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Abstract. In this paper we present two controllers for robots that com-
bine terms for the compensation of gravity forces, and the forces of fric-
tion of motors and gearboxes. The Low-Friction Zero-Gravity controller
allows a guidance of the robot without effort, allowing small friction
forces to reduce the free robot motion. It can serve to aid users provid-
ing kinesthetic demonstrations while programming by demonstration. In
the present, kinesthetic demonstrations are usually aided by pure grav-
ity compensators, and users must deal with friction. A Zero-Friction
Zero-Gravity controller results in free movements, as if the robot were
moving without friction or gravity influence. Ideally, only inertia drives
the movements when zeroing the forces of friction and gravity. Coriolis
and centrifugal forces are depreciated. The developed controllers have
been tuned and tested for 1 DoF of a full-sized humanoid robot arm.
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1 Introduction

Most robots are hard and heavy. They are built with metallic mechanical links
and electric/hydraulic motors attached to heavy gearboxes that introduce high
frictions. This fact makes it very difficult to physically interact with the robot.
With the advent of paradigms such as Programming by Demonstration (PbD)
[1], where physical movements are used to program the robot, there has been an
increasing necessity to improve the existing physical interaction mechanisms.

We have developed two different types of controllers for robots which combine
gravity compensation and motor friction compensation. Our motivation is to
study new forms of physical human-robot interaction. In kinesthetic teaching,
a popular choice in PbD, the robot’s motors are set to a passive mode where
each limb can be driven by the human demonstrator [2]. Some authors suggest
that kinesthetic demonstrations are more intuitive for naive users, but that this
fact changes when facing with high degree of freedom (DoF) robots [3]. They
present an alternative, called keyframe demonstration, where key positions of
the task are recorded, while the intermediate movements are interpolated. For
instance, Baxter robot uses this technique of recording frames to be programmed,
aided by gravity compensation [4]. While gravity compensation is useful for
providing kinesthesic demonstrations, one of our controllers, called Low-Friction
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Zero-Gravity controller (LFZG) adds an additional friction compensation term
for aiding keyframe demonstration. We aim to create even simpler interactions
with robots, as this controller makes the robot move in the direction indicated
by small forces applied, eventually stopping. Additionally, our approach does
not require torque or force sensors to be implemented. The second developed
controller, formally Zero-Friction Zero-Gravity controller (ZFZG), makes the
robot move similarly as if it were floating in space. As the forces that make the
robot reduce its motion (mainly gravity and friction) are compensated, the final
output is the free movement of the robot, driven by inertia.

2 State of the Art

The main fields of study of this work are related with friction and gravity com-
pensation. Only selected works will be mentioned, as the literature in friction
compensation in robots is extensive. A review can be found in [5].

On one side, friction is described as the resistance of motion of two contacting
sliding surfaces [5]. To measure friction accurately is extremely difficult. Exact
models of friction do not exist, and instead approximations obtained through
experiments are used (Coulomb, viscous friction, Stribeck, Dahl, LuGre, Leu-
ven, etc.). No specific model has proven better than others [6]. Canudas et al. [7]
focused on modeling non-linear effects of friction in DC motor drives. They com-
bine a linear model for viscous friction with a parameter estimation algorithm,
which recalculates linear model parameters in a feedback loop to reduce the er-
ror in velocity commands. Some methods for friction identification in robotics
consider elements in isolation, or do not consider mechanical limitations [8][9].
A low-velocity approach allows obtaining friction models depreciating inertia in
[10]. As modeling motor frictions involves non-linearities (Stribeck effect, hys-
teresis, pre-sliding displacement, etc.), some authors [11] have delegated this
problem to learning algorithms such as Neural Networks. Gearboxes also have
high frictions, and additionally increase motor frictions from the link’s point of
view (due to the reduction factor). The most popular gearboxes in humanoid
robotic platforms are Harmonic Drives, because of their compactness and reduc-
tion factor. Authors [12] have tried to model Harmonic Drives’ frictions, finding
similar problems of non-linearities as those of the motor case. Regarding hu-
manoid robots, in [13] they identify friction parameters on an iCub robot, aided
by 6-axis force/torque sensors.

