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Humanoids can learn motor skills through the Programming by Demonstration (PbD) framework,
which allows matching the kinematic movements of a robot with those of a human. Continuous Goal-
Directed Actions (CGDA) is a framework that can complement the paradigm of robot imitation.
Instead of kinematic parameters, its encoding is centered on the changes an action produces on ob-
ject features. The features can be any measurable characteristic of the object like color, area, etc.
The execution of actions encoded as CGDA allows a robot-configuration independent achievement of
tasks, avoiding the correspondence problem. By tracking object features during action execution, we
create a trajectory in an n-dimensional feature space that represents object temporal states, allowing
generalization, recognition and execution of action effects on the environment. Experiments have been
performed, using a humanoid robot in a simulated environment. Evolutionary computation was used
for joint parameter calculation of a humanoid robot. The objective is to generate a motor trajectory
which leads to a feature trajectory equal to the objective one. In one of the experiments, the robot
performs a spatial trajectory based on spatial object features. In a new experiment, the robot paints
a wall by following a color feature encoding.

Keywords: learning from demonstration; goal-directed imitation; robot learning; evolutionary
computation; motor primitives

1. Robot Imitation

The field of robot imitation has been dominated by motor parameter reproduction [1]. This ap-
proach has been called programming by demonstration (PbD) [2] or learning from demonstration
(LfD). These methods encode an action by recording the joint motor parameters of a demon-
strator when performing the action, and then applying different machine learning techniques to
extract a generalization. The demonstrator can either be the guided robot itself, or an external
agent.

Some authors have questioned whether motor imitation alone is useful for humanoid robotics.
Schaal asked in [3] as an ‘outstanding question’ to be answered: How can the intention of a
demonstrated movement be recognized and converted to the imitators goal?. Additionally, [4]
summarized the three key concepts of imitation: ‘what to imitate’, ‘how to imitate’, and ‘when
to imitate’. The Continuous Goal-Directed encoding of tasks aims to fulfill mainly the ‘what to
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imitate’ concept. We will also give some insights for the ‘how to imitate’ with our particular
encoding.

We believe that imitation could be improved, and some of the stated problems solved, by
taking the action consequences in the environment more into account. These consequences will
be the goals of the task (a ‘paint’ action will modify the color of an object that is painted). When
looking at how nature faces the problem of imitation, psychology indicates that the human brain
encodes actions as end-goals. For example, when children imitate others grasping a person’s ear,
they tend to imitate the action goal (which ear to grasp) rather than the kinematic aspects of the
action (which hand is used to perform the grasping) [5]. This behavior seems to be related with
the mirror neuron system [6]. However, in usual robot imitation, there is a lack of codification of
action effects, and only the kinematic aspects are considered. This fact limits flexibility in action
execution. The robot can, effectively, repeat the same movements, but the action goals remain
a mystery for it [4].

Let us overview some representative examples of PbD. In [2], a human demonstrator performs
a task several times (e.g. hitting a ball) using a robotic arm. Positions, orientations and velocities
of the arm are recorded, and the number of representative states of the action are estimated
with Hidden Markov Models (HMM). HMM are used to handle spatio-temporal variabilities of
trajectories across several demonstrations. Finally, and in order for the robot to execute the
trajectory, Gaussian Mixture Regression (GMR) is used to create a regression function using
previous HMM states. This reconstructed trajectory is the one the robot reproduces to imitate
the human movement. Another common technique used, along with HMM [7] [8], is Gaussian
Mixture Models (GMM) as in [9] [10].

We define goal directed actions as those in which the only parameters analyzed are the ones
belonging to the elements affected by the action. When talking about goal directed actions in
robotics, a goal encoding is found in [1], where they extract goals as relevant features that appear
most frequently from a demonstrated dataset, this is, the invariants in time. This framework
was extended in [11] where, despite they learn the kinematic trajectory to perform actions, they
encode action goals, replicating [5]. In the robotic experiment, during the demonstration, the
robot tries to extract a set of invariant constants. Later, the robot computes the trajectory
that best satisfies the constraints. Another example is [12], where an object must be grasped
and then placed at one of two presented targets that have different heights. There is a bridge
shaped obstacle in the path. Depending on the height of the bridge, the object must be grasped
differently and through a different path.

