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Grade:

Leganés, 7 October 2014





A mi mujer y a mi familia

“Well, I feel bad to lose you, but we did some nice work when we
were together. Always remember that we are a lucky lot. We
explore nature looking for her secret laws that govern our lives.
[...] Our thirst is to uncover the secrets. That is exciting. Each
finding we make changes the way people feel about their world.
You must continue that. The human brain is an amazing thing.
[...] Our brains are designed to think. They are thinking
machines. The more you imagine, the more you enjoy. Never be
followers. They are next to dead bodies. All I want you to do is
to continue challenging life.”

— Thrishantha Nanayakkara in Devi

i





Acknowledgements

I started a Ph.D. because when I finished my degree I felt that I had learned very
few things about Engineering. It is funny that now that I finished the thesis, I feel
kind of the same way. Even worse, the more I study, the more I understand that
I have many lessons to learn. I realised that there are two kinds of people, those
who don’t know and those who don’t know they don’t know. Those who study all
their life and those who think they know everything. When you are a scientist, you
surely are one of the students.

I am a privileged person, I am very lucky. I was granted with the opportunity to
put a brick in the wall of science. I stood on the shoulders of giants as many people
did before me. It is even more exciting to participate in the growing of robotics, a
very young science in comparison with others like physics or mathematics. In the
next decades there will be robots collaborating with us and this future will have a
piece of my work and effort.

I would like to express my deepest gratitude to everyone that have accompanied
me in all this years of learning. Therefore, I would like to propose a toast:

To Carlos Balaguer. For his leadership and kindness. For giving me the oppor-
tunity to learn at his side. For all the time he has given me, which is more valuable
knowing he does not have much. And for his guidance and help in all the decisions
I have made.

To Thrishantha Nanayakkara. For accepting me as his Ph.D student and giving
me the opportunity of being part of his research group in London. For everything
that I have learned from him and all the things I will learn. For his wisdom and
knowledge. And for being so close even though we were so far.

To Luis Moreno and Santiago Garrido. For being my Ph.D. advisors in the
shadows. For all that have learned from them and for answering all my questions.
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Abstract

This thesis addresses the problem of planning and controlling complex tasks in
a humanoid robot from a postural point of view. It is motivated by the growth
of robotics in our current society, where simple robots are being integrated. Its
objective is to make an advancement in the development of complex behaviors in
humanoid robots, in order to allow them to share our environment in the future.

The work presents different contributions in the areas of humanoid robot postural
control, behavior planning, non-linear control, learning from demonstration and
reinforcement learning. First, as an introduction of the thesis, a group of methods
and mathematical formulations are presented, describing concepts such as humanoid
robot modelling, generation of locomotion trajectories and generation of whole-body
trajectories.

Next, the process of human learning is studied in order to develop a novel method
of postural task transference between a human and a robot. It uses the demonstrated
action goal as a metrics of comparison, which is codified using the reward associated
to the task execution.

As an evolution of the previous study, this process is generalized to a set of
sequential behaviors, which are executed by the robot based on human demonstra-
tions.

Afterwards, the execution of postural movements using a robust control ap-
proach is proposed. This method allows to control the desired trajectory even with
mismatches in the robot model.

Finally, an architecture that encompasses all methods of postural planning and
control is presented. It is complemented by an environment recognition module
that identifies the free space in order to perform path planning and generate safe
movements for the robot.

The experimental justification of this thesis was developed using the humanoid
robot HOAP-3. Tasks such as walking, standing up from a chair, dancing or opening
a door have been implemented using the techniques proposed in this work.
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Resumen

Esta tesis aborda el problema de la planificación y control de tareas complejas de
un robot humanoide desde el punto de vista postural. Viene motivada por el auge
de la robótica en la sociedad actual, donde ya se están incorporando robots sencillos
y su objetivo es avanzar en el desarrollo de comportamientos complejos en robots
humanoides, para que en el futuro sean capaces de compartir nuestro entorno.

El trabajo presenta diferentes contribuciones en las áreas de control postural
de robots humanoides, planificación de comportamientos, control no lineal, apren-
dizaje por demostración y aprendizaje por refuerzo. En primer lugar se desarrollan
un conjunto de métodos y formulaciones matemáticas sobre los que se sustenta
la tesis, describiendo conceptos de modelado de robots humanoides, generación de
trayectorias de locomoción y generación de trayectorias del cuerpo completo.

A continuación se estudia el proceso de aprendizaje humano, para desarrollar un
novedoso método de transferencia de una tarea postural de un humano a un robot,
usando como métrica de comparación el objetivo de la acción demostrada, que es
codificada a través del refuerzo asociado a la ejecución de dicha tarea.

Como evolución del trabajo anterior, se generaliza este proceso para la realización
de un conjunto de comportamientos secuenciales, que son de nuevo realizados por
el robot basándose en las demostraciones de un ser humano.

Seguidamente se estudia la ejecución de movimientos posturales utilizando un
método de control robusto ante imprecisiones en el modelado del robot.

Para finalizar, se presenta una arquitectura que aglutina los métodos de plan-
ificación y el control postural desarrollados en los caṕıtulos anteriores. Esto se
complementa con un módulo de reconocimiento del entorno y extracción del espacio
libre para poder planificar y generar movimientos seguros en dicho entorno.

La justificación experimental de la tesis se ha desarrollado con el robot humanoide
HOAP-3. En este robot se han implementado tareas como caminar, levantarse de
una silla, bailar o abrir una puerta. Todo ello haciendo uso de las técnicas propuestas
en este trabajo.
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Chapter 1
Introduction

This chapter deals with the initial introduction, motivation and presentation of this
thesis. The thesis addresses aspects related to planning and control of complex pos-
tural tasks for humanoid robots using human learning by demonstration. The thesis
proposes a specific situation that has to be solved by the robot. It is the order “stand
up from a chair, walk to the door and open it” that represents a complex task which
involves the development of several skills and gives rise to a broad set of approaches
to solve this problem. The present work is focused on discussing and studying meth-
ods that involves the generation and execution of humanoid motions in terms of
postural body transitions. These postural body transitions are optimized using an
index that we called the reward profile. The reward profile is a multi-modal time-
dependent function that encodes the skill goal that the robot has to perform. At the
same time, it is a measurement of the skill performance in terms of different aspects
like stability, softness or human likeliness. Furthermore, this thesis addresses the
modelling and control of the humanoid robot and presents a wide variety of simulated
and experimental results. The objective behind this work is to make humanoid robots
more intelligent and autonomous, by allowing them to follow complex orders safely
and precisely.



2 Introduction

1.1 Motivation

There has been a recent surge of interest to understand how humans manage some
metastable maneuvers such as walking on stochastically rough terrain, stand up
from seated postures, and walk while manipulating objects with such elegance. Even
though industrial robots are widely used around the world in factories or even hos-
pitals, complex machines like humanoid robots are not currently used in the human
environment due to limitations such as robustness, security, level of autonomy or
level of cognition. Many years may pass before we have humanoid robots collabo-
rating with us in our homes or in our working space. However, in recent years we
are feeling a state of excitement that make us think that a humanoid robot living
in our environment may soon became a reality.

It is remarkable to analyze the opinion of Bill Gates about this matter (Gates,
2007). In 2007, he published an article called “A robot in every home”, where he
foresees the emergence of the robotic industry in the following years. He compares
the present situation with the revolution of the computer industry that took place
in the mid-1970s, where researchers around the world were creating the basic com-
ponents that were used to construct the first computers and some tech companies
like Intel, Atari or Microsoft (and some others like IBM and Apple) were making
products for the young personal computer market. The level of excitement is sim-
ilar to what happened 30 years ago. There are some amazing advances happening
in robotics that have the potential to significantly improve the current relationship
between humans and machines.

One of the most interesting events that is happening right now is the DARPA
Robotic Challenge1. It is a challenge where research groups and spinoffs at top
Universities compete to be able to create a humanoid robot that have to pass a
set of trials. The nuclear disaster of Fukushima in 2011 made people around the
world realize the importance of making robots capable of assisting us in natural and
man-made disasters. With that in mind, DARPA created a competition with the
objective to boost the advancement and development of hardware, software, sensors
and human-machine interfaces and complete a series of tasks, selected by them for
their relevance in preventing another similar disaster.

The challenge consists on three phases:

• The Virtual Robotics Challenge occurred in June 2013 and tested software
teams’ ability to effectively guide a simulated robot through three sample
tasks in a virtual environment. Here teams of Universidad Carlos III and
King’s College London were selected to participate, even though they did a
good job, they did not pass to the next phase.

• The DRC Trials occurred in December 2013, where teams guided their robots

1More information at www.theroboticschallenge.org

http://www.theroboticschallenge.org/


1.1 Motivation 3

Figure 1.1: SCHAFT team robot, winner of the second phase of the DARPA Robotic
Challenge in December 2013.

through eight individual, physical tasks that tested mobility, manipulation,
dexterity, perception and operator control mechanisms. The winner was SCHAFT
team that obtained 27 points over 32, successfully completing almost all tasks.
The robot constructed by SCHAFT team can be seen in Figure 1.1.

• The DRC Finals (occurring before mid 2015) will require robots to attempt a
circuit of consecutive physical tasks, with degraded communications between
the robots and their operators. The winning team will receive a 2 million
dollars prize.

Another important event in the field of robotics took place in 2013. Google
bought 8 robotics companies in just 6 months. Schaft, which was the winner of the
second phase of DARPA Challenge; Industrial Perceptions, experts on 3D vision
robotic guidance; Redwood Robotics and Meka Robotics, both robotic manufactur-
ers; Holomini, that designs omnidirectional wheels; Bot & Dolly, an artistic robotic
design studio; Boston Dynamics, the creators of some of the most advanced robots
to date, like the Big Dog, PETMAN or Atlas and finally, Deep Mind, a machine
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learning company. It is not surprising that Google, a company founded by two sci-
entists, realized the importance of robotics. Other tech companies like Facebook,
Apple or Amazon are starting to follow Google’s example by acquiring companies
that have a deep relationship with robotics.

With all this happening right now it is very exciting to be part of the robotics
scientific community. The future development of robotics strongly depends on the
discoveries and contributions that we make today. In particular, this thesis con-
tributes in fields like control, machine learning, modeling and behavior planning of
humanoid robots.

We are living in exponential times and it is fortunate to be able to add a brick
to the most amazing building the humanity has ever made: science.

1.2 Objectives and Approach

The main objective of this thesis is to make a humanoid robot capable of learning
and successfully executing complex skills based on human demonstrations. As a
framework of development, there is a high level order that the robot must execute,
which is “stand up from a chair, walk to the door and open it” that constitutes the
screenplay of the experiments.

The problem is approached from the point of view of the postural body transi-
tions that the robot has to acquire to learn the selected skills. It is also important
to be able to measure the level of performance of the humanoid postural trajectory.
It has to be measured in terms of effort, stability, internal robot constraints and
similarity with the human behavior.

Therefore, there are three consecutive objectives that are pursued in this thesis:

1. Postural planning and control of a single skill based on human demonstrations.

2. Postural planning and control of a series of consecutive skills based on human
demonstrations.

3. Execution of the high level order “stand up from a chair, walk to the door and
open it” in a cluttered environment.

The objectives previously mentioned are experimentally validated through its
implementation in the real humanoid robot HOAP-3 (see Appendix A) and discussed
in the following chapters.

1.3 Document Organization

The document is ordered as follows:
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Chapter 2 introduces basic concepts and tools applied during the thesis devel-
opment. First, there is an overview of different humanoid models, second, there is
a brief study of locomotion methods for humanoid robots and finally, there is an
explanation of a method of full body trajectory mimicking.

Chapter 3 presents a methodology for imitation and innovation of a single
humanoid skill based on human demonstrations. The main characteristic of the
approach is the application of a multi-modal reward profile as a common basis of
comparison between the human and the robot. The reward profile represents a
temporal measurement of the good or bad robot performance in terms of postural
motion. Defining a Markov Transition Matrix of the reward, the method encodes
in one single metrics the postural strategy of the human, which can be transferred
to the robot to imitate the showed skill. In addition, the robot can search in the
neighborhood of the solution space for an improved behavior, which innovates a new
skill that fits better with the robot structure and constraints. Experiments with the
real robot are presented performing the skill of standing up from a chair.

Chapter 4 discusses a generalization of the method presented in the previous
chapter for linking a set of sequential skills executed by the robot. In this method
there is a local optimization of every individual skill to match the reward profile of
the human demonstrator, and in addition, there is also a global optimization that
includes all sequential skills together. The experiment developed in this chapter is
a real humanoid robot that walks to a door and opens it.

Chapter 5 discusses the advantages and disadvantages of using concentrated
mass models or distributed models to represent a humanoid robot. It proposes an
alternative method to model and control humanoid robots based on simple concen-
trated mass models and fractional order controllers. The method has the advantage
of having a simple mathematical formulation, while at the same time, is able to cope
with model imprecisions and disturbances.

Chapter 6 presents the complete architecture of the thesis. It consists on four
modules. First, the definition of a high level order like “stand up from a chair, walk
to the door and open it” that the robot has to perform. Second, an environment
analysis, distinguishing between free space and obstacles. The third module is the
postural planning, which is an offline planning of the postural motion sequence
needed to perform the order. Finally, the last module is an online postural control
which computes the control orders to follow the desired postural trajectory.

Chapter 7 contains the concluding remarks, key contributions and recommen-
dations for future improvements of this work.





Chapter 2
Basic Representations for Postural Control
in Humanoids

This chapter deals with some basic concepts that are repeatably used in this thesis.
There are some basic tasks that have to be done in advance in order to conduct many
of the experiments. They are related to modeling, kinematics, control and dynamics.
There are many aspects of the humanoid set up that are not explicitly described in
the thesis. This chapter acts as the basis of some of the algorithms that are explained
in the next chapters. First, a study of different humanoid robot models is presented.
It includes simple models to represent the robot, like the inverted pendulum, and
complex models like the mass distributed model. The equation of motion of each of
them is obtained. These models are included in some motion generation algorithms
and balance maintenance methods. Afterwards, the most famous stability criterion,
the Zero Moment Point (ZMP), is explained in detail. Furthermore, two common
methods of biped locomotion generation are studied, the 3D Linear Inverted Pendu-
lum Model and the Cart Table model. The latter was used to generate stable biped
locomotion in the real humanoid. Finally, a simple method of whole body imitation
is presented and a dance performance is obtained as an experiment.
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2.1 Introduction

It has been one of the dreams of human kind to create an artificial partner in our
image and our likeness. And it is the duty of robotic researchers to make this dream
came true.

The history of humanoid robotics starts in 1973 at Waseda University, Japan,
with the creation of the first full size humanoid robot by the team of Professor Ichiro
Kato, called WABOT-1 (Kato, 1973, 1974). The robot integrated different capabil-
ities as visual object recognition, speech generation, speech recognition, bimanual
object manipulation and bipedal walking. This pioneer development was followed by
the WABOT-2 (Ogura et al., 2006), whose ability to play the piano drew significant
public interest in 1984. Further on, different improvements resulted in the series of
humanoids WABIAN.

In 1986, Honda began the ASIMO project (Hirai, 1997; Hirai et al., 1998) with
the thought of creating a machine “to coexist and collaborate with a human, to
perform things that a human is unable to do and to create a mobility which brings
additional value to human society”. In 1996, they presented the Honda Humanoid
P2. It was the first humanoid to be able to perform stable bipedal walking with
onboard power and processing. In 2000, the company unveiled ASIMO (Sakagami
et al., 2002; Hirose and Takenaka, 2001), which could climb stairs and recognize
faces. Further on, in 2005, they presented the new ASIMO, which could run up to
6Km/h and is today one of the most advanced humanoids in the world.

In 1998, the AIST (Advance Institute of Science and Technology) and Kawada
Industries, with the economic support of the Japanese government, started the Hu-
manoid Robot Project. It led to the development of the HRP-2L, HRP-2P, HRP-2,
HRP-3P, HRP-3, HRP-4C and HRP-4 humanoid robots (Kaneko et al., 2002, 2004;
Akachi et al., 2005; Kaneko et al., 2008, 2009, 2011). The robot can walk (Kajita
et al., 2003a; Hirukawa et al., 2006; Arbulu et al., 2008; Bouyarmane and Kheddar,
2012), lie down and stand up (Hirukawa et al., 2005), dance (Nakaoka et al., 2005)
and collaborate with humans (Harada et al., 2007).

In the early 21th century, many other companies and research groups are following
the trend to build full size humanoid robots. Some well known humanoids are HUBO
from KAIST (Oh et al., 2006), Johnnie from TUM (Löffler et al., 2003), Robonaut
from NASA (Diftler et al., 2011) or PETMAN and Atlas from Boston Dynamics
(Nelson et al., 2012).

In the last ten years, the Robotics Lab research group from Universidad Carlos
III de Madrid has leaded the humanoid robot development in Spain, under the
direction of Prof. Balaguer. It begun with the first prototype named RH-0, who
was capable of stable walking (Arbulú et al., 2005; Kaynov et al., 2006). The
next prototype, RH-1, incorporated new features like voice and gesture recognition
(Staroverov et al., 2007a,b) and new gait generation methods (Arbulú et al., 2009;
Arbulú and Balaguer, 2009; Monje et al., 2009b; Pierro et al., 2008; Kaynov et al.,
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2009a). The new prototype, TEO (Task Environment Operator), was designed
carrying through the lessons learned from the previous robots and incorporates new
advances in mechatronics and control techniques (Monje et al., 2011a; Mart́ınez
et al., 2012).

Equation of motion

The first step towards controlling a humanoid robot is obtaining its dynamic model.
The dynamic model of a robot is used to know the relationship between the robot
motion and the forces involved in this motion (Barrientos et al., 2007). Obtaining the
dynamic model of the robot is essential to achieve different purposes as movement
simulation, design of the mechanical structure and actuators or movement control.
The movement of the robot is defined by its equation of motion.

τ = H(q)q̈ + C(q, q̇) +G(q) (2.1)

where H is the inertia matrix, C is the coriolis and centripetal matrix and G is
the gravity matrix. To be more precise, these matrices does not only depend on q
and q̇, but also on the model, so it would be more correct to write these matrices
as H(model,q), C(model,q, q̇) and G(model,q) where model refers to the rigid
body system including the number of bodies and joints, the kind of joint (prismatic,
rotational or spherical), masses, inertias and the way they are connected. q , q̇ and
q̈ are the generalized joint position, velocity and acceleration vectors and τ is the
generalized joint torque. It has to be remarked that the generalized torque vector
should include all torques that intervene in the movement, i.e.:

τ = τm − τp − τf (2.2)

where τm is the actuated motor torque, τp is the perturbation torque and τf is the
friction torque.

The objective of the robot dynamics is to find the values of joint acceleration q̈
given the joint torques τ , which is named forward dynamics, or to find the values of
joint torques τ , given the accelerations q̈, which is named inverse dynamics.

q̈ = FD(model,q, q̇, τ)

τ = ID(model,q, q̇, q̈)

Dynamic formulation and algorithms

There are classically two approaches to solve the dynamics of a rigid body sys-
tem, the Lagrangian formulation and the Newton-Euler formulation. Some classical
reference books are (Featherstone, 1987; Hollerbach et al., 1982) or more recently
(Sciavicco et al., 2009).
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Lagrangian approach solves the dynamics of a rigid body system tacking into
account the energy of the system. This formulation allows to derive the equation of
motion in a systematic way, independently of the reference frame. It requires the
generalized positions q and the generalized forces τ .

The Lagrangian equation or Lagrangian L depends on the generalized position,
generalized velocities and time and is the difference between the kinetic T and
potential energy V .

L(q, q̇) = T (q, q̇)− V(q) (2.3)

The equation of motion using the Lagrange theory is enunciated as:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ (2.4)

The algorithms based on this approach are slower than those based on Newton-
Euler Formulation. They have the advantage that they only need to compute the
kinetic and potential energy, so they reduce the number of equations to derive and
are less prone to errors. Some classical examples of algorithms based on the Lagrange
formulation can be found in (Uicker, 1967; Kahn and Roth, 1971; Hollerbach, 1980;
Book, 1984).

Newton-Euler formulation is based on the balance of all the forces acting on the
robot links. This implies that the equations can be expressed in a recursive way,
which produces a big advantage, the algorithms based on this formulation are faster
than non recursive ones. Newton-Euler method is described by two equations, the
first one is related to the translational movement of the center of mass.

fi − fi+1 = mir̈CM −mig (2.5)

where f is the force passing through the link, r̈CM is the center of mass acceleration,
m is the link mass and g is the gravity acceleration. The second equation is based
on the rotative movement of the link.

τi − τi+1 = Iiαi + ωi × (Iiωi) (2.6)

where τ is the torque produced by the link, I is the inertia tensor of the link, α is
the angular acceleration and ω the angular velocity.

Some algorithms based on the Newton-Euler formulation are presented in (Stepa-
nenko and Vukobratovic, 1976; Orin et al., 1979; Luh et al., 1980; Featherstone,
1999a,b).

2.2 Humanoid Robot Models

Researchers proposed a wide variety of kinematic and dynamic models to represent
humanoid robots. They range from concentrated models, where all the humanoid
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mass is concentrated in the center of gravity, to distributed models, where the masses
and inertias of every link are described as close as possible.

Mass concentrated models assume that the whole body dynamics of the robot is
concentrated on its center of mass or on different points. These models are usually
task oriented, then a specific model is designed for a specific task. Their main
advantage is the reduction of complexity from a mathematical point of view and the
reduction of computation time. They usually rely on feedback control and movement
generation can be computed online. Experimentally, it has been proved that it is
not necessary to model the robot as a complex dynamic system to generate bipedal
walking (Kajita et al., 2003a,b; Komura et al., 2005; Arbulú and Balaguer, 2009;
González-Fierro et al., 2013b) or other tasks (Kaynov et al., 2009b; González-Fierro
et al., 2013a).

Many examples of concentrated models can be found in the literature. The most
famous for humanoid locomotion are the inverted pendulum model (Kajita and Tani,
1991; Kajita et al., 2001) and the cart-table model (Kajita et al., 2003a).

On the other hand there are the distributed models. These models assume that
all link masses, lengths and inertia tensors, as well as kinematic and dynamic trans-
formations of each joint, are known. The computation of the dynamic parameters are
a key feature of theses models, which rely on identification procedures more than
feedback control (Ayusawa et al., 2008; Mistry et al., 2009; Arbulú et al., 2010).
Their mathematical complexity and the high number of operations they incorporate
make movement generation to be usually computed off-line.

It is important to highlight that a complete dynamic model of a robot should
include not only the dynamics of its elements, like links or joints, but also the
dynamics of transmission system, actuators and electronic drivers. These elements
add new inertias, frictions and design errors to the model, which increments its
complexity. Besides, even though in most robotic applications loads and inertias are
not high enough to generate deformations, in some cases it is not like that, and it
is precise to consider the robot as a non rigid group of links.

Many researchers prefer to use distributed models to represent a humanoid robot.
Hirukawa et al. (2006, 2007) generate whole-body motions taking into account a
strong stability criteria called Contact Wrench Cone (CWC). It implies that the
sum of all wrenches should be inside the CWC. Another known approach is based
on Khatib’s operational space (Khatib, 1987). These methods compute whole-body
motions by hierarchically select between operational space tasks (Sentis and Khatib,
2004, 2005; Khatib et al., 2008; Sentis et al., 2010). Other examples of distributed
models are (Nagasaka et al., 1999; Yamane and Nakamura, 2003).

2.2.1 Inverted Pendulum Model

A well known approach to represent a humanoid robot is the inverted pendulum
model. Some examples are the 2D inverted pendulum model (Kajita and Tani,
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Figure 2.1: Snapshot of a concentrated mass model of the humanoid HOAP-3.

1991) or the 3D inverted pendulum mode (Kajita et al., 2001).
Let the position of the mass p = (x, y, z) be uniquely defined by q = (θr, θp, r),

then:

x = r sin θp (2.7)

y = −r sin θr (2.8)

z = r

√
1− sin2 θr − sin2 θp (2.9)

The equation of motion of is given by:

 τr
τp
f

 = m


0 −r cos θr − r cos θr sin θr√

1−sin2 θr−sin2 θp

r cos θp 0 − r cos θp sin θp√
1−sin2 θr−sin2 θp

sin θp − sin θr

√
1− sin2 θr − sin2 θp


 ẍ

ÿ
z̈

+

+mg


− r cos θr sin θr√

1−sin2 θr−sin2 θp

− r cos θp sin θp√
1−sin2 θr−sin2 θp√

1− sin2 θr − sin2 θp

 (2.10)

2.2.2 Double Inverted Pendulum Model

The double inverted pendulum model can be used, among other applications, as a
model for stability control (Stephens, 2007; Kaynov, 2008). The first link represents
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Figure 2.2: Double inverted pendulum

the supporting leg and the second link represents the robot chest. Using this model,
the ankle and hip positions can be controlled to avoid the loss of stability, in the
sagittal and frontal plane (Figure 2.2).

A double pendulum (Figure 2.2) consist in two punctual masses, m1, located
in the hip, and m2, located in the robot center of mass (COM), whose sum is the
total mass of the robot. They are joined by a massless link of length l1 and l2 and
actuated by torques τ1 and τ2. Taking into account the ankle and hip angle (q1 and
q2), the position and acceleration of the two masses can be obtained as:

x1 = l1 sin q1 ⇒ ẋ1 = l1 cos q1q̇1 (2.11)

z1 = l1 cos q1 ⇒ ż1 = −l1 sin q1q̇1 (2.12)

x2 = l1 sin q1 + l2 sin q2 ⇒ ẋ2 = l1 cos q1q̇1 + l2 cos q2q̇2 (2.13)

z2 = l1 cos q1 + l2 cos q2 ⇒ ż2 = −l1 sin q1q̇1 − l2 sin q2q̇2 (2.14)

We can obtain the equation of motion using the Lagrange theory. The La-
grangian, stated in (2.31) is composed by potential and kinetic energy

V = m1gz1 +m2gz2 (2.15)

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 (2.16)
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substituting (2.11),(2.12),(2.13),(2.14) into (2.15), (2.16) and then into (2.31)
the Lagrangian is calculated:

L =
1

2
m1l

2
1q̇

2
1 +

1

2
m2l

2
2q̇

2
2 +m2l1l2q̇1q̇2 cos(q1 − q2)−

− (m1 +m2)gl1 cos q1 +m2gl2 cos q2 (2.17)

Using (2.17) and substituting q1 y q2 the joint torques are obtained:

τ1 = (m1 +m2)l
2
1q̈1 +m2l1l2q̈2 cos(q1 − q2)+

+m2l1l2q̇
2
2 sin(q1 − q2)− (m1 +m2)gl1 sin q1 (2.18)

τ2 = m2l
2
2q̈2 +m2l1l2q̈1 cos(q1 − q2)−

−m2l1l2q̇
2
1 sin(q1 − q2)−m2gl2 sin q2 (2.19)

2.2.3 Triple Inverted Pendulum Model

In a very simplified way, a humanoid robot can be dynamically modeled as a triple
inverted pendulum. As it can be seen in Figure 2.3(a), HOAP humanoid robot is
modeled as a triple pendulum, where the ankle joint of the robot corresponds to the
first pendulum joint, the knee joint corresponds to the second one, and the hip joint
corresponds to the third one (see Figure 2.3(b)).