On the other side, gravity compensation is computed using the dynamic
model of the robot. By analyzing the kinematic configuration and the masses
of links and motors, it is possible to calculate the influence of gravity in each
motor, and compute the torque value necessary to compensate it. In [14] they
compensate gravity by projecting gravity forces on each joint of a robot arm.
First, they translate all joint coordinates to the base frame. Then, they project on
each joint, the torque generates by gravity forces on the rest of links and motors.
This method is a simple and methodical procedure to compensate gravity in rigid
links. In classical literature, the inclusion of a gravity compensation term in robot
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manipulation control schemes was used for improving a PD position control [15].
Including gravity compensation performed as well as a full feedforward controller
with full inertial terms. Another work [16] aimed at estimating and compensating
gravity and friction forces in the context of improving the position error in robot
manipulators. However, the possibility of simulating free movements was not
studied.

3 Theoretical Foundations

The design of our controllers is related with the fundamental laws of dynamics
for serial rigid multibody systems. We consider the Euler-Lagrange equations of
motion of multibody rigid links in the robot joint space as:

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fs sgn(q̇) + g(q) = u+ τext (1)

Where B is the inertia matrix, C represents the centrifugal and Coriolis
forces, Fv q̇ is the viscous friction torque, Fs sgn(q̇) is the Coulomb friction torque,
Fv is the matrix of viscous friction coefficients, g(q) is the gravity term, u is the
actuation torque, and finally τext is the torque originated by external forces.
An ideal friction and gravity compensator could be expressed as a u with the
following form:

u = Fv q̇ + Fs sgn(q̇) + g(q) (2)

Due to the low speeds applied in robotics, the Coriolis and centrifugal forces
C are negligible. Substituting (2) in (1):

B(q)q̈ = τext (3)

Which means that the mechanism would offer a resistance to external forces
(e.g. pushing or pulling) equivalent only to its inertia. When applied to a robotic
system, this controller would make the whole mechanism behave as if it were
in free movement. Our controllers combine friction and gravity compensation
terms to provide new forms of physical interaction with robots. Let us formally
describe the equations governing the controllers. Let g(q) be the term of gravity
compensation, with q as the actual joint configuration. Let τf (q, q̇) be the term
of friction compensation, where q̇ is the joint angular velocity. Then, a generic
friction and gravity compensation controller can be expressed as:

u = g(q) + τf (q, q̇) (4)

A block scheme of this generic friction and gravity compensation controller
can be seen on Fig. 1. Let us now describe how the gravity and friction compen-
sation terms can be determined.
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Fig. 1. Block scheme of friction and gravity compensation. In this type of control, there
is no external reference, the robotic system is moved by the external perturbations
caused by the user.

3.1 Gravity Compensation

The potential energy of a robot, assuming rigid links and punctual masses, can
be defined as [17]:

U =

n∑
i=1

(Uli + Umi) (5)

Where Uli is the sum of potential energy contributions of each link, Umi
is

the contribution of each motor, and i is an index for each link or motor. The
first term Uli is defined as:

Uli = −mlig
T
0 pli (6)

Where mli is the mass of the center of masses of link i, g0 is the gravity
vector expressed in base frame (e.g. g0 = [0 0 − 9.81]T ), and pli is the set
of coordinates of the center of masses of link i expressed in the base frame.
Similarly, the motor contributions Umi are defined as:

Umi
= −mmi

gT0 pmi
(7)

Substituting (6) and (7) in (5), U becomes:

U = −
n∑

i=1

(mlig
T
0 pli +mmi

gT0 pmi
) (8)

Where pli and pmi
depend on the joint configuration q. The torque g(q)

exerted by gravity can be computed as [18]:

g(q) =
∂U

∂q
(9)
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And is thus the torque required for gravity compensation. In the real world,
determining the influence of each element in the potential energy equation is
a non-trivial issue. For instance, the distinction between motor and link mass
contribution is blurry, as the mass contribution between motors includes the
parts of the motors located between the axes of rotation. This is the reason why
we will use a simplified dynamic model of U . In this simplified model, the terms
of link and motor contributions are mixed, and their masses are concentrated
in the intermediate point between each pair of axes of rotation. This dynamic
model is commonly used in humanoid robot research, and is usually called ‘mass
concentrated model’.

