’ decreasing prices, it is now easy to find low-budget
robots with tiny sensors to save environment information and perform tasks such as pro-
cessing maps, localizing themselves, and sometimes planning simple paths to move to a
specified target. However, most high-level applications with bigger robots require more
complex capabilities, such as manipulating. It implies navigating around the environment
and achieving multiple tasks from the starting point to the goal area, such as calculating
the configuration of one or two arms. Additionally, these robots are deployed in environ-
ments designed for people. It means that, apart from geometric characteristics, higher-level
information with a semantic meaning needs to be measured and analyzed. For instance,
by detecting how indoor environments are arranged into different rooms, navigation can
be made easier, getting closer to how people interpret their surroundings. For that reason,
it is essential to exploit the uses of environment information coming from diverse sensor
sources for achieving a robust indoor representation. Other works have already proven
the importance of using diverse sensor sources for overcoming problems such as precise
geometric localization [1] or mapping problematic regions with glass surfaces [2]. How-
ever, previous reviewed papers have stated that sensor fusion using LiDAR and camera
sensors is very sensitive to daylight because it interferes with the IR light. In addition,
algorithms based on RGBD are likely to misalign in corridors that are untextured and seem
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alike in consecutive poses. For the past five years, LiDAR SLAM-based algorithms have
implemented LiDAR fusion with IMU, and there have not been significant changes in
these approaches. They try to correct motion using IMU velocity information [3]. This
work proposes a Multi-LiDAR mapping method based on 2D and 3D sensors at different
heights. The aim is to create a map system with both information types adequately aligned
to provide environment information at different heights, becoming available for a wide
variety of robot applications such as navigation or manipulation. As an example of the use
of information coming at different heights from the resulting map, an indoor segmentation
procedure is proposed to extract topological information from a scenario. 2D navigation
and segmentation of indoor ambiance is a fast-growing research topic. Typical works
perform algorithms based on information retrieved from a single LiDAR sensor positioned
at the robot base, slightly displaced above ground height. Once distance information is
available, a 2D map is built using SLAM techniques. Finally, its geometric characteristics are
analyzed to divide the map into meaningful regions. Still and all, real-life applications at a
low height always show many occlusions, obstacles, and objects on the ground that make
it difficult to get a well-known segmented map. As a second goal to be achieved, geometric
characteristics at different heights on the map are analyzed, proving the necessity and
benefits of using and fusing multiple types of dense data to improve scene segmentation
and further path planning.

Figure 1 shows the proposed steps to create a mapping system using Multi-LiDAR
sensor fusion in order to obtain environment information at multiple heights. This informa-
tion is then used to segment an indoor scenario to obtain topological information. Initially,
environment data are acquired using 2D and 3D LiDAR sensors. Then, Harmony Search
SLAM aligns captured scans, deriving into the next step, which is aligning 2D and 3D
maps. These maps are then transformed into an occupancy grid map, which is used to
geometrically segment the scenario into rooms and finally to extract a topological map.

Figure 1. Proposed steps for creating a Multi-LiDAR mapping system and extracting a topological
map afterwards.

These techniques will be explained in more detail in the following sections. The rest of
the work is divided as follows. Section 2 reviews state of the art for LiDAR mapping and
room segmentation. Section 3 describes the method used for mapping. Section 4 proposes
a method for room segmentation. In Section 5 materials and methods used are described.
Results are shown in Section 6 and discussed in Section 7. Finally, conclusions are provided
in Section 8.

2. Related Work

This section presents related work regarding map acquisition and scene segmentation.
Initially, techniques for obtaining a two and three-dimensional geometric map are reviewed.
Then, room segmentation procedures are analyzed, given that they rely on a previously
acquired map using the above-mentioned techniques. Finally, optimization procedures for
scan matching are shown.

2.1. Simultaneous Localization and Mapping

Simple categorization states there are two map types, geometrical and topological.
In order to create a topological map, most applications start by knowing or building a
previous map, typically a geometrical map with distance information of the environment
such as walls, furniture, and objects. These maps depend on the sensor used to capture the
scene, usually a 2D sensor parallel to the floor and perpendicular to the environment or a
3D sensor that can measure volumetrically by pointing in different directions at a time. 2D
fixed LiDAR sensors on mobile platforms generate 2D geometrical maps and a 3D pose of
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the robot given by the displacement on x, y, and rotation rz around the z axis of the robot.
For 3D fixed sensors, the pose vector expands to a six degrees of freedom problem, where
the pose of the robot may change in three-axis x,y,z and three rotations rx, ry, rz, around
each axis or roll, pitch, yaw angles.