The similarity is stated under the assumptions that the pendulum masses are
concentrated at the tip of every link and the link masses are negligible. The control
action that allows every mass mi to move a position qi is the torque τi.

Triple Pendulum Equations

To obtain the triple pendulum equations let us define the position and velocity of
every link.

x1 = l1 sin q1, ẋ1 = l1 cos q1q̇1 (2.20)

z1 = l1 cos q1, ż1 = −l1 sin q1q̇1 (2.21)

x2 = l1 sin q1 + l2 sin q2 (2.22)

ẋ2 = l1 cos q1q̇1 + l2 cos q2q̇2 (2.23)

z2 = l1 cos q1 + l2 cos q2 (2.24)

ż2 = −l1 sin q1q̇1 − l2 sin q2q̇2 (2.25)

x3 = l1 sin q1 + l2 sin q2 + l3 sin q3 (2.26)
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Figure 2.3: (a) Reduced model of HOAP humanoid robot seated on a chair. The proposed
model is a two dimensional triple inverted pendulum with massless links and the center
of mass at the tip of the pendulum. (b) Triple inverted pendulum with masses, lengths,
torques and positions.

ẋ3 = l1 cos q1q̇1 + l2 cos q2q̇2 + l3 cos q3q̇3 (2.27)

z3 = l1 cos q1 + l2 cos q2 + l3 cos q3 (2.28)

ż3 = −l1 sin q1q̇1 − l2 sin q2q̇2 − l3 sin q3q̇3 (2.29)

Articulated torques can be derived using the lagrangian equation:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ (2.30)

where the Lagrangian is the difference between kinetic and potential energy.

L = T − V (2.31)

V = m1gz1 +m2gz2 +m3gz3 (2.32)

T =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
m3v

2
3 (2.33)

where v1, v2 and v3 are the speed of the centers of mass of the inverted pendulum,
v2
i = ẋ2

i + ż2
i . Substituting (2.20,...,2.29) into (2.32) and (2.33) and then into (2.31),

we obtain the equation of motion of the triple pendulum, whose compact form is
stated as follows.

τ = H(q)q̈ + C(q, q̇)q̇ + G(q) (2.34)

where H ∈ R3×3 is the inertia matrix, C ∈ R3×3 is the matrix of centrifugal and
coriolis forces and G ∈ R3×1 is the gravity matrix. The components of every matrix
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can be expressed as: τ1

τ2

τ3

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 q̈1

q̈2

q̈3

+

+

 0 c12 c13

c21 0 c23

c31 c32 0

 q̇2
1

q̇2
2

q̇2
3

+

 g1

g2

g3

 (2.35)

h11 = l1
2 (m1 +m2 +m3) (2.36)

h22 = l2
2 (m2 +m3) (2.37)

h33 = l3
2m3 (2.38)

h12 = h21 = (m2 +m3)l1l2cos(q1 − q2) (2.39)

h13 = h31 = m3l1l3cos(q1 − q3) (2.40)

h23 = h32 = m3l2l3cos(q2 − q3) (2.41)

c12 = −c21 = −(m2 +m3)l1l2sin(q2 − q1) (2.42)

c13 = −c31 = −m3l1l3sin(q3 − q1) (2.43)

c23 = −c32 = −m3l2l3sin(q3 − q2) (2.44)

g1 = −gl1 (m1 +m2 +m3) sin (q1) (2.45)

g2 = −gl2 (m2 +m3) sin (q2) (2.46)

g3 = −gl3m3 sin (q3) (2.47)

2.2.4 Mass Distributed Model

Many authors prefer to model the humanoid as a more accurate multiple mass
system, as it is represented in Figure 2.4. This model requires the computation of
the mass and inertia tensor, as well as the kinematic and dynamic transformations
between joints. It consumes many computer resources and it is usually compute
off-line.

An example of mass distributed model is the work of Hirukawa et al. (2006,
2007) that developed a gait generation method taking into account the whole body
dynamics using a stability criterion named Contact Wrench Cone (CWC). CWC
criteria check is the sum of the gravity and inertia wrench applied to the COM is
inside the convex hull. Even though this algorithm has been proved to be strongly
stable even under rough terrain, its high computation cost does not make possible
for the gait pattern to be generated in real time.
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Figure 2.4: Snapshot of a distributed mass model of the humanoid HOAP-3.

Khatib and his team work with a complete model of a simulated humanoid
robot (Khatib et al., 2004a, 2008; Sentis and Khatib, 2005; Sentis et al., 2010).
They defined the equation of motion of the complete humanoid, taking into account
the contacts and creating hierarchical tasks using the Operational Space (Khatib,
1987). They made force control for task oriented postures.

Spatial Equation of Motion

Building the dynamic model of a high degree of freedom robot can be tedious. If
we are working with a humanoid robot, the problem is more difficult due to the
numerous joints and the closed kinematic chains. Spatial formulation of dynamics
provides a compact and easy way to implement the notation. This formulation make
use of 6D vector and tensors to describe velocity, acceleration, inertia and force. Us-
ing these components, a set of dynamic algorithms can be developed (Featherstone,
2008).

The equation of motion of a rigid body system (see Figure 2.5) defined using the
spatial notation can be expressed as:

f =
d

dt
(Iv) = Ia + v× Iv (2.48)

with

f =

(
n
f

)
∈ F6 (2.49)

v =

(
ω
v

)
∈M6 (2.50)
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Figure 2.5: Forces and velocities acting on a rigid body

a =

(
ω̇

c̈− v × ω

)
∈M6 (2.51)

I =

(
Ic 0
0 m

)
∈M6×6 (2.52)

where f is the net spatial force applied in the body, which is composed by 3D vectors
force f and torque n, v is the spatial velocity, composed by the linear v and angular
velocity ω of the body center of mass, a is the spatial acceleration and I is the spatial
inertia, composed by the inertia tensor Ic and the mass m.

Spatial Inverse and Forward Dynamics

Inverse dynamics deals with the problem of obtaining the torques applied in every
joint given the acceleration of the rigid body system. The generic formula can be
expressed as:

τ = ID(model,q, q̇, q̈)

The most used algorithm to calculate inverse dynamic is the Recursive Newton
Euler Algorithm (RNEA) presented by Luh et al. (1980), whose spatial formulation
can be found in (Featherstone, 2008). This algorithm has a complexity of O(n),
where n is the number of degrees of freedom.

RNEA has two phases. First, it calculates recursively the velocity and acceler-
ation of every joint, and then, using (2.48), it calculates the force transmitted in
every joint. In a second stage, it computes the joint forces starting at the terminal
links and working towards the base.

Forward dynamics consists on determining the accelerations that appears in the
actuated joints as a function of the torques applied. The general formulation can
be expressed as:

q̈ = FD(model,q, q̇, τ)

One of the most cited algorithms for forward dynamics is the Composite Rigid
Body algorithm (CRBA), first developed by Walker and Orin (1982). This algorithm
computes the inertia matrix of a set of composite rigid bodies and then solve for every
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joint acceleration. This matrix can be computed efficiently by applying successively
inverse dynamics with joint velocity and acceleration set to zero and it depends on
the connectivity of the kinematic chain.

Another approach for solving the forward dynamic is the Articulated Body Al-
gorithm (ABA), developed by Featherstone (1983). It is based on the propagation
of the equations in an articulated body. Forward dynamic problem presents two set
of unknowns, joint accelerations and joint forces. ABA calculates the coefficients of
this equation locally, taking into account one joint at every step. It calculates the
acceleration that appears in a joint formed by two bodies, one is the parent body,
the second one is an articulated body formed by all the other links of the kinematic
chain. It computes this equation recursively, until it finds a local solution (usually
at the terminal link) and propagates backwards to obtain a global solution.

Both CRBA and ABA are algorithms to compute forward dynamics. Generally
speaking, CRBA is faster than ABA, but ABA is more precise (Asher et al., 1997).
Also, they have a spatial formulation than can be found in (Featherstone, 2008).

2.3 Gait Generation

The motion equations for the biped locomotion of a humanoid robot are very com-
plex. Several facets have to be taken into account, first the equations of all degrees
of freedom for the kinematic chains, second, the equations of the floating base, which
encloses the stability of the movement, and finally, the constraints derived of the
contact with the floor and the closed kinematic chains. The result is a dynamic
algebraic differential system.

One of the main features of the biped locomotion is the movement periodicity,
whose period is a step. This assumes that the joint position and velocity at the
beginning and at the end of the movement should be the same.

Another fundamental detail is the continuous change in the support foot. There
exist two states in the locomotion process, the double support phase, which repre-
sents the 20% of the cycle time and the simple support phase, which represents the
80% of the cycle time. In the first situation, the movement is intrinsically stable,
however, in the second situation it is not. A statically unstable situation appears
when there is a foot in contact with the ground and the other is moving forward,
producing accelerations that affects the mechanism.

In Figure 2.6 a scheme of the biped locomotion cycle is shown. The cycle is
divided in two phases, the right step phase and the left step phase. The left step
begin when the right foot touches the floor. At that very moment, the weight is
transmitted to the right foot, therefore the lateral accelerations that appear have
to be controlled through stabilization algorithms. Next, the left foot moves forward
during the single support phase, i.e., with only the right feet in contact with the
floor. The weight is transmitted forward reaching the double support state, where
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Figure 2.6: Walking cycle phases c©(Kaynov, 2008)

both feet touch the floor. Finally, the cycle is repeated for the other foot.

2.3.1 The Concept of Zero Moment Point

The Zero Moment Point (ZMP) is a dynamic balance criterion for humanoid robots
established in a series of articles by Vukobratovic and Juricic (1968, 1969). However,
the term Zero Moment Point was presented in the subsequent papers (Vukobratovic
et al., 1970; Vukobratovic and Stepanenko, 1972; Vukobratovic and Borovac, 2004).

To achieve stable locomotion, it is necessary to satisfy some balance criterion
in the trajectory planning. The ZMP provides a powerful approach to determine
biped locomotion trajectories and any other trajectory which involves loss of balance.
The concept of ZMP is one of the most used methods due to its simplicity and
effectiveness.

The ZMP is defined as the point in which the moment created by the inertia
and gravity forces do not have components in the horizontal axis (Dasgupta and
Nakamura, 1999). This theory assumes that the contact surface is flat and the feet
do not slip. It is therefore a balance indicator, if the ZMP is inside the support
polygon, the movement is dynamically stable, otherwise it is unstable.

To compute the ZMP position it is necessary to calculate the force equilibrium
in the support foot (Figure 2.7). The projection of these equations in the horizontal
plane is the base of the computation of point P , which is the application point of
the reaction force with the floor R.

R+ FA +msg = 0 (2.53)
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Figure 2.7: Forces acting in a humanoid foot c©(Vukobratovic and Borovac, 2004).

OP ×R+OG×msg +MA +Mz +OA× FA = 0 (2.54)

In general, the resulting reaction force and momentum with the floor have three
components R(Rx, Ry, Rz) and M(Mx,My,Mz). Assuming that there is no slipping,
the reaction force horizontal components, Rx and Ry, will be cancelled by the hori-
zontal components of FA. In a similar way, the momentum generated by the vertical
reaction forces Mz will be cancelled by the vertical component of the momentum
acting on the body MA and the momentum created by the horizontal components
of FA. Rz is the force that cancels the vertical forces of the body.

To compensate the horizontal components of MA produced by a movement or
by an additional load, it is necessary to change the application reaction force Rz

(Figure 2.8). If this point is inside the area covered by the foot sole, then the system
is in equilibrium because the horizontal components of the reaction momentum are
cancelled, MX = 0 and MY = 0. As the momentum MAx increases, the application
point of force Rz moves towards the foot edge. If this point leaves the foot sole, there
will appear momentums MX 6= 0 and MY 6= 0, which will cause the mechanism to
rotate around the foot edge.

Therefore, the ZMP is defined as the point PZMP = (xZMP , yZMP , 0) in which
the momentum of the reaction force has no horizontal components. This can be
understood as a dynamic balance criterion, given that when the ZMP is inside the
support polygon, the robot is stable, otherwise it is not.

The ZMP of a multi-body rigid system can be stated as:

xZMP =

n∑
i=1

mixi(z̈i + g)−
n∑
i=1

miẍizi −
n∑
i=1

Iiyαiy

n∑
i=1

mi(z̈i + g)
(2.55)
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Figure 2.8: ZMP compensation c©(Vukobratovic and Borovac, 2004).

yZMP =

n∑
i=1

miyi(z̈i + g)−
n∑
i=1

miÿizi +
n∑
i=1

Iixαix

n∑
i=1

mi(z̈i + g)
(2.56)

In order to compute the ZMP, it is necessary to know all forces and momentums
acting in the structure in real time, as well as the reaction forces and momentums.
The computation of these momentums and forces are usually slow due to the high
number of degrees of freedom that a humanoid has. Therefore, researchers use
different simplified models, that allow to generate stable walking trajectories in real
time. An example is the 3D Linear Inverted Pendulum Mode that will be explained
in detail next.

2.3.2 The 3D Linear Inverted Pendulum Mode

The 3D Linear Inverted Pendulum Mode (3D-LIPM) models the humanoid as a
single mass inverted pendulum, where all the humanoid masses are concentrated in
its COM (Kajita et al., 2001). The pendulum connects the supporting foot with the
COM with a massless telescopic link.

To generate a gait pattern, the 3D-LIPM constraints the COM to move in an
horizontal plane and computes a smooth trajectory, which follows the pendulum
law motion under a gravity field and ensures that the ZMP is inside the support
polygon.

Given (2.10), the dynamics along the x axis is given by

m(zẍ− xz̈) =

√
1− sin2 θr − sin2 θp

cos θp
τp +mgx (2.57)
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The dynamics along the y axis is given by

m(zÿ − yz̈) =

√
1− sin2 θr − sin2 θp

cos θr
τr −mgy (2.58)

One assumption of the LIPM is that the motion is constrained to move in a
plane:

z = kxx+ kyy + zc (2.59)

where zc is the height of the robot COM. Replacing (2.59) into (2.57) and (2.58),
we obtain:

ẍ =
g

zc
x+

ky
zc

(xÿ − yẍ) +
1

mzc

√
1− sin2 θr − sin2 θp

cos θp
τp (2.60)

ÿ =
g

zc
y − kx

zc
(xÿ − yẍ)− 1

mzc

√
1− sin2 θr − sin2 θp

cos θr
τr (2.61)

Assuming the motion is constrained to a flat plane (kx = 0 and ky = 0) and there
is no input torques (τp = 0 and τr = 0), we can simplify (2.60) and (2.61) to

ẍ =
g

zc
x (2.62)

ÿ =
g

zc
y (2.63)

2.3.3 The Cart-Table Model

Other common method of gait generation is the cart-table model (Kajita et al.,
2003a). This model is based on a preview control scheme to obtain the COM tra-
jectory from a defined ZMP trajectory. This method generates a dynamically stable
gait trajectory using the 3D Linear Inverted Pendulum Model (Kajita et al., 2001)
to approximate the humanoid dynamics. The relationship between ZMP trajectory
and COM trajectory is defined by the following equations:

px = x− ẍ

g
zc (2.64)

py = y − ÿ

g
zc (2.65)

where px is the ZMP reference, x is the COM trajectory, ẍ the COM acceleration,
zc is the COM height and g is the gravity. In cart table model (Figure 2.9), the
cart mass corresponds to the center of mass of the robot. If the cart accelerates at
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Figure 2.9: Cart table model in sagital plane in the humanoid HOAP-3.

a proper rate, the table can be upright for a while. At this moment, the moment
around px is equal to zero, so the ZMP exists (eq. (2.66)).

τZMP = mg(x− px)−mẍzc = 0 (2.66)

In order to obtain the COM trajectory, the ZMP control is defined as a servo
problem. Using the optimal preview servo controller technique proposed by Katayama
et al. (1985), the COM trajectory can be obtained from a ZMP reference.

Let the derivative of the COM acceleration be defined as:

ux =
d

dt
ẍ (2.67)

Using ux as the input of the eq. (2.64), the ZMP equations can be stated in the
form of a variable state problem.

d

dt

 x
ẋ
ẍ

 =

 0 1 0
0 0 1
0 0 0

 x
ẋ
ẍ

+

 0
0
1

ux (2.68)

px =
(

1 0 zc/g
) x

ẋ
ẍ

 (2.69)
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The COM trajectory is discretized as a piecewise cubic polynomial at intervals
of constant time T. Using the notation:

x̂k =

 x(kT )
ẋ(kT )
ẍ(kT )

 , uk = ux(kT ), pk = px(kT ) (2.70)

(2.68) and (2.69) can be transformed into:

x̂k+1 =

 1 T T 2/2
0 1 T
0 0 1

 x̂k +

 T 3/6
T 2/2
ẍ

uk (2.71)

pk =
(

1 0 zc/g
)
x̂k (2.72)

The COM constraints are defined by:

pmink ≤ pk ≤ pmaxk (2.73)

where the maximal and minimal value are defined by the edge of the feet.
In order to design the optimal servo controller the performance index can be

expressed as:

J =
∞∑
i=k

{
Qee(i)

2 + ∆xT (i)Qx∆x(i) +R∆u2
}

(2.74)

where e(i) = p(i) − pref(i) is the servo error, Qe, R > 0, Qx is a symmetric
non-negative definite matrix, ∆x = x(k)− x(k − 1) is the incremental state vector
and ∆u = u(k)− u(k − 1) is the incremental input.

The optimal controller that minimizes the index in (2.74) is given by:

u(k) = −Gi

k∑
i=0

e(k)−Gxx̂(k)−
NL∑
j=1

Gp(j)p
ref(k + j) (2.75)

where Gi, Gx and Gp are the controller gains and NL is the preview period time.

Equations (2.74) and (2.75) give the original solution to cart-table method pro-
posed by Kajita et al. (2003a). However, we used the implementation of Wieber
(2006) to perform a stable walking pattern in the HOAP humanoid.

In Figure 2.10, the COM trajectory of the sagittal plane is obtained from the
ZMP reference. The humanoid walks 12 steps forward, with zc = 32cm, T = 5ms,
N = 300 and R/Q = 10−5.
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Figure 2.10: Trajectory of the COM (in blue) and the ZMP reference (in green). The
dotted lines are the ZMP limits.

2.3.4 Experiment: a Humanoid Walking

Once the COM trajectory is obtained using the cart-table method, the trajectories
of the lower body joints are calculated applying inverse kinematics.

Simulation of a Walking Pattern

Simulation platforms are fundamental in robotics research, especially with humanoid
robots, since they allow to develop the controllers and the necessary programming
tools without compromising the complex and expensive mechanical system. In gen-
eral, the purposes of simulators are:

• To visualize three-dimensional work environment and the model of the robot
in motion.

• To provide a test center for the development and evaluation of controls and
software of the robot.

• To serve as a graphical user interface, which can even be interactive in real
time with the robot.

A necessary requirement for really effective simulations is that the mechanical
behavior of the virtual robot answers as closely as possible to the real robot, so
the set-up of a virtual reality simulation platform turns out to be crucial. Thereby,
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the programming developed over the simulator will be able to be inherited by real
applications.

Existing robotics simulators include, among others, Honda and Sony simulators
(proprietary for ASIMO and the QRIO), the Fujitsu HOAP simulator (Fujitsu sells
HOAP with a basic simulation software), RoboWorks (a commercial software devel-
oped by Newtonium), SD/FAST (by Symbolic Dynamics, which provides nonlinear
equations of motion from a description of an articulated system of rigid bodies),
Webots (a commercial software by Cyberbotics) and Gazebo (developed by Koenig
and Howard (2004) and integrated in ROS, the Robotic Operating System). Even
Microsoft has developed a product named Microsoft Robotics Studio, which is pri-
marily used for mobile robots.

It is important to mention the OpenHRP platform (Open Architecture Hu-
manoid Robotics Platform) (Kanehiro et al., 2001, 2004) as a simulator and mo-
tion control library for humanoid robots developed at AIST (National Institute of
Advanced Industrial Science and Technology of Japan). This is a distributed frame-
work based on CORBA (Common Object Request Broker Architecture), created
with the idea of sharing a code between real and virtual robots, and ultimately of
developing identical controllers for real and virtual robots.

Figure 2.11: Simulation of humanoid robot HOAP-3 in OpenHRP while performing a
gait pattern.
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Figure 2.12: Biped locomotion in the real robot.

Another used platform is OpenRAVE (Open Robotics Automation Virtual Envi-
ronment) created by Diankov (2010). The main focus is on simulation and analysis
of kinematic and geometric information related to motion planning. OpenRAVE’s
stand-alone nature allows it to be easily integrated into existing robotics systems.
It provides many command-line tools to work with robots and planners, and the
run-time core is small enough to be used inside controllers and bigger frameworks.
It also includes several dynamic libraries ODE libraries (Open Dynamic Engine) or
Bullet Physic Libraries.

OpenHRP and OpenRAVE simulators have been used in this thesis to simulate
different motion patterns before the final real-time test with the robot (Monje et al.,
2011b; González-Fierro et al., 2013b). In Figure 2.11 some snapshots of a simulation
of the humanoid HOAP in OpenHRP are presented.

Implementation of a Locomotion Routine in a Humanoid

Once the stability of the robot is guaranteed in simulation, the joint trajectories are
loaded in the real HOAP-3 platform and the walking test is executed experimentally.
One of the main problems that the programmer faces is the mismatch between the
simulation and the real world. The contact of the robot feet with the floor can create
in some cases undesired reactions that perturbs the movement. This reactions may
not be detected in simulation. In Figure 2.12 it is shown a set of snapshots where
the HOAP-3 robot is walking forward.

One of the most important tests that needs to be performed before implementing
any kind of trajectory in the robot is the inverse dynamics. We need to be sure that
the trajectory does not produce excessive torques. In Figure 2.13 and Figure 2.14
the inverse dynamics of the locomotion trajectory is presented. Taking the right leg
as a support, the left leg swings forward, developing small torques in comparison
with the right leg ones, which supports almost all humanoid weight. The joints
that suffer a higher variation are the 3rd, 4th and 5th, which are the ones whose
axis is perpendicular to the sagittal plane, and therefore, the ones that produce the
movement.
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Figure 2.13: Torques in the flying leg.
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Figure 2.14: Torques in the supporting leg.

2.4 Full Body Trajectory Generation through Mim-

icking

The computation of a full body trajectory for a humanoid is a complex problem. In
some cases the movement is generated taking the body as a whole (Nagasaka et al.,
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1999; Yamane and Nakamura, 2003; Khatib et al., 2004a, 2008; Hirukawa et al.,
2006, 2007).

Another approach is to accomplish whole body robot movement through imi-
tating a human. Usually, the problem is divided in two. The upper part of the
body, which can be imitated without taking into account the stability of the robot
and the lower part, where the ZMP criteria is used. The study of Nakaoka et al.
(2005, 2007) is an example of this. Based on that idea, we developed an approach
to perform imitation routines in the HOAP humanoid (González-Fierro et al., 2012;
Monje et al., 2013).

2.4.1 Mimicking and Movement Adaptation of a Dancing
Routine

There are many works regarding dance performance imitation in humanoid robots.
In (Pollard et al., 2002) a method to scale human upper body motion capture data
to a humanoid robot is proposed. Other example of upper body motion imitation
can be found in (Shiratori et al., 2007), where the dance performance speed is taken
into account to control the robot. An approach similar to ours is based on acquiring
human motion from a motion capture system and then convert the motion into
primitives (Nakazawa et al., 2002; Nakaoka et al., 2005, 2007).

We created a dance trajectory imitating the dance performance of a professional
dancer (González-Fierro et al., 2012). To simplify the dance adaptation to the robot,
we constructed the set of motion primitives performed by a dancer and imitated by
the robot. The complete dance routine consist of 12 different motion primitives,
which combines arms and legs movement.

First, a tracking vision system to capture the movement of the dancer was de-
veloped (see Figure 2.15). Using a set of 3 tags placed at the shoulder, elbow and
hand, the movement of the dancer arms were tracked. To track the 3D trajectories
of the tags, we used a color histogram segmentation and a Kalman filter. The noisy
trajectory obtained is smoothed using a third order spline and some via points are
manually adapted to obtain a more coordinated movement.

In such way, it is possible to use Inverse Kinematics algorithms in order to get
the joint angles of the robot arm. In Figure 2.16 the algorithm is presented.

The reference position and velocities of the human arm are used as input. The
human arm angle velocities can be calculated using the equation

q̇H = J†H [ẋH + K (xH − k(q))] (2.76)

where the pseudo-inverse of the Jacobian Matrix is used since only the position of
the arm is considered. The remaining degrees of freedom can be used in order to
adapt the different range of movements of the HOAP-3 robot with respect to the
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Figure 2.15: Vision tracking system and adaptation of 3D trajectory for the humanoid
robot.
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Figure 2.16: Adaptation of the inverse kinematics for the human arm to the robot arm.

human arm. So, the velocity of robot arms are calculated as:

q̇R = J†H [ẋH + K (xH − k(q))] + α(qR) (2.77)

where
α(qR) =

[
I− J†HJH

]
q̇0 (2.78)

The vector q̇0 can be calculated in order to get a solution of joint angles being far
from the HOAP-3 joints limits, while getting the same end-effector trajectory:

q̇0,i = −kl
qH,i − qR,i

(qR,i,M − qR,i,m)2
(2.79)

with kl > 0.
At the same time, if the robot moves the lower part of the body, it is necessary

to maintain the ZMP inside the support polygon. The leg motion is calculated
independently from the arm motion and they are constrained to maintain stability.
The movement of the legs is computed tracking the 3D position of both feet and hip
of the dancer. These three points are adapted to the size of the robot and the ZMP
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Figure 2.17: Simulated humanoid robot performing a circular trajectory primitive with
the arms.

trajectory is computed using (2.55) and (2.56) to ensure the dynamic balance and
stability.

As an example, the forward and inverse dynamics of a circular trajectory like
the one observed in Figure 2.17 are presented next. The torques that are observed
are very small (Figure 2.19). Joint 1 has a higher torque due to its wide movement
(Figure 2.18). Finally, in Figure 2.20 the joint accelerations are obtained using two
different methods of forward dynamics, CRBA algorithm and ABA algorithm, and
compared with the real acceleration.

This set of dynamic algorithms is obtained and applied with the objective of
setting a base for the developments that are performed in the thesis. It has a
fundamental importance to know the torques that appears in the robot to secure its
correct operation.

2.4.2 Experiment: A Humanoid Dancing

Before implementing the trajectories in the real robot we test them in simulation.
Using OpenInventor libraries, a simple robot model can be simulated. It can be
used to see the robot trajectories (see Figure 2.21).

Simulation of a Humanoid Dancing

The complete performance, that includes both upper part and lower part movement,
was implemented in OpenRAVE simulator which can be seen in Figure 2.22.

OpenRAVE is able to reproduce a very realistic simulation of the robot. The
model includes all masses and inertia tensors of the real robot. Since it incorporates
a dynamic engine, it also takes into account the friction with the floor and the
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Figure 2.18: (a) Joint position trajectory for left arm. (b) Joint position trajectory for
right arm.
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Figure 2.19: (a) Joint torque trajectory for left arm. (b) Joint torque trajectory for right
arm.
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Figure 2.20: (a) Joint acceleration trajectory for left arm. (b) Joint acceleration trajec-
tory for right arm.