3.2 Friction Compensation

The static friction forces, Fv q̇+Fs sgn(q̇), from (1) can be compacted into a joint
friction term, τfj(q̇). It can be computed with a model-based identification pro-
cedure inspired by [19]. Among the available friction models, they have assumed
the one including Coulomb friction (initial opposing torque) and viscous friction
(friction dependent on velocity). Their aim is to model the friction of an electric
motor. The motion of an electric motor can be described as:

τm(t) − τfm(θ̇) = Jθ̈ (10)

Where τm is the motor torque, τfm(θ̇) is the motor friction torque, θ̈ is the
motor angular acceleration and J is the inertia of the motor. If the angular
velocity θ̇ is stabilized, then θ̈ = 0, so the torque of the motor is used exclusively
to compensate the friction:

τm(t) = τfm(θ̇) (11)

Measuring the different velocities where the motor stabilizes for several torques
applied, the stabilized velocities for these different torques can be plotted. The
friction model selected by [19] becomes a piecewise linear model:

τfm(q̇) =

{
α1θ̇ + β1 : θ̇ > 0

α2θ̇ − β2 : θ̇ < 0
(12)

Where model parameters α and β are obtained by linear regression on the
plot (Fig. 2).

In the original procedure, they measure the motor velocity θ̇ in isolation. In
our proposed identification procedure, we measure the velocity q̇ with the motor
within the robot, including the gearboxes and the mechanical structure. Mod-
eling each part independently (motor, gearbox, structure, construction) would
result in intractable combinations of models to be evaluated and coordinated,
specially for many DoF. Our assumptions are the following:

– We use joint velocity q̇ instead of motor velocity θ̇. The joint friction model
selected becomes the following piecewise linear model:



6 Santiago Morante et al.

40 20 0 20 40
velocity [degrees/s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

I 
[A

] 
to

rq
u
e
 [

N
m

] α1

β1

β2
α2

Fig. 2. This friction model includes Coulomb friction and viscous friction. The variables
α and β represent the parameters of the linear model assumed.

τfj(q̇) =

{
α1q̇ + β1 : q̇ > 0
α2q̇ − β2 : q̇ < 0

(13)

Where τfj(q̇) is the torque necessary to compensate the friction generated
in function of the joint angular velocity q̇.

– We assume that the motors have a symmetrical behavior, they oppose to
movement in both directions with the same strength. Therefore, α1 = α2

and β1 = β2.
– When applying constant torques, we limit the time given for velocity stabi-

lization due to the mechanical constraints of the robot joints.
– As we have to deal with gravity forces, which may influence friction, we add

an additional term when opposing gravity.

Robot joints have mechanical constraints, so there is a limit in the time the
joint velocity can be recorded. This time may not be enough for the velocity
to stabilize. In these cases, the velocity achieved before reaching the joint limit
must be used instead of the stabilized velocity. This causes a steeper slope of the
posterior linear regression. The final parameters of the linear regression should
be further adjusted in these cases.

As stated in our final assumption, we add a term in addition to τfj(q̇). We
assume that an additional mechanical friction is generated in the motor axle
and gearbox due to gravity. This is the reason why we have added a term τfg
dependent on the joint position and the velocity:

τfg = f(q, q̇) (14)

The term τfg(q, q̇) is purely experimental, as it depends on the mechanical
design and construction of the robot. In our model, we only add this term when
the gravity opposes the direction movement of the arm. To see whether the



Friction and Gravity Compensation 7

gravity is in favor or against this movement, the variation of the potential energy
U can be used. When ∆U > 0, the movement is against gravity. The final friction
compensator can be expressed as:

τf (q, q̇) =

{
τfj(q̇) + τfg(q, q̇) : ∆U > 0
τfj(q̇) : ∆U < 0

(15)

3.3 Friction and Gravity Compensation Controllers

Different applications may require different behaviors of the robot. Hence, two
controllers have been derived from the generic friction and gravity compensation
controller (4).