In pursuance of building a consistent and well-defined map, many authors since the
early 90s have proposed plenty of techniques to achieve a successful registration between
data scans. There are three main widely spread algorithms that have been the foundations
of many implementations and variations through the years. Iterative Closest Point ICP [4]
introduces one of the most used and modified algorithms. Its goal is simple yet effective: to
calculate a rotation and a translation (R, t) by minimizing the least-squares of the distance
of all the points that belong to two different and consecutive observations defined by scans
A and B, that yields the minimum possible distances between them.

Equation (1) represents the classical fitness function of the ICP algorithm, where the
error E of a rotation R and a translation t is the summation of all the euclidean distances be-
tween two scans or point clouds A and B with Na and Nb number of representative points.

E(R, t) =
Na

∑
i=1

Nb

∑
j=1
‖ai − (Rbj + t)‖2 (1)

Lu and Milos [5] solved the same problem based on the maximum likelihood criterion
to optimally combine all the spatial relations and use those as constraints for the data
frame poses. Last, the Normal Distribution Transform approach [6] states that a scan can
be subdivided into piece-wise continuous and differentiable probability density and uses
this information to match successive scans using Newton’s algorithm. One of the primary
purposes of building a good consistent map is to be able to transform the scans or point
cloud into another type of data such as an occupancy grid to perform path planning and
navigation. Figure 2 shows how a bad set of mismatching scans throws a map with a lot of
misaligned points and an impossible robot path and location, demanding a correction on
both the mapping and localization field. This map building does not provide good data
for further analysis and segmentation. In addition, this data type is not the same needed
to perform path planning and segmentation, indicating that an occupancy grid based on
geometrical information is required at a second stage to generate a topological map based
on room segmentation.

Figure 2. Map built based on robot odometer.

2.2. Room Segmentation

Occupancy grid maps are traditionally partitioned by analyzing their geometric prop-
erties. Some works propose the extraction of critical points to define partitions [7–9].
Additional techniques are applied afterwards to remove unnecessary cuts. Another method
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is Watershed algorithm [10–12], in which heuristics are also needed to merge regions, since
oversegmentation occurs due to local minima. Voronoi graphs are one of the most com-
monly used techniques, in which their structure is analyzed to detect critical regions [13,14]
or they are combined with other techniques such as morphological operations [15] or
alpha-shapes [16]. This method has been proven to outperform other segmentation proce-
dures [17]. Other segmentation methods rely on learning techniques [18–21], so despite the
fact that they are effective, their design is complex and computationally expensive since
they require training procedures.

The 3D representations are used to benefit from its prior analysis before generating
a 2D partitioning. Some works propose the analysis and projection of 3D data onto
the X-Y plane to create an occupancy grid map [22,23]. In [24–26], only vertical planes
corresponding to walls are detected and projected. Treating with big quantities of 3D data
cause these methods to be computationally expensive. The required time to partition data
into planes and afterwards compute wall segments is high and becomes increasingly higher
for denser point clouds. In this work, we propose the use of a slice of a point cloud to
reduce computational costs. Moreover, it is chosen so that furniture is avoided, leading to
better segmentation results.

2.3. Non-Linear Optimization

To achieve a good rigid registration, segmentation, or scene recognition, several math-
ematical approaches should be stated and solved. Room segmentation in this research is
based on solving linear equations in a stochastic way but this is not the case to solve the
registration part of the SLAM algorithm for both 2D and 3D. Scan matching can be reduced
to an optimization problem, so many authors use classical optimization algorithms to mini-
mize or maximize a fitness function. Some use Newton’s Optimization Algorithms, others
use Singular Value Decomposition, among others classical optimization techniques [27],
these solutions usually solve large and complex matrices with first and second derivatives.
Often, a big flaw of those optimization techniques is that they rely on the assumption of a
good initial state such as good odometry or state prediction. Nevertheless, usually, if the
initial value is not good enough the solution falls inside local minima and the optimization
is bad.

Nowadays, the use of evolutive algorithms is well-known for solving engineering
problems for over four decades. In this research, the implementation of a meta-heuristic
evolutive algorithm is proposed and introduced to find the best pose vector ~p with trans-
lation and rotation (R, t) candidate that yields the minimal distance between consecutive
points clouds for the minimum error in Equation (1). Harmony Search has been chosen for
this goal.

Geem et al. [28] proposed a meta-heuristic technique inspired by Jazz musicians
improvisation to find a good harmony through several iterations where every musicians
represent a variable change and adjust its value to refine a good tone for a good harmony,
if this harmony is better than one of the previously tried, then it is store in the group
memory (See Figure 3). This meta-heuristic approach turns interesting for current research
as it is flexible enough to implement opposite to Random Search or more complex meta-
heuristic-like simulated annealing, or Bayesian Optimization Algorithm that have more
variables for tuning in [29]. The next section explains the implementation of HS for solving
the scan registration.
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Figure 3. Analogy between music improvisation and engineering optimization [28].