Figure 2.21: Simulation of two different dancing primitives of the upper body.
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Figure 2.22: Simulation of the dance routine in the OpenRAVE simulator.

gravity force. Therefore, the robot can move in the environment, there are contacts
with the floor and the accelerations produced by the body masses and inertias are
simulated. Even though it is not perfect, because there are always errors in the
robot model parameters and in the simulator itself, OpenRAVE allows to have a
good first approximation of the robot performance.

The dance routine was implemented as well in OpenHRP simulator. Both simu-
lators have its advantages and disadvantages. An interested feature of OpenHRP is
the possibility to obtain the forces and torques that appears in the humanoid model.
This have to be done manually in OpenRAVE. Even though OpenHRP simulates
very closely the AIST series of robots HRP, it is difficult to create a model of an-
other robot and tune its parameters. On the contrary, OpenRAVE has a simpler
and friendlier SDK and the construction of the model is easier. We obtained more
realistic simulations when we were simulating the HOAP-3 robot in OpenRAVE
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Figure 2.23: Dance performance of the humanoid robot HOAP-3 in the robotics show.
In the image it can be seen a synchronized simulation of the dance in OpenHRP simulator.

than in OpenHRP.

Implementation of a Dancing Routine in a Humanoid

Once the routine has been tested in simulation, it is implemented in the real hu-
manoid.

We also obtained the torque trajectory of the dance performance to validate the
movement. The computation of the robot dynamic model constitutes an essential
start point to the development of any kind of research which involves the study
of movement. The dance routine was analysed to ensure that no joint surpass the
allowed torques.

The complete routine consisted on a combination of 9 different primitives that
were mixed in 17 dance periods. The performance included different arm motions,
forward steps and lateral steps. The robot maintained in all moment the balance.

The complete dance performance was presented in a robotics show to all Spanish
robotic community (see Figure 2.23). The robot danced in a stage accompanied by
a musical improvisation. It can be seen in this video1.

2.5 Discussion and Conclusions

This chapter deals with two basic concepts, robot modeling and motion generation.
These are concepts widely discussed and studied in related works. We presented

1http://www.youtube.com/watch?v=mu5psxG7bwA (last visit March 2014)

http://www.youtube.com/watch?v=mu5psxG7bwA
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different approaches of humanoid robot modeling, ranging from the simple concen-
trated model of the inverted pendulum to a much more complex models like the
distributed mass model. They both have their advantages and disadvantages. Fur-
thermore, we presented some motion generation methods that are used throughout
the thesis. Some were related to biped locomotion and some related to a general
whole-body motion, like a dancing routine. The most used balance criterion for
humanoids, the ZMP, was also presented.

Now, the discussion that scientific community set is: do we really need models?
The answer to this question could be found in the human being. Does the human
being have an internal model of himself that applies in a way to generate a behavior
and does he has a model of the environment? There are many scientist who aims to
find a set of generalized equations that were able to model both robot and environ-
ment to achieve a unified representation. On the other hand, there are colleges that
believe that the robot should learn everything, whether it is learned from humans
or robot demonstrations or it is learned by auto exploration.

In this thesis there is a positioning for the learning approach, but at the same
time, it relies a little bit on models. It can be presented as a mixed approach. In
the following chapters we will discuss methods to generate robot skills using human
demonstrations as a start point.





Chapter 3
Imitation Learning and Skill Innovation in
Humanoids through Reward Templates

The imitation of a skill and its improvement by innovating new solutions are the key
steps to human learning. The process of human learning has been widely studied in
psychology, sociology and neuroscience. Terms such as emulation or imitation are
common in these sciences and widely discussed. The behavior transference from a
human to a robot is the content of this chapter. Standing up from a chair to a stable
upright posture causes conventional Zero Moment Point (ZMP) based controllers of
humanoid robots to produce excessive joint torques. Humans, however, are known to
manage this challenging dynamic posture control task very elegantly. This chapter
proposes a novel method for humanoid robots to acquire optimal standing up behav-
iors based on human demonstrations. We collected 3D motion data of a group of
human subjects standing up from a chair. We solve the correspondence problem by
making comparisons in a common reward space defined by a multi-objective reward
function. We fitted a fully actuated triple inverted pendulum model to both human
and robot motion data in order to compute a reward profile for stability and effort.
Afterwards, we used Differential Evolution optimizer to obtain a trajectory that min-
imizes the Kullback-Liebler divergence between the reward of the human and that of
the robot, subject to constraints of ZMP, joint torques, and joint rotation limits of the
robot. This chapter presents an advancement in how a humanoid robot can learn to
imitate and innovate motor skills from demonstrations of human teachers of larger
kinematic structures and different actuator constraints.
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3.1 Introduction

Consider a child learning motor skills based on demonstrations performed by his
parent. In this case, the problem of relating demonstrations performed by the parent
to the child’s own kinematic scale, weight and height, known as the correspondence
problem, would be one of the complex challenges that should be solved first. The
correspondence problem is one of the crucial problems of imitation and can be stated
as the mapping of action sequences between the demonstrator and the imitator
(Schaal et al., 2003; Alissandrakis et al., 2002). This problem can be solved by
mapping movements made in a different kinematic scale to a common domain, such
as a set of optimality criteria.

From that perspective, the child could find a solution which fits his own mus-
cular strength, size, reachable space and kinematic characteristics which somehow
matches the level of optimality of demonstrations performed by the parent. More-
over, if comparisons are made in an optimality domain, the child could even innovate
solutions that can be more relevant to his kinematic structure, but closely follow
the optimal solution demonstrated by the parent. This comparison is best done in
a common reward landscape, specified by a set of reward functions rather than in
the kinematic domain or in the muscle effort domain, since similar behavioral goals
should give similar trajectories in a common reward landscape subject to a set of
constraints.

We present experimental results for the task of standing up from a chair to a
stable upright posture, where the robot has to transit from one stable posture to
another via a set of unstable states. The results were published in (González-Fierro
et al., 2013a, 2014a).

3.1.1 Foundations of Imitation and Innovation in Humans

A wide range of work has been done in the area of observational learning from a
psychological point of view (Bandura, 1986; Taylor et al., 2013). It ranges from
how children learn from demonstrations (Thompson and Russell, 2004) to how apes
learn certain motor skills based on demonstrations (Tomasello, 1996).

Thompson and Russell (2004) suggested that children learn not only by imitating,
but also by understanding how the process works, what is known as emulation
learning. For example, to understand that a doorknob twist will open a door will
help to learn how to leave a room. Even, the high predisposition of children to
learn from observation suggested a more appropriate name for the human species:
homo imitans, which means “man who imitates” (Meltzoff, 1988). There are also
many experiments conducted with apes (Whiten et al., 2004; Hopper et al., 2008)
that support the argument that learning based on demonstrations can happen in
intrinsic domains to do with the context of the kinematic domain.

Results recently presented point out that two individuals performing the same
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action do not share the same muscle control sequence or visual perception of the ac-
tion, but the goal and strategy to perform that action (Metta et al., 2006b; Craighero
et al., 2007). A class of visuomotor neurons called mirror neurons, first discovered
by Rizzolatti, that are activated when a similar goal-directed action is observed, also
suggest that goals of the task mediate the recruitment of computational elements of
learning based on demonstrations instead of just mere kinematics of the movement
(Rizzolatti et al., 2002).

It has been demonstrated that even animals can outperform the optimality of the
demonstrated behavior in certain contexts. In a task of pushing a lever to obtain
a food reward, rats finally associated the amount of food to the rate of pushing
the lever, which was not demonstrated at the beginning (Heyes and Dawson, 1990;
Heyes et al., 1994). Similar observations have been made in other experiments with
birds (Nguyen et al., 2005; Akins and Zentall, 1998) and apes (Whiten et al., 1996).
Even Piaget, the father of the constructivist theory of knowing, hypothesized that
the likelihood of matching a response may depend on the expected outcome for the
observer (Piaget, 1962).

The phenomenon known as goal emulation shows that the observer can reproduce
the result of a behavior with a method slightly different from that of the demon-
strator (Whiten and Ham, 1992; Gergely et al., 2002; Metta et al., 2006b; Craighero
et al., 2007). This is similar to what Mitchell (1987) calls fourth-level imitation,
where an individual tends to reproduce a model understanding the consequences
of that behavior, and performs a different behavior maintaining what they called
intentionality.

Recent work in emulation show that apes are more suitable to emulate while
children show more tendency to over-imitate, in the sense that children make an
attempt to improve the optimality of the learnt skills. In that sense, skill innovation
is therefore an essential part of the human behavior (Whiten et al., 2009).

Skill innovation among humans is also studied in business theory and manage-
ment (Amabile, 1996; Burns and Stalker, 2009), sociology (West, 1990), biology
(Love, 2003) and political science (Nelson, 1993; Ball et al., 1989).

A good review of the process of learning from a biological and psychological point
of view can be found in (Zentall, 2006).

3.1.2 Learning from Demonstration and Skill Innovation in
Robots

A humanoid robot sharing tools and space in a human society can benefit from a
sound framework of learning based on demonstrations, that can vary across trials
(Argall et al., 2009). Despite the challenges to solve the correspondence problem
(Schaal et al., 2003; Alissandrakis et al., 2002; Byrne, 2003; Billard et al., 2004;
Peters and Schaal, 2008c), there has been a growing interest in this area due to
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several advantages such as the simplification of communicating a complex behavior
through a demonstration (Jeannerod, 1988), the absence of the need to have complex
mathematical models of the dynamical system to learn an optimal behavior, and the
fact that it does not require an expert teacher to perform the demonstrations, which
simplifies the information gathering process (Schaal, 1999).

Similar to the biological world, robotic imitation is achieved under a set of
schemes, as stated by (Schaal et al., 2003):

• Determine what to imitate, inferring the goal of the demonstrator.

• Establish a metric for imitation.

• Map between dissimilar bodies.

• Compute the control commands to perform the imitation behavior.

The problem of skill transfer and whole body motion transfer has been an in-
teresting area of research in recent years. Some studies addressed the problem of
manipulating the COM angular momentum (Naksuk et al., 2005), using graphs
and Markov chains (Kulić et al., 2008), defining a spatio-temporal models based on
movement primitives (Ilg et al., 2004) or encoding and organizing learned skills (Lin
and Lee, 2008).

Different approaches have been presented to address the problem of robot pro-
gramming from demonstration, that ranges from standing up while holding onto
a support object (Inaba et al., 1996), using a graph of stable state transitions
(Hirukawa et al., 2005), to imitation of human demonstrations (Mistry et al., 2010b;
Suleiman et al., 2008). In (Kormushev et al., 2011) a humanoid learns to write on
a wall mounted board while maintaining balance. In (Morimoto and Doya, 2001) a
three link simulated pendulum learns to stand up using a hierarchical Reinforcement
Learning (RL) method.

Several studies have been conducted in the area of Learning from Demonstration
(LfD) using Gaussian Mixture Models (GMM), that encode a set of trajectories, and
Gaussian Mixture Regression (GMR), to obtain a generalized version of these trajec-
tories to perform a robot movement (Calinon and Billard, 2007; Calinon et al., 2007;
Calinon, 2009; Khansari-Zadeh and Billard, 2011). Calinon et al. (2010) present a
combination of Hidden Markov Models (HMM) with GMR that is used to perform
imitation handling partial demonstrations.

LfD can also be used to study the physical collaboration and interaction between
a robot and a human (Calinon et al., 2009; Calinon, 2009; Evrard et al., 2009;
Gribovskaya et al., 2011).

The framework called incremental learning uses a few demonstrations to perform
a task which is incrementally improved with the aid of verbal or non-verbal guid-
ance. In the work of Saunders et al. (2006) a human guides a robot to hierarchically
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construct memory models of the desired task. This incremental learning method,
inspired on the behavior of social animals, allows to combine different competences
to create complex tasks. Some approaches (Pardowitz et al., 2006, 2005) are based
on constructing a task graph that leads to more general behaviors. Kulic generated
whole-body motion using factorial HMM, that encodes and clusters a set of incre-
mentally learned movement primitives that can be combined to generate different
behaviors (Kulić et al., 2008; Kulic and Nakamura, 2009).

In the process of learning, as psychological and biological studies support for
animals and humans, robots should be able to innovate new behavioral solutions,
that fit their constraints, to behave more efficiently(Whiten et al., 2009). In this
regard, RL is a good framework to innovate behaviors, since we can construct a
reward landscape such that some search mechanism could explore for better actions
in the neighborhood of demonstrations (Sutton and Barto, 1998; Peters and Schaal,
2008a,c). However, a framework that allows a robot to use a set of reward functions
to acquire skills demonstrated by a human with a different kinematic structure and
physical constraints has not yet been proposed (Sutton and Barto, 1998).

Mixing imitation learning with RL produces a set of benefits as Barrios claims
(Barrios-Aranibar et al., 2008). It diminishes the computational time of convergence,
since the search space is reduced. The innovation is based on actions that the robot
has observed, so it is easier to improve this behavior. Furthermore, RL algorithms
do not need to have the states and actions defined a priori. Some works combine
LfD with RL, to teach the humanoid robot a constrained task of placing a cylinder
in a box (Guenter et al., 2007) or to teach a robot how to hit a baseball (Peters and
Schaal, 2008c). Once the skill was learnt based on kinesthetic demonstrations, the
robot was able to learn to avoid an obstacle in the environment using an actor critic
algorithm (Peters and Schaal, 2008b).

There are many approaches ranging from hard control methods to those relying
on learning. The work of Sentis (Sentis and Khatib, 2005; Sentis et al., 2010) is
centered in the operational space approach (Khatib, 1987) to hierarchically control
a constrained humanoid robot. Other approaches are the Optimal Gradient Method
(Nagasaka et al., 1999), the Dynamics Filter (Yamane and Nakamura, 2003) or the
Cart-Table (Kajita et al., 2003a). Furthermore, there are other learning approaches
like (Inaba et al., 1996).

In some sense our work is similar to that of (Morimoto and Doya, 2001), where
a inverted triple pendulum learns to stand up using TD-learning. Instead of using
TD-learning, we used a combination of LfD and Skill Innovation.

We performed the same task as Mistry et al. (2010b) but in a completely different
way. In their work a full-size humanoid robot stand up from a chair using different
strategies, imitating a young and an elder person. Their approach is based on
mimicking, they adapt the human trajectories to the robot structure. By contrast
our approach is more general. We are able to transfer the stand up behavior to a
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robot much smaller than the human with a kinematic structure, weight and height
completely different.

Our work is somewhat similar to (Billard et al., 2006; Calinon, 2009) that used
HMM to recognize and generate motion patterns. They addressed the question of
what to imitate and how to imitate. First, they encoded the demonstration in a
HMM that are treated with Bayesian Information Criterion (BIC) to optimize the
number of model states. They defined a metric in the form of a cost function to
evaluate the robot’s performance. Finally, they optimized the reproduction of the
task in another context. The key differences between Billard and our work are that
they used kinesthetic information, instead of transferring the behavior from several
humans to a small robot. Moreover, the behavior is more complex in our case,
since it has the problem of handling stability. However, the clearest difference is the
selection of the cost function. They used a cost function that takes into account the
joint trajectories. On the contrary, we constructed our reward function taking into
account the stability and the effort, so that the robot and the human have different
joint trajectories in their successful standing up behaviors.

An interesting approach that have synergies with our work is the concept of goal
oriented behavior understanding (Schaal et al., 2003; Billard et al., 2004; Jamone
et al., 2012). This field studies the recognition and posterior imitation of other
agent’s behavior. Aksoy et al. (2011) present a method of understanding a manip-
ulation behavior using graphs. Similarly to us, they define a transition matrix of
semantic events that allows to understand a behavior and reproduce it under dif-
ferent conditions. Takahashi et al. (2010) present a multi-agent behavior imitation
procedure based on RL. Their method can be divided in two phases. First, they
recognize an observed behavior through the estimation of the state and action re-
ward, encoding it as a state value function. Afterwards, the imitator develops a
similar behavior optimizing a reward function which is a weighted combination of
the imitator reward and the teacher reward. This work is similar to ours in the sense
that they used a reward profile as a basis of behavior comparison.

Argall et al. (2008) presented a combination of LfD and teacher advice that is
used to improve the policy in the continuous space. Similarly, Bentivegna et al.
(2004) made a humanoid robot to learn from observation a set of tasks using a
library of manually predefined primitives. The performance of the robot is improved
through practice based on observations of the teacher’s outcomes.

A number of other approaches use a framework based on Ask for Help to speed
up and enhance learning. Here, an agent request advice for other similar agents
which are combined with information of the environment (Oliveira and Nunes, 2004;
Alissandrakis et al., 2004). A similar approach called Active Learning has drawn
attention lately in the research community (Lopes et al., 2009; Cakmak and Thomaz,
2012; Gonzalez-Pacheco et al., 2013, 2014). The idea of Active Learning is to improve
learning rates by giving the learner more control over what examples it receives.
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Our work is partially inspired by a framework to perform imitation by solving
the correspondence problem (Alissandrakis et al., 2002, 2007, 2011). They defined
three metrics for imitation: end-point level, where only the overall goal is considered,
trajectory level, where the imitator considers a set of subgoals that are sequentially
reached, and finally path level, where the imitator attempts to replicate the teacher’s
trajectory as closely as possible. Trajectory level and path level metric is similar to
program level and action level of Byrne (2003). The method for imitation we present
in this chapter is based on the trajectory level of Alissandrakis et al. (2002). Instead
of using a set of sub-states as the metric of the imitation, we used the reward of the
state, which is our basis of evaluation. Furthermore, our method not only imitates
but innovates new behaviors, which are evaluated producing an improvement of the
demonstrator behavior.

Another solution to the problem of what to imitate is presented by Billard et al.
(2004). Similar to our approach, they establish a metric to evaluate the performance
of the imitation process, paying attention to the manipulation task of writing the
letters A, B, C and D. This metric is divided into three levels of imitation of Alis-
sandrakis and a mimic metric which reproduces the exact trajectory of the robot.
They optimized the robot control signal to minimize this four metrics which are
expressed as costs functions (Alissandrakis et al., 2002).

A recent approach addressed how to obtain a model of the locomotion behavior
that can be transferred form a human demonstrator to a robot, called inverse optimal
control (Mombaur et al., 2010). The authors selected an objective function which
is a linear combination of position, velocity and other features of the movement as
the metric. The parameters are obtained through optimization. This model can
be transfered to the robot to produce a similar behavior. The differences with our
approach are: first, the selection of the metrics to optimize, that in our case is
a combination of a reward function of stability and effort, and second, they used
the model of the human to compute the humanoid locomotion, which produce a
similar movement, whereas in our case, we use two 3-link kinematic chain models
of different dimensions which perform drastically different trajectories to render in
similar optimality of standing up behaviors. Other similar approaches can be found
in (Ratliff et al., 2009; Kalakrishnan et al., 2013).

Our approach is based on the work of Nanayakkara where a policy improvement
method is used over a large number of machine operators to improve their expertise
and enhance their skills in a global way (Nanayakkara et al., 2009, 2007). He demon-
strated that individuals innovate better skills while mixing their behavior with that
of an elite individual, producing new elite members with better skills.
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3.2 Imitation of a Single Human Behavior

In this section we explain the process of how the robot performs a meta-stable
postural movement based on human demonstrations.

Since a human and a humanoid robot are morphologically similar, the optimality
criteria guiding the behavioral policies should be comparable. In (González-Fierro
et al., 2013a, 2014a), we used this premise to make a humanoid robot learn from
an array of demonstrations performed by a group of 8 human participants, in the
task of standing up from a seated posture to an upright posture. In the case of the
robot, both postures were manually selected. The initial posture was achieved by
manually placing the robot on a small chair. The height of the chair was selected to
make sure the robot does not exceed the maximum torques and the seated posture
is such that the ZMP is a little outside the sole of the feet. The final posture was
a stable upright stand-up position. These postures can be changed as long as the
initial posture do not surpass the maximum torque and the final posture is stable.

To perform the robot standing up maneuver and solve the correspondence prob-
lem, we cannot compare directly the position or the torques of the human, since in
our case the anthropomorphic difference between them is significant (the humanoid
height is 60cm). Instead, we defined a reward function as a metrics that evaluates
the optimality of the overall goal, similarly to the trajectory level of Alissandrakis
et al. (2002). This reward function takes sense given the initial and final conditions
of the movement, which are known a priori.

3.2.1 Imitation through Reward Profile Comparison

Robot Learning from Demonstration (LfD), also called Robot Programming by
Demonstration or Imitation Learning, is a powerful method to reduce the space
of solutions and accelerate the learning process. LfD is a natural way to interact
with the robot since it does not require an expert teacher. Furthermore, in contrast
to slow reinforcement learning or trial-and-error learning methods, it can easily find
a good solution from the observed demonstrations (local optima). Further informa-
tion on LfD can be found in (Argall et al., 2009; Billard et al., 2008; Schaal and
Atkeson, 2010).

We address two main challenges when using human demonstrations to train a
humanoid robot. First, the robot is of a much smaller kinematic structure compared
to the human demonstrators, while being limited by different actuator constraints,
causing a correspondence problem (Schaal et al., 2003). Second, we noticed that the
demonstrations performed by a group of 8 human participants were variable across
trials of a given participant and across the average behaviors of individuals.

In (González-Fierro et al., 2013a), we proposed a novel method where a hu-
manoid robot learns to stand up from human demonstrations. The human and the
robot may be very different in terms of height and weight. However, since they are
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anthropomorphically similar, their behavior must be the same even if they perform
the same movement. Recent advances in neuroscience (Metta et al., 2006b) suggest
that what humans copy when imitating is the overall goal of the behavior, not just
the trajectories of the movement.

In that sense, we propose a method where a multi-objective reward function is
used to transfer a behavior between a human and a robot. This reward function
is the basis of comparison between them. We used the Kullback-Liebler difference
between the human reward and the robot reward, while taking into account the
ZMP, torque and joint limit constraints.

We defined a fitness function to minimize, as the summation in every time step k
of the Kullback-Liebler divergence between the mean reward profile of all the human
participants p(i) and the reward profile of the robot q(i). Furthermore, we added
as a constraints the ZMP limits, torque limits and joint limits.

min
∑
k

∑
i

p(i)log
p(i)

q(i)
(3.1)

subject to

θmin ≤ θ ≤ θmax (3.2)

where θ represents ZMP, torque or joint position.
We demonstrated that the answer to what to imitate question (Schaal et al.,

2003) may be to imitate the overall goal of the behavior, defined as a reward profile.

3.2.2 Behavior Prediction through Reward Transition Prob-
ability Matrix

In (González-Fierro et al., 2014a), which is an evolution of the previous work
(González-Fierro et al., 2013a), we addressed the problem of imitation and inno-
vation learning in a task of standing up from a chair. This particular posture
control task takes the human body from one stable posture (seated) to the other
(standing) through a series of unstable postures. In this task, a robot would ben-
efit from demonstrations to avoid excessive activation of joints to reach the second
stable posture.

We used the idea of solving the correspondence problem by finding a common
constrained reward domain for the behavior of both the humans and the robot. Once
a set of reward functions have been identified, we approach to solve the problem by
taking a stochastic approach to model the reward transition probability distribution
for all demonstrated trials by all participants. More specifically, we construct a
Markov chain using the discretized reward profiles for each demonstrated trial.

The advantage of a Markov chain to model human demonstrations in this manner
is that we can use a particular reward value, obtained by the robot at any given time,
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to predict the future reward it would obtain if it follows a policy similar to humans
in a qualitative sense. Errors of such predictions can be used as feedback signals
to update the policy of the robot. Another advantage of the Markov chain is that
we can find a single state transition probability distribution, or a transition matrix,
that summarizes the dominant intrinsic structure of demonstrations performed by
many individuals subject to variability.

The main difference between the work presented in (González-Fierro et al.,
2013a) and the work presented in (González-Fierro et al., 2014a) is the way we
used the reward. In (González-Fierro et al., 2013a) we compare the robot reward
with the average human reward. However, in (González-Fierro et al., 2013a), a step
forward was performed. The stochasticity of the human demonstrations is encoded
in a Reward Transition Probability Matrix (RTPM) in terms of the reward. The
RTPM encodes the transition in the pursuit of the behavior goal, which is equiv-
alent to say that RTPM is the strategy the human use to perform the behavior.
We assume the strategy of the human and the robot is the same, since they are
performing the same behavior. So using the RTPM the robot can predict its future
reward like if it behaves like a human.

We captured data from 8 human participants performing 20 consecutive demon-
strations each, using a Qualisys motion capturing system. Modeling the humans
as an actuated 3-link kinematic chain, we computed a reward function of stabil-
ity and effort which we used as a common basis of comparison with the humanoid
robot. Using Markov chains theory, we summarized the performance of all human
participants in a transition probability matrix of the scalar reward that defines the
optimality of the behavior. Using Differential Evolution (DE) (Storn and Price,
1997), we optimized the robot joint trajectory to minimize the difference between
the predicted reward and the real reward achieved by human demonstrators, subject
to the constraints of ZMP limits, maximum and minimum torque, and joint limits.
Once this first stage of imitative learning is accomplished, we proceed to explore new
solutions with better rewards in the neighborhood of human-like movement subject
to constraints, which we call skill innovation. Figure 3.1 shows the summary of the
algorithm discussed in this paper.

Markov Decision Process

A learning process that consider the Markov property to predict actions and states
is called Markov Decision Process (MDP) (Nanayakkara et al., 2009).

The learning process is defined as a sequence of finite states s and actions a pairs
that produce an associate reward r : s → R. The agent, starting from a state s(t)
will compute an action a(t) to reach a future state s(t+1), obtaining a reward r(t),
which can be defined as a set of values or as a mathematical function, it is usually
called the reward function.

The key feature of the rewarded based learning process is the estimation and
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Figure 3.1: Overview of the algorithm. We collected data from a MOCAP system and
model the human as an actuated 3-link kinematic chain, where qi are the joint positions.
After computing the ZMP and joint torque τi, we define a reward function for the human
rH . This is done for all 160 demonstrations of standing up from a chair. Then, the
Reward Transition Probability Matrix (RTPM) is obtained. Using Differential Evolution,
we generate a new triple pendulum articular trajectory and obtain the reward profile rR.
This profile is compared with the predicted reward profile if the robot behaves like a human
r̂R. The optimization process ends when the difference is small producing the imitation
solution. Furthermore, we perturb the imitation solution ∆qi and compute a new reward
profile r′R that is compared with the imitation reward (rR). The optimization process ends
when the imitation reward is higher than the innovation reward, producing the innovation
solution.
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maximization of the total future expected reward, given a policy π : s → a that
maps states to actions. This estimation is known as the state-value function or
simply value function, given by

V π(s) = Eπ

{
∞∑
k=0

γkr(t+ k)|s(t) = s

}
(3.3)

where γ ∈ (0, 1) is called the discount factor.

