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Abstract— In this paper, we study how human-robot interac-
tion can be beneficial on the Continuous Goal-Directed Actions
(CGDA) framework. Specifically, a system for robot discovery
of motor primitives from random human-guided movements
has been developed. These guided motor primitives (GMP)
are used as scaffolds to reproduce a goal-directed actions.
CGDA encodes goals as the changes produced on object features
(color, area, etc) due to actions. This paper focuses on using
motor primitives extracted from human-guided random robot
movements to execute these goal-directed actions. The human
guides the robot joints in random movements, which are later
divided in small segments. These segments are compared in
terms of joint positions and selected to be diverse. To perform
goal-directed actions, the robot must discover an adequate
sequence of GMP. To discover these sequences we organize
the primitives as a tree with incremental depths (where each
node represents a primitive) and use a breadth-first search. In
one of the experiments performed, the robot executes a task
based on spatial object features. In the other experiment, the
goal is to paint a wall by following a color feature trajectory.

I. IMITATION AND MOTOR PRIMITIVES

The field of robot imitation has focused traditionally
on motor parameter reproduction. This approach has been
called programming by demonstration (PbD) or learning
from demonstration (LfD) [1]. These methods encode an
action by recording the joint motor parameters of a demon-
strator (either human or robotic) when performing the action,
and then applying different several techniques to extract a
generalization for a later reproduction.

Some authors questioned whether this motor imitation
alone is useful for intelligent robots. Schaal asked in [2]
as an ‘outstanding question’ to be answered: How can the
intention of a demonstrated movement be recognized and
converted to the imitator’s goal?. From a wider perspective,
[3] summarized the three key concepts of imitation: ‘what
to imitate’, ‘how to imitate’, and ‘when to imitate’. The
Continuous Goal-Directed Actions (CGDA) encoding of
tasks aims to fulfil mainly the ‘what to imitate’ concept
[4]. We believe that robot imitation could be improved, and
some of the problems stated solved, by taking more into
account the action consequences in the environment. These
consequences will usually be the goals of the task (‘paint’
action modifies the color of the painted object).

Goal directed actions are interesting because they enable a
robot configuration independent way to encode and execute
actions. This will allow a system to avoid the correspon-
dence problem (the difference in the kinematic model of
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the demonstrator and the learner) [5]. Some examples are
found in the literature involving goal directed imitation. In
[6] they replicate a children psychological experiment. The
experimental setup consists in a table and colored dots on it.
Dots are touched by a human with both arms in alternation.
In the psychological experiment children tend to achieve the
goal (what dot to touch), and not the arm used to do it. In
the robotic experiment, during the demonstration, the robot
tries to extract a set of invariant constants. Later, the robot
computes the trajectory that best satisfies the constraints. In
[7] an object must be grasped and then placed at one of two
presented targets that have different heights. There is a bridge
shaped obstacle in the path. Depending on the height of the
bridge, the object must be grasped differently and through a
different path. In [8] there is a learning phase where the robot
generates motion (as a combination of motor primitives)
with no specific purpose, and analyses the consequences
(sensory effect) of its actions. After the learning phase,
when an experimenter performs actions, the robot recognized
the observed actions by observing the consequences and
encoding them as combination of motor primitives.

Literature has provided insights on how the human brain
may use motor primitives for performing complex actions
[9]. In his influential paper [2], Schaal explores the area
of movement primitive what Schaal defines as sequences of
action that accomplish a complete goal-directed behavior.
Our development is close to this definition, despite the
related works in motor primitives are not always making
enough focus on the word “sequences”. Instead of generating
a single movement primitive to encode complete temporal
behaviors, we aim to split movements and create small basic
motions, which may be able to complete the required task
when combined sequentially. This is an attempt to answer
other Schaal’s ‘outstanding questions’: Is there a basic set
of primitives that can initialize imitation learning?. How
complex are the most elementary primitives in this set?.
How can new primitives be learned?. How is sequencing
and the recognition of sequences of movement primitives
accomplished?.