3. SLAM Based on Harmony Search
3.1. LiDAR Odometry

LiDAR Odometry is a technique needed for mapping environments where several
issues may occur and the robot odometry cannot be trusted. Problems such as sensor
accuracy, slipping floors, traction loss, among others, lead to mismatch a good result of
a map based on only pure robot wheel odometry or sensor fusion with IMUs, trowing
inconsistent matching, and low-quality maps. These issues may happen randomly and
the uncertainty is high and difficult to calculate when the map built rely only on relative
sensor information, hence it demands the implementation of an accurate LiDAR Odometry
algorithm that finds the relation between poses. Figure 2 shows a map built using the odom-
etry information provided by the robot and a 2D Hokuyo LiDAR. Laser scans are shown
in light blue, whereas the dark blue line appears as sensor poses. It can be noticed that
mismatching of the scans results in thicker walls in corridors and incomprehensible doors,
causing this map to be useless for localization, segmentation, path planning, or navigation.

In previous research [30], several tests and developments of scan matching algorithms
based on evolutive algorithms such as Differential Evolution (DE) have been tried and
introduced. Now, this development extends those algorithms in 2D and 3D rigid regis-
tration based on a mixed weighting function, similar to a multi-objective optimization,
using Harmony Search as the optimization algorithm. The main goal of the scan matching
algorithm is to find a pose vector ~p containing the 3DOF (x, y, rz) for 2D maps that achieves
the best registration possible of two scans or point clouds A and B that represents a good
scene also a correction of the odometry pose.

3.2. Full 6DOF Harmony Search SLAM

Typically the next extension to a single rigid registration of two consecutive scans
representing a slice of the environment around the robot is the simultaneous localization
and mapping of several consecutive poses of the robot trajectory. LiDAR odometry ex-
tension to SLAM algorithm rests on merging scans and poses based on the previously
calculated pose ~p. Some techniques rely on stochastic calculations, some others rely on
probabilistic equations trying to assure a good registration by optimizing a single value
function. The proposed algorithm is a variation of the classical ICP described in Section 2,
introducing a simple but significant improvement by modifying the single fitness functions
with a two value fitness function and implementing the Harmony Search optimization
algorithm, plus an initial population guesses formed by previous poses and global map
feedback. The fitness function in Harmony-ICP is the minimization of E(R, t) and the
maximization of the number of points Nb at scan B that falls below a threshold of dis-
tance to scan A. This algorithm is feasible to unfold to 6DOF by finding a vector ~p with
(x, y, z, rx, ry, rz). Based on the Harmony Search meta-heuristic for 2D maps, the optimiza-
tion has three musicians. For 3D maps and full 6DOF, the band has six musicians, one
for each variable in ~p, searching an optimal location for all six variables at the same time.
By looking at Algorithm 1, its goal is to search for a good pose by finding a good harmony
inside a defined range and avoiding linear optimization issues of false convergence if the
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initial states where not good enough. From now on the algorithm for global mapping
implementing Harmony-ICP is presented as HS-SLAM.

Algorithm 1 Harmony-ICP

Require: A,B,maxIter, ~initGuess
Ensure: ~p (x, y, z, rx, ry, rz)

HMCR ← 0.7
PAR← 0.3
BW ← 0.05
HMsize ← 30
trialH ← [0, 0, 0, 0, 0, 0]
while N ≤ maxIter do

trialHramdom(HM) . Improvise a new Harmony
trialH ← mix(trialH, HM, HMCR) . Mix some instruments with HM based on CR
trialH ← AdjustPitch(trialH) ∗ BW
CosttrialH . Evaluate Equation (1) for trialH
if CosttrialH ≤ max(costHM) then

HMmax ← trialH . Update the Harmony Memory
end if
bestHarmony← min(HM)
worstHarmony← max(HM)
if bestHarmony ≡ worstHarmony or ∀HM ≡ [0, 0, 0, 0, 0, 0] then

break
end if

end while
~p(x, y, z, rx, ry, rz)← BestHarmony

Figure 4 shows a flowchart of the general idea behind the SLAM process and use of
several initial guess for the first population of Harmony registration. For the 3D point
clouds and 6DoF registration, the information of the previously obtained 2D poses can be
reuse to reduce the search range of the Harmony Search optimization. Then, after both
maps are built separately, they can be aligned to apply the geometric segmentation.

Figure 4. Implementation of HS-SLAM.