There are no exclusively continuous goal directed actions references in literature, to the au-
thors’ knowledge. A relatively near work [13], uses a combination of object spatial and demon-
strator hand movement tracking. In [13], they build a system with a set of primitive actions
(inverse models). When a human demonstrator performs an action, they continuously track the
object and the demonstrator’s hand spatially through time. At the same time, they run all in-
verse models during action stages to find the best performance of each model in each stage.
Finally, they construct a high-level inverse model composed by those selected primitives, being
able to imitate the action goal with similar spatial movements. The object tracking is only used
to identify grasping and releasing stages. Tani’s group developed an inverse model by training a
multiple timescale recurrent neural network to match robot motor torques with the position of
an object in [14]. Similarly, vision is only used to track the spatial position of the object.

Goal directed actions are interesting because they enable a robot configuration independent
way to encode and execute actions. This will allow our system to avoid the correspondence
problem (the difference in the kinematic model of the demonstrator and the learner [15]). Some
authors have tried to avoid the correspondence problem by creating a common reward space
between the human demonstrator and the robot [16]. In our case, we use the feature trajectory,
which is demonstrator independent, to encode the imitation. Our work aims to allow features
beyond spatial ones, such as changes in color or object deformations. Other paradigms, like PbD,
rely on full body capture systems for humanoid robot programming. This requirement may be
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Table 1. Main differences between PbD and CGDA paradigms.

PbD CGDA
Objective of imitation Spatial trajectories Object feature states

Features tracked Demonstrator’s joint positions/velocities Object’s shape, area, color, coordinates, etc.
Strengths Perfect kinematic imitation Effects encoding

Weaknesses Undefined goal to achieve Undefined way to achieve the goal

difficult to achieve in everyday interaction with humanoid robots, and has a limited applicability
to tasks such as painting a wall. Goal directed actions, instead, assume internal mechanisms to
perform a demonstrated action by indicating the desired goals.

2. Continuous Goal-Directed Actions

Continuous Goal-Directed Actions are a way to encode the effects of an action when the action
is demonstrated to a robot [17]. The CGDA framework is used for generalizing, recognizing and
executing actions by their effects on objects. A continuous analysis generates a trajectory in
an n-dimensional feature space, where n equals the number of tracked object features. Exam-
ples of tracked features could be color, area, weight, spatial positions, etc. The trajectories are
discretized, and action repetitions lead to a point cloud through time. This point cloud is the
subject of analysis of the developed techniques for recognition and execution. The main differ-
ences between the CGDA and PbD paradigms can be found in Table 1. We have developed a
continuous tracking infrastructure to allow the learning of actions with relevant object feature
intermediate states e.g. recognizing the rotation of a valve is unachievable without a continuous
tracking infrastructure, because the final state of the valve could be the same as the initial,
looking like no action has been executed.

A block scheme of CGDA can be found on Figure 1.

2.1 Generalization

When the trajectories resulting from tracking are considered in a discrete way, the action repeti-
tion create a point cloud in the feature space. For generalization purposes, we need to extract a
representative n-dimensional trajectory of the point cloud from several repetitions. This process
is composed by the following three steps.

(1) Time Rescaling: Each single action repetition is normalized in time (range [0, 1]). With
this time rescaling, every action execution gets bounded by the same temporal limits,
making the algorithm independent of the repetitions speed. All normalized trajectories are
introduced in the same object feature space, forming a point cloud.