Similarly, we can define an action-value function. In the state-value function, we
assume that at each state we choose the action that will maximize the total future
reward, because we know the policy π. Here, we consider the expected total future
reward for each action given a state. The action-value function is defined as

Qπ(s, a) = Eπ

{
∞∑
k=0

γkr(t+ k)|s(t) = s, a(t) = a

}
(3.4)

There are two key issues that are addressed from this point forward. The first
one is the maximization of the value function, finding an optimal policy that solves
the Bellman equation (Sutton and Barto, 1998). Many solutions have been pro-
posed to solve the problem of reinforcement learning. Temporal difference learning
(Sutton, 1988), actor-critic methods (Peters et al., 2003; Peters and Schaal, 2008b),
Q-learning (Watkins and Dayan, 1992), Monte Carlo methods (Michie and Cham-
bers, 1968) or, as our approach, using genetic algorithms (Goldberg, 1989). For
further information, please refer to (Sutton and Barto, 1998; Schaal and Atkeson,
2010).

The second key issue is the selection of the reward function (Mataric, 1994), that
can be selected by the teacher (Bentivegna et al., 2004), mathematically defined
(Nanayakkara et al., 2007; González-Fierro et al., 2014a) or directly learned from
demonstrations (Abbeel and Ng, 2004; Lopes et al., 2009).

Markov Chains and Transition Matrix

A Markov chain is a random process that can define the behavior of a dynamical
system under the Markov property. This property assumes that a state has all the
required information to make a decision about the future.

A first order Markov chain is defined as a series of random variables or states
s1, ..., sN where

P (sN+1|s1, ..., sN) = P (sN+1|sN) (3.5)

By using a Markov chain to explain a behavior, the next state in a sequence can be
predicted. The state distribution will depend only on the previous state and will
be independent of all early states. In other words, the defining characteristic of a
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Markov chain is that its future trajectories depend on its present and its past only
through the current value (Medhi, 2010).

For nth and (n+1)st trials, if a state sN has an outcome j (i.e. sN = j) and
sN+1 = k, the transition probability associated with both trials is P (sN+1 = k|sN =
j) = pjk.

We can specify a Markov chain given the initial probability distribution P (s1)
and the conditional probabilities in the form of a Transition Probability Matrix or
Markov Transition Matrix T , where T is a stochastic matrix, i. e. it satisfies that
every row is a probability distribution and it is a square matrix with non-negative
elements1.

pjk ≥ 0,
∑
j

pjk = 1 for all j (3.6)

This matrix may be written in the form

T =


p11 p12 p13 · · ·
p21 p22 p23 · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

 (3.7)

The transition probabilities and the Transition Matrix are defined for a unit-step
transition, however, we can define a m-step transition in the future. The m-step
transition probability is defined by

P (sN+M = k|sN = j) = pMjk (3.8)

and the m-step Transition Matrix is denoted by TM .
Thus, the probability of a state with m-steps in the future can be denoted by

P (sN+M) = P (sN)TM (3.9)

In Algorithm 1 the computation of the transition matrix is presented.

Extracting a Stochastic Template from Human Demonstrations

This section presents the process of extracting a stochastic model of the human
behavior, that will be transferred to the robot. This behavior is presented in the
form of a Reward Transition Probability Matrix, that can be used to compute an
optimal robotic behavior learned based on human demonstrations.

Using the transition matrix we can predict the probability of the future reward
of the human.

Phuman(k + n) = Phuman(k)T nhuman (3.10)

1The proof of the general existence of the Markov chain can be found in (Chung, 1967)
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Algorithm 1 TRANSITION PROBABILITY MATRIX COMPUTATION

1: Create a 1-D array R of size 1 by N from the minimum to maximum
possible value in the trajectory

2: Create an N by N null matrix T.
3: for all trial = 1 : t do
4: for all SamplingStep = 1 : s do
5: Calculate the trajectory and find its bin in the 1-D array R.
6: Store the bin number in the array B(SamplingStep)
7: if SamplingStep > 1 then
8: T (B(SamplingStep− 1), B(SamplingStep))+ = 1
9: end if

10: end for
11: end for
12: Normalize each raw of T so that the sum of each raw adds up to 1.

where Phuman(k) is the probability in step k, Phuman(k + n) is the probability in N
steps in the future and Thuman is the transition matrix.

If the robot is going to behave like the human, we can suppose that their tran-
sition matrices are the same:

Thuman = Trobot = T (3.11)

So if we know the reward probability in step k, we can predict the future probability
in step k + n.

Probot(k + n) = Probot(k)T nrobot = Probot(k)T n (3.12)

The fitness function is defined as the difference between the predicted reward of
the robot if it behaves like a human and the actual reward, under some constraints.
The predicted reward is obtained as the expected value of the probability in (3.10),
and it is given by

r̂R(k + n) = E[Probot(k)T n] (3.13)

Furthermore, we added the ZMP limits, torque limits and joint limits as con-
straints.

We defined the fitness function as:

min
N−1∑
k=1

(r̂R(k + 1)− rR(k + 1))2 (3.14)

θmin ≤ θ ≤ θmax (3.15)

where θ represents ZMP, torque or joint position.
In Algorithm 2, an outline of the imitation process is presented. This algorithm

can be easily implemented minimizing the fitness function (3.14) using DE.
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Algorithm 2 IMITATION LEARNING

Initialize: Identification of human and robot model
Initialize: Kp, Kd

1: Compute ZMPH for all trials of every human
2: Compute τH for all trials of every human
3: Compute rH for all trials of every human
4: Calculate the RTPM T
5: while F 6= 0 do
6: New qm1, qm2, qm3 using Differential Evolution
7: Compute piecewise polynomial
8: Simulate system using Kp, Kd

9: Compute ZMP (q, q̇, q̈)
10: Compute ID(q, q̇, q̈)
11: Compute the reward r̂R
12: Compute the estimated reward rR using (3.13)
13: Compute fitness function F using (3.14)
14: end while

3.3 Innovation of a Single Human Behavior

Similar to how a child would try to improve learned behaviors based on demonstra-
tions, often known as over-imitation, a robot could use heuristic search algorithms
to explore the reward landscape for better behavioral policies in the neighborhood
of the policies acquired based on demonstrations (Whiten et al., 2009; Nielsen et al.,
2014). In this section, we will discuss how we achieved this, based on the demon-
strations of the 8 human participants.

3.3.1 Innovative Solution to Stand Up Process

We can compute a new desired joint trajectory as a perturbation of the imitation
trajectory qinnovation = qimitation + ∆q and maximize the difference between the
innovation reward and imitation reward, while fitting the constraints.

The new fitness function maximizes the positive difference between the innova-
tion reward r′R and imitation reward rR. It is given by

min
N∑
k=1

e−µ(r′R(k)−rR(k)) (3.16)

θmin ≤ θ ≤ θmax (3.17)

where θ represents ZMP, torque or joint position.
The Algorithm 3 presents the innovation behavior.
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Algorithm 3 SKILL INNOVATION

Initialize: Identification of human and robot model
Initialize: Kp, Kd

Initialize: qimitation
Initialize: Compute the imitation reward rR

1: while f 6= 0 do
2: New ∆qm1,∆qm2,∆qm3 using DE
3: Compute piecewise polynomial
4: Simulate system using Kp, Kd

5: Compute ZMP (q, q̇, q̈)
6: Compute ID(q, q̇, q̈)
7: Compute the reward r′R
8: Compute fitness function f using (3.16)
9: end while

3.3.2 Imitative and Innovative Learning

Imitation and innovation process during learning is a complex process that can be
formulated together using a simple variation of (3.14) and (3.16).

min (1− ρ)
N−1∑
k=1

(r̂R(k + 1)− rR(k + 1))2 + ρ
N∑
k=1

1

rR(k)
(3.18)

θmin ≤ θ ≤ θmax (3.19)

where θ represents ZMP, torque or joint position.

The first term of (3.18) represents the imitation part, the second part represents
the innovation, tuned by the term ρ ∈ (0, 1). The third term corresponds to the
ZMP, torque and joint limits constraints. If we are looking for more innovation, we
just need to adjust the term ρ.

3.4 Behavior Representation in the Reward Do-

main

In this section we develop the mathematical tools that allow to transfer the behavior
from the human to the robot. We modeled both human and robot as an actuated
3-link kinematic chain. Next, we obtain the ZMP and torque of every link trajectory
to compute a common basis of comparison, the reward domain.
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Figure 3.2: (a) Snapshot of the high frequency camera of the MOCAP system with a
subject seated on a chair and markers on his body. Actuated 3-link kinematic chain is
overlaid. (b) A simulation of the humanoid HOAP-3 seated on a chair and the 3-link
kinematic chain.

3.4.1 Kinematic Model

We approximated both the humans and the robot using an actuated 3-link kinematic
chain in the sagital plane, to represent the third scheme of robotic imitation, the
mapping between dissimilar bodies (Schaal et al., 2003), since the human standing
up movement occurs in that plane without relative movement of legs. It should be
noted that this does not account for the role of the swing of hands during standing
up.

Figure 3.2(a) shows a snapshot of the high frequency camera of the MOCAP
system, where a human is seated on a chair with all the markers on his body. An
actuated 3-link kinematic chain is overlaid. In Figure 3.2(b) we show the position of
the 3-link actuated kinematic chain over the humanoid robot. The center of mass of
each link in the kinematic chain is located at its tip. The first joint of the kinematic
chain corresponds to the ankle joint in both human and humanoid, the second joint
of the kinematic chain corresponds to the knee and the third one corresponds to the
hip.

It is clear that a 3-link kinematic chain does not represent completely the behav-
ior of a humanoid robot in every situation, however the model has some advantages
that make it suitable for the task of standing up form a chair. We chose a 3-link
kinematic chain with continuous boundary conditions (starting from static torques
needed to keep balance soon after lift-off from the chair) to represent a human and
robot standing up due to the model suitability for this task. It is a simple model
with easy to solve equations, with low computational cost, which is an advantage to
use an optimization process like is our case. The task involves relatively low velocity
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and acceleration profiles. Motor tasks like standing up in healthy adults is a sub-
conscious process with minimum cognitive inhibition. Furthermore, the movement
is symmetric (legs do not move relative to each other). Therefore a kinematic chain
in the sagittal plane is suitable to represent the movement. Barin (1989) demon-
strated the relevance of using an inverted pendulum structure to model the human
postural dynamics in the sagittal plane.

In a previous work (González-Fierro et al., 2013e), we discussed the advantages
and limitations of using a reduced model and how the performance can be improved
using a robust control technique like Fractional Calculus. It should be noted that
using a more complete model like in the work of Sentis and Khatib (2005) would
reduce real time feedback control effort but it would not affect the application or
results of our method. A complete model would require a more complex formulation
with higher computational cost and room for errors due to wrong estimation of an
increased number of parameters.

Our motion data shows that there is no slip between the foot and the ground
in the human demonstrations, therefore we assume that the friction coefficient was
high enough for the reaction force vector to stay within the friction cone with no
slip. Furthermore, for simplicity we did not model the contact with the chair when
the human is seated.

Human Kinematic Model and Simplifications

To calculate the masses of the actuated 3-link kinematic chain for the human, we
took into account the total weight of the subject and a estimate of the mean dis-
tribution of human body parts presented by NASA (1995). The mass of the first
link is composed by the masses of the foot and calf, the mass of the second link is
composed by the masses of the thighs, hip flap and pelvis and finally, the mass of the
third link is composed by the rest of the body masses. In B the mass distribution
of an average human body is shown.

The length of the links is estimated using the distance between markers (see
Figure 3.10). For the first link, the length is the distance between ankle and knee,
for the second one, the distance between knee and hip and for the third one, the
distance between the hip and the middle of the chest.

An actuated 3-link kinematic chain was computed for every subject, so we ob-
tained a total of 8 kinematic chains and 20 trajectories of standing up for every
human demonstrator.

Robot Kinematics Identification

To identify the actuated 3-link kinematic chain parameters of the Fujitsu HOAP-
3 humanoid robot, i.e. the length and mass of every link, we used Differential
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Figure 3.3: An actuated 3-link kinematic chain in the sagittal plane.

Evolution (Storn and Price, 1997) and data of the robot sensors. This method is
based on the work of Tang et al. (2008).

We manually planned several stand up trajectories for the robot and obtained
the ZMP measurement of the force sensors in the feet. Later, we used the ZMP
multi-body equation (2.55) to obtain the theoretical ZMP trajectory in the saggital
plane.

To identify the system we optimized the kinematic chain parameters minimizing
the difference between the theoretical ZMP and the real ZMP. The results are shown
in the table 3.1.

Table 3.1: Parameter identification of the 3-link kinematic chain for the robot.

Mass (g) Lenght (m)
Link 1 505 0.167
Link 2 500 0.260
Link 3 3900 0.264

The trajectories to identify the system were planned performing a stand up
movement starting form seated (Figure 3.4). At first the robot seems unstable
because its ZMP is slightly outside the limits. Actually it is not, the robot is seated
on a small chair. Since we do not take into account the contacts with this chair,
both theoretical and real ZMP are outside the limits. However, the robot at this
moment has three contacts, the chair and both feet. When the movement starts,
the robot rapidly reaches stability.

3.4.2 Trajectory Generation

The use of cubic splines to define the desired trajectory is very common in robotics
(Lin et al., 1983). Usually, the spline is optimized to avoid roughness and to pass a
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Figure 3.4: An example of a theoretical vs real ZMP trajectory used in the parameter
identification. The limits of the ZMP is showed in dotted red.

set of constraints.
The cubic spline is defined as a piecewise polynomial fitted to a set of via points

(t0, q
∗
0), (t1, q

∗
1)...(tk, q

∗
k) (3.20)

where q∗i ∈ RN is the joint via points at time ti ∈ R.
Given these via points, there is a cubic trajectory that passes through these

points and satisfy a smooth criteria.

qi(t) = ai(t− ti)3 + bi(t− ti)2 + ci(t− ti) + di (3.21)

where ai, bi, ci, di are the polynomial coefficients optimized. The complete joint
trajectory q(t) ∈ RN is a concatenation of (4.24) over the time intervals.

q(t) =


q0(t) if t0 ≤ t < t1
...
qk(t) if tk−1 ≤ t < tk

(3.22)

To perform the imitation, a desired joint trajectory for the robot is defined and
computed as a cubic spline with one via point with an initial, middle and final point.
The initial and final points correspond to the static postures of being seated and
being standing up and are known. The middle point is optimized using DE to obtain
the imitative and innovative behavior, using (3.14) and (3.16) respectively.

It is important to highlight that there is no dynamic control. We use the data
obtained via the MOCAP system to compute a stochastic model of the human
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behavior. The model is transferred to the humanoid robot by computing an optimal
trajectory, which imitates the human fitting all humanoid constraints.

The trajectory optimization is computed offline at the moment, because the robot
has to learn the average behavior demonstrated by a group of humans. However,
Differential Evolution can use individual demonstrations in a pool of references in
an online learning framework.

3.4.3 Definition of Reward Profile

Through human demonstrations, the humanoid robot learns how to imitate the
human performance, taking into account the robot constraints. Furthermore, it is
able to improve the imitation, obtaining a better solution than the one demonstrated
by the human.

For this purpose, we defined a reward function of stability and effort for all
human participants, which are modeled as 3-link kinematic chains. To check the
stability, we used the ZMP and to check the effort, the torques of the three joints.

To compute the inverse dynamics we used (2.34). To compute the ZMP for the
3-link kinematic chain we used the equation of multibody ZMP in the sagital plane
(2.55).

In Figure 3.5 is plotted the ZMP profile for all 20 demonstrations of one human
participant, whose weight is 68,3 Kg and height is 179,6 cm. As it can be observed,
at the beginning the ZMP is outside the limits because we do not model the contact
with the chair. The ZMP limits are obtained by measuring the feet size of all
subjects with the data provided in the MOCAP system. We took as the stable zone
the mean of the feet measurements in every demonstration. As it can be seen, not
all trajectories have the same duration, since not every demonstration is equal. To
solve this problem we took the slowest movement as the basis and stretch the other
trajectories as if the human is still.

Figure 3.6 shows the joint torques for the same participant. Since we can not
measure the maximum torque that the muscles support, for simplicity, we took as
the maximum value the maximum torque of the 20 demonstrations. This value will
be used in the definition of the reward function.

Selection of the Reward Function

We used two different functions to evaluate the human behavior in the reward space:
a polynomial and a gaussian-like function. Every function is used to obtain the ZMP
reward profile and the torque reward profile. θj represents the ZMP minimum,
medium and maximum in the case of the ZMP reward function and similarly with
the torque reward function. The torque reward function is the normalized mean of
the 3-link kinematic chain’s joint torques.
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Figure 3.5: Actuated 3-link kinematic chain’s ZMP profile for the 20 demonstrations of
one of the subjects standing up. In red are the mean and standard deviation. In dotted red
the ZMP limits.
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Figure 3.6: Actuated 3-link kinematic chain’s torques of the 20 demonstrations of one of
the subjects standing up. The first joint of the 3-link kinematic chain corresponds to the
human ankle, the second one to the knee and the third one to the hip. In red are the mean
and standard deviation.
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gree, the green one is a gaussian-like function whose maximum is one. The parameter θ
represent the ZMP or the torque of the actuated 3-link kinematic chain.

The polynomial reward function has order 4 and is centered in θmed. Values
outside the limits have zero reward. It is given by

f1(x) = ax4 + bx3 + cx2 + dx+ e (3.23)

where x can be ZMP or joint torque trajectory and the coefficients a, b, c, d, e, are
obtained solving

f(θmin) = 0; f(θmax) = 0; f(θmed) = 1;

f(θmed/2) = 0.8; f(3θmed/4) = 0.8 (3.24)

The gaussian-like function follows the next equation

f2(x) = exp
−36(x− θmed)2

2(θmax − θmin)2
(3.25)

These functions allow the mapping from the ZMP or torque space to the reward
space (Figure 3.7).

The ZMP stability region and torque for the robot is obtained using the manual
provided by the manufacturer. Measuring from the heel of the foot, ZMPmax =
108mm and ZMPmin = 0mm. The maximum and minimum torque for the motors
of ankle, knee and hip is ±4.5N.m, so the range of the pendulum is ±9N.m. For
the human, the limits are set for simplicity as the minimum and maximum values
of torque and ZMP measured in the MOCAP system.

The total reward profile for the human is the sum of stability and effort functions:

rH(t) =
wzmp(t)rzmp(t) + wτ(t)rτ(t)

2
(3.26)
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Figure 3.8: In blue the mean reward of the 20 demonstrations of each human partici-
pant. In red are the mean and standard deviation of all demonstrations of the 8 human
participants.

where wzmp and wτ are weights of ZMP and torque respectively, that can vary from
0 to 1, rzmp is the reward of the zmp and rτ is the reward of the torque, which is
the sum of the reward of every joint torque divided by 3.

Figure 3.8 shows the mean reward of the 20 demonstrations of every participant
standing up (in blue). In red is plotted the mean of all 160 demonstrations and the
standard deviation. For this profile we chose the following weights:

wzmp(t) = at3 + bt2 + c (3.27)

a =
−2(φ1 − φ0)

T 3
; b =

3(φ1 − φ0)

T 2
; c = φ0 (3.28)

where φ1 = 1, φ0 = 0 and T = tmax

wτ(t) = 1; (3.29)

Equations (3.27) and(3.28) represent a third order polynomial, that starts in 0
and finishes in 1, meaning that at the beginning of the stand up motion we do not
care if the ZMP is outside the limits but we care about the torques (3.29).

Analyzing Figure 3.8, the predominantly subconscious operation of motor pro-
grams to execute standing up show some stereotypical pattern across all subjects
irrespective of their variability in terms of weight and height.

3.4.4 Generalization and Discussion of the Reward Profile

The shape of the reward functions are selected in accordance to the task. The
final posture or goal posture of standing up has the feature of being stable and of
minimum effort, as we showed in a previous work(González-Fierro et al., 2013a). In
that case, the ZMP is almost in the middle of the feet and the torque is minimum.
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Therefore, the reward function is selected to be an attractor to these conditions.
That is why the middle point of the reward function is the mean ZMP in the case
of stability function and zero in the case of effort function (Figure 3.7).

The selection of a suitable reward function has been discussed extensively (Mataric,
1994). Sometimes, it is the observer who will manually set the reward value (Alis-
sandrakis et al., 2002; Bentivegna et al., 2004); it can be defined as a mathematical
function that maps from states and actions to rewards (Billard et al., 2004, 2006;
Takahashi et al., 2010; Nanayakkara et al., 2007; Guenter et al., 2007) or the re-
ward function can be learned from the demonstration set, what is called inverse
reinforcement learning (Ng and Russell, 2000; Abbeel and Ng, 2004).

We used stability as a criterion because this task involves moving from a stat-
ically stable posture (seated) to an unstable fixed point (upright posture) through
a process of dynamic stabilizing. This can be achieved by humanoid robots with
regulator type feedback control, that leads to high peak torques at the start of the
movement. In our experiments, we show that humans do not use such a regula-
tor type feedback control. In contrast, humans use an optimum strategy in terms
of effort minimization. Therefore, it is more meaningful to combine the intention
to maintain stability while minimizing effort in a learning based on demonstration
framework.

Our method needs to define a reward function for each task. In a complete
different task, as for example opening a door, the reward function will have to
account for a complete different shape. This has all the sense since the goal is
completely different. In the case of opening the door, the goal is grabbing the knob
successfully and pulling the door until it is open, then the reward function has to
be selected to take that into account. The goal and reward function are completely
different in the case of standing up from a chair where it is important to maintain
stability and minimize the effort.

3.5 Experimental Results

We used the humanoid HOAP-3 to show the robustness of our method and present
the experimental results.

3.5.1 Experimental Setup

We collected data from 8 human participants of age between 20 to 40 years, weights
between 60 and 99 Kg, and heights between 1.68m and 1.88 m. For this task, we
recruited adult healthy participants with no known history of motor dysfunction.
The experimental protocol was approved by the ethics committee on using human
participants in experiments of Kingston University of London. The height and
weight of all human participant is presented in 3.5.4.
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  Figure 3.9: Snapshots of one of the human participants standing up from a chair in the
MOCAP environment.

Every participant performed 20 consecutive demonstrations of standing up from
a chair. There were no special training for the participants, since it is a simple
task, only a few instructions like do not stand up very fast or put your feet straight.
A 6-camera Oqus motion capturing system made by Qualisys, Sweden, collected
position data of 21 markers attached to the subject’s body at 240Hz sampling rate.

In Figure 3.9 the experimental procedure is shown. The participant is seated on
a chair and performs the movement of standing up.
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Figure 3.10: Distribution of the 21 markers in a human body. R stands for right and L
stands for left. 1MT and 5MT stands for first and fifth metatarsi respectively.
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The markers were distributed as follows: first and fifth metatarsi, lateral malleo-
lus (ankle), lateral epicondyle of the femur (knee), greater trochanter (hip), anterior
superior iliac spine (ASIS), posterior superior iliac spine (PSIS), Seventh cervical ver-
tebra (top of spine), acromion process (shoulder), lateral epicondyle of the humerus
(elbow) and lateral styloid process (wrist). All markers are bilateral, they were lo-
cated on both sides of the body, except the seventh cervical vertebra. In Figure 3.10
the position of the markers is shown.

3.5.2 Extraction of Human Behavior

After computing the reward function for every trial of every human participant,
and assuming that the reward fits the Markov property, we computed the Reward
Transition Probability Matrix (RTPM) (Nanayakkara et al., 2009). This matrix
summarizes, in one singular metric, the behavior of several human participants doing
the action of standing up from a chair. Its computation is presented in Algorithm
1.

This matrix changes with the reward function we select. Therefore, we computed
several RTPM depending on the reward function selected, if it is the polynomial or
the gaussian, and depending of the weights selected in equation (3.26).

Figure 3.11(a) represents the RTPM using the polynomial function and the
weights (3.27) and (3.29). Figure 3.11(b) represents the RTPM using the gaussian-
like function (3.25) and wzmp = wτ = 1. These matrices, Figure 3.11, represent the
behavior of the human standing up taking into consideration the stability and the
torques, and of course, it strongly depends on the selection of the reward function.

3.5.3 Humanoid Standing Up from a Chair

In Figure 3.12 a simulation of an actuated 3-link kinematic chain is shown performing
a stand up movement in the imitation learning approach (upper snapshots) and in
the innovation learning approach (lower snapshots).

As it can be seen in the Figure 3.12, the trajectory of the imitation performance
has more variability than the trajectory of the innovation performance. This small
variability in the innovation movement produces a smaller variation in the ZMP and
a lower torque profile.

Figure 3.13(a) and Figure 3.13(b) shows the theoretical ZMP, calculated using
(2.55) and the ZMP measured from the robot sensors for both imitation and inno-
vation. This measurement is the mean of the ZMP trajectory of both feet. As it
can be seen, initially the ZMP is outside the stability region. This happens because
at that time the robot is slightly leaned on the chair. The ZMP in the innovation
motion goes straighter to the middle, which is translated in a higher reward. The
imitation ZMP profile stays also near the middle value, but not as much as the in-
novation profile. The explanation is simple, in the case of the imitation, the solution
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Figure 3.11: (a) Normalized Reward Transition Probability Matrix (RTPM) for all hu-
man participants using the polynomial function (3.23). (b) Normalized Reward Transition
Probability Matrix (RTPM) for all human participants using the gaussian-like function
(3.25).

  

Figure 3.12: Several snapshots of an actuated 3-link kinematic chain simulating the
movement of standing up. The upper part simulates the imitation behavior while the lower
part simulates the innovation. In the imitation line it can be seen that the kinematic chain
lean forward while in the innovation part the movement is straighter.
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Figure 3.13: Computed ZMP of the actuated 3-link kinematic chain approximation and
that for the real robot for the imitation behavior (a) and for the innovation behavior (b).

minimizes the difference between the predicted reward if the robot behaves like a
human and the actual reward, instead, in the case of the innovation, the solution
maximizes the reward, always fitting the constraints. Furthermore, as it can be
noted in Figure 3.5, the ZMP of the human and those of the robot is not the same,
which is obvious as their sizes and kinematic structure are diferent.

Figure 3.14(a) and Figure 3.14(b) plots the 3-link kinematic chain torques. As
it can be seen, they are between the limits. It is remarkable that the second joint
has the higher value, because it supports the heaviest part of the robot. Again,
if we analyze the imitation and innovation torque profiles, we observe that in the
imitation movement, the knee joint stays near the limit almost until the second 1.
However, in the innovation movement, the reward is higher, and the torque decrease
faster to a comfortable posture.

In the movement of standing up to an upright posture the torque limits play an
important role. They define the initial posture. It is the same when a human stands
up. If the torque that our legs have to create is too much high, we help ourselves
with our hands, finding another contact or a different stand up strategy. Therefore,
our method as we presented it, can cope with postural movements starting from a
safe and feasible initial posture.

In Figure 3.15 the computed reward profiles for imitation and innovation behav-
ior are plotted. Blue line represents the imitation reward, red dots represent the
predicted reward if the robot behaves like a human and the green line represents
the innovation reward. Comparing the robot reward with the human participants
reward in Figure 3.8 we observe that they are very similar, since the predicted robot
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Figure 3.14: 3-link kinematic chain torques in the imitation trajectory (a) and in the
skill innovation trajectory (b).

reward is related to human reward. However it is not the same, because the vari-
ability of the different demonstrator performances is encoded in the RTPM, which
is the key element to transfer a behavior.