4. Geometric Segmentation and Topological Map Extraction

Occupancy grids represent indoor scenarios with their precise coordinates. This kind
of model is useful for robots to geometrically navigate. However, it is far from the way in
which people interpret their surroundings. Typical indoor scenarios are divided into rooms
and corridors with different utility. By analyzing geometric properties of the geometric map,
it can be divided into meaningful regions. More precisely, the aim is to find separations
between rooms by locating doorways or narrow passages. In this way, a step is made
toward the way people understand indoor scenarios. The optimized 2D map obtained on
previous steps is helpful for 2D navigation, since it contains all occupied zones that the
robot cannot traverse, such as tables or chair legs. However, cluttered maps do not perform
correctly regarding door detection. For that reason, we propose the use of a map obtained
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from a higher height, retrieved from point cloud data. In this way, we benefit from the
availability of multiple information sources.

Once the occupancy grid map is available at the desired height, it is saved as a binary
image for further processing, assigning value 0 for unknown and occupied spaces and value
1 for free space. The selected method for segmenting scenarios is Voronoi diagram, since
it normally outperforms other segmentation procedures (see Related Work Section 2.2).
First, the image is preprocessed to remove noise with the median filter, which additionally
rounds map corners. This step helps to avoid the creation of unnecessary branches on the
Voronoi graph. The following step is extracting the Voronoi graph from the processed map.
As a simplification, a skeletonization procedure is applied, which consists on iteratively
thinning free space until a structure with a single cell width is left. The skeleton is then
combined with the distance transform of free space to assign distance from every cell
on the graph to their closest occupied cell on the map. Those zones within a range of
40 cm ± 5 cm (half of the size for standard door width) are saved as possible door locations.
The middle point of each zone is selected and a line is drawn perpendicularly until the
point is connected to the two closest occupied cells in opposite directions, defining final
door locations. These results are finally changed to world map coordinates. Algorithm 2
shows the above described methodology.

Algorithm 2 Door Location

Require: binGrid, resolution, Xorigin, Yorigin, doorSize
Ensure: doorLocation

binGrid′ ← median(binGrid)
skel Img← skeleton(binGrid′)
distImg← distanceTrans f orm(binGrid′)
lineSeg← skel Img · distImg
if lineSeg(i, j) > doorSize + 5 cm ‖ lineSeg(i, j) < doorSize− 5 cm then

lineSeg(i, j)← 0
end if
for every line segment in lineSeg do

Find two closest pixels [Ppx,1, Ppx,2] with value 0 in binGrid to the central point of
lineSeg(i) perpendicular to the orientation of lineSeg(i) in both senses.

Draw line between Ppx,1 and Ppx,2] in label IMG
end for
PX(m) =

PX(px)
resolution + Xorigin(m)

PY(m) =
rows(binGrid)−PY(px)

resolution + Yorigin(m)

doorLocation← [Pm,1, Pm,2]

A step forward can be made by extracting a topological map out of the geometrically
segmented occupancy map. The segmented image obtained on the previous step is labeled
and those zones with an area under 1.5 m2 are merged to their closest neighbor zone. It
is proposed to assign a node of the topological map to every labeled zone, corresponding
to rooms, and to every frontier between rooms, corresponding to doors. For the creation
of room nodes, the labeled image is analyzed, checking the number of labels and saving
area and centroid for each of them. With respect to door nodes, only their centroid is saved.
These zones are also used to check connectivity. If two labels coincide on a door, two edges
are created by joining the corresponding door centroid to the room centroids on each side.
With this implementation, a topological map of the indoor environment becomes available,
being useful as a complementary tool for speeding up multiple robotic applications such as
path planning.

5. Materials and Methods

To achieve the aim and goals of this research, two approaches were implemented.
The first one is based on simulated data and virtual scenarios to demonstrate the precision
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of the 2D/3D SLAM and the segmentation algorithms. Figure 5 shows the selected virtual
scenarios for both applications. Single scan matching and HS-SLAM were tested using
point clouds captured in a CoppeliaSim scene with a fixed path for a mobile robot mounting
both 2D and 3D point clouds sensor, with several velocities, loops, similar areas such as
corridors and turns around an indoor scene. With respect to segmentation, the scenario
is formed by two rooms connected by a corridor, in which typical indoor objects such as
chairs and tables are found.

(a) (b)

Figure 5. Proposed virtual scenarios. (a) 2D/3D SLAM. (b) Geometric Segmentation.