(2) Average in Temporal Intervals: To model the point cloud, we split it in N temporal
intervals. The number of intervals is computed from the average duration of the original
repetitions by fixing one interval per second. As the repetitions are normalized in time, the
number of intervals allows preserving a notion of the action duration. The representative
point p of each interval is extracted as p = 1

pint

∑pint

i=0 Xi, where pint is the number of points
in the interval and Xi represent the vector of features for a point. The result is a vector of
average features.

(3) Radial Basis Function Interpolation: Once we have the representative points of the
point cloud, we have to join them to form a generalized action, i.e. an object feature
trajectory we can consider as a generalization. In a robot joint space, an interpolation
could create a jerky joint trajectory, so literature, e.g. [2], commonly uses regressors such
as GMR. However, working in the object feature space, we perform an interpolation to
assure the trajectories pass through the target points (which are the states of the object
in an instant). We use a Radial Basis Function (RBF), which is an interpolation technique
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Figure 1. Block scheme of the Continuous Goal-Directed Actions (CGDA) framework.

based on measuring the influence of every known point over the queried point [18]. The RBF
interpolation f(x), which will become the final generalized trajectory, is mathematically
expressed as a sum of radial basis functions:

f(x) =

N∑
i=1

wi φ(‖x− xi‖) (1)

Where N is the number of radial basis functions, equal to the number of intervals, and
xi represents the coordinates of each interval’s known point. The radial basis function is
denoted as φ, where the input parameter is the distance between the known point xi and
the queried point x, measured with L2 norm. From the available radial basis functions, this
linear one has been selected because we do not care about trajectory smoothness in the
feature space. The coefficient wi is the weight of a specific known point over the queried
point x, and it is the value to be solved. As the interpolation is known at known points,
the weight problem is solved as a set of N linear equation with N unknowns:
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f(x1) =
N∑
i=1

wi φ(‖x1 − xi‖)

...

f(xN ) =

N∑
i=1

wi φ(‖xN − xi‖) (2)

Once the interpolated function is returned, we consider this output as the generalized
function of an action. Its physical meaning is how the state of the object, regarding its
features, changes across the action performance.

A final generalization example, once this process is completed, can be seen in Figure 2.
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Figure 2. Plot representing a three feature trajectory. Black lines are training action repetitions. The blue line is the
generalization of all the repetitions.

2.2 Recognition

The generalized trajectories can be used for recognition. Recognition can be performed by com-
paring a query trajectory with the previously computed generalized trajectories, returning the
one with the highest similarity. This application can be useful for determining tasks as action
sequences by splitting tasks into smaller and simpler actions. For explaining how we recognize ac-
tions, we assume we have a database of generalized actions, and an unknown action that we want
to associate to the most similar of the database. We assume the recognition as the comparison
of a query with our generalized trajectories, returning the one with the highest similarity.

Looking for flexibility, two different methods to perform recognition have been implemented.
One of them is more flexible, but can lead to inaccuracies, and the other is more strict and limits
the variations between the query and the generalization.

2.2.1 Dynamic Time Warping

As the query and the generalized actions are normalized in time, we can take t values along
time for each action to compare them. The technique used for comparison is Dynamic Time
Warping (DTW), which is an algorithm usually used to optimally align two temporal sequences
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[19]. Our use of DTW is to compare two time-dependent sequences of points X = {x1, .., xN}
and Y = {y1, .., yM} with N,M ∈ N. To compare two elements, a local cost measure (a distance
d(x, y)) is needed. A lower cost represents a bigger similarity of the sequences. Evaluating all
pairs of points between the sequences, using in this case a L2 norm, we obtain a cost matrix
CM , with a size of N ×M :

CM =

 d(x0, y0) · · · d(xN , y0)
...