The results presented in this section were obtained using the polynomial function
that maps from ZMP and torque space to reward space. The results using the
gaussian-like function (3.25) were not showed here, for reasons of space and that
they would be very similar to the results of the polynomial function.

In the imitation approach (see snapshots in Figure 3.16(a)), the kinematic chain
lean forward producing a movement very similar to that of the human demonstra-
tions. In that case, the optimizer minimize the difference between the actual reward
and the predicted reward if the robot behaves like a human.

In the innovation approach (see snapshots in Figure 3.16(b)), we obtained a new
reward which is greater than the imitation reward, fitting all the constraints. In
that case, the movement of the 3-link kinematic chain is straighter, and it is more
adequate to the robot structure. The ratio between the sole of human’s foot and
human’s height is around 0.14. The ratio for the robot is 0.18. Then, the robot’s
feet are greater in relation with its height than the human’s feet. As the robot has a
wider surface, its ZMP is wider, in relation with its height. Therefore, the robot does
not need to lean forward so much as when it is imitating the human performance,
instead, it can go straighter, obtaining a better reward for the movement.

3.5.4 Hypothesis Testing and Generality

To prove the generality of our method, we generate up to 35 experimental trajectories
of the robot’s standing up behavior. This trajectories have different initial and final



3.5 Experimental Results 69

0 0.5 1 1.5 2 2.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e
w

a
rd

 

 

R
IMITATIONpred

R
IMITATION

R
INNOVATION

Figure 3.15: Reward profiles for imitation and innovation robot behaviors. In blue the
imitation reward, in red the predicted reward imitating a human and in green the innova-
tion reward.

    

(a) (b)

Figure 3.16: (a) Snapshots of the robot standing up in the imitation process. (b) Snap-
shots of the robot standing up in the innovation process. In the imitation process the robot
lean forward too much, attempting to follow the strategy of the human. However, in the
innovation process the robot stands up more straightly, since it is maximizing its reward.
This behavior is logical because the feet size in the case of the robot is larger in relation
with the feet size of the human. Therefore, the robot does not really have to lean forward
so much.
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Figure 3.17: (a) Normalized Transition Matrix of the Reward for the human using the
polynomial function (3.23). (b) Normalized Transition Matrix of the Reward for the robot
using the polynomial function (3.23) and the experimental solutions.

postures. Our method allows to robustly transit from a seated posture to a stand
up posture. The initial posture is selected to not surpass the maximum torque and
the final posture is stable.

We used all these trajectories to compute the RTPM for the robot as shown
in Figure 3.17. This matrix represents the real behavior of the humanoid when
it imitates the repertoire of human demonstrations. The human and the robot
are morphologically similar though the exact scales are different. Therefore, we
hypothesized that their stand up strategies should be similar. In order to test
this, we can compare the human RTPM ((Figure 3.17(a))) with the robot RTPM
(Figure 3.17(b)) as similar strategies should result in similar probability transitions
in the reward space (see (3.11)).

To compare the matrices we compute the mean square error, e, given by

e =
√

(Thuman(i, j)− Trobot(i, j))2 = 0.0395 (3.30)

and then obtain the average probability error of a cell, Pe, given by

Pe = eP (s = si) = 0.1128% (3.31)

where P (s = si) is the probability of staying in state si, which in the case of
this RTPM is 1/35. For a more detailed discussion of the human demonstration
consistency please refer to 3.5.4.
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Figure 3.18: (a) Normalized Reward Transition Probability Matrix for the first group of
human participants using the polynomial function (3.23). (b) Normalized Reward Transi-
tion Probability Matrix for the second group of human participants using the polynomial
function (3.23).

Consistency of Human Demonstrations

Our participants varied in physical characteristics in terms of their weight, height
and limb kinematics (see Table 3.2). We wanted to test the consistency of the
demonstrations and therefore the reward profile among different groups of humans.
For that purpose we divided the demonstrators in two groups. The group number 1
is composed by people with high height and high weight, they are the participants
number 3, 5, 6 and 7. The group number 2 is composed by people with low height
and low weight, they are the participants number 1, 2, 4 and 8.

We computed the RTPM for both groups obtaining Figure 3.18. To see the
difference between them we compute the mean square error (3.30) which is e =
0.0264 and the average probability error of a cell (3.31) which is Pe = 0.0694%.

Seeing the results we can conclude that there is no significant difference in the
reward profiles between the two groups. Therefore there seems to be a reward
profile that is independent of the human body size and can define the behavior of

Table 3.2: Weight and height of the human participants.

Weight (Kg) Height (m)

Participant 1 68.3 1.79
Participant 2 60.9 1.68
Participant 3 78.1 1.82
Participant 4 75,2 1.75
Participant 5 83.4 1.84
Participant 6 99.0 1.88
Participant 7 81.0 1.85
Participant 8 67.8 1.71
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standing up. Furthermore this is equivalent to say that all humans, no matter size
and weight share the same strategy to accomplish a task, which can be defined as a
reward profile and transmitted to a robot.

Our results are in accordance to those saying that what should be imitated is
the goal of the action, not just the movements (Thompson and Russell, 2004; Metta
et al., 2006b; Craighero et al., 2007; Whiten et al., 2009).

3.6 Discussion and Conclusions

In this chapter we presented an original method to obtain imitative and innovative
postural behaviors in a humanoid robot through human demonstrations.

We collected data from a group of 8 human participants standing up from a
chair. We modeled both human and humanoid using an actuated 3-link kinematic
chain approximation and computed a reward profile in terms of ZMP and inverse dy-
namics. We used 20 demonstrations each from 8 participants to obtain the Markov
probability transition matrix of the compound reward for the human demonstra-
tions.

Provided the humanoid robot should follow the same optimality criteria and
profile as the human if it were to imitate the human in a qualitative sense, we can
use the Markov chain obtained for human demonstrations to predict the future hu-
manoid reward starting from any state of the humanoid robot. We then optimized
a joint trajectory to obtain imitation, where the robot reward is equal to the pre-
dicted human-like reward along the whole posture control period. Having achieved
imitation, we proceeded to achieve robotic skill innovation where the average reward
profile of the humanoid is higher than that of the average human demonstrations.

The approach discussed in this paper emphasizes the fact that intelligent behav-
ior of an embodied agent is in the eyes of the observer (Brooks, 1991). Therefore,
different observers can use different criteria to compare two embodied agents at-
tempting to achieve a given goal. Here, we propose that the observer can compare
a behavior enacted by two different embodiments in a common reward space. This
paper considers the case where one multimodal reward function is used throughout
the standing up behavior. However, it should be noted that there can exist state
dependent heterogeneous reward functions in more complex cases. An example is to
consider acceleration and joint torque optimization at the start and ZMP variability
minimization in the neighborhood of the standing posture. Well established tech-
niques of Gaussian Mixture Models can be a good technique to model such reward
landscapes.

The developed algorithm produces a dynamic posture (standing up), which is
the transition between the static posture of being seated and the static posture of
being standing up. Both initial and final static postures are calculated in advance.

The main features of our method are discussed here:
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• Our method allows to transfer a stand up behavior from a human teacher to a
robot learner, even if there is a wide mismatch in their kinematic structures.

• The robot learns to perform smooth and stable standing up movements based
on human demonstrations.

• The robot does not simply imitate the human movement, rather learns an
optimal behavior subject to a set of internal constraints.

• It takes into account the ZMP, torque, and joint limits of the robot, so the
trajectory is always executable.

• We defined a multi-objective reward profile of ZMP and joint torques and en-
coded the demonstrating trials of the human in a reward transition probability
matrix.

• Based on neuroscientific theories that suggest that human skill transfer is
achieved by imitating the goal of the action, we suppose that the reward tran-
sition probabilities of the robot show the same structure of that in the human
demonstrations. Thus, we computed a constrained policy that minimizes the
predicted error in the reward profile (Metta et al., 2006b).

• After the imitation is achieved so that the robots reward transition probability
matrix is statistically significantly equal to that of the human demonstrations,
we moved on to find a new policy that improves the robot reward profile
leading to skill innovation.





Chapter 4
Learning and Improving a Sequence of
Goal Directed Skills

As it was discussed in the previous chapter, there are evidences that justify that
the imitation between humans are goal-directed. We proposed there a new method to
acquire a single skill from human demonstrations. However, it is quite common for a
human being to perform several skills sequentially, for example, to walk to a door and
open it. Therefore, when performing multiple skills, we internally define an unknown
optimal policy to satisfy multiple goals. This chapter presents a method to transfer
a complex behavior composed by multiple skills from a human demonstrator to a
humanoid robot. We defined a multi-objective reward function as a measurement
of the goal optimality for both human and robot, which is defined in each subtask
of the global behavior. We optimized a hierarchical policy to generate whole-body
movements for the robot that produces a reward profile that is compared and matched
with the human reward profile, producing an imitative behavior. Furthermore, we
can search in the proximity of the solution space to improve the reward profile and
innovate a new solution, which is more beneficial for the humanoid. Experiments
were carried out in a real humanoid robot.
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4.1 Introduction

When a human performs a high level task like “stand up from a chair, walk to the
door and open it” there is a sequence of skills that take place to optimally perform
the task, such as approaching the door in a manner that the location of the body
makes it easier to reach the knob, grasping the knob, performing the movement that
activates the mechanism of opening the door, going backwards while holding the
knob, detecting that the door is open in a way that it can be overpassed, and finally,
going through the opened doorway. All these skills are automatically selected to
optimize, in some manner, the high level strategy of performing this task. Figure 4.1
shows a detail of the high level task of opening the door.

As it was stated in the previous chapter, recent psychology studies suggest that
when a human reproduces a learned task, he understands the consequences of this
behavior and attempt to emulate the overall goal (Whiten and Ham, 1992; Gergely
et al., 2002; Metta et al., 2006b; Craighero et al., 2007). Even recent studies demon-
strate that the main difference between apes and humans is our capability to over-
imitate, or find newer and better solutions to accomplish optimal actions (Whiten
et al., 2009; Nielsen et al., 2014). In that sense, innovation is an essential feature of
the human behavior.

Robots need to be able to handle similar situations, finding an optimal way to
successfully complete these tasks, while maintaining the balance and moving in a
safe and smooth manner. In recent years, researchers have made a significant effort
to cope with this problem and Learning from Demonstration (LfD) (Argall et al.,
2009; Gribovskaya et al., 2010; Guenter et al., 2007; Khansari-Zadeh and Billard,
2011; Calinon et al., 2010; Ariki et al., 2013; Billard et al., 2006) has became one of

Figure 4.1: Behavior sequence detail of the high-level task of opening a door by a sim-
ulated HOAP-3 robot. The robot starts at point 1, it approaches to point 2 near the door
in a way it can reach the knob, after grasping the door, it pulls back the door to point 3.
Finally, it releases the knob.
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the most popular ways to create motor skills in a robot. One of the key questions
to be solved is what to imitate (Argall et al., 2009; Alissandrakis et al., 2002).

Minsky (2006) suggested that the way to create a machine that imitates the
human behavior is not by constructing an unified compact theory of artificial intel-
ligence. On the contrary, he argues that our brain contains resources that compete
between each other to satisfy different goals at the same moment. A similar view
is shared by Brooks (1990, 1991). Starting from that idea, our approach is based
on computing different reward profiles for different behaviors, which sequentially
optimizes different goals.

In this chapter a sequential method to learn concurrent behaviors from a human
demonstrator is presented. The behavior is adapted to the robot embodiment and
refined to successfully accomplish the desired task. We collected data from several
human demonstrators performing a complex task composed by a set of sequential
behaviors. Extracting determined features of every behavior, like COM position,
human orientation, hand trajectory, etc., and encoding them using Gaussian Mixture
Models (GMM), we defined a multi-objective reward function which represents the
overall goal, which is used as a basis of comparison or metrics with the robot. The
reward is used to solve the correspondence problem, which is defined as the action
mapping between the demonstrator and the imitator (Alissandrakis et al., 2002). In
this regard, we mapped movements performed in a different kinematic domain and
at a different scale to a common domain, defined as the goal domain and expressed
mathematically as a reward profile, formed by a multimodal landscape of movement
features.

In a previous work, we addressed the problem of mapping a behavior from a
group of unexperienced workers to match and even surpass the expert behavior
of an elite individual (Nanayakkara et al., 2007). Using that idea, we proposed a
method of imitation learning of a single behavior in a small humanoid robot using
the reward as a common space of comparison (González-Fierro et al., 2013a). Later
in (González-Fierro et al., 2014a), we extended this work by not only imitating but
innovating new behaviors using a Markov Transition Matrix to encode the reward
variability and represent the behavior strategy when performing an action while
fitting the robot’s internal constraints and kinematic structure.

We define a sequential policy for the robot that allows to find in which behavior
the robot is and computes a constrained whole-body movement pattern that opti-
mizes the reward in order to be as close as possible to the human’s reward. Then,
we refine the policy by innovating a new solution which improves the current robot
reward.

4.1.1 Behavioral Planning

There are many studies conducted in the area of LfD using GMM and Gaussian
Mixture Regression (GMR) to encode kinesthetic trajectories and generalize them to
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perform a robot movement (Gribovskaya et al., 2010; Guenter et al., 2007; Calinon,
2009; Khansari-Zadeh and Billard, 2011) or based on Hidden Markov Models (HMM)
to encode the human demonstrations so they can be transferred to the robot Calinon
et al. (2010); Ariki et al. (2013); Billard et al. (2006). In our work, instead of learning
the robot movement we learn a reward function, which is the basis of comparison
between the human and the robot.

Our work takes some ideas from (Guenter et al., 2007) where a humanoid robot
use LfD to initially learn a pick and place task. Later, if an obstacle interrupts the
movement, a new movement is computed using Reinforcement Learning to avoid the
obstacle. This gave us the idea of not only using the reward profile as the space of
imitation but as a metrics of the behavior’s performance. Therefore, improving the
imitation reward by searching in the neighbourhood of the reward space, the robot
can obtain a better reward which by innovating new behaviors which are not those
learned from imitation.

The authors in (Muhlig et al., 2009) address the problem of what to imitate in a
similar way to our proposal. They identified several possibilities of task space meth-
ods to imitate, what they called task space pool. Next, they defined several criteria,
like an attention criterion or an effort criterion, to choose the optimal task space to
imitate. In our case, instead of defining a pool of criteria, we learn a probabilistic
behavior selector matrix from human demonstrations. It defines the probability of
being in a behavior given a set of states. Another interesting approach is presented
in (Grollman and Billard, 2011), where instead of the usual LfD approach, the robot
learns from failed demonstrations.

There are many works related to policy learning like (Matsubara et al., 2008;
Yamaguchi et al., 2010; Yi et al., 2011). In (Daniel et al., 2012) a policy search
method is applied to optimally select between several solutions of the same task,
initially learned from demonstrations. Our work shares a similar idea, but instead
of selecting solutions of the same task, we select between sub behaviors of a complex
task and attempt to find an optimal policy that produces a similar reward to that
of the human.

The problem of skill transfer and whole body motion transfer has been an in-
teresting area of research in recent years. Some studies addressed the problem
manipulating the angular momentum of the COM (Naksuk et al., 2005; Matsubara
et al., 2008), using graphs and Markov chains (Kulić et al., 2008), imitation of move-
ment using Neural Networks (Yokoya et al., 2006) or Bayesian Networks (Grimes
et al., 2006), sequencing multicontact postures (Bouyarmane and Kheddar, 2012) or
encoding and organizing learned skills (Lin and Lee, 2008).

The framework called incremental learning uses a few demonstrations to perform
a task which is incrementally improved with the aid of verbal or non-verbal guidance.
In (Saunders et al., 2006) a human guided a robot to sequentially construct memory
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models of the desired task. This incremental learning method, inspired on the be-
havior of social animals, allows to combine different competences to create complex
tasks. Some approaches like (Pardowitz et al., 2006) are based on constructing a
task graph that leads to more general behaviors. Kulic et al. (Kulić et al., 2008;
Kulic and Nakamura, 2009) generated whole-body motion using factorial HMM,
that encodes and clusters a set of incrementally learned movement primitives that
can be combined to generate different behaviors.

Our work has points in common with (Stulp et al., 2012) in the sense that they
proposed a RL algorithm for robot manipulation that simultaneously optimizes the
shape of the movement and the sequential subgoals between motion primitives. In
contrast, we established a set of behaviors, each of them with a different goal, and
also a reward profile that represents that goal.

Our approach shares many similarities with inverse reinforcement learning (IRL)
(Ng and Russell, 2000; Abbeel and Ng, 2004; Ziebart et al., 2008; Lopes et al.,
2009) and inverse optimal control (IOC) (Ratliff et al., 2009; Mombaur et al., 2010;
Kalakrishnan et al., 2013). IRL is initially presented in (Ng and Russell, 2000;
Abbeel and Ng, 2004) as the problem of extracting a reward function given an
optimal behavior. The reward is extracted as a lineal combination of basis features
of the behavior. It can be obtained using support vector machines (Abbeel and
Ng, 2004), methods based on maximum entropy (Ziebart et al., 2008) or active
learning (Lopes et al., 2009). Similarly, IOC aims to determine the optimization
criterion that produced a demonstrated dynamic process. It was succesfully applied
to locomotion (Mombaur et al., 2010), pedestrian detection (Ratliff et al., 2009)
and manipulation (Kalakrishnan et al., 2013). In contrast with the commented
approaches that attempt to explain the observations with rewards functions defined
for the complete behavior, our method relies on context-dependent goal oriented
reward functions that are selected depending on which task the robot is executing.

Recently, two articles with a similar approach to our work appeared (Malekzadeh
et al., 2013; Calinon et al., 2014). They were coauthored by Nanayakkara, one
of the advisors of this thesis. In their work a surgical robot learns several tasks
demonstrated by a surgeon, who selects a set of critical points that the robot’s end
effector has to touch. They proposed a LfD and skill innovation method based on the
reward. One of the main differences with the work proposed in this thesis is the way
they select the basis reward functions and how they relate to each other. Instead of
defining a fixed reward function for each task or goal, the robot is provided with a
set of candidate reward functions. The optimal combination of these basis functions
and in which proportion they are relevant to different parts of the task, are learned
by demonstrations. In our work a fixed reward function is defined for each part of
the behavior. The use of a specific reward function is decided by a selector matrix,
learned from the human, that predicts the current state of the robot behavior and
allow to apply the associated reward function.
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4.1.2 A Humanoid Opening a Door
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Figure 4.2: Overview of the imitation system. Using a MOCAP system, the movement
of the human demonstrator is obtained and a reward profile for every behavior is computed.
On the other hand, the robot starts in an initial state qi(0). A new episode ei is defined,
which is a pair of initial and final states X = (ξini, ξfinal). Then the behavior selector
decides in which behavior the humanoid is. The trajectory generator produces a stable
trajectory within the pair of states. The episodic reward is optimized until the difference
∆1 between the robot reward rRep and the human reward rHep is small or it reaches a
number of iterations. This process is repeated until all behaviors are completed. Then,
there is a comparison between the complete reward profile of the robot rRTOT and the
complete reward profile of the human rHTOT , which is the index ∆2 = J . If this index is
close to zero it means that the imitation is completed.

Figure 4.2 and Figure 4.3 show the complete architecture of both sequential
imitation learning and sequential innovation learning. There are two optimizations
in every architecture. A local optimization between behavior episodes and a global
optimization of the complete behavior. Therefore, the system does not only obtain
a local stable movement but it takes into consideration the complete shape of the
action movement.

Figure 4.2 shows the imitation learning process. The human data is acquired
using a MOCAP system, which in our experiments is a Kinect camera. This data
is used to obtain a model of the human, which generates a joint trajectory qi. This
trajectory is used to compute the behavior selector matrix and the human reward
profile. The behavior selector matrix indicates the probability distribution of being
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Figure 4.3: Overview of the innovation system. The process is very similar to Figure 4.2.
The main difference appears in the trajectory generation. The generator perturbs the im-
itation trajectory qIMITATION in an amount ∆qi, to generate a new trajectory qi which
is evaluated in terms of the episodic reward. The other difference is in the reward com-
parison ∆1 and ∆2. In this case the objective is to maximize the difference. If the robot
gets a better episodic reward r′Rep than the reward obtained in the imitation rRepIMI , then
∆1 > 0 and the local optimization ends. If the robot gets a better reward r′RTOT than the
reward obtained in the imitation rRTOTimi, then ∆2 > 0 and the innovation is completed.

in a determined behavior given a state. The human reward is compared globally
and locally with the robot reward.

The robot imitation process begins by knowing its initial joint values qi(0). At
this point a new episode ei begins. An episode is a transition between a pair of
initial and final states X = (ξini, ξfinal), which depends on the current behavior bi,
the generated trajectory qi, the controller PD and the episodic reward rRep. Then a
local optimization takes place.

The robot reward rRep is compared with the human reward rHep. When its
difference ∆1 is a small number or the maximum number of iterations have passed,
the robot satisfactorily imitates the human and the reward candidate for this episode
is saved. This process is repeated until all episodes have been computed.

When this loop finishes it means that all episodes for all behaviors have been
computed and a complete movement candidate is available. At this point, a global
optimization process takes place to minimize the difference between the total robot
reward rRTOT and the total human reward rHTOT , denoted by ∆2. If they are
similar, the process stops and we can conclude that the imitation process is not
only successfully achieved locally but globally, taking into account the complete
movement.

Figure 4.3 shows the innovation learning process. It is very similar to the imita-
tion process but this time, instead of comparing with the human reward, it compares
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with the best reward of the imitations process. Therefore, in this case the robot is
not just imitating the human but generating an innovative behavior which is better,
since the performance can be measurement with the reward profile.

4.2 Sequential Policy Definition

A learning process that considers the Markov property to predict actions and states
is called a Markov Decision Process (MDP) (Nanayakkara et al., 2009).

The learning process is defined as a sequence of finite states s ∈ S and actions
a ∈ A pairs, that produces an associate reward r ∈ R. The agent, starting from
a state s(t) computes an action a(t) to reach a future state s(t + 1), obtaining a
reward r(t), which can be defined as a set of values or as a mathematical function,
it is usually called the reward function.

Let b ∈ B be a set of behaviors or skills that compose the full high level strategy
of performing a task. An example of a behavior or a skill can be approaching the
door in a manner that the location of the body allow to reach the knob, grasping
the knob, performing the movement that activate the mechanism to open the door,
going backwards while holding the knob, realizing that the door is open in a way
that it can be overpassed, and finally, passing through the doorway.

Let it be noted that the states and actions of every individual behavior can
determinate the better or worse performance of the following ones. For example, if
we analyze only the behavior of grasping the knob, it could be beneficial if the robot
is in a frontal position in relation to the plane of the door, however, if we want to
concatenate this with the behavior of going backwards opening the door, maybe it
is better first to locate the robot with a determined angle to then perform an easier
trajectory of going backwards.

The objective is to determine a policy π(a|s) in the form

π(a|s) =
∑
b

π(a|s, b)π(b|s) (4.1)

where π(b|s) is the selector of behavior b given a state s, and the policy π(a|s, b) to
select the action a, given a behavior b.

We consider an episodic learning strategy to generate a policy inside every be-
havior. At the beginning of the episode, starting from a state s, we compute a
parametrized postural primitive that takes into account the whole body movement,
while maintaining the stability. The parametrized postural primitive can be defined
in several ways, in some works like (Daniel et al., 2012) the movement is computed
as a Dynamic Movement Primitive (DMP) (Schaal et al., 2005). For more complex
trajectories that implies displacement and manipulation at the same time, it is easier
to define trajectories in the task space (Sentis et al., 2010).
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For each episode, we only consider one action a that determines the parameters
of the postural primitive, which for instance defines the movement plan for the
complete episode. The states are defined as the via points of the primitive and
the reward profile is computed from the reward function rπ(s, a, b). The reward is
constructed as a metrics to measure the overall goal performance and it depends on
the behavior, the initial state of the episode and the action that takes place in this
episode.

Figure 4.4 represents a diagram of an episode. It shows how situations branch off
to behaviors and then to actions. Given a situation in the state space, there can be
many behaviors according to human demonstrations. Given a behavior, the action
to change over time. We choose a branch in the tree using a probability distribution
derived from the demonstrations.

Figure 4.4: Diagram explaining one episode. The robot, represented in the lower part of
the diagram, performs a transition from state s1 to s2. In the upper part of the diagram
there is a tree representing the complete process. Given a state s1, the behavior selector
π(b|s) computes the probability of being in a behavior P (bi/s1). Then π(a|s, b) generates
an action aij, which retrieves a reward rj. The generated action takes the robot to a state
sij. The selection of one branch, in yellow, is determined by the most probable behavior
and by the best reward.
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4.2.1 Encoding and Generalizing Demonstrations

The probability distribution space of the human demonstrations is approximated us-
ing GMM. A time independent model of the motion dynamics is estimated through
a set of first order non-linear multivariate dynamical systems. Schaal et al. (2007)
proposed an approach based on imitation learning and on-line trajectory modifi-
cation, by representing movement plans based on a set of non-linear differential
equations with well-defined attractor dynamics. We follow a framework presented
on (Gribovskaya et al., 2010) allowing learning non-linear dynamics of motions and
generating dynamical laws for control.

A variable ξ is defined describing the state of the robot. Let the set M of
N-dimensional demonstrate data points {ξi, ξ̇i}Mi=0 be instances of a global motion
governed by a first order autonomous ordinary differential equation (ODE):

ξ̇(t)M = f(ξ(t)M), (4.2)

where ξM ∈ Rn, and its time derivative ξ̇M ∈ Rn are vectors that describe the robot
motion. The problem then consists on building a stable estimate f̂ of f based on
the set of demonstrations. Without loss of generality, we can transfer the attractor
ξ̄ to the origin, ξ̄ = 0, so that f(ξ̄) = f(0) = 0 and by extension f̂(ξ̄) = f̂(0) = 0.

To build the estimate f̂ from the set of demonstrated data points {ξi, ξ̇i}Mi=0 we

follow a statistical approach and define f̂ through a GMM.

Gaussian Mixture Models

The GMMs define a probability distribution p(ξi, ξ̇i) of the training set of demon-
strated trajectories as a mixture of the K Gaussian multivariate distributions Nk

p(ξi, ξ̇i) =
1

K

K∑
k=1

πkNk(ξi, ξ̇i;µk,Σk) (4.3)

Where πk is the prior probability; µk = {µkξ ;µkξ̇} is the mean value; and Σk =[
Σk
ξ Σk

ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

]
is the covariance matrix of a Gaussian distribution Nk. The theoret-

ical analysis of GMMs can be found on (Dasgupta and Schulman, 2000).
The probability density function of the model Nk(ξi, ξ̇i;µk,Σk) is then given by:

Nk(ξi, ξ̇i;µk,Σk) =
1√

(2π)2d|Σk|
e
−1
2

([ξi,ξ̇i]−µk)T (Σk)−1([ξi,ξ̇i]−µk) (4.4)

By considering an adequate number of Guassians, and adjusting their means and
covariance matrix parameters, almost any continuous density can be approximated
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to arbitrary accuracy. The form of the Gaussian mixture distribution is governed by
the parameters πk, µk,Σk. The model is initialized using the k-means clustering al-
gorithm starting from a uniform mesh and is refined iteratively through Expectation-
Maximization (EM) for finding the maximum likelihood function of (4.3).

ln p(ξi, ξ̇i) =
N∑
n=1

ln{
K∑
k=1

πkN(ξin, ξ̇
i
n|µk,Σk)} (4.5)

Figure 4.5(a) illustrates the encoding of a training data set {ξi, ξ̇i}Mi=0 into a
model of mixtures of Guassians (Figure 4.5(b)).