Later, on a second stage, all these algorithms were implemented offline in real world
data, captured with a mobile wheeled manipulator in differential configuration. This
platform is 1.6 m tall and 60 cm in its wider size. It integrates many sensors and actuators
to execute different tasks. The main one for future applications is to grasp and carry light
objects from one room to another in a previously mapped and known map. The platform
mounts two 6DOF arms, a 2D Hokuyo sensor with 10 m reach at 20 cm over the floor,
an Asus Depth camera, differential wheels, internal IMU, on board computer and at the
top of the head an Ouster 3D LiDAR of 128 channel and 50 m resolution. Figure 6 shows
the platform and the sensors used for the real world data acquisition.

Figure 6. Robotic platform used for the experiments: (a) general robot appearance,(b) close-up view
of the Ouster LiDAR mounted on a 3D printed neck, (c) close-up view of the robot base, where the
Hokuyo laser is mounted (orange element).

Executing a long run test, the robot was tele-operated through a hall with opened and
closed doors, entered some rooms and moved to a near open area. This real world scenario
has its own complexities, as the floor has no roughness and sometimes makes the wheels
drift, entering rooms required a lot of rotations to both sides making odometry untrusty,
and the corridor is approximately 15 m long where doors and walls look alike. An example
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of these facts can be seen in Figure 7, where the corridor length and its repeatibility can
be observed, as well as an office cluttered with several furniture pieces such as chairs and
desktops. All data were captured using ROS Melodic, saving LiDAR Scans, Odometry,
Point Clouds and Timestamps. Algorithms were developed and tested in Matlab 2019b.

Figure 7. Examples of scenes on the real scenario where the mobile robot was deployed to capture
2D and 3D data: corridor (left) and office (right).

6. Results

Results presented in this part of the research are subdivided in order of implementa-
tion and importance for the research’s goal. Initially, the above mentioned virtual scenarios
are considered in order to provide a first overview of results for the proposed method-
ologies. Then, environment information is gathered from a real scenario, which adds the
difficulty of dealing with real sensor data and their corresponding measuring errors. This
part starts with the 2D SLAM tests, continues with the corrections of Lidar Odometry,
implements the extension of the algorithm to 3D and using the 2D pose data, follows
through the segmentation of the scenario, them gathered the maps together to implement
the segmentation in real data, and finally demonstrates the doors extraction to validate the
research’s goals.

6.1. HS-SLAM

As described in Section 3, the HS-SLAM algorithm presented in Algorithm 3 is an
amplification of Harmony-ICP algorithm for scan matching, adding features that improves
the further registrations and the map consistency. The implementation in 2D or 3D are quite
similar in code yet not in computation time. An oversimplification of the 2D algorithm is
to set z, rx, and ry to zero, meaning no translation nor rotation in those axis. To get a global
map consistency, an initial pose initPose matrix is defined with initial guess or candidate for
the harmony candidates that will belong to the starting Harmony Memory, those could be
the odometry, the previous pose, and mean of several previous poses, these help Harmony
Search to firstly iterate around those assumption yet not being the only possible candidate
for the optimal position. Fixed variable such as maxIter is set as maximum number of
iteration the algorithm should internally run before stopping if the optimal value is not
reach yet based on the stopping criterion, e.g., all candidates have the same values, or the
difference between best and worst candidate is below a tolerance. HS-SLAM on consecutive
poses and point clouds ensures a matrix P with all the corrected robot poses and a point
cloud Map with the aligned global map.
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Algorithm 3 Harmony-SLAM

Require: M(At...At+n)
Ensure: P(x, y, z, rx, ry, rz) Map

maxIter ← 500
initPose← [0, 0, 0, 0, 0, 0];optional(odometry)
N ← 2
while N 6= n do

if N ≤ 6 then
A← Mn−1 . Reference cloud

else if N ≥ 6 then
A← Mapn−1

end if
B← M(n) . Moving cloud
~p← HarmonyICP(A, B, maxIter, initPose)
Pt ← ~p
initPoses← Pt
Mapt ← B(Pt)

end while

The simulated scenario was used to prove the accuracy of the algorithm and the mixed
fitness function. The robot went through the simulation with a total of 177 poses storing
its ground truth. Position 1 was ~p equals all zeros, and last position was ~p with values
(3.63 m − 4.025 m 0.0001 m 0◦ 0◦ 96.06◦). After the whole map was reconstructed the
HS-SLAM got a final position ~p with (3.62 m − 4.06 m 0.001 m 0◦ 0◦ 95.8◦). This indicates
that the algorithm had an error of less than 4 cm and 1◦ for a rout of more than 100 m
long. Table 1 summarizes the max error obtained in the worst position registered for
every degree of freedom against the ground truth poses, showing that these values are
inside an uncertainty range typical of LiDAR sensors plus the uncertainty drafted from the
down-sampling methods.

Table 1. Scan matching precision.