...
...

d(x0, yM ) · · · d(xN , yM )

 (3)

Once having this matrix, the goal is to find the lowest cost alignment path, which intuitively
should run along the lowest cost cells. This alignment is called the warping path. DTW includes
some constraints in the path calculation to assure a monotonic advance of the path and to assure
that the first elements as well as the last elements are connected to each other. The total path
cost CP (X,Y ) is calculated as the sum of the local costs C:

CP (X,Y ) =
L∑
l=1

C(xnl, yml) (4)

Where L is the length of the path. For programming reasons, the path is usually calculated in
an accumulated cost matrix, where each cell represents the cost of the correspondent pair (x, y)
plus the cost to reach this cell (see Figure 3). In the accumulated matrix, the normalized cost
CPnorm

(X,Y ) of the optimal path is expressed as:

CPnorm
(X,Y ) =

C(xn, ym)

N +M
(5)

In our case, we use this normalized cost of the optimal path as a measure of discrepancy
between dimensions. As DTW is computed between two signals for one dimension only, we
consider the total cost of alignment between two n-dimensional trajectories as the sum of the
costs of the optimal paths of each dimension, obtaining a single score D:

D =
n∑

i=1

CPnorm
(Xi, Yi) (6)

This score is used as the measure of discrepancy between two trajectories in the n-dimensional
space. In recognition, the trajectory with the smallest score is the one we consider the match.

2.2.2 Euclidean Distance

Another option to perform recognition, or in general, to measure the error between two tra-
jectories, is to use the Euclidean distance. The query trajectory is normalized in time, in the
same way it was for the generalized ones. This step allows us to take t values along time for
each action (the query and the generalized) to compare them. The use of DTW is motivated for
allowing a non-rigid measure of similarity between trajectories, as DTW is able to ‘tighten’ and
‘widen’ until both are best aligned. Unfortunately, DTW allows time displacements that can
affect the order of execution of actions, resulting in task failure or performance decay. Therefore,
Euclidean distance can be considered an improvement with respect to DTW as metric.
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Figure 3. Example of accumulated cost matrix for two sequences. On the left side, the interpolated sequences are shown.
The right side depicts the Dynamic Time Warping computation. White cells represent high cost, while dark cells are low
cost ones. The red line is the lowest cost path.

Our aim when using Euclidean distance is to obtain a metric of discrepancy between two
time-dependent sequences of points, namely X = {x1, .., xN} and Y = {y1, .., yN}. We compute
the total discrepancy J(X,Y ) between two n-dimensional trajectories as:

J(X,Y ) = ‖X − Y ‖ (7)

The generalized trajectory with the smallest J(X,Y ) is the one we consider as the most
similar. Let us recall that all the trajectories involved in this process of recognition are feature
trajectories and not joint space trajectories. This implies that we are recognizing actions by what
is happening to the object, and not comparing human movements.

2.3 Execution

Probably the most useful application for an imitation system is the robot execution of the
learned, or generalized, action. We consider CGDA as both a way to encode actions to be
recognized, and to be executed by robots. Tasks encoded as CGDA require a particular technique
for performing the feature trajectory. As CGDA does not encode joint motor parameters but
only object feature changes, the robot must be provided with a method for assuring the task
accomplishment. Spatial trajectories are computable with inverse kinematics (IK), but if we want
to extend this framework to other features like color or area and we also want them to be robot-
configuration independent, we need to choose another method. The tested algorithm in this work
is Evolutionary Computation (EC) applied on a humanoid robot in a simulated environment.
Several evolutionary strategies have been developed for obtaining motor trajectories.

3. Evolutionary Strategies

In our previous work, we used a Full Trajectory Evolution strategy (depicted here for clarity). In
this paper we improve this strategy accuracy with a new strategy called Individual Evolution. A
third strategy, Incrementally Evolved Trajectories, has been developed for features which have
a temporal dependency, which is the case of most non-spatial features.
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3.1 Full Trajectory Evolution

This strategy, where all of the points of the full trajectory evolve and are evaluated simulta-
neously, was used in our previous work. The number of parameters to evolve in this case are
DoF · N , where DoF is the number of joints involved in the movement, and N is the number
of points of the trajectory. For example, for a spatial trajectory using 3 joints (DoF = 3) in a
feature trajectory of 5 points (N = 5), the number of parameters to evolve is 15. This strategy
tends to makes the algorithm converge slowly, because the search space in this case usually
becomes very large.