In this work we used the Binary Merging (BM) algorithm, (Khansari-Zadeh and
Billard, 2010), to build the GMM. BM determines an optimal minimum number of
Gaussian functions to employ, while satisfying the stability criteria and also keeping
the error of the estimates under a threshold. To generate a new trajectory from the
GMM, one then can sample from the probability distribution function p(ξi, ξ̇i), this
process is called Gaussian Mixture Regression (GMR).

Gaussian Mixture Regression

The GMM computes a joint probability density function for the input and the
output so that the probability of the output conditioned on the input are a Mixture
of Gaussians. So it is possible after training, to recover the expected output variable
ξ̂, given the observed input ξ. Taking the conditional mean estimate of p(ξ̇|ξ), the

estimate of our function ˆ̇ξ = f̂(ξ) can be expressed as a non-linear sum of linear
dynamical systems, given by:

ˆ̇ξ =
K∑
k=1

hk(ξ)(Σ
k
ξ̇ξ

(Σk
ξ)
−1(ξ − µkξ) + µk

ξ̇
) (4.6)

where

hk(ξ) =
p(ξ;µkξ ,Σ

k
ξ)∑K

k=1 P (ξ;µkξ ,Σ
k
ξ)
, hk(ξ) > 0 (4.7)

and
∑K

k=1 hk(ξ) = 1

This process is called Gaussian Mixture Regression GMR. A review of GMR can
be found in (Sung, 2004).

Figure 4.5(c) illustrates the GMR as a reproduction of the learned motions.
To learn the model of the trajectories, first several demonstration of the task are
presented and them the trajectory is encoded as a mixture of Gaussian distributions.
To reproduce the trajectories one sample from the probability distribution of the
GMM trough the GMR process. The GMR approximates the dynamical systems
through a non-linear weighted sum of local linear models.
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Figure 4.5: Illustration of the learning process of grasping a door knob from a top view.
(a) Training data of the task. (b) GMM of the learned motion. (c) Reproduction of the
GMR.
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4.2.2 Parametrized Postural Primitives

Based on the demonstrations encoded as GMM, we can compute a parametrized
postural primitive for each episode, which defines a complete motion of the humanoid
in the task space. To simplify the process of generating a whole body motion taking
into account contacts and stability, we decoupled the robot in two modules or tasks,
the locomotion task and the grasping task. This means that when the robot is
performing a locomotion task, the module in charge of computing the grasping task
is stopped. In a similar way, when the robot is performing a grasping operation the
locomotion module is stopped.

There is a moment when the robot is moving backwards and, at the same time,
is grasping the knob. At this moment, the only active module is the locomotion one.
The robot arm is idle to decouple the robot from the door dynamics. We assumed
that the door weight is small in comparison with the robot weight and the resistive
torque of the hinge is negligible.

For the locomotion task of the humanoid, the postural primitive can easily be
computed using the cart-table model (Kajita et al., 2003a). This model is based on
ZMP a preview control scheme to obtain the COM trajectory from a defined ZMP
trajectory. This method generates a dynamically stable gait trajectory using the
Inverted Pendulum Model to approximate the dynamics of the humanoid.

Regarding the grasping, we can use GMR to define a desired trajectory for the
hands and add a modulation term that improves the reward index, similarly to
(Guenter et al., 2007).

4.2.3 Sequential Policy Search

The sequential policy search problem is defined as an optimization problem where
we used the reward framework as a basis of comparison between the human and
the robot (González-Fierro et al., 2013a, 2014a). The objective is to find a policy
for the robot that, in an initial moment, imitates the behavior of the human, by
producing a similar reward profile, and later improves the robot performance, by
auto exploring new solutions that return a better reward.

Taking that into account, we can define an imitation index J , which is defined
as the optimization problem of minimizing the episodic difference of the human and
robot reward profile (4.8), and the innovation index J ′, which is defined as the
optimization problem of maximizing the positive difference between the episodic
imitation reward profile and the new innovation profile (4.9). To compare between
reward profiles we make use of the Kullback-Liebler divergence, which can be stated
as a directional information transfer.

min J =
∑
b

∑
e

rh(s, a, b) log
rh(s, a, b)

rr(s, a, b)
(4.8)
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(a) (b) (c) (d)

Figure 4.6: Snapshots of one human demonstrator performing the task of opening the
door using the Kinect camera. Each snapshot corresponds to a different behavior. a)
Behavior b1: approaching the door, b) Behavior b2: grasping the knob, c) Behavior b3:
pulling back the door and d) Behavior b4: releasing the knob.

where e ∈ E is the episode, rh is the human reward profile and rr is the robot reward
profile.

max J ′ =
∑
b

∑
e

rri (s, a, b) log
rri (s, a, b)

rr(s, a, b)
(4.9)

subject to
µri (e) ≥ µr(e) (4.10)

where rri is the innovation reward profile of the robot, µr(e) is the mean of the
imitation reward profile in episode e and µri (e) is the mean of the innovation re-
ward profile in episode e. The optimization process is performed using Differential
Evolution optimizer (Storn and Price, 1997).

4.3 Experimental Results

The task chosen for testing our method is to make a humanoid robot approach a
door, grasp the knob and open the door while maintaining the balance. The robot
used is the middle sized humanoid HOAP-3 of Fujitsu.

4.3.1 Acquiring Behaviors from Human Demonstrations

The experimental setup consist of a Kinect camera recording 9 human participants
opening a door 10 times each (see Figure 4.6). The API of the Kinect allows to
perform an accurate tracking of the human body, which is improved using a Kalman
Filter.

The complete task is segmented into several behaviors b ∈ B. The first behavior
b1 consists on approaching the door to a place where the knob can be reached; then
grasping the knob b2; going backwards leaving the arm passive, but without releasing
the knob b3 and finally, releasing the knob b4.



4.3 Experimental Results 89

The selected states for the task are position and orientation of the COM, ξcom =
{xcom, ycom, θcom} and the position of the grasping hand, ξhand = {xhand, yhand, zhand}.
All states are measured with respect to the Kinect position.

Let it be noted that the identification, and therefore the segmentation, of a
behavior depends on the perspective of the observer (Brooks, 1990, 1991; Minsky,
2006). As Brooks (1990) suggested, behavior representation has to be grounded to
the physical world and it relies on the feedback received through the interaction
with the environment. We divided the task of opening a door into 4 behaviors,
however another observer could define a different set of behaviors or it can be done
techniques like in Grimes et al. (2006); Chalodhorn et al. (2009); Aleotti and Caselli
(2012).

For each human demonstration, a temporal state trajectory ξ = [ξcom, ξhand] is
obtained using the Kinect API. After a filtering, the trajectory is automatically
classified into the four behaviors. For b1, approaching the door, ξcom approaches to
the door, whose position with respect to the Kinect reference system is known. In
b2, grasping the knob, ξhand goes up until it touches the knob, whose position with
respect to the Kinect reference system is also known. b3 starts when the hand grasps
the knob and ξcom moves backwards. Finally, in b4 the hand release the knob and
ξhand goes down to a rest position.

Let it be noted that the demonstrations performed by all subjects are in some
sense artificial. In order to make the automatic behavior segmentation easier, the
subjects are told to perform each behavior separately, i.e., they first approach the
door, then move his hand to grasp the knob, then pull the door and finally release
the knob. A human opening a door in a real environment would perform several of
these behaviors at the same time, smoothly and elegantly.

4.3.2 Learning the Behavior Selector from Human Demon-
strations

By observing the human demonstrations, we can construct the behavior selector
π(b|s) in (4.1), by obtaining the probability of being in a determined behavior
given a combination of states.

Figure 4.7 represents the mean and standard deviation of all human demonstra-
tions segmentated by behaviors.

In order to compute the behavior selector matrix of Figure 4.8, we first divide
each state length into z substates, where the length is li = simax − simin and the
step is ∆si = l1/z. Therefore, each state is composed by a number of substates
[sia, sib, sic, ..., siz]. Next, for each human demonstration in each behavior, we per-
form a mapping from trajectories to substates, obtaining the probability matrix of
Figure 4.8.

In order to compute the probability of being in behavior bi given a combination
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Figure 4.7: Mean and standard deviation of the human demonstrated states.

of states ŝ = {s1,a, s2,b, ..., sn,z, }, where n is the number of states and a, b, ..., z
corresponds to an arbitrary substate inside a state:

P (bi|ŝ) = P (bi|s1,a).P (bi|s2,b)...P (bi|sn,z) (4.11)

Finally the selector of behavior can be stated as

π(b|s) = bi with bi = argmaxi(P (bi|ŝ)) i from 1 to m (4.12)

where m is the total number of behaviors.
Once the behavior selector matrix is obtained, it can be used to predict the

current robot behavior, given a combination of states. In the case of the robot we
applied a scale factor ρ to obtain the length l′i = li/ρ and the step ∆s′i = l′1/z.

4.3.3 Definition of the Reward Profile

The reward function rπ(s, a, b) varies depending on what behavior is being per-
formed. Let define di as the quadratic difference of the actual state ξi and ξ∗i ,
defined as the GMR of the human demonstrations (4.6) in the case of the human
and an adapted trajectory for the robot based on the GMR human trajectory.

di = (ξi − ξ∗i )TW (ξi − ξ∗i ) (4.13)

with W a weight matrix.
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Figure 4.8: Behavior selector matrix. The columns represent the behaviors and the rows
represent the substates in a state. For each substate the color represents the probability of
being in a behavior.



92 Learning and Improving a Sequence of Goal Directed Skills

We also define the reward i as a Cauchy distribution in the form

ri =
1

ε+ di
(4.14)

with a small ε.
Let be defined the reward for each behavior.

rπ(s, a, b1) =
1

2

∑
e

rcom + rdoor (4.15)

rπ(s, a, b2) =
1

2

∑
e

rhand + rknob (4.16)

rπ(s, a, b3) =
1

2

∑
e

rcom + r̂α (4.17)

rπ(s, a, b4) =
1

2

∑
e

rhand + rantiknob (4.18)

and
r̂α =

α

αmax
(4.19)

where rhand and rcom represent the reward when the hand and COM trajectory
of robot and human is close to the trajectory defined by the GMR of the human
demonstrations. Both terms represent a direct imitative behavior. The closer the
actual trajectory is to the desired trajectory, the higher the reward. The term rdoor
is the reward obtained for locating in a point near the door where the knob can be
reached, the closer the point the higher the reward. rknob is the reward obtained
by the difference between the hand and the knob position, the closer the hand to
the knob, the higher the reward. The term r̂α represents the reward given for the
achievement of the hight level task, which is to open the door. Finally rantiknob is
a reward that penalizes to have the hand close to the knob and follows a sigmoid
function that starts on zero and finishes on 1. αmax is the maximum angle that the
door opens and α is the actual door angle computed as:

α =
1

2
(αx + αy) (4.20)

and
αx = arccos

xhand
l

(4.21)

αy = arcsin
yhand
l

(4.22)

where lis the door length.
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Figure 4.9: Reward profiles of the complete action of opening a door. The blue line
represents the reward profile for the human demonstrator. Black boxes represent the means
of the reward for the imitative behavior. The red crosses represent the means of the reward
profile for the innovative behavior. The dotted vertical lines represents the changes between
behaviors. The vertical axis represent the reward value and the horizontal axis represents
the states in which is divided each behavior. As it can be appreciated in the figure, the
imitative behavior produces rewards similar to the human’s and the innovative behavior
produces rewards slightly higher.

The robot can find a way to obtain a better total reward than the human if it is
able to improve rdoor, rknob, r̂α and rantiknob. Those terms represent the possibility
of innovation. Please note that all rπ(s, a, b) functions have to be normalized so its
integration sums to 1 in order to be used with the Kulback-Leibler distance in (4.8)
and (4.9). In Figure 4.9 the resulting rewards are plotted.

Discussion on the Reward Profile

As (Whiten et al., 2009) suggested, both children and chimpanzees attempt to em-
ulate the goal of the action when imitating a behavior. Furthermore, some recent
studies suggested that the main difference between humans and chimpanzees is the
ability of over-imitation (Nielsen et al., 2014). Our proposal of using a reward profile
to solve the correspondence problem in order to transfer a complex behavior from a
human to a humanoid, is based on these previous neuroscience works and previous
experiments performed in a humanoid standing up from a chair (González-Fierro
et al., 2014a). However, we are not sure of what is the internal objective function
that the brain is optimizing when performing a complex task sequence. We proposed
a compound reward function that takes into account the position. Position in terms
of closeness to the door, position in terms of distance from the hand to the door
knob, position in terms of COM trajectory. However, the human brain may use also
velocity, acceleration, jerk or even other factors we are not taking into account.
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Although at first sight the proposed model of imitation and innovation may
seem task dependent it is not. The generality comes from the definition of the
reward profile. In fact, any behavior can be modeled, from simple ones to complex
behaviors. The preference in the selection of a predefined reward function over a
learned function like in inverse reinforcement learning (Abbeel and Ng, 2004; Ng
and Russell, 2000) does not affect the general idea of comparing the behavior of a
human and a robot in a common domain, which is the reward domain.

Moreover, it can be noted from Figure 4.9 that the innovative process does not
improve the performance radically. The importance of the innovative behavior is not
in the improvement quantity. It lies in the fact that the reward profile represents
the behavior goal and, at the same time, a metrics to measure its performance.
Therefore, since it is a behavior metrics, we can generate different movements, not
only imitating the human but innovating a new behavior, which is better than the
behavior demonstrated by the human.

4.3.4 Trajectory generation and optimization

Given a behavior and a state, a candidate state space trajectory ξi = [ξcom, ξhand]
is computed as a cubic spline. A generalized cubic spline is defined as a piecewise
polynomial fitted to a set of via points.

(t0, ξ
∗
0), (t1, ξ

∗
1)...(tk, ξ

∗
k) (4.23)

where ξ∗i ∈ RN is the joint via points at time ti ∈ R.
Given these via points, there is a cubic trajectory that passes through these

points and satisfy a smooth criteria.

ξi(t) = ai(t− ti)3 + bi(t− ti)2 + ci(t− ti) + di (4.24)

where ai, bi, ci, di are the polynomial coefficients optimized. The complete joint
trajectory q(t) ∈ RN is a concatenation of (4.24) over the time intervals.

q(t) =


ξ0(t) if t0 ≤ t < t1
...
ξk(t) if tk−1 ≤ t < tk

(4.25)

Once the candidate trajectory is generated and the behavior that the robot
should use is known using (4.12), the associated reward is computed using (4.14).
The optimization process is performed using Differential Evolution algorithm (Storn
and Price, 1997) with (4.8) and (4.9) as cost functions.

From the candidate state space trajectory, both locomotion and grasping pat-
terns are obtained using the parametrized postural primitives.
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Figure 4.10: Snapshots of the humanoid robot performing the task of opening a door
from different views.

For the locomotion pattern, ξcom is used to calculate the ZMP reference, which is
the input of the cart-table algorithm (Kajita et al., 2003a). For each episode, ξcom is
in fact a spline that connects two states, that in the case of the locomotion pattern,
corresponds to one step. The location of this step is the ZMP reference. Therefore
the original ξcom trajectory is not the one followed by the robot COM. The real COM
trajectory is generated by cart-table algorithm, and later, a kinematic inversion is
used to compute the joint trajectory.

The grasping pattern is much more easy to implement in the robot. The de-
sired trajectory ξhand corresponds to the robot end effector. The joint trajectory is
computed using the humanoid Jacobian.

The humanoid initially detects the 3D position of the knob using the stereo
cameras integrated in the robot. The knob is located using a simple color filter.
Since the initial position of the robot and the door position is known, we compute the
optimization process and generate the desired state space trajectories. This process
is computed offline since the genetic algorithm consumes substantial computing
resources. Once the desired trajectory is known, both locomotion and grasping
trajectories are computed online inside the robot. The door angle is estimated by
knowing the location of the robot with respect to the door hinge.

Some snapshots of the implementation with the real robot are shown in Fig-
ure 4.10.



96 Learning and Improving a Sequence of Goal Directed Skills

Limitations and considerations

Regarding the implementation of our method in the humanoid robot, some consid-
erations and limitations have to be taken into account. The first difference between
the human and the robot performance is the smoothness of the walking pattern. In
the case of the human, the COM barely swings when going backwards and the GMR
output of the COM is almost a straight line. However, in the robot, the swing is
much greater. This produces undesirable effects. The swing may produce a crash of
the robot body with the door. Furthermore, it produces a back and forth movement
of the door while the robot is moving backwards. To solve this problem, we simplify
the computation by allowing the robot to decouple itself from the momentum of
the door by relaxing the arm stiffness and having compliance along the plane of
the door, meaning the hand can passively move along the plane of the door. For
instance, when defining the behaviors, we select b3 to be the moment when the robot
is opening the door with the movement of its body, turning off the arm motors. For
simplicity, we do not consider for the robot the case when the human is moving
backward and pulling the door at the same time.

4.4 Discussion and Conclusions

The present chapter address one of the biggest questions of LfD, what to imitate
(Argall et al., 2009). As some studies reveal (Gergely et al., 2002), the human brain
understands the final goal of the action and reproduce it optimizing some kind of
metrics, allowing to succesfully and elegantly reach the goal. Our proposal is to
define this metrics as a reward profile which can be used as a basis of comparison
between the human demonstrator and the robot. But an important feature of us
humans is the ability to innovate new behaviors (Whiten et al., 2009; Nielsen et al.,
2014). Therefore, we propose a reward base optimization process where the robot
explores the neighbor solution space to come up with new behaviors which produce a
better reward. Our framework allows a robot to create complex sequential behaviors
taking into account the whole body movement.

We define a sequential multi-objective reward function for every sub behavior of
the complete task. The optimization problem consist on generating a policy for the
robot to obtain an episodic reward similar to the human’s, achieving an imitative
behavior. Refining this policy, we can generate new solutions which improves the
reward profile to achieve an innovative behavior, more relevant to the robot circum-
stances. The result is a framework to generate whole-body motions for the robot
which can be generalized to any movement that can be learned from demonstrations.

We carried out experiments in a real humanoid robot performing the task of
opening a door to test our method.

The main contribution of this work is the solution to the correspondence problem
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between a human and a robot in a common space, which represents a metrics to
achieve the task goal, the reward space, and its application in a complex behavior
formed by a sequence of actions. The reward space is formed by different compo-
nents, depending on the objective of the action in every moment. This agrees with
the theory of Minsky that proposes that our brain manages different resources that
compete between each other to fulfil different goals (Minsky, 2006).





Chapter 5
Robust Control of Humanoid Models
through Fractional Calculus

There is an open discussion between those who defend mass distributed models for
humanoid robots and those in favor of simple concentrated models. Even though
each of them has its advantages and disadvantages, little research has been conducted
analyzing the control performance due to the mismatch between the model and the
real robot, and how the simplifications affect the controller’s output. In this chapter
we address this problem by combining a reduced model of the humanoid robot, which
has an easy mathematical formulation and implementation, with a fractional order
controller, which is robust to changes in the model parameters. This controller is
a generalization of the well-known PID structure obtained from the application of
Fractional Calculus to control. This control strategy guarantees the robustness of
the system, minimizing the effects from the assumption that the robot has a simple
mass distribution. The humanoid robot is modeled and identified as a triple inverted
pendulum and, using a gain scheduling strategy, the performances of a classical PID
controller and a fractional order PID controller are compared, tuning the controller
parameters with a genetic algorithm.
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5.1 Introduction

In recent years, there have been a strong discussion between researchers on favor
of using mass distributed models to model a humanoid robot, where the mass and
inertia of every link is known, and those who prefer to use a simplified or concen-
trated mass model, where all robot dynamics are simplified and concentrated in the
center of gravity (Arbulu, 2009).

Those who prefer a complete dynamic representation defend that it allows a more
complex behavior, the model is more accurate and therefore the behavior of the
model corresponds better to reality. In (Khatib et al., 2008) the authors performed
a whole-body motion hierarchically dividing the control in tasks. Arbulú et al.
(2010) used Lie algebra to obtain the humanoid whole-body dynamics and reduce the
computation time. In (Kajita et al., 2003b), humanoid motion is accomplished by
controlling the complete body model momentum. Hirukawa et al. (2006) presented
an approach to control the humanoid gait in rough terrain through the Contact
Wrench Cone. Other examples of complete dynamic representation are (Nagasaka
et al., 1999; Suleiman et al., 2008; Yoshikawa and Khatib, 2009; Mistry et al., 2009,
2010a).

Many researchers make use of reduced dynamic models to control humanoids,
some examples are the 2D and 3D linear inverted pendulum (LIPM) (Kajita and
Tani, 1991; Kajita et al., 2001), cart-table (Kajita et al., 2003a) or the angular
momentum pendulum model (Komura et al., 2005). A reduced model does not
cover all dynamic behavior and non linearities of the real model, however, they are
commonly used and many researchers have obtained good experimental results. In
(Kaynov et al., 2009b) a humanoid robot is modeled as a double inverted pendulum
and a stabilizer is studied. Mistry et al. (2010b) modeled a humanoid as an inverted
pendulum of five links and a stand up task is performed. Other examples can be
found in (Kim et al., 2007). In (Pan et al., 2004) a triple inverted pendulum is
controlled using an evolutionary approach. In (Arisumi et al., 2008) a humanoid
robot modeled as a 8 link manipulator is able to lift a box. Another examples of
triple pendulum control use H∞ (Tsachouridis, 1999) or fuzzy methods (Xiaofeng
et al., 2009). The literature on humanoid reduced models is extensive (Sugihara
et al., 2002; Sugihara and Nakamura, 2003; So et al., 2005; Kaynov et al., 2009b;
Monje et al., 2009b, 2011a; González-Fierro et al., 2014a).

In this chapter an intermediate approach is proposed in order to obtain an advan-
tageous control framework for a humanoid robot, which is to combine a humanoid
reduced model with a Fractional Order Controller (FOC). The advantage is twofold.
The use of a reduced model makes the formulation simple and fast to implement.
The disadvantage of using a reduced model in comparison with a complete model
is canceled by the use of a fractional controller. The fractional controller is able
to cope with mismatches in the robot model, so even though the reduced model
does not represent the robot accurately, the fractional controller makes the robot to
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Figure 5.1: Control system. The block PID is changed for the block PIDfr when the
fractional order control strategy is used.

behave successfully.
Specifically, we applied a FOC strategy for the control of a humanoid robot

modeled as a triple inverted pendulum, in order to improve the system performance
and overtake the mismatches produced between the simplified and real models of
the robot (see Figure 5.1). This work were published in (González-Fierro et al.,
2013e,d).

To test the robustness of our controller, we compared a classical PID controller
with a fractional controller when the humanoid follows a trajectory of standing up
from a chair. We overloaded the system adding 1 Kg. to every pendulum link, with
the objective of evaluating the robot performance when there is a change in the
mass of the model. The controller gains were optimized with Differential Evolution
algorithm (Storn and Price, 1997).

5.1.1 Fractional Control in Robotics

The interest of fractional order control (FOC) is growing nowadays due to its ap-
plicability to engineering and science. Its practical applications make this field
of research an emerging new topic. Even if they can be thought of as somehow
ideal, they are, in fact, useful tools for both the description of a more complex
reality and the enlargement of the practical applicability of the common integer
order operators. Among these fractional order operators and operations, the frac-
tional integro-differential operators (fractional calculus) are specially interesting in
automatic control and robotics, among others.

The first mention to fractional control can be found in the work of Bode (Bode,
1940, 1945). He studied the design of an amplifier with the idea of producing
a performance in the closed loop that were invariant to gain changes. The first
application of fractional calculus in control led to its implementation in the frequency
domain as a non-integer integral (Manabe, 1961).

Oustaloup et al. (1995, 1996, 1999, 2000) studied the fractional order algorithms
for the control of dynamic systems and demonstrated the superior performance
of the CRONE (Commande Robuste d’Ordre Non Entier) method over the PID
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controller. Podlubny (1999) proposed a generalization of the PID controller, namely
the PIλDµ controller, involving an integrator of order λ and a differentiator of order
µ. He also demonstrated the better response of this type of controller, in comparison
with the classical PID controller, when used for the control of fractional order
systems. A frequency domain approach by using fractional order PID controllers
has also been studied in (Monje et al., 2010).

There was an extensive effort in determinate the best tuning and auto-tuning
methods for FOC. A relevant work in this area was performed by Monje (Monje
et al., 2004, 2005; Monje et al., 2009a; Monje et al., 2010). Some other related
publications are (Petráš et al., 2001; Lanusse et al., 2003; Caponetto et al., 2004;
Barbosa et al., 2004b,a; Valério and da Costa, 2006; Padula and Visioli, 2011).

Fractional control is used extensively in control. Some examples that can be
found in the literature are flexible transmissions (Valério, 2001; Monje et al., 2007;
Delavari et al., 2013), active suspensions (Lanusse et al., 2003), heat control (Petráš
and Vinagre, 2002; Petráš et al., 2002) or hydraulic actuators (Pommier et al., 2002;
Chen et al., 2014).

Regarding humanoid robotics, it is not common to find this kind of controllers.
In (Wen et al., 2014) a method to reduce the error in the localization of a humanoid
robot is presented. Silva and Santos (2005) presented a method to control the gait
of a small humanoid. They used FOC to track the interaction forces between the
feet and the ground. Similarly to us, they optimized the controller gains using a
genetic algorithm. Puga et al. (2006) proposed a humanoid control technique that
uses force and position control with the integration of a fractional controller.

Fractional calculus also extends to other kinds of control strategies different from
PID ones, but in the case study presented in this chapter we propose the use of
the fractional order PIλDµ controller as a robust alternative for the control of a
humanoid robot simplified model based on the triple inverted pendulum.

5.2 Fractional order controllers

Fractional calculus is a generalization of the integration and differentiation to the
non-integer (fractional) order fundamental operator aDα

t , where a and t are the limits
and α (α ∈ R) is the order of the operation. Among many different definitions,
two commonly used for the general fractional integro-differential operation are the
Grünwald-Letnikov (GL) definition and the Riemann-Liouville (RL) definition (I.
Podlubny, 1999). The GL definition is

aD
α
t f(t) = lim

h→0
h−α

[ t−a
h

]∑
j=0

(−1)j
(
α

j

)
f(t− jh), (5.1)



5.3 Robust Postural Control of Humanoid Models 103

where [·] means the integer part, while the RL definition is

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (5.2)

for (n− 1 < α < n) and where Γ(·) is the Euler’s gamma function.

For convenience, Laplace domain notion is commonly used to describe the frac-
tional integro-differential operation. The Laplace transform of the RL fractional
derivative/integral (5.2) under zero initial conditions for order α (0 < α < 1) is
given by

£{aD±αt f(t)} = s±αF (s). (5.3)

In theory, control systems can include both the fractional order dynamic system
to be controlled and the fractional order controller. However, in control practice,
more common is to consider the fractional order controller. This is due to the fact
that the system model may have been already obtained as an integer order model
in the classical sense.