X Y Z Rx Ry Rz

Max error ±3 cm ±5 cm ±0.1 cm ±0.1◦ 0.1◦ 1.5◦

The accumulated error at the final pose of the simulation run, and the bigger error
calculated between relative LiDAR odometry poses from HS-ICP and ground truth, differ
and is not the summation of all previous error thanks to the use of the global map as a
feedback information to improve the registration between point cloud A and B during the
pose estimation search.

6.1.1. 2D LiDAR Odometry

Before applying segmentation and navigation a proper map is required, demanding
the implementation of LiDAR Odometry corrections for the robot poses. Pseudo-code of
Algorithms 1 and 3 recap the steps for 6DoF, instead their 2D variants were used to correct
the misaligned odometry map seen in Figure 2.

Figure 8 shows, the results for 2D mapping and localization. Figure 8a demonstrate a
lot of improvement against Figure 2, first, the map is consistent all the way, no thicker walls,
no corridor distortion, no strange rotation, and visually the room definition is persistent.
In addition, in Figure 8b dark blue line represents the LiDAR Odometry path and red line
represents the odometry path same as Figure 2; here the upgrade gotten up by HS-SLAM is
undeniable, specially at the center of the path where a lot of rotation and back and forth
movements occurs and the mismatching of the robot odometry is bigger.
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(a)

(b)

Figure 8. 2D HS-SLAM. (a) 2D HS-SLAM results. (b) Odometry and Lidar Odometry.

6.1.2. 3D LiDAR Odometry

The results for the full 6DoF SLAM for the 3D point clouds captured with the 3D
Ouster LiDAR also expand the overall map complexity and possible non-linearity in the
matching. Figure 9 shows the resulting map from pure LiDAR Odometry obtained with
HS-SLAM without any robot odometry used as initial guess. Yet to help out the run time,
the 3D implementation is taking advantage of the previous 2D HS-SLAM results, by using
the previous 2D P matrix of poses for the Hokuyo LiDAR in the initial population pose
matrix to enhance searching for 3D poses. Having at least an approximation of local minima
for x, y, and rz weighs first this candidate during the first iterations where the exploration
occurs. Figure 9a displays the top view of the whole map, ceiling have been removed to
appreciate the width of the wall; Figure 9b also displays a side view zoomed in to appreciate
doors and other objects in the environment
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(a)

(b)

Figure 9. 3D Harmony-SLAM. (a) Top view. (b) Side view.

6.2. Geometrically Segmenting Scenarios

In this part of the work, the results of applying the proposed methodology for room
segmentation is shown. Initially, a simplified virtual scenario is used for a better under-
standing and interpretation of the method results. Then, the same procedure is applied
on data acquired on a real scenario, which is more complex and is additionally affected by
common measuring errors coming from real sensors.

6.2.1. Segmenting a Virtual Scenario

In the first experiment, a virtually created scenario is used to provide experimental
results. The proposed scenario is comprised of two different rooms and a small corridor
in between, counting a total of two doors. It contains several typical indoor objects such
as tables or chairs, which could interfere with other possible segmentation algorithms.
However, as it can be seen in Figure 10a, by extracting data at a certain height (marked with
the horizontal blue plane), objects are avoided, so the final occupancy grid map (Figure 10b)
is clearer.

(a) Selected height. (b) Occupancy Grid Map.

Figure 10. Creation of an occupancy grid map from point cloud data: (a) initial scenario with ceiling
and frontal walls removed to allow the view of its interior, (b) selected height at which the point
cloud data are collected, marked with a horizontal blue plane.
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The following steps are visually represented in Figure 11. Once the occupancy grid
map is available at a certain height and after being processed to remove noise, both the
skeleton (a) and the distance transform (b) of free space are extracted and multiplied
together (c). Those pixels with values between 35 cm and 45 cm are selected, leaving
small line segments (d). Central points of these lines are extracted and used to segment
the scenario into rooms by perpendicularly drawing a line (e). As it can be seen, the two
available doors are correctly detected and the scenario is correctly segmented into three
different meaningful regions. Each of these regions is marked with a different color for
better visualization of the results.

Figure 11. Geometric segmentation of occupancy grid maps using Voronoi diagrams: (a) skeleton,
(b) distance transform, (c) combination of skeleton and distance transform, (d) selected segments ac-
cording to standard door width, (e) segmentation results after including perpendicular line segments
on every detected door.

Once the map is segmented, rooms are labeled (Figure 12a) and used to compute a
topological structure. In this case, three different room nodes are extracted, each of them
corresponding to a different segmented area. With respect to doors, two nodes are created
and used to identify edges. Label numbers on each detected door are checked as follows.
By looking at the left side of Figure 12a, labels 1 and 2 coincide on the same door, so two
edges are created: the first one connecting room 1 to the door placed at the mentioned zone
and the second one connecting room 2 to the door. The same is conducted for the right
side of the image, using one edge to connect room 2 with the second door and another
edge to connect room 3 with the second door. Results for the topological map are visually
represented in Figure 12b.