Low-Friction Zero-Gravity controller (LFZG) This controller can improve
the physical interaction with robots. In this controller, a new parameter ξ has
been incorporated. This parameter attenuates the influence of the friction com-
pensation on the system. Introducing ξ in the controller, it becomes:

u = g(q) + ξτf (q, q̇) (16)

By setting 0 < ξ < 1, this controller allows the robot to move easily, without
effort, but eventually stopping due to the low friction. This controller can be
useful in paradigms such as keyframe demonstration and PbD, where there is a
direct physical contact with the robot. For instance, when aiming to record a task
using keyframe demonstration, different robot configurations must be recorded.
In many cases, a demonstrator may have to use both hands to move a single
robot joint, due to its individual friction. Therefore, in robots with many DoF,
it can be difficult to physically move the robot between the different desired
configurations. Using our controller, one has to simply push the robot in the
desired direction, and stop it when desired. The attenuated friction serves as an
aid for stopping at the desired target keyframes.

Zero-Friction Zero-Gravity controller (ZFZG) This controller, when ap-
plied to all joints, ideally makes the robot move as if only the external dynamic
forces and inertia would modify the motion. To achieve this behavior, we can
use the generic friction and gravity compensation controller (4):

u = g(q) + τf (q, q̇) (17)

A robotic platform using this control could be employed to test how devices
would behave in complete absence of friction and gravity.
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4 Experiments

The experiments have been performed using the arm of the humanoid robot
Teo [20]. A single 1 DoF robot joint was tested, in order to avoid the high-
dimensionality and coupling effects of many DoF (similarly to [21]).The hu-
manoid robot joint used was the robot’s left shoulder, which is moved by a
Maxon brushless EC flat motor. It has a torque constant of 0.0706 Nm/A. The
motor driver has an internal current loop with a PI regulator, with constant
Kp = 0 and Ki = 0.1651. The gearbox is a Harmonic Drive CSD-25 with a
reduction factor of 160. Joint position is measured using an optical relative en-
coder attached to the motor. Velocity is obtained by numerical differentiation of
the position signal.

The robot arm weight m is 4.446 kg (including hand and electronics), and
it has a length L of 0.82 m. The control algorithms were implemented in C
language. The gravity compensation term of the control was computed as the
torque caused by the arm modeled as a punctual mass at its center of gravity.
Considering h as the height of the center of gravity with respect to its lowest
position, being a single joint, this term is trivial to be calculated. Assuming q1
as the angle between the arm and the trunk, the potential energy of a mass
situated at L/2 from the shoulder is:

U = mg0 h = mg0(L/2)(1 − cos(q1)) (18)

Then, the gravity torque term is:

g(q1) =
∂U

∂q1
= mg0(L/2) sin(q1) (19)

The friction compensation term was determined by the procedure indicated
in previous sections. When high torques are applied to the motor, leading to
high velocities, the motor is not able to stabilize its velocity before reaching the
mechanical limit. This results in a steeper slope on the posterior regression. This
effect can be seen in the shortest curves in Fig. 3. Fourteen different constant
motor torques were tested, including both movements against and in favor of
gravity, ranging between −0.0706 Nm and 0.0706 Nm (from -1 A to 1 A). In our
case, positive velocities go against gravity, and negative velocities are in favor of
gravity. A summary of the process of friction identification for the joint can be
seen first on Fig. 3, where the stability velocities are measured. Fig. 4 depicts
the performed linear regressions.