5.3 Robust Postural Control of Humanoid Mod-

els

In a very simplified way, a humanoid robot can be dynamically modeled as a triple
inverted pendulum. We modeled the HOAP humanoid robot as a triple pendulum,
where the ankle joint of the robot corresponds to the first pendulum joint, the knee
joint corresponds to the second one, and the hip joint corresponds to the third one
(see Figure 5.2).

As it is represented in Figure 5.2, the pendulum masses are concentrated at the
tip of every link and the link masses are negligible. The control action that allows
every mass mi to move a position qi is the torque τi.

Since the task we wanted to simulate is a robot standing up from a chair, we
have chosen a triple pendulum to model the humanoid. The reason why we decided
this is because there is a direct mapping between the pendulum joints and the joints
needed for the robot to stand up. It is a good trade between selecting a simple
inverted pendulum model and a complete model.

5.3.1 State Space Representation of the Humanoid Model

In chapter 2 the equation of motion of the inverted triple pendulum (see Figure 5.2)
was obtained, the general form is stated as:
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Figure 5.2: An inverted triple pendulum.
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 (5.4)

where the parameters of the matrices are explained in chapter 2.
The inverted triple pendulum of Figure 5.2 can be expressed as a dynamical

system in the standard form:
ẋ = Ax +Bu (5.5)

y = Cx (5.6)

where x is the state vector, u is the control vector and y is the output vector.
To obtain the representation of the triple pendulum system let us define the

following state variables:
x1 = q1 (5.7)

x2 = q̇1 (5.8)

x3 = q2 (5.9)

x4 = q̇2 (5.10)

x5 = q3 (5.11)

x6 = q̇3 (5.12)
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Figure 5.3: The three positions of the system linearization. Every position is a point of
linearization and defines a linear system.

Taking this into account, and reordering (2.34), the matrices A, B and C can
be obtained knowing that:

ẋ1 = x2, ẋ3 = x4, ẋ5 = x6 (5.13) ẋ2

ẋ4

ẋ6

 = f̂(x1,x2,x3,x4,x5,x6) (5.14)

where f̂ contains non-linear terms of the state variables.
To get rid of the nonlinear terms, we linearized over the point of maximum

acceleration, xi0 and ui0, using a Taylor expansion.

˙̃x = Ax̃ + Bũ (5.15)

where

A =
∂f

∂x

∣∣∣
x = x0
u = u0

; B =
∂f

∂u

∣∣∣
x = x0
u = u0

(5.16)

and x̃i = xi − xi0, ũi = ui − ui0.
Since the desired trajectory has a wide variation, we selected three regions of

linearization, obtaining three subsystems. We divided the desired trajectory in
three regions and we chose the middle point of every region as the linearization
point. In Figure 5.3 the selected linearization positions are shown. The result is
three linear systems that are going to be controlled with standard and fractional
order PID controllers using Differential Evolution to tune the controller parameters.
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Figure 5.4: Simulation of triple inverted pendulum trajectory.

5.3.2 Selection of the Control Strategy

The first step to be able to control a humanoid robot model is the identification of
this model. For this purpose we used Differential Evolution optimizer, computing
a triple pendulum’s Zero Moment Point (ZMP) trajectory and comparing it with
the real ZMP measurement of the robot feet force sensors, minimizing the quadratic
difference. The identification is based on the work of Tang et al. (2008).

The identification of the inverted triple pendulum has been already discussed in
this thesis in chapter 3. The results are shown in the Table 3.1.

Taking these parameters into account and the three operating points previously
stated (Figure 5.3), we obtained three linearized subsystems using equation (5.15).
Each subsystem was controlled using an standard and a fractional order PID con-
troller, whose gains kp, ki, kd ∈ R3×3 and fractional orders λ, µ, were obtained using
Differential Evolution. To change between systems, we used a Gain Scheduling
strategy.

The desired trajectory was manually defined using three order splines and it
simulates a stand up trajectory. The trajectory has been divided into three regions
of two seconds, corresponding to the three subsystems each. In Figure 5.4 the
simulated trajectory is shown.

Furthermore, to estimate the controller robustness, we overloaded the pendulum
masses, adding 1 Kg to each link and comparing the new responses with those
obtained from the nominal system.
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5.4 Experimental Results

Following, the experimental results with the humanoid reduced model are shown and
analyzed. It is also discussed the implementation of the FOC, which is approximated
to a rational equation that behaves similarly to the controller.

5.4.1 Implementation of Fractional Controllers in a Humanoid
Robot Model

Before introducing the method used for the tuning of the different controllers pro-
posed in this work, some considerations on the implementation of the FOC PIλDµ

have to be taken into account. A good review regarding this topic is given by Monje
et al. (2010).

The generalized transfer function of this controller is given by

c(s) = kp +
ki
sλ

+ kds
µ (5.17)

In order to implement a FOC in a real robot or in a simulation, fractional transfer
functions are usually replaced by integer transfer functions with a behavior close
enough to the one desired, but much easier to handle. There are many different
ways of finding such approximations but unfortunately it is not possible to say that
one of them is the best, because even though some of them are better than others in
regard to certain characteristics, the relative merits of each approximation depend on
the differentiation order, on whether one is more interested in an accurate frequency
behavior or in accurate time responses, on how large admissible transfer functions
may be, and other factors like these (Monje et al., 2010).

In this work, a frequency identification method performed by the MATLAB func-
tion invfreqs was used. With this method, a rational transfer function is obtained
whose frequency response fits the frequency response of the original irrational trans-
fer function within a selected frequency range. This method is chosen due to its
accuracy in the frequency range of interest, which can be adjusted by selecting the
number of poles/zeros of the rational transfer function.

5.4.2 Comparison between Classical and Fractional Con-
trollers

In Figure 5.5 and Figure 5.6 the control system with the PID and the fractional PID
are shown.

Differential Evolution algorithm produces random values of the controller gains
that are used to simulate the system in Figure 5.5 and Figure 5.6. The fitness
function to minimize is the quadratic difference between the system output and
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Figure 5.5: Control system for the triple inverted pendulum using a PID.

Figure 5.6: Control system for the triple inverted pendulum using a fractional order PID.
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the reference. The best member of every iteration is mutated and evaluated again
until a final value of the fitness function is reached or a total number of iteration
is passed. In our case, the final value is 0 and the maximum number of iterations
is 50. All simulations have been performed in MATLAB, using Runge-Kutta solver
and a sampling time of 1 ms.

This is done for every subsystem with the standard PID gains and with the
fractional order PID gains and λ and µ orders.

To approximate the behavior of a fractional controller, we used the frequency
identification method invfreqs provided by MATLAB. The chosen crossover fre-
quency was 0.001 rad/s and we approximated the behavior of the fractional con-
troller for 4 decades.

The approximation of the FOC is a rational expression of order 8. This expression
is evaluated in MATLAB and substituted in the block PIλDµ of Figure 5.1.

Next the results obtained are presented. For the sake of space, we are just
presenting the parameters of the classical PID and the fractional order PID controller
for the first region, similarly obtaining the corresponding controllers for the other
two regions. Next the parameters of the classical PID controller are presented:

kp1 =

1205.9 7266.4 26866
5567.1 1029.2 −7054.1
6222.7 1181.5 −620.23


ki1 =

−260.06 9.552 43.524
−338.64 −3.1912 −394.46
330.96 8.3799 156.98


kd1 =

−249.66 1325.5 −956.91
1072.9 −319.45 1259.6
−344.21 541.02 379.57


Next the parameters of the FOC for the first region are presented:

kfrp1 =

 404.7 −305.2 −782.6
1887.7 −102.1 −6281.7
1097.3 −13.2 417.5



kfri1 =

−13129.1 13074.1 −5581.2
−1185.4 −118.5 1321.5
−1971.7 −933.6 12007.2


kfrd1 =

10891.5 6320.6 1687.9
−3646.4 1252.1 7721.2
1025.5 −943.7 −1851.3


λ1 = 0.595 µ1 = 0.432
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The results obtained for the three regions are presented in Figure 5.7, 5.8 and 5.9,
respectively. As it can be seen, the FOC maintains the system stability even when
a significant mass mismatch appears in the model. On the contrary, the responses
with the standard PID controller are unstable for some of the joins when the system
is overloaded. As a consequence, we can guarantee the robustness of the control
system to uncertainties in the model, compensating this way the effects of using
a reduced robot model for control purposes. Using this technique the modeling of
the humanoid robot takes a secondary importance, since the system relies on robust
control to cope with the model mismatches.
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Figure 5.7: System response for joint 1 for the nominal (left) and overloaded (right)
subsystem. In blue is the desired trajectory, in green the trajectory with the fractional
order controller and in green the trajectory with the standard PID. In dotted red the limits
of the three linearization regions.
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subsystem. In blue is the desired trajectory, in green the trajectory with the fractional
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of the three linearization regions.
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Figure 5.9: System response for joint 3 for the nominal (left) and overloaded (right)
subsystem. In blue is the desired trajectory, in green the trajectory with the fractional
order controller and in green the trajectory with the standard PID. In dotted red the limits
of the three linearization regions.

5.5 Discussion and Conclusions

This chapter addresses the problem of modeling and controlling a humanoid robot
model. Some authors prefer to use mass distributed humanoid models which in-
volve complex mathematical equations, time consuming computation and difficult
identification methods (Hirukawa et al., 2006; Khatib et al., 2008; Mistry et al.,
2010a). However, they have the advantage to be more precise and they can be used
for different tasks.

On the other hand there are many scientists that prefer mass concentrated hu-
manoid models, which have easy mathematical models and are faster to compute
(Kajita and Tani, 1991; Kajita et al., 2001, 2003a; Komura et al., 2005; Monje et al.,
2011a). As a disadvantage, they are not so accurate as the complete models. How-
ever, to a greater or lesser extent, both distributed and concentrated approaches
have model parameter mismatches between the real robot and the model.

The work presented in (González-Fierro et al., 2013e,d) proposes an alternative
to this problem. Combining a reduced model with a robust control method like
a fractional order controller, benefits from an easy mathematical framework and
a fast computation. At the same time, the controller absorbs the errors between
the model and the real robot. The effect of mass mismatches between the real and
the simplified model of the humanoid is compensated, to a significant extent, by
the fractional order PID controller, which ensures the robust response of the whole
system during a motion when a mass increase of 1 Kg is considered in each tip.

After comparing the behavior of the humanoid model when performing a stand-
ing up movement using the standard PID controller and the fractional order one,
it is concluded that, using Differential Evolution as gain optimizer, both controllers
track the reference satisfactorily for the nominal case. However, when the robot is
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overloaded, only the fractional order controller guarantee the stability of the system.



Chapter 6
Control of Humanoid Robots Executing
Complex Tasks

This chapter deals with the planning and execution of a complex task ordered to a
humanoid robot. The robot has to be able to execute high level postural tasks in the
presence of a cluttered environment. The motion execution must be soft and stable
and, at the same time, the robot has to be able to successfully avoid obstacles in
the environment. First, the robot has to identify the environment and the obstacles.
Second, the robot has to be able to move from the initial point to the final point
performing a set of postural movements. The postural task is performed in two levels,
a postural planning, which off-line computes the safe and stable postural movement
that allows the robot to navigate through the environment, and an online postural
control, which has to do with the execution, control and disturbance rejection that
makes possible the fulfillment of the task. This chapter encompasses the learning
strategies explained in chapters 3 and 4, the control method of chapter 5, while
using methodologies of chapter 2. The task selected as an example is a robot that
starts seated on a chair, stands up, walks avoiding obstacles until it reaches a door,
opens the door and leaves the room. This chapter also gives a practical significance
to this thesis.
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6.1 Introduction

The future robots will need to understand the order that is given to them, where
are the obstacles in the environment it has to avoid to perform that order and what
are the movements or actions it has to generate to successfully complete the task.

It all requires a set of multiples components like robot architectures, control
strategies, computer vision algorithms, motion planning methods, learning method-
ologies, etc.

This chapter does not intend to give an answer to everything the robot needs
to perform in a high level order like “stand up from a chair, walk to the door and
open it” or in any other high level order. The purpose of this chapter is to give
an ultimate significance to this thesis by proposing a method to plan and control a
humanoid robot from a postural point of view. This is not a definitive architecture
for postural control in humanoids, but a framework where almost all pieces of the
work developed in this thesis are put together.

6.1.1 Biological Foundation of Postural Planning and Con-
trol

Human posture control is governed by the Central Nervous System (CNS) and it is
developed during the firsts years after birth. Toddlers learn to maintain balance by
means of the experience acquired by trial and error.

The CNS is composed by four groups of elements: receptors, processors, effectors
and communication channels. The receptors captures the sensorial information by
means of the visual, vestibular and articular nervous systems. The information
transmitted through neurons of the peripheral nervous system arrives at the CNS
where is processed. In the information processing intervenes the spinal cord, the
cerebral trunk and the motor cortex depending on what reaction has to be triggered.
The resulting action is transmitted to the effector system by means of the efferent
neurons and finally the musculo-skeletal system generates the body movement.

There are several levels of nuero-musculo integration when a movement is pro-
duced. Furthermore, at any given moment, individual groups of muscles may have
different simultaneous goals to accomplish (Winter, 2009). Regarding balance main-
tenance, there have been advances in the understanding of balance control during
walking (MacKinnon and Winter, 1993), body response to arm voluntary movements
(Eng et al., 1992) and body balance recovery mechanisms (Rietdyk et al., 1999).

For neuroscientists like Prof. Horak, human postural control is intimately re-
lated to body orientation and equilibrium maintenance (Horak, 1987; Horak and
Macpherson, 1996; Horak, 2006). Postural orientation involves the active alignment
of the trunk and head with respect to gravity, support surfaces, the visual surround
and internal references. Sensory information from somatosensory, vestibular and
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visual systems is integrated, and the relative weights placed on each of these inputs
are dependent on the goals of the movement task and the environment. Postural
equilibrium involves the coordination of movement strategies to stabilize the center
of mass during disturbances of stability. When the body reacts to external perturba-
tions, there are two postural activities at the muscular activation level that occurs,
as it was observed by (Nashner and McCollum, 1985). The balance is maintained by
an ankle activity and a hip activity that coordinate the body to control the posture.

Generally, a human postural task is composed by two main types of control loops.
The first one is a feedback control loop that follows the postural motion reference
planned by the CNS and reacts to disturbances during slow motions. Furthermore,
there is a complementary open loop control system that allow fast reflexes and
corrective reactions. These postural strategies have led to the development of bio-
inspired planning and control strategies of postural motion for robots.

6.1.2 Postural Tasks in Humanoids Robots

An intense research work has been done since the beginning of robotics science to be
able to model and control a humanoid robot (Schaal, 1999; Katic and Vukobratovic,
2003; Peters et al., 2003; Kajita et al., 2003b; Calinon et al., 2007; Sentis, 2007;
Khatib et al., 2008; Siciliano and Khatib, 2008; Argall et al., 2009). A humanoid
robot is a complex machine which tends to have large degrees of freedom and is
characterized with a high capability of movement.

One basic characteristic that humanoid robot have is the detachment to the
ground. It is indeed the robot’s contact to the ground which makes the gait possible.
Therefore, robot movement is not only determined by the position and orientation
of its kinematic chains but also by the position and orientation of its body with
respect to an inertial frame. The position and orientation of the humanoid is usually
represented as a moving frame with respect to the inertial frame, usually addressed
as floating base. A humanoid robot can be treated as a platform composed by 4
actuated kinematic chains of n DoF each, representing both arms and legs, and a
virtual 6 DoF joint representing its floating base.

There is an intense literature in this area (Kuffner Jr et al., 2002; Kuffner et al.,
2005; Yoshida et al., 2005). Prof. Sentis and colleagues performed an intense work
studying postural control in humanoid robots (Khatib et al., 2004a, 2008; Sentis and
Khatib, 2005; Sentis, 2007; Sentis et al., 2010). Basing their research in the opera-
tional control of Khatib (1987), they dig into the problem of performing locomotion
and manipulation tasks while hierarchically performing different postures and main-
taining the balance. Their proposed controller is able to perform the desired task,
maintain balance and, at the same time, produce postures which implies a minimal
effort for the robot.

A similar approach is presented in (Monje et al., 2009b, 2011a) where a hu-
manoid robot collaborates with a human. The authors proposed a system based
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on two control modules, a collaborative control loop devoted to the generation of
stable motion patterns for a robot, given a specific manipulation task, and a posture
stability control loop, which guarantees the stability of humanoid for different poses
determined by motion patterns.

Mart́ınez de la Casa et al. (2013) studied the postural control problem in terms
of similarity with the postural control system of human beings. They analyzed the
human postural control system (Mart́ınez de la Casa, 2012), which is composed by a
closed loop system in charge of reacting to posture disturbances and an anticipative
open loop system able to preview the consequences of undesirable events and, at
the same time, trigger corrective actions. They proposed an architecture able to
predict postural corrections using neuro-fuzzy algorithms which are implemented in
the full-size humanoid TEO.

In the work of Arbulu et al. (2008), the authors proposed a method to generate a
dynamic motion from a initial static posture to a final static posture without losing
stability.

There is an intense work related to the problem of rejecting perturbations to
maintain the humanoid’s balance. Some works used inverted pendulum structures
to model the robot and proposed different control strategies (Stephens, 2007; Bonnet
et al., 2009; Kaynov et al., 2009a; Kajita et al., 2010). Other approaches takes into
account the whole-body structure of the robot (Stephens and Atkeson, 2010; Sentis
and Khatib, 2004; Khatib et al., 2004a, 2008).

6.1.3 Proposed Architecture

In Figure 6.1 the proposed architecture is presented. The first step is the generation
of the high level order: “stand up from a chair, walk to the door and open it” which
defines a complex task for the robot to achieve. This is the main objective that, in
the case of a humanoid robot, is a postural task.

The next step is an environment analysis. This analysis allows the robot to know
where are the obstacles located and where is the free space, in order to navigate
through it safely.

Then a postural planning is needed. Our proposal consist on 3 steps: a global
path planning, which gives an initial approximation of the humanoid’s COM path;
a generator of postural skills, which defines the posture primitives (initial, interme-
diate and final postures of the complete action) and the skills (transition between
two posture primitives); and finally a postural motion planning, which computes the
desired movement that the robot needs to perform to achieve the goal, optimizing
a certain performance metrics (the reward).

Finally, the robot executes the movement in the postural control phase. It in-
cludes a whole-body postural control, which defines the control strategy to follow
the desired trajectory, and a correction of postural disturbances, which corrects the
movement in the case of perturbations.
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Figure 6.1: Complete proposed architecture for the humanoid behavior. It consist on four
modules. The high level task, an environment analysis, an offline postural planning and
an online postural control.
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There is a close relationship between the architecture of Figure 6.1 and the
development of this thesis. The part of environment analysis is presented in this
chapter 6, as well as the global path planning. The generator of postural skills is
mentioned in chapter 3. The development of the postural motion planning is deeply
studied in chapters 3 and 4. The whole-body postural control is discussed in chapter
2, and finally the correction of postural disturbances is addressed in chapter 5. This
chapter gives an ultimate sense to this thesis and, at the same time, encompasses
all techniques developed during this work in one single common thread.

6.2 Environment Analysis

If robots are going to share our living space, they have be able to move in clustered
environments with reliability, avoiding fixed and moving obstacles. Smart environ-
ments are an easy solution to this matter (Coradeschi and Saffiotti, 2006; Pierro
et al., 2009c; Jardón et al., 2011; Pierro et al., 2012; González-Fierro et al., 2013b).

The main objective of a smart environment is to reduce the complexity of a
determined task and to help the robot to perform this task. First, by installing
external cameras or sensors, a global and more accurate view of the environment can
be perceived. It can help the robot to free computational resources by eliminating
the need of performing costly computational methods like SLAM, while at the same
time, it reduces the dependence of inner robot sensors. In addition, a smarter
high-level action planning can be performed by anticipating the location of fixed or
moving obstacles.

Next, all the theoretical principles used to integrate the perception feature into
the humanoid architecture will be explained.

6.2.1 Environment Perception

The very first goal of the robot is to understand its surroundings in order to construct
a valid path and therefore to achieve the desired goal successfully. For this study,
a RGB-D Asus Xtion Pro Live camera has been installed in the upper part of a
room with a certain angle. The role of the camera is to acquire a valid model of the
supporting plane (floor) and subtract all the possible obstacles that could interfere
during the path planning.

The sensor provided by the RGB-D manufacturer is ready to detect indoor 3D
points where errors increase quadratically from a few millimeters at 0.5 m to about
4 cm at the maximum sensor range (Khoshelham and Elberink, 2012). The camera
resolution is 640 x 480 pixels and the output video frame rate may vary between
25 and 30 Hz. The camera provides for each frame a depth map, color map and
infrared map. Infrared information has been used on previous researches to fix
lens distortions and other optical aberrations by means of a chessboard borders
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detection, but for this project the standard distortion matrix will be used to simplify
the problem and therefore only color and depth sources are used to determine the
architecture of the surroundings.

The complete camera flow acquisition is programmed using OpenNI library
(OpenNI, 2012) while cloud operations are done using Point Cloud Library (Rusu,
2010) with adhoc interface for the visualization. All the architecture follows a mod-
ular structure to facilitate the addition of new filters or improvements.

6.2.2 Downsampling the Data

The camera provides approximately 8M points per second that have to be managed
somehow. Due to the significant amount of data that has to be interpreted, it is
necessary to reduce the order of magnitude rejecting points in order to let the robot
react in real time. In this case, a VoxelGrid filter approach is used. A VoxelGrid
represents a small 3D box in space. All the points inside a VoxelGrid are approxi-
mated to the centroid reducing the amount of data. The bigger the VoxelGrid, the
smaller the data obtained and so the faster the operations (see Figure 6.2).

6.2.3 Supporting Plane Extraction

In order to determine the obstacles, the robot has to be able to differentiate between
floor and non-floor objects. This distinction can be obtained using depth map
perception and 3D constraints. In this study, normals extraction is first performed
and then the supporting plane is acquired.

Normals Computation

Surface normals are very useful to understand the geometry surfaces and also to
reconstruct and understand the point cloud. Normal extraction means estimating
the normal of a plane tangent to the surface. This process can be as simply as com-
puting the cross product between a pair of nearest points for any query point. This
technique is not recommended for noisy point clouds because results are inconsistent
and extremely variable (Dey et al., 2005).

The normal extraction was stated as a least-square plane fitting estimation prob-
lem. With the analysis of the eigenvectors and eigenvalues of a covariance matrix
C created from the nearest neighbors to the query point, it is possible to determine
the surface normal

C =
1

k

k∑
i=1

(pi − p̄)(pi − p̄)T , C · ~vj = λj, j ∈ {0, 1, 2} (6.1)
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Figure 6.2: Down-sampling the point cloud using voxelgrids at different sizes. Leaf sizes
are 0.005m, 0.01m, 0.05m and 0.08m respectively.
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where λj represents the jth eigenvalue and ~vj is the jth eigenvector of C. Normals
orientation is solved applying the viewpoint constraint given by

~ni · (vp − pi) > 0 (6.2)

knowing that the primary surface direction is given by the third eigenvector

~ni = ±~v3 (6.3)

Plane Estimation

Once the normal point cloud is computed for each frame, the next step is to de-
termine the plane which fits best in the point cloud. To perform this operation
RANSAC algorithm (Random Sample Consensus) is applied with a geometric model
of a plane. RANSAC iterates over the whole point population and estimates the
parameters of the most suitable plane. To do this, the method distinguishes between
inliers (points that fit the model) and outliers (points outside the model) iteratively.
For this study, 70% of points are required to be part of the floor and the rest are
supposed to be obstacles.

The output of the plane estimation are the classical four parameters that gener-
ates a plane equation

Ax+By + Cz +D = 0 (6.4)

With this information in mind, it becomes straightforward to split up the original
depth map into two maps: the first one containing points inside the supporting plane
and the other one gathering all the obstacles around the robot.

6.2.4 Obstacle Clustering

The last step in the perception architecture consists on converting the outliers of the
previous section into bounding boxes. Those groups are then introduced into the
path planning algorithm as geometric constraints. In order to track each obstacle,
a clustering process is performed.

Euclidean Clustering algorithm is based on K-means using a KD-tree to boost the
performance of the process. It is similar to flood-fill algorithm in image processing.
The followed steps are stated in the Algorithm 4.

6.3 Postural Planning

The postural planning involves the postural strategy the robot has to follow to
successfully achieve the desired behavior or the high level order given by the human.
These postures can be seen as the postural configurations the robot uses to achieve
a specific goal. Regarding displacement activities they include sitting, standing up,
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Algorithm 4 EUCLIDEAN CLUSTERING

1: input point cloud data set P
2: build KD-tree (P )
3: empty list of clusters C
4: empty queue of points to be checked Q
5: for all pi in P do
6: add pi to Q
7: for all pi in Q do
8: P k

i = search pki of neighbours of pi with r < rthreshold
9: for all pki in P k

i do
10: if Q not contains pki then
11: Q← pki
12: end if
13: end for
14: end for
15: C ← Q
16: end for
17: check pi in C

standing still, walking, running, jumping, lying down, and bending down. Regarding
manipulation activities they include grasping, pushing, pulling and manipulation.
All these activities can be seen as postural activities if they are analyzed from the
postural point of view, we are not only interested in the activity per se, but in the
posture the robot needs to acquire to complete the activity with a good performance.
This good or bad performance can be measured by means of the reward, as it was
stated in chapter 4 of this thesis. The reward can integrate in a single metric
stability, human movement likeliness, robot safety, effort, movement continuity or
movement feasibility.

The whole body postural planning of a humanoid robot follows three steps: first
there is a global path planning that gives an initial approximation of the COM path
the robot has to follow to successfully achieve the desired goal. Second, to define
the correct set of postural skills is needed, which includes the skills the robot has
to generate to advance through the complex task in a proper way. The final step is
the computation of a complete postural motion planning, meaning the interpolation
between postural primitives while fulfilling the goal, satisfying the robot constraints
and optimizing a behavior reward.

6.3.1 Global Path Planning

Two of the most successful path planning algorithms include Probabilistic Roadmap
Method (PRM) (Kavraki et al., 1996) and Rapidly-exploring Random Tree (RRT)
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Figure 6.3: Process of RRT-Connect merging two RRT trees.

(LaValle, 1998). We used the Bi-directional Rapidly-Exploring Random Trees Al-
gorithm (Bi-RRT) (Kuffner and LaValle, 2000). A reference book regarding this
matter is (Sciavicco et al., 2009).

The Rapidly-exploring Random Tree (RRT) was introduced in (LaValle, 1998) as
an efficient data structure and sampling scheme to quickly search high-dimensional
spaces that have both algebraic constraints (arising from obstacles) and differential
constraints (arising from non-holonomy and dynamics).

The key idea is to bias the exploration towards unexplored portions of the space.
In the paper (González-Fierro et al., 2013b), we presented an approach that is
tailored to problems in which there are no differential constraints, and the problem
can be expressed in C-Space. If there are external sensors that help the robot to
make a map of the environment, it is not necessary to do time consuming and
complex SLAM. All it is needed is a simple path planning.