3.2 Individual Evolution

The second strategy, Individual Evolution, consists in evolving and calculating the fitness for
each feature point in the trajectory individually, instead of evolving and evaluating the feature
trajectory as a whole. This is valid for spatial trajectories, where the joint parameters for reaching
a point do not depend on previous points. In this case the number of different evolutions to be
performed is equal to N , and each of these evolutions must evolve a number of parameters equal
to DoF. This second strategy can outperform the first one in time and fitness value, mostly due
to the smaller search space to be examined in each case.

3.3 Incrementally Evolved Trajectories

For features which have a temporal dependency, which is the case of most non-spatial features,
the Individual Evolution strategy is not useful, as the action may have, and usually has, a
dependency on previous points. For instance, when painting a wall, and using a CGDA encoding
of the task, the percentage of painted wall depends on the wall that was painted before.

For these situations, we have developed a third strategy called Incrementally Evolved Trajec-
tories. In this case, we also evolve each point individually. The first point is evolved individually.
After it converges, we start to evolve the second point, but in this case, the fitness evaluation is
performed by sequentially executing both points (the previous first point and the current point).
Once the second point converges, we start evolving the third point and for the evaluation we
execute the three point trajectory. The same process is repeated for the remaining points. The
pseudocode of this strategy is shown in Algorithm 1.

Algorithm 1 Incrementally Evolved Trajectories (IET)

1: procedure IET(X, ε) . X is the feature trajectory. ε is an error parameter.
2: for i < numberOfPoints(X) do
3: while fitness > ε do
4: Mi ←evolve()
5: f ←execute(M[0,i])
6: fitness←recognize(f,Xi)
7: end while
8: end for
9: return M

10: end procedure

This technique offers some advantages with respect to the alternative strategies. First, it
reduces the search space for each individual evolution, as it only evolves one point each time.
Second, this trick reduces also the time necessary to converge, and improves fitness value of
the whole trajectory. In the experimental section, we will show how it is able to approximate
different object feature trajectories.
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Table 2. DTW cost matrix: test actions (lower case)
vs. generalized trajectories (upper case). Bold numbers
represent best values (minimum discrepancy).

MOVE ROTATE CLEAN PAINT
move 229 332059 290334 552055
rotate 389021 7606 325211 694049
clean 402555 304669 1724 44259
paint 497152 671078 25896 1277

4. Experiments

Several experiments have been performed. The first two have been performed to test recognition.
The third one evaluates execution. It involves only spatial features, and the objective is to
generate a robot motor trajectory which leads to a feature trajectory equal to the objective one.
This feature trajectory is similar to a cleaning movement, and is encoded as a CGDA where the
object tracked is in one of the robot’s hands. The last experiment consists in having the robot
paint a wall. The painting process is encoded as a CGDA, but this time the object tracked is
the wall. The last two experiments are performed in simulation with a model of the humanoid
robot Teo [20].

4.1 Object Feature Trajectory Recognition

The first experiment setup consists in a Kinect R© pointed at a desktop tracking a colored marker.
A demonstrator performs several actions using the marker in front of the camera. We connect the
camera input with a computer vision library to measure marker features. We have given names
to each basic action for simplicity in explanation, but semantics is not used in the process. The
actions involve spatial movements (MOVE, ROTATE, CLEAN) and color changes (PAINT).
Each action is described as follows:

• MOVE: Marker displacement of 30 cm in one straight direction.
• ROTATE: Rotation over the Center-of-Mass (CoM), on one axis, of 90 degrees.
• CLEAN: Keeping orientation fixed, movement of CoM over a circumference of 30 cm of

diameter (1 revolution).
• PAINT: Keeping its spatial coordinates fixed, the marker is painted in a different color

with a marking pen, until almost all of the area is covered.