Figure 12. Topological map extraction from room labels: (a) Selection of pixels corresponding to
doors (highlighted with a black rectangle), (b) final topological map, where a node is assigned to
each room (R) and door (D), and edges (E) indicate connectivity among them.
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6.2.2. Overlapping Maps

Carrying on the implementations of all previous mapping techniques described before
and to prove the main assumption of this research, Figure 13 shows the fused of two
type of LiDAR data. Resulting overlapped maps helps to avoid or remove occlusions
at different heights in indoor mapping, or even better, enhance room segmentation to
further navigation.

Figure 13. Overlapped maps.

After both maps where built using HS-SLAM, a last registration was needed to overlap
both math. Green points represent the 2D map, where objects and occlusions at that level
sparse points around zone areas. Purple map represent the cut made to the 3D map at
180 cm over the floor such as Figure 10a states, getting free rooms and virtually easier to
segment at a geometrical level.

6.2.3. Segmenting a Real Scenario

Once a simulated scenario has been used to provide a clearer approach to the proposed
method, real data are used to prove the performance of the method in a more complex
scenario using real data. The main challenge of this experiment is the presence of noise due
to real measurements as well as a higher number of rooms and doors.

The resulting binary occupancy map obtained from a slice of point cloud data at a
certain height and preprocessed afterwards is shown in Figure 14a. There exists a noticeable
difference between this representation and the one used on the previous experiment.
Given that the scenario has bigger dimensions, some regions are only partially mapped.
Additionally, some small occupied zones are included into free zones, which could interfere
with the segmentation procedure.

Figure 14b,c show the extracted distance transform and Voronoi graph, respectively,
which are combined and filtered using door width to derive into results shown in Figure 14d.
Line segments are used to perpendicularly create map partitions (Figure 14e). As it can be
seen, these partitions are correctly placed at doors. However, small partitions are created
due to mapping errors. By removing zones under 1.5 m2 (a value way smaller that the
typical room size), these errors are removed and the final map is correctly partitioned
(Figure 14f). By getting all the doors detected and located in the 2D occupancy grid, a back
propagation of locations is used to find and extract doors in the 2D and 3D geometric maps.
Figure 15 shows the extracted elements. In Figure 15a all doors are extracted from the 3D
map cloud, and the red line represents sensor path during mapping. Figure 15b shows a
close-up view of the extraction and vertical cut of one door.



Sensors 2022, 22, 3690 15 of 20

Figure 14. Results for the environment segmentation: (a) binary occupancy map, (b) distance
transform of the free zones for the occupancy map, (c) skeleton marked in blue (d) line segments
representing possible doors, (e) final geometric segmentation where areas smaller than 1.5 m2 have
been merged with their neighbors, (f) rooms and corridors segmented with different colors.

(a) (b)

Figure 15. Door extraction. (a) SLAM path and Doors. (b) Single door.

Finally, the topological map is extracted by assigning room nodes to each labeled zone,
door nodes to each room separation and edges to represent connectivity between regions.
Results are visually shown in Figure 16, where the resulting graph is overlapped with the
labeled image and annotated for a better understanding. Below the map, the list of nodes
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and edges is provided. Nodes starting with an R correspond to rooms, and their centroid
and area are saved in S.I. units. In the case of nodes starting with D, they correspond to
doors are their centroid is saved. In the case of edges, first the two nodes that are connected
by each edge is provided between brackets, and afterwards distance between the two node
centroids is saved. In this way, a schematic representation of the environment is achieved,
differentiating between the multiple zones of the indoor location and saving connectivity
between them.

Figure 16. Resulting topological map from the segmented scenario. A node is assigned to every room
and every door. Edges are derived by checking room connectivity at doors.

7. Discussion

Concerning the steps made to achieved the goal of using and taking advanced of multi-
LiDAR mapping and SLAM for scene segmentation in indoor environments, is necessary
to compare the differences between maps before and after the simultaneous localization
and mapping. Figure 2 against Figure 8 demonstrated an undoubtedly improve in map
definition and correction, furthermore, Figure 17 displays the same benefits in its extension
to 6D0F; in Figure 17a, the map matched using the robot odometry is misaligned, walls are
thicker than they should be and rooms are not comprehensible nor well-defined, opposite,
Figure 17b shows and prove the benefits of the HS-SLAM algorithm, the pose of the robot
during mapping is corrected, map definition is better, walls are thinner, opened doors are
well-defined and rooms are correctly aligned.
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(a)

(b)
Figure 17. HS-SLAM vs. odometry. (a) 3D Robot Odometry map deformation. (b) 3D Lidar Odome-
try map corrected.