As illustrated in Figure 6.3, the RRT-Connect works by extending and connect-
ing two trees towards each other. Two trees (Ta and Tb), rooted at two different
milestones (qa and qb), either be local tree or global tree, are maintained at all times
until they are connected to each other and merged into one single RRT.

At every time step, a random configuration qrand is sampled inside the free space
Cfree. The EXTEND function determines the nearest configuration of qrand in the
current tree Ta, denoted as qnear. After that, Ta extends in the direction of qnear for
one step, generating a new configuration qnew, using a fixed incremental distance.

From this point three situations can occur:

1. Reached: qnew = qrand and the configuration is directly added to the tree
because it already contains a vertex within a fixed distance of qrand.

2. Advanced: qnew 6= qrand and it is added to the tree.
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3. Trapped: the new configuration is rejected because it does not belong to the
free space Cfree.

At the same time, a tree Tb starts to grow from the goal configuration qb. The
other tree Tb uses another procedure called CONNECT to extend towards qnew
as much as possible. The CONNECT procedure is a greedy function that can
be considered as an extension of the EXTEND function. Instead of attempting
to grow towards the sample qrand, it iterates the EXTEND function towards qnew,
until a configuration is reached or there is an obstacle.

If Tb can successfully reach qnew, the two trees are connected and merged into
one single RRT. It is all explained in Algorithms 5, 6, 7 and 8.

Algorithm 5 EXTEND(T,q)

1: qnear ← Nearest-Neighbour(q,T)
2: if new config(q, qnear, qnew) then
3: add vertex(qnew)
4: add edge(qnear, qnew)
5: if qnew = qrand then
6: return reached
7: else
8: return advanced
9: end if

10: else
11: return trapped
12: end if

Algorithm 6 BUILD RTT

1: init T (qinit)
2: for all k = 1:K do
3: qrand ← Rnd.Cfg
4: EXTEND(T, qrand)
5: end for
6: return T

In every iteration, one tree is extended to the new configuration and the other
attempts to connect its nearest branch to the other tree reaching. Then, the roles
are reversed by swapping the trees. This causes both trees to explore the free space
while attempting to connect each other.
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Algorithm 7 CONNECT(T,q)

1: do
2: S ← EXTEND(T, q)
3: until not (S = advanced)
4: return S

Algorithm 8 RRT CONECT PLANNER(init,goal)

1: init Ta(qinit), Tb(qinit, qgoal)
2: for all k = 1:K do
3: qrand ← Rnd.Cfg
4: if not EXTEND(Ta, qrand) = trapped then
5: if CONNECT(Tb, qnew) = reached then
6: return path(Ta, Tb)
7: end if
8: end if
9: swap(Ta, Tb)

10: end for
11: return failure

6.3.2 Postural Skill Generator

This module generates the skills the robot needs to follow to be able to plan the
postural behavior.

Primitive postures can be defined as postures that does not imply a movement.
Some examples can be standing still, seated, laid down, bended down, etc. The
robot can acquire any of these postures with different body configurations and with
different purposes. The robot will not have the same posture when it is going to
open a door than when it is going to grasp an object from a table.

The transition between two postures can be defined as a skill. Some examples of
skills can be sitting down, standing up, walking, running, jumping, lying down, etc.

The main difference between posture skills and normal skills is the focus on the
posture. There are thousand of ways of walking, in some cases the robot may walk
imitating the human postural behavior, it can walk lowering the COM to be more
stable or it can even walk while optimizing some index that requires some postural
configuration.

6.3.3 Postural Motion Planning

The postural motion planning can be understood as the computation of the pos-
tural trajectories generated in a robot to successfully achieve a skill. This term
shares a significant similarity with the term humanoid motion planning or simply
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motion planning (Kuffner Jr et al., 2002; Kuffner et al., 2005; Yoshida et al., 2005).
Motion planning is defined as the necessary plan that enable the robot to execute
the assigned task without colliding with the environment obstacles (Sciavicco et al.,
2009).

However, usually motion planning does not pay attention to the postural con-
figuration of the robot. The postural motion planning is deeply involved not only
with the postural transition that the robot achieves when performing a behavior,
but also with the level of performance, that in this work is represented by means of
a reward profile. Therefore, the postural motion planning is indeed a type of motion
planning but with an emphasis in the postures.

During the development of this thesis, several methods of postural motion plan-
ning have been proposed (González-Fierro et al., 2013a, 2014a). These methods are
applied to only one dynamic posture that can be any general posture, but in these
works is the task of standing up from a chair. They are widely discussed in chapter
3.

Besides, it was also developed a generalization of the previous methods to a set
of sequential behaviors. They included walking forward and backwards, turning,
grasping a door knob and open a door. They are addressed in chapter 4 as a general
formulation and also in chapter 2.

There is also a common thread in all postural motion planning methods proposed
during the realization of this work. It is the satisfaction of an optimality criteria
which guides the postural motion planning. In traditional learning from demon-
stration is the metrics of imitation as stated in (Schaal et al., 2003), it can be a
the joint trajectory (González-Fierro et al., 2012), it can be the cartesian trajectory
or it can be an effort function (Anderson and Pandy, 2001; Khatib et al., 2004b;
Crowninshield and Brand, 1981). This metric can be a reward that measures the
goal performance, as we proposed (González-Fierro et al., 2013a, 2014a) or it can
be any other metric.

6.4 Postural Control

Postural control can be defined as controlling the body’s position in space for the
purpose of stability and orientation for the robot to move from one static posture to
another (Shumway, 2000). Postural control is an integral component of redundant
manipulators and multi-legged robots where the goal is to enhance the execution of
manipulation and locomotion behaviors (Sentis, 2007). It plays an important role
in the optimization of these behavior performance.

This section presents some postural control methods that were developed during
this thesis. Some of them are original and some of them are taken from the state of
the art and implemented in the robot. Furthermore, the addition of a robust control
method is discussed to improve the overall system performance and help to correct
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disturbances.

6.4.1 Whole Body Postural Control

Whole body postural control has to do with all control techniques the robot precise
to follow the desired postural trajectory generated in the postural planning module.

Until now, all developments were performed off-line and the output was a task
space trajectory that is transformed in a joint trajectory using the robot’s Jacobian.
There is a control part that has not been addressed yet but it is inherent to all robot
movements.

In chapter 3, where a method for imitating and innovating human behaviors was
developed, the robot follows a postural trajectory which is different in the case of
the imitation behavior than in the case of the innovation behavior. The objective
in the imitation part is to perform a movement that imitates the human strategy
when standing up, and at the same time fits the humanoid constraints. On the
other hand, in the innovation part, the objective is to perturb the previous initial
solution to find a new movement which improves the imitation behavior from the
humanoid’s perspective.

In Figure 6.4(a) it is shown the desired joint trajectory of the actuated 3-link
kinematic chain and the output of the PD controller in the imitation process. Fig-
ure 6.4(b) shows the innovation one. It is also represented the initial, middle and
final points for the piecewise polynomial. The middle point is the result of the
minimization of the fitness function (3.14).

Another example of whole body postural control is the walking pattern routine
computed in (González-Fierro et al., 2013b). We selected the initial and final posi-
tion of the walking trajectory, which in addition to the 3D model of the environment,
was the input to the Bi-RRT algorithm. The result of this path planning was a pre-
liminary cartesian COM trajectory. The output of the Bi-RRT algorithm can be
seen in the following Figure 6.5.

The initial point is located near the bottom of the scenario and the final point
is near the front door. To configure the free space, the Bi-RRT algorithm does not
only take into account the data of the xml file, but also the dimensions of the robot
plus a security quantity. Finally, from the COM trajectory, the joint trajectory is
generated using a kinematic inversion.

6.4.2 Correction of Postural Disturbances

There are many works related to the posture correction of humanoid robots (Stephens,
2007; Kaynov et al., 2009a; Kajita et al., 2010; Stephens and Atkeson, 2010; Pierro,
2012; Mart́ınez de la Casa et al., 2013), others related to the computation of postures
as a reaction to some input (Bueno et al., 2012, 2013b) or works that maintain a
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Figure 6.4: Desired joint trajectory of the three actuated joints and output of the PD
controller in the imitation process (a) and in the innovation process (b) of a humanoid
robot standing up from a chair. The red dot represents the initial, middle and final points
of the piecewise polynomial of (4.24).
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Figure 6.5: Top-view schema of the complete scenario with obstacles in dark gray, global
path planning represented by the dotted line, steps plotted as blue boxes and finally COM
path shown with a red thin line.
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determined posture while walking (Choi et al., 2007) or performing a task (Khatib
et al., 2004a, 2008; Sentis and Khatib, 2004, 2005; Sentis et al., 2010).

Our proposal in this matter is using a robust control technique like fractional
control (González-Fierro et al., 2013e). Fractional controllers are able to reject dis-
turbances and absorb mismatches in the robot model even with a clear difference
between the real robot and the robot model. Therefore, the use of a robust con-
troller like a fractional PIλDµ minimizes the necessity of computing a complete
and accurate multibody robot model, reducing the mathematical complexity and
computation time. An extension of this idea was developed in chapter 5.

6.5 Experimental Results

In this section the experimental results are presented and discussed. The experiment
carried out is the high level order “stand up from a chair, walk to the door and open
it” which is executed in a cluttered environment by the humanoid HOAP-3.

6.5.1 Real Environment Analysis

The first step is to extract the supporting plane equation from the point cloud.
Afterwards, the objects are identified using Euclidean Clustering Algorithm, and
the equation of the bounding box containing each object is obtained. The plane
coefficients and the bounding box of every object and its position are written to a
xml file, which defines the 3D model of the environment.

In Figure 6.6 a simulation of the environment is shown using OpenRAVE (Di-
ankov, 2010). Objects identified by the Asus camera are represented as light grey
boxes. The first one is ahead the robot, and the second one is to its right. The floor
is represented in dark grey. The rest of the environment was manually introduced
and is irrelevant to the experiment. The yellow dotted line represents the field of
view of the RGB-D camera installed in the upper part of the scenario.

With the help of the camera, the system identifies and clusters the obstacles
as it is showed in Figure 6.7. It also identifies the floor using the supporting plane
estimation. When both obstacles and floor are identified and their position obtained,
a file is generated. This files has the information that is included in the simulation
environment OpenRAVE to perform the path planning.

6.5.2 Postural Planning in a Humanoid

The result of the global path planning algorithm, integrating the data obtained with
the perception sensor, is represented in Figure 6.8. The HOAP’s head represents
the COM of the complete robot and the plotted trajectory the final COM path
estimation. The algorithm is able to obtain a safe trajectory for the robot. Even
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Figure 6.6: Simulation of the environment with bounding boxes representing obstacles
detected by the RGB-D sensor. Yellow dotted line represents the field of view of the RGB-
D sensor.

Figure 6.7: In the snapshot the environment recognition is performed. The green dots
represents the floor and the blue dots represent the obstacles. Finally a bounding box of
the obstacles is extracted together with their dimensions and their positions.
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Figure 6.8: Resulting path planning of the COM plotted in OpenRave. HOAP head
represents the COM of the complete robot. It is also represented the obstacles as grey
boxes.

though there are other methods more precise like (Garrido et al., 2009), the selected
method has a good trade between precision and computational time.

Once the global path planning is computed, the postural skill generator plans
which are the postural primitives and skill sequence the robot has to follow to
complete the task. In Figure 6.9 the sequence of generating a complete task of
standing up and leave the room is showed. The postures defined are four, the robot
is seated, then standing near the chair, then standing near the door and finally
standing with the door opened. The transition among this postures are the skills
the robot needs to generate to complete the task. The skills are standing up, walking
and opening a door.

In this thesis is not included an automatic generator of postural skills. Right
now the postures and skills are selected by the programmer, not by the robot. It is
proposed as a future work a decision process where the robot is able to understand
what is the objective of the order, what is its current postural state and what are
the sequence of skills that the robot needs to follow to complete the order.

The final step is the computation of the postural motion planning. For the first
skill, standing up from a chair, we used the method proposed by González-Fierro
et al. (2013a, 2014a) and detailed in chapter 3. For the second skill, walking, we
used the cart-table model proposed by Kajita et al. (2003a). Finally, for the last
skill, opening a door, we used the method detailed in chapter 4.
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Figure 6.9: Postural skill generation process for fulfilling the order “stand up from a
chair, walk to the door and open it” in a humanoid robot. It consists on 4 postures, which
are the initial and final states of the movement, and three skills, which corresponds to the
dynamical transition between postural primitives.
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Figure 6.10: Several frames representing the real performance of the robot path planning
in the laboratory. The black bucket is one of the obstacles avoided.

6.5.3 Postural Control in a Humanoid

The last step towards the execution of the complete task is the postural control of
the robot, starting with the module whole body postural control. It includes the
control strategy in the standing up, in the walking pattern and in the opening door
behavior.

In Figure 6.10 a group of snapshots of the real humanoid performing the nav-
igation is shown. The robot performs a safe locomotion trajectory avoiding the
obstacles in the environment.

The last module, the correction of postural disturbances using fractional con-
trollers (González-Fierro et al., 2013e), was not implemented in the real robot, just
in simulation. The implementation of this method in the real robot is proposed as
future works.
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6.6 Discussion and Conclusions

This chapter introduced the architecture that supports this thesis. It is based on
four steps, first the high level order given by the human, second an analysis of the
environment to distinguish between the free space and the obstacles. The next
step is the postural planning. It involves all postural movements that needs to be
computed to allow the robot to plan the successful sequence of skills. They are
the reference that has to be followed with the help of the postural control, which
produces the robot movement in real time.

It has to be highlighted that the complete architecture is centered in the robot’s
movement from a postural perspective. It is not our interest the skills executed by
the robot but what is the postural sequence the robot follows and what is the perfor-
mance of this sequence. Is it a performance which imitates the human performance
or is it even better for the robot body? They are questions that we addressed during
this chapter and throughout this thesis.





Chapter 7
Conclusions and Future Works

This thesis has attempted to contribute in some areas related to posture behavior of
humanoid robots. From the beginning, this work has had a differential feature if it is
compared with a usual Ph.D. thesis. It has an initial framework which is the center of
all developed studies. The framework is the high level order “stand up from a chair,
walk to the door and open it” that the robot needs to acomplish. To execute that
order, the humanoid robot needs to perform a set of movements, it needs to avoid a
series of obstacles and it needs to adopt a determined posture or set of postures. All
needed procedures to successfully achieve this order are gathered in this thesis. The
amount of contributions that this thesis has generated are related to learning from
demonstration, reinforcement learning, non-linear control and motion planning. In
this chapter the conclusions of this thesis are summarized and a discussion of the
positive as well as the negative aspects of the developed work is presented. There
are also proposed some future lines of development that can be used to improve the
current work or to serve as a start point for new developments.
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7.1 Conclusions

The problem of postural behavior in humanoids has not being solved so far and it is
being addressed by the scientific community with great interest. The advancement
in control and learning methods, together with the attention that robotic science
is recently drawing in areas not related directly to science, makes this matter of a
significant importance.

If future robots are going to share our living space, they will need to be able
to move safely, understand our orders, collaborate with us and have a high level
of autonomy. Every chapter of this thesis attempts to give a step forward in the
development of a humanoid robot able to really be our partner. Next, the summary
and discussion of every chapter is presented.

In Chapter 2 an introduction to the basic mathematical tools used in this thesis
is presented. The equation of motion of different humanoid models is developed, the
equation for the triple inverted pendulum takes a superior relevance since it is the
most used model in the thesis. Then, the most used method for dynamic balance is
explained, the ZMP, which is in deep relation with the locomotion methods presented
afterwards. A simulated and a real walking pattern generation is presented. Finally,
a simple method for whole body humanoid movement generation is studied. The
method allows the robot to mimic a human movement and adapt it to its size. This
method is the first step towards a most advanced postural behavior.

Chapter 3 introduces the concept of the reward as the basis of comparison
between the postural behavior of a human and a robot. The reward is defined as a
metrics of the action goal, which is evaluated in terms of stability and effort and is
shared between any actor that is imitating an action. It also encodes the behavior in
a single magnitude, therefore a robot can use it to imitate the behavior of a human
but it can even improve it, generating a new behavior which is more suitable to the
robot’s body configuration and constraints.

A generalization of the previous idea is presented in Chapter 4. It takes into
account not only one action but a set of different actions that are sequentially
executed by the robot. The behavior transference between the human and the robot
is performed through a context-based reward profile, which is sequentially selected
based on the current behavior goal.

Chapter 5 presents a robust control method for controlling humanoid reduced
models based on fractional order controllers. The presented method addresses the
question of what kind of humanoid robot model should be used, whether a complete
mass distributed model or a simple mass concentrated model. The solution presented
is a combination of fractional order controllers and reduced robot models, which
cancels the need of having a distributed model by absorbing disturbances in the
environment and mismatches in the model.

Finally, Chapter 6 presents the complete architecture of the thesis, discussing
concepts like postural planning and postural control. It also proposes a closed
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solution to the high level order “stand up from a chair, walk to the door and open
it” which applies methods from the state of the art and some others developed in
the thesis.

7.2 Key Contributions

The main contributions presented in this thesis are summarized as follows:

1. Regarding Postural Motion Planning and Control:

• We proposed to use a multimodal reward profile as a measurement of the good
or bad performance of the action goal. The original idea comes from the work
of Alissandrakis et al. (2002, 2007, 2009) where the behavior is accomplished
at three levels. In (González-Fierro et al., 2013a, 2014a) we extended the idea
of trajectory level where the behavior is defined as a set of subgoals that are
sequentially reached. We used a temporal reward trajectory to represent the
behavior.

• We proposed a new behavior representation using a Markov Transition Matrix
named Reward Transition Probability Matrix (RTPM), that summarizes the
state transition probabilities in the reward space. It represents the motion
strategy in terms of the task goal, which we assumed is common for a human
and a humanoid. This generic method can be extended to other movements
like sitting down, crouching or grasping an object subject to a set of robot
constraints.

• In Chapter 6 an architecture for the planning and control of complex postural
tasks is proposed. It combines offline planning and online control, always from
the point of view of the postural behavior of a humanoid robot.

2. Regarding Learning from Demonstration:

• We presented a new skill transfer method of stand up behaviors from human
demonstrators to humanoid robots, that involves comparing temporal tran-
sition in a common multi-objective reward landscape. The main advantage
is that we could accommodate the behavior even if the human and the robot
have a mismatch in their kinematic structures, weights, and heights (González-
Fierro et al., 2013a).

• In a first approach (González-Fierro et al., 2013a), we proposed to use the
average multimodal reward profile as the basis of comparison between the
human and the robot. Since the reward defines the behavior performance, we
assumed that we can compare the human and robot performance by optimizing
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a policy that minimizes the error between the human’s mean reward profile
and the robot’s mean reward profile.

• In a second proposal (González-Fierro et al., 2014a), we achieved imitation
learning by finding a policy that minimizes the error between the predicted
robot reward profile, if it behaves like a human which is computed using the
RTPM, and the actual reward profile. The consequence is a trajectory that
fits stability, torque and joint limit constraints while producing a movement
that imitates the human behavior.

• The idea of imitation learning through a reward profile is extended to a set of
sequential skills, computing a complex task. The work is presented in Chapter
4.

3. Regarding Skill Innovation:

• We refined the robot behavior by maximizing the positive difference between
a new generated reward and the imitation reward, producing the innovation
of new postural motions that are translated in a more suitable behavior of the
humanoid robot (González-Fierro et al., 2014a).

• In Chapter 4 the same idea of skill innovation is applied to a set of sequential
skills. The method is able to generate, not only a better performance for the
robot in a single skill, but a better performance in the complete motion, which
includes all sequential skills together.

4. Regarding Modelling and Control:

• In (González-Fierro et al., 2013e) we proposed a method for modelling and
control of humanoid robot based on fractional order controllers and mass con-
centrated models. Our method proposes an alternative to mass concentrated
models like (Kajita et al., 2001, 2003a; Komura et al., 2005; Kaynov et al.,
2009b), which have an easy mathematical formulation, are fast in terms of
computational cost but have the disadvantage that they have mismatches in
the model, which can produce undesired behaviors. It also proposes an al-
ternative to mass distributed models like (Kajita et al., 2003b; Khatib et al.,
2008; Arbulú et al., 2010), that have a complex formulation, are slow but use
a precise humanoid model. A combination of a robust control method plus a
mass concentrated model has the advantage of having a simple mathematical
formulation, of being fast in terms of computational cost and also of absorbing
the mismatches in the model due to the fractional order controller.
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7.3 Future Works

There is a long path before creating a truly human-like skilled humanoid robot. Here,
I would like to encourage researchers to extend and enhance the work presented in
this thesis.

Robotics is expected to grow into a wide range of robots with different embodi-
ments. Therefore, the correspondence problem is likely to become one of the bottle-
necks in the robotics development. It will be necessary to develop new approaches
that explore intention understanding and goal emulation techniques.

There is a broad spectrum of research in the way the reward profile is selected.
We do not really know what is the process that appears in the brain that optimizes so
gracefully and smoothly the human motion. It will require an effort in neuroscience
studying the brain and how infants learn. It will be necessary as well to explore
the hidden objectives that the user is not aware of. A promising technique that is
currently overpassing all machine learning records is deep learning (Hinton et al.,
2006; Lee et al., 2009; Ngiam et al., 2011; Le, 2013). It has the advantage that the
method performance improves as it grows the number of learning examples.

Another open path is the transference of behaviors from robot to robot or from
human to human. Using some of the methods proposed in this thesis, and taking
ideas from previous approaches like (Nanayakkara et al., 2007), it may be possible
to transfer new skills or improve the previously learned by using a teacher-learner
approach, where the teacher is the skillful individual or robot that is imitated by a
group of amateur individuals or robots. It can even lead to the rising of newer and
better skills than the ones taught, producing a new teacher that becomes the new
reference for the group.

It is also proposed as a future work the implementation of the fractional con-
troller in the real humanoid. Furthermore, it would be interested to compare the
performance of a combination of a reduced model and a fractional controller with
the combination of a complete model and a fractional controller. Even though a
mass distributed model is much more precise than a concentrated model, there are
always mismatches between the real world and the model, which can be set aside
with the integration of a fractional controller. It will be interesting to perform a
benchmark of both methods.

Finally, it will be usefull to incorporate a decision module where the robot is
able to autonomously understand a complex order, know what is its current postural
configuration and generate the sequence of skills needed to complete the order.
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N., and Nanayakkara, T. (2013). A Humanoid Robot Standing Up Through
Learning from Demonstration Using a Multimodal Reward Function. In IEEE-
RAS International Conference on Humanoid Robots, 2013. Humanoids 2013.
IEEE.
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and Balaguer, C. (2013). Augmented Reality and Social Interaction platform
through Multirobot Design. In Proceedings of Robocity2030 11th Workshop:
Robots Sociales, pages 131–143.
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Appendix A
HOAP-3 Robot

In this thesis we used the humanoid HOAP-3 as the experimental platform (Fig-
ure A.1). It is a robot of small size and height, 60 cm and 9 Kg approximately,
designed and manufactured by the Japanese company Fujitsu. HOAP stands for
“Humanoid for Open Architecture Platform” and this model is the evolution of the
previous versions, HOAP and HOAP-2. In 2001, Fujitsu released its first commercial
humanoid robot named HOAP. The HOAP–2 was released in 2003, followed by the
HOAP–3 in 2005. Sadly, the company closed the funding for robotics development
so in the short term there will not be a new version of the HOAP series.

HOAP-3 robot has 28 degrees of freedom (DoF) distributed as it is shown in
Figure A.2. It possesses 6 DoF in each leg, 6 in each arm, 3 in the head and 1
in the hip. Even though the humanoid has 28 DoF, it has only 23 servomotors.
The first 21 control legs, arms and hip as it is showed in Figure A.3. These motors
incorporate relative enconders and can be controlled in position and velocity.

Figure A.1: Humanoid robot HOAP-3.
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Figure A.2: Degrees of freedom of HOAP-3 robot.

Motors number 22 and 23 does not have encoders. Motor 22 controls the 3 DoF
of the head (pitch, yaw and roll) and motor 23 controls the hand rotation and the
griper.

The robot incorporates an embedded PC-104 inside the back pack (Figure A.4).
It is a Pentium of 1.1 GHz with 512 Mb of RAM and a Compact Flash memory of 1
Gb. It includes a WIFI connection IEEE802.11g and 4 USB ports. The processing
capacity of the robot is low. Some algorithms that require a high computational
capacity, like computer vision algorithms, have to be computed outside the humanoid
CPU. Those related to low level control are usually computed inside the robot.

The operating system is a Real Time Linux, based on Fedora Core 1 with the
kernel 2.4. In order to control the robot there are two connection methods, the
first is wireless through telnet, the second one is a direct connection by means of a
USB cable that connects the external PC directly with the motors and drivers of
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Figure A.3: HOAP joints and the associated motor.
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Figure A.4: Embeded PC of the humanoid HOAP-3.

the robot. Besides, the robot can be powered directly by cable or through a battery
of 24V. The robot currently uses YARP (Metta et al., 2006a) as a communication
framework.

To complete the humanoid functionality a set of sensors were added. It has two
stereo cameras for stereoscopy vision, a microphone, a speaker, distance infrared
sensors, FSR force sensors, gyroscopes and accelerometers in the 3 axis.

We can not doubt that the HOAP-3 is a very complete and versatile platform,
which includes all necessary features to develop any type of robot based research.



Appendix B
Mass Distribution of an Average Human

In Figure B.1 and Table B.1 the distribution of an average human body is shown
along with the corresponding percentage for each link.NASA (1995)

Figure B.1: Body segments of a United State male crew member.

Table B.1: Mass distribution of the body segments of a United State male crew member
and distribution of the actuated 3-link kinematic chain’s mass for the human.

Segments (see Figure B.1) Mass (g) Percentage (%)
Head (1) 4550 5.78
Neck (2) 1270 1.61

Thorax (3) 31760 40.32
Abdomen (4) 2960 3.76

Pelvis (5) 15150 19.24
Upper arm (6) 2500 3.17

Forearm (7) 1720 2.18
Hand (8) 610 0.77

Hip flap (9) 4380 5.56
Thigh minus flap (10) 7920 10.06

Calf (11) 4760 6.04
Foot (12) 1180 1.50

Torso (3 + 4 + 5) 49870 63.32
Thigh (9 + 10) 12300 15.62

Forearm plus hand (7 + 8) 2320 2.95
Total weight 78760 100
Link 1 (m1) 7.54
Link 2 (m2) 34.86
Link 3 (m3) 57.60
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Arbulú, M., Balaguer, C., Monge, C., Mart́ınez, S., and Jardon, A. (2010). Aim-
ing for multibody dynamics on stable humanoid motion with special euclideans
groups. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 691–697. IEEE.
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Pierro, P., Hernández, D., González-Fierro, M., Blasi, L., Milani, A., and Balaguer,
C. (2009c). Humanoid teleoperation system for space environments. In Advanced
Robotics, 2009. ICAR 2009. International Conference on, pages 1–6. IEEE.

Pierro, P., Hernández, D., Herrero, D., González-Fierro, M., and Balaguer, C.
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