Dynamical system Movement Primitives (DMP) were used
in [10] and subsequent works (e.g. [11], [12]). In DMP,
dynamical systems are used to encode a policy (a mapping
between world state and actions which enables a robot to
select an action based upon its current world state [13]).
This policy serves to accomplish an action by obtaining a
reusable parametrized single-primitive policy. Despite DMP
have been successfully used for learning complex, but uni-
tary, tasks (like learning single primitive actions [14] [15]),



sequential combination of DMP has not yet been studied.
The aim in [16] is similar to ours. They aim to acquire a
library of primitives and select among them to adapt to new
situations. For this adaptation they use primitive-associated
parameters (called augmented state) which describe the task
context from which the primitive was extracted. Instead of a
sequential execution of primitives, they use an algorithm for
applying a single action from a set of weighted primitives.
For selecting the weights they use the augmented state. The
demonstration set is obtained by a human guiding the robot
to perform the desired tasks. Differently, we aim to obtain
task-independent reusable primitives for task execution.

A developmental approach for self-discovery of primitives
is found in [17]. In a similar way to [16], they encode primi-
tives with descriptors, which describe situational parameters.
For self-discovering motor primitives, they first execute sev-
eral actions which randomly combine different joint speeds
and grasp states of the robot hand. For extracting generic
behaviors, the system finds segments with the same initial-
end situation. These segments are grouped and combined
into a single representative behavior primitive, computed
by taking the average of initial and final velocities. As in
previously mentioned papers, this work only considers single
primitives, and sequential combination of motor primitives is
not studied.

II. CONTINUOUS GOAL-DIRECTED ACTIONS

Continuous Goal-Directed Actions (CGDA) is an imitation
framework where actions are analyzed in terms of their
effects on objects. Objects features are recorded during hu-
man demonstrations. These features form an n-dimensional
feature space, where n equals the number of tracked object
features. Tracked object features not only are spatial posi-
tions; examples of tracked features can also be color, area,
or weight among others. Each human demonstration is rep-
resented as a feature trajectory in this feature space. Actions
are generalized by analyzing these feature trajectories.

The CGDA framework was introduced in [4]. The focus
on the current work is on execution. However, we outline the
generalization explained in [4] for a better understanding of
the rest of the paper.

Human demonstrations are represented by a sequence of
discrete points in the feature space. The set of demonstrated
action repetitions leads to a point cloud in the feature space.
A representative feature trajectory is extracted from the
cloud. This feature trajectory represents changes produced
in the object features when an action is performed on it.
Generalization is composed by the following three steps.

1) Time Rescaling: Before inserting an action repetition in
the point cloud, each repetition must be normalized in
time. All normalized feature trajectories are introduced
in the same object feature space, forming a point cloud.

2) Average in Temporal Intervals: To model the point
cloud, we split it in N temporal intervals. The number
of intervals is computed from the average duration
of the original repetitions by fixing one interval per
second. The representative point p of each interval is

extracted as p = 1
pint

∑
pint
i=0 Xi, where pint is the number

of points in the interval and Xi represent the vector of
features for a point. The result is a vector of interval
average points.

3) Linear Interpolation: Once we have each interval aver-
age point, we have to connect them to create a general-
ized feature trajectory of the action. As an interpolator,
we use a linear Radial Basis Function (RBF) which
returns a generalized feature trajectory. Notice that
this generalized feature trajectory represents how the
object’s features are changing through time.

With these steps we obtain a generalized feature trajectory
from a set of repetitions of a demonstrated action. This gen-
eralized feature trajectory represents the changes produced
in the object, and not the kinematic or spatial parameters
of the action. When a feature trajectory is represented in a
plot, each axis represents a different object feature. Feature
trajectories can also be plotted against time as an axis.

As kinematic parameters are not explicitly provided, tasks
encoded as CGDA require a particular technique to be
reproduced. In previous works [4], the tested algorithm was
based on Evolutionary Computation. We now aim to improve
this strategy by using guided motor primitives.