We wanted to test our algorithms with small sets of repetitions, in order to prove its per-
formance when there are few repetitions available. Seven repetitions of each basic action were
recorded. Six of the repetitions were used to generate one generalized action, similar to common
practices of PbD [10]. The final repetition of each set was used as a test action to be recognized.
The tracked object features are: spatial location (X,Y,Z), area, HSV color (hue, value, satura-
tion) and angle. Each test action is passed to the DTW recognition process, which compares it
to each of the previously generated generalized actions. Results are shown in Table 2.

To measure the influence of all dimensions (relevant or not) over the relevant ones, we perform
the same comparison using only spatial features, and ignoring the rest. The results can be seen
in Table 3.

These results show that our assumption is correct, and the measure of discrepancy between
similar feature trajectories is lower than between different actions. This makes the recognition
algorithm to correctly associate all the test trajectories with their set. Table 2 and Table 3 show
the influence of additional dimensions on the comparison. As more dimensions are used, the
quality of the results decays.
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Table 3. DTW cost matrix: reduced test actions (lower
case) vs. reduced generalized trajectories (upper case).
Bold numbers represent best values (minimum discrep-
ancy). Only spatial features are used.

MOVE ROTATE CLEAN PAINT
move 8.15 10251.49 11428.03 4888.67
rotate 12836.77 8.94 10035.21 284.87
clean 12252.87 8977.23 13.46 5175.71
paint 4728.14 135.77 5021.54 14.33

Table 4. DTW cost matrix: Cartesian test actions
(lower case) vs. Cartesian generalized trajectories (up-
per case). Bold numbers represent best values (mini-
mum discrepancy).

MOVE ROTATE CLEAN PAINT
move 0.0032 0.1594 0.0448 0.1031
rotate 0.1563 0.0123 0.0939 0.0430
clean 0.0234 0.0323 0.0003 0.0371
paint 0.0486 0.0148 0.0300 0.0004

4.2 Cartesian Space Trajectory Recognition

During the previous experiment, we also measured the Cartesian positions (X,Y,Z) of the human
demonstrator’s arm joints: hand tip, wrist, elbow and shoulder. This data is incorporated in this
experiment to highlight the differences in feature and Cartesian comparison. The demonstrator
did not attempt to execute the actions in a specific kinematic way, or even equal between
repetitions, the only aim was to accomplished the named actions. When comparing test and
generalized Cartesian actions (following the same scheme as previously), we obtain Table 4.

As shown in Table 4, in this case, the system also recognizes the actions correctly, but the score
differences are lower. In Table 2, the correct answer is 1 to 3 orders of magnitude lower, while
in Table 4 results are all quite similar. This proves that enabling CGDA, we are allowing the
demonstrator to focus on task completion, rather than focusing on the kinematic consistency.

4.3 Executing a Spatial Task: Cleaning

The objective is for the humanoid robot to execute a generalized trajectory extracted from
a set of repetitions. This trajectory contains only spatial features (X,Y,Z). The action is the
previously named as ‘clean’. Due to the spatial encoding of the task, only the full evolution and
the individual evolution strategy have been tested.

4.3.1 Full Trajectory Evolution

The generalized trajectory has a number of points that must be reached. To reduce the number
of parameters to evolve, only 3 joints of one of the robot’s arms are used. Fitness is evaluated
when a full evolved joint trajectory is executed, by analyzing the features of a marker in the
robot hand. The generalized goal action and the measured one are compared using the DTW
recognition, and the score of discrepancy is used as the fitness value to minimize.

The termination condition is set to ten generations without improvement in the fitness value.
The fitness evolution of our experiment can be found in Figure 4. The results can be seen in
Figure 5.