The linear regressions obtained without manual tunning resulted in:

τf (q̇1) =

{
0.009 q̇1 + 0.490 : ∆U > 0
0.005 q̇1 − 0.586 : ∆U < 0

(20)

A posterior manual adjustment of these linear regression parameters resulted
in:

τf (q̇1) =

{
0.006 q̇1 + 0.4 : ∆U > 0
0.001 q̇1 − 0.7 : ∆U < 0

(21)
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Fig. 3. Velocity vs. time curves, with constant torque applied in each curve. There is
a proportional linear dependence between current in the motor and torque applied.
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Fig. 4. Stabilization velocity vs. the torque applied. The Coulomb friction (blue) and
the viscous friction (red) can be seen. The same procedure is applied for negative
velocities.
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To adjust to a symmetric joint friction model, either of the equations may be
selected to fix the parameters of the model. Here, we have used the parameters
of ∆U < 0 case of (21), resulting in the joint friction term τfj of the controller:

τfj(q̇1) =

{
0.001 q̇1 + 0.7 : ∆U > 0
0.001 q̇1 − 0.7 : ∆U < 0

(22)

All other frictions will be considered part of the gravity friction term τfg. The
position-dependent parameter of τfg was experimentally adjusted to 0.0025 q1.
The final expression of τfg is computed as (21) minus (22) plus the position-
dependent parameter τfg.

τfg(q1, q̇1) = 0.005 q̇1 + 0.0025 q1 − 0.3 (23)

The compensators were evaluated activating the ZFZG controller. A well de-
signed Zero-Friction Zero-Gravity controller would maintain constant, or tightly
bounded, velocities in absence of external perturbations (beyond the one ini-
tiating the movement). To test whether these conditions are applicable to our
system, several interactions with the arm were performed. A single push was
given to the arm, letting it move freely while recording its velocities. This exper-
iment was repeated while pushing the robot arm with different forces. Several
velocity profiles for different pushes can be seen on Fig. 5.
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Fig. 5. Velocity profiles for several initial ‘pushes’ with the Zero-Friction Zero-Gravity
controller (ZFZG).

Curves reaching higher peak values in the figure represent larger forces ex-
erted by the human. The peak of each curve roughly represents the instant where
the robot arm is let free. An example of one of these interactions using the ZFZG
controller can be seen in Fig. 6.

Results from Fig. 5 showed that the combination of friction compensation
and gravity compensation was successful at maintaining bounded velocities in ab-
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Fig. 6. Sequence of the movement of the robot arm using a Zero-Friction Zero-Gravity
controller. When the user pushes the arm, it moves freely in the direction of the applied
force.

sence of external perturbations for velocities below 30-35 degrees/s. Results also
show that the friction model is not adequate for velocities above 30-35 degrees/s.
For instance, the light blue and purple curves do not maintain their values after
their peaks. This could be explained because of the unmodeled non-linearities
of the friction function at these velocities. A video of the implementation was
shown in Humanoids 2014 conference [22], and can be seen online1.

Our linear friction model may look simplistic, as each part in the mechanism
includes its own non-linearities. However, it accounts for physical components
(such as gearboxes and joint limits) that are found in robotic systems. Ulti-
mately, the controllers are able to manifest the friction and gravity compensa-
tion expected behavior for the tested robotic joint. Our efforts are directed to
implement these control algorithms in our full humanoid robot.

5 Conclusions

In this paper, the authors have presented a new set of controllers for robots which
aim at compensation of static friction and gravity. The experiments show, in
general, an acceptable performance of the ZFZG controller tested. More accurate
friction models and identification procedures could lead to improved controller
behaviors under high joint velocity conditions, and would also aid in maintaining
the stability of low velocities. We also consider using different dynamic robot
models (pendulum-like models, or even the complete dynamic model).

With the potential increase in complexity of the complete humanoid robot
model, we consider using machine learning algorithms which lighten the efforts
necessary to obtain a reliable friction and gravity compensation. They could also
capture the non-linearities present in the system.
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