III. GUIDED MOTOR PRIMITIVES
Our work on CGDA execution can be seen as a search

of inverse models (compute the action policies that can
generate a given effect) based on task goals. We benefit from
human-robot interaction to create a library of Guided Motor
Primitives (GMP). These primitives are created by extracting
segments of movements from a random human guidance
with the robot. Our aim is to make the robot capable of
discovering motor primitives and being able to perform tasks
with them, similar to motor babbling. The process starts with
the robot arm being moved randomly by the human (Fig. 1).

Fig. 1. Human guiding the robot in a random spatial trajectory. The red
lines represent the spatial trajectories the joints follow during the guiding.

This guided exploration generates a joint trajectory in the
joint space (an example using three joints is shown in Fig. 2).
The joint trajectory is split in small segments of τ seconds
and all the segments are stored in a set.
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Fig. 2. This random joint trajectory involves 3 joints of the robot arm. It
is generated when the human performs some random movements with the
robot arm.

The process to select the primitives from the set, starts
with the first segment, which is considered the first GMP.
Then, the second segment is compared with the first. If it
is different enough, it is considered a new GMP, if it is not
different enough, we discard it and continue evaluating the
next segment. Once more than one primitive is stored, the
next segments are compared with all the stored primitives.

For comparison, the primitives are transformed to be
relative to the origin of coordinates, while conserving their
shape. The comparison between two discretized segments is
performed by applying the Euclidean distance over all pairs
of points (one belonging to the primitive and the other one to
the segment being evaluated) aligned in time. This analysis
returns a single value J of discrepancy which is then used
to store or reject the segment. If J is lower than a hand-
crafted threshold ξ , the segment is discarded. An example
of comparison between two random segments is shown in
Fig. 3.

After 47 seconds of random human guidance, 94 segments
were generated with τ = 0.5 s, and 47 segments when se-
lecting τ = 1 s. In function of ξ (the threshold of similarity),
these segments lead to sets of GMP with different number
of primitives. Examples of GMP can be found in Fig. 4.

One advantage of this library of GMP is its re-usability.
The primitives are task-independent and can be applied to
different situations. This affirmation will be demonstrated
in the experimental section, where two experiments are
performed with the same set of segments. Another advantage
is that, in case a task cannot be accomplished with the
current library of GMP, two mechanisms exist to increase its
number. First, it is possible to perform more human guided
random interactions to obtain more primitives e.g. if new
joints are available, a new human-guided interaction can
reach currently unknown areas of the joint space leading
to new primitives. A second mechanism is implicit in the
threshold of similarity ξ . As it is a manually set parameter, its
value may be decreased, incrementing the number of GMP.
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Fig. 3. An example of comparison between two random segments extracted
from the previously shown joint trajectory. Both segments have a duration
of τ = 0.5 s and the blue lines represent the distances between pairs of
points.

Fig. 4. Several examples of guided motor primitives in the joint space.
They were extracted from the joint trajectory shown in Fig. 2.

A. Sequential Incremental Combinatorial Search

Once the GMP library has been created, we must focus on
how to combine sequentially the primitives for reproducing
tasks encoded as CGDA. The encoded features usually have
a temporal dependency, where each step in the feature
trajectory is dependent of the previous feature point. For
instance, painting a surface a depends on how much of the
surface has already been painted. For these kind of features,
executing the primitives that will achieve each point of the
feature trajectory independently is not feasible.

For this reason, a search method called Sequential Incre-
mental Combinatorial Search (SICS) has been developed.
SICS is essentially a tree search algorithm working in a



breadth-first manner within trees with incremental depths.
In our case, each node represents a GMP, and each edge has
an associated value which represents the cost of traversing
a path from the initial node to the current one. Traversing
a path is the result of executing the sequence of primitives
(nodes) of the path. The path cost is calculated in the feature
space and it is the difference between the feature trajectory
generated when the primitives of the path are executed in
order, and the provided generalized feature trajectory. A
summary of SICS can be found in Algorithm 1.