4.3.2 Individual Evolution

In this case, each point of the generalized trajectory is the target value for an individually
evolved strategy. An evolved point is considered valid enough if it has an error lower than
20 mm to the reference point. Once the evolution is finished, the evolved action is executed.
Differently than in the previous case, the error is measured using Euclidean distance. For a nine
point trajectory, EC took an average 53 ± 12 s to calculate the whole trajectory (for 30 trials
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Figure 4. Fitness value through evolution. The red point is the minimum value achieved by evolution.

0 1 2 3 4 5 6 7 8
Normalized Time [points]

550
600
650
700
750
800
850
900
950

X 
[m

m
] Generalized

Evolved

0 1 2 3 4 5 6 7 8
Normalized Time [points]

−150
−100

−50
0

50
100
150
200

Y 
[m

m
]

0 1 2 3 4 5 6 7 8
Normalized Time [points]

−200
−150
−100

−50
0

50
100
150
200

Z 
[m

m
]

Figure 5. Unidimensional temporal plots of generalized reference (blue), and the object feature space trajectory from
executing the EC winner joint position trajectory (red). The Z dimension gives the worst results, the system was not able
to reduce the error in this dimension.

in an average computer), approximately 6 s to calculate each point. A comparison between the
generalized trajectory and the evolved one can be found in Figure 6.

The evolved trajectories are bounded within the 20 mm limit with respect to the reference.
The whole sets of trajectories (original repetitions, generalization and evolved) represented in a
3 dimensional figure, can be seen on Figure 7.

These results outperform those of the previous strategy, and also can be improved by imposing
an acceptable error lower then 20 mm, but it would require more time to converge. The evolved
full trajectory is depicted in Figure 8.

4.4 Executing a Non-Spatial Task: Painting

In the second experiment we want to make the humanoid robot paint a wall, without teaching
it the necessary motor parameters. In the simulated scenario, there is a wall in front of the
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Figure 6. Unidimensional temporal plots of the generalized action, and the trajectory obtained by executing the EC winner
joint parameters. The trajectories are quite similar for all cases. In the case of Z dimension, which may look like a less
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Figure 7. Plot representing a three feature trajectory. Black lines are training action repetitions. The blue line is the
generalization extracted from all the repetitions. The red line is the evolved trajectory. Note that none of the points of the
evolved trajectory has an error bigger than 20 mm with respect to its reference (the generalized).

humanoid robot, composed by 16 small squares, all with the same color. The final action objective
is to change the color of all the squares. The generalized action is created synthetically and it has
only one feature, which represents the percentage of painted wall. We suppose the percentage
of the wall that is painted increases constantly with time, in 16 steps. In this case, due to the
temporal dependency of the encoded feature, it is only feasible to test the incrementally evolved
trajectory strategy.

4.4.1 Incrementally Evolved Trajectories

The generalized trajectory is used as the reference and EC is used to perform joint parameter
evolution. In this case, every time the robot hand gets closer than 120 mm to a square, this square
changes its color. This is a simplification to emulate the real action of sliding a paintbrush over
a surface. Fitness is evaluated when a joint trajectory is executed, by analyzing wall features.

12
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Figure 8. Action execution for a ‘clean’ command. Despite the trajectory is purely spatial, the objective of the evolution
and the execution is to perform a feature trajectory obtained from the object tracker.

For a seventeen point trajectory, EC took 258 ± 7 s to calculate the whole trajectory (as an
average of 30 trials in an average computer). It is important to notice that, as we are using the
Incrementally Evolved Trajectories, the fitness evaluation gets more complex for each following
point, as seen on Figure 9.
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Figure 9. In this chart the time taken to compute each point is shown. Despite some final point (where the valid space is
very restricted) the time of computation increases linearly.

Each point becomes more difficult to compute than the previous one because, every time a
point changes the color of a square it reduces the next point valid space. The drastic increment
in the 15th point is a possible effect that may appear in restricted valid spaces. As the squares
are changing their color, the valid space for next computations is reduced, rising the probabilities
of longer operation times. A comparison between the generalized trajectory and the evolved one
can be found in Figure 10.