In order to prove the performance of the proposed segmentation procedure, a compari-
son with results using a traditional map at a floor level is provided. The same methodology
depicted in Section 6.2.3 is applied on the map obtained from data gathered from the
Hokuyo laser, placed at the robotic base. Results are shown in Figure 18, where map (a)
is the one obtained from the Hokuyo data and map (b) is the one obtained from 3D data.
Due to occlusions, map (a) does not correctly represent room shapes, leaving some parts
as unknown since no data are available from these zones. This fact causes the creation of
narrow spaces inside rooms with the same width as doors, interfering with the original
doors and producing an oversegmentation of the space. The most representative example
is the room coloured with light blue in map (b) (lower left room), which is divided into six
different spaces in map (a), not matching the ground-truth segmentation. This fact proves
the utility of using multiple sources of information for robotic applications, in this case
room segmentation.

For a better appreciation of the method performance, precision and recall are measured
according to [17]. Precision is an indicator of undersegmentation, which means that its
value will be high if estimated rooms fit inside ground-truth rooms. On the contrary,
recall is an indicator of oversegmentation, so it is high when ground-truth rooms fit inside
estimated rooms. Both values need to be high for a good performance of the methods.
Table 2 summarizes resulting precision and recall values for both the occluded and the
non-occluded map. As it can be seen, both values are high for the non-occluded map,
whereas in the case of the occluded one only precision is high. Given that recall does not
even reach a 0.5, this value indicates that the scenario has been oversegmented, creating
partitions where there are actually none.



Sensors 2022, 22, 3690 18 of 20

Table 2. Metrics for room segmentation.

Occluded Non-Occluded

Precision 0.8453 0.8688

Recall 0.4838 0.7606

Figure 18. Segmentation results when the proposed algorithm is applied in two different maps:
(a) floor-level map obtained from the Hokuyo laser, (b) derived map from a partitioning of 3D data
from the Ouster LiDAR at a height of 1.7 m.

As future work, it is intended to use the extracted maps to perform indoor navigation.
With the use of Fast Marching Squared, a trajectory can be computed on the occupancy
maps and executed by the robot, being capable of varying the original plan if an obstacle is
detected during navigation. Furthermore, by checking door locations, the robot behaviour
can be modified so it goes trough narrow passages in a safer manner. Additionally, future
research aims object segmentation and scene recognition at semantic level, implementing
3D object extraction, multi objects relations and 3D space constraints for navigation, ma-
nipulation and grasp planning. The actual limitation of this work is the computational
run-time for the HS-SLAM performance, so future works will aim to optimize algorithm
computational time by studying possible parallelization techniques.

8. Conclusions

This section summarizes the goals accomplished during the research:

• Firstly, this research has introduced a new implementation of commonly used evolu-
tive algorithms such as Harmony Search for scan matching algorithms and a working
SLAM approach for both 2D and 3D environments. These have been tested on real-life
applications on the ADAM robot for building a previous map for later use for path
planning and scene segmentation. The precision of the Harmony scan registration
is around 3 cm and less than 1.5◦, performing well inside an expected range based
on the sensors vertical and rotational accuracy and the uncertainty introduced by the
fitness functions.

• Secondly, using the Hokuyo 2D LiDAR and the Ouster 3D LiDAR fused for different
levels and height mapping proves its goal and solves the well-known occlusion
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problem that mostly takes place during a 2D mapping due to obstacles such as desks,
chairs, and furniture.

• The application of a 2D occupancy grid both based on the Hokuyo LiDAR and a cut
at a higher height of the 3D geometrical map based on the Ouster LiDAR improves
significantly the door detection and segmentation on both point clouds level, boosting
the chances of making a positive future path planning passing through halls, doors
and rooms in occupancy grids with topological information.

• With the use of Voronoi diagrams extracted from free spaces at a certain height,
a segmentation procedure has been carried out in which rooms have been efficiently
differentiated by locating doors. The problem of over-segmentation due to occlusions
in two-dimensional maps has been solved with the proposed approach by using geo-
metric information at higher heights, proving the importance of using non-occluded
maps. Recall has been improved with this method a 57.2%, from a value of 0.4838
to 0.7606.

• Finally, a topological map has been constructed by analyzing segmented rooms. In this
way, a step is made toward how indoor scenarios are understood by people, using a
higher abstraction level that is not mainly focused on specific geometric coordinates.
Relevant information about the scenario shape and connectivity is schematically
saved, being easy to handle for multiple applications such as topological planning
or localization.
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