The trajectory obtained in this case is highly acceptable. One of the reasons behind the good
convergence is the use of the incremental evolution strategy, as the evolutionary algorithm only
has to focus on one fitness each time. One theoretical disadvantage of the strategy employed
is that it may accumulate error of previous points in following evolutions. For instance, if the
trajectory is supposed to reach a certain value in a certain point and EC is not able to reach
it, it is probable that this point error will sum up to the error of the next evolved point as a
constant in the fitness calculation. An example of the execution of an evolved action can be seen
on Figure 11.

The criteria of success or fail for a given goal directed imitation, strongly depends on the action
being imitated. In the case of the ‘cleaning’ task, we set an acceptable error for each feature
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Figure 10. Unidimensional temporal plot of the generalized action, and the trajectory obtained by executing the EC winner
joint parameters. As seen for a linear painting task (one wall square is painted in each step), the performance is very accurate.

Figure 11. Action execution for a ‘paint’ command. Each square changes its color when the hand gets closer than a specific
distance.

point. However, in the case of the ‘painting’ task, the criteria is related with the total number
of squares painted.

5. Discussion

In this section we discuss the different strategies presented and we will analyze the results ob-
tained. We have used both Dynamic Time Warping and the Euclidean distance for recognition.
Regarding the Euclidean distance results, there is a clear improvement in the error between the
trajectories, when comparing to DTW. However, a numerical comparison would not be fair, e.g.
comparing DTW to the distance error would be assuming that the Euclidean distance is the
“correct” metric. On its influence on execution, this change forces the system to accomplish the
feature variations in the correct order. An important addition is the possibility to accomplish
non-spatial features, like color. In previous works [17], we were restricted to spatial characteris-
tics, as we had not found a method with acceptable results. We have also introduced an evolution
strategy called Incrementally Evolved Trajectories (IET). This method has allowed us improve
the performance of execution for non-spatial features. IET shows an incremental time of compu-
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tation for a sequence of points until the valid space becomes very restricted. In these situations,
we have observed peaks in the computation time. Despite this fact, it allows experiments that
were previously not feasible. At this stage of development, the motor performance, in terms of
velocities and acceleration, are not taken into account. Our current focus is on developing a
feasible goal directed framework. Adapting this framework to work with real robots will imply
a refinement of the motor commanded signals, as well as determining the optimal number of
required human demonstrations.

Regarding the results obtained in this paper, we have demonstrated that our CGDA approach
is useful for execution even for non-spatial features. Thanks to the use of the Euclidean distance,
the trajectories can be evolved obtaining a high degree of similarity, and this error is configurable
for each evolution. Further analysis will be performed in order to assure that this method is
applicable to other non-spatial features.

6. Conclusions

The main contribution of this work is enabling a robot to perform tasks involving spatial features
(cleaning) and non-spatial features (painting) without previous knowledge of the robot kinematic
parameters necessary to perform it. The Continuous Goal-Directed Actions (CGDA) analysis
allows us to focus on task accomplishment, rather than on motor imitation. This approach is
novel within the robot imitation paradigm. With CGDA, we are enabling a robot-configuration
independent task accomplishment, also avoiding the correspondence problem.

Additionally, Incrementally Evolved Trajectories allows us to execute a feature trajectory with
temporal dependencies, such as painting a wall. Despite this is not the only strategy we consider
for the future, it reaches an acceptable degree of performance in execution of tasks encoded as
CGDA. One of the main challenges of the CGDA approach is how to correctly perform complex
non-spatial actions. This fact will probably lead us to use motor primitives combination of
actions.

Currently, one of the main challenges of the CGDA approach is how to correctly perform
more complex non-spatial actions. Future research lines will include the use of motor primitives
combination strategies to perform these actions.
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