Two elements make SICS different from a standard
breadth-first algorithm. First, the level of depths of the
tree are incremented if no solution is found (a standard
algorithm would stop here). The number of maximum levels
is determined by the user, allowing even an infinite number
(completeness is not guaranteed in this case). Second, as the
primitives are contained in the joint space but the evaluation
is performed in the feature space, the cost of sequentially
executing two primitives can be lower than executing a single
one. This fact prevents from discarding branches of the tree
and forces an exhaustive evaluation through all nodes.

Let us outline the working mechanism of the algorithm.
Assuming we provide a generalized feature trajectory as
reference, and discretizing this trajectory in points, SICS
sequentially searches for a solution for each feature point.
A solution is considered valid when the generated joint
trajectory produces objects features that are similar to those
of the reference. SICS first evaluates the costs of nodes
belonging to the first level of depth of the tree of primitives.
If the cost of the path to reach a given node is lower than a
manually set parameter ε , it stops searching, stores the path,
and continues searching a solution for the next point of the
feature trajectory. If the cost is not lower than ε for any node
of the level of depth, the tree is expanded one level of depth,
and the costs of sequentially executing the two depth-level
paths are analyzed (Fig. 5).

The same process of search and expansion is iteratively
followed until a solution is found for all feature points (the
error is lower than ε for all points), or the tree has expanded
d times without finding an acceptable solution.

The path cost is evaluated in the feature space by calcu-
lating the Euclidean distance between the discretized feature
trajectory that results from sequentially combining the prim-
itives, and the discretized generalized feature trajectory.

IV. EXPERIMENTS

Two experiments have been performed. Both experiments
are performed in a simulated environment with a model of
the humanoid robot Teo [18], using the previously discovered
human-guided primitives. The first experiment involves only
object spatial features, and its objective is to generate a robot
joint trajectory which leads to a feature trajectory equal to the
objective one. This feature trajectory is similar to a cleaning
movement, and it is encoded as a CGDA where the object
tracked is in one of the robot’s hands. The second experiment
consists in having the robot paint a wall. The painting process

Algorithm 1 Sequential Incremental Combinatorial Search
(SICS)

1: procedure SICS(X ,ε,d). X is the feature trajectory. ε

is an error parameter. d is the maximum allowed depth.
2: P←() . P is the sequence of primitives used.
3: for i < numberO f Points(X) do
4: P←search(P,ε,d)
5: end for
6: return P
7: end procedure
8: function SEARCH(P,ε,d)
9: depth← 1

10: while depth < d do
11: N←breadthNodesIndexes(depth)
12: for j < length(N) do
13: C←pathTo(N j)
14: f ←execute(P+C)
15: cost←compare( f ,Xi)
16: if cost < ε then
17: P←add(N j)
18: return P
19: end if
20: end for
21: expandTree(N)
22: depth← depth+1
23: end while
24: P←addLowestCostPath()
25: return P
26: end function
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Fig. 5. SICS example for a two-point feature trajectory. For the first point,
the nodes are expanded and a breadth-first search is performed until the cost
of one of the nodes is lower than a threshold ε . If this occurs, the path to
the node is stored and the process continues for the next point. If not, the
tree is further expanded and the search repeats.



is encoded as a CGDA, but this time the object tracked is
the wall.

A. Spatial Task: Cleaning

The goal is to reproduce a generalized feature trajectory
extracted from a set of human action demonstration repeti-
tions. This generalized feature trajectory contains only spatial
features (X,Y,Z). The demonstration repetitions which leaded
to the generalized action were recorded using a real Kinect
device tracking a colored marker. Seven repetitions of the
demonstrated action were recorded and used to generate the
generalized action. The action can be described as: keeping
object orientation fixed, move it over the perimeter of a circle
of 30 cm of diameter for one revolution. For simplicity of
explanation, let us name this action as ‘clean’.

For this experiment several values of ξ were used to
generate different sets of primitives. With these primitives,
SICS was applied to find a primitive combination which
obtains an error lower than ε = 20 for each point of the
generalized feature trajectory. This ε represents a 20 mm
error in this experiment because the feature space was set to
millimeters. The resulting feature trajectories for the cleaning
task can be seen in Fig. 6.
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Fig. 6. Cleaning: Plot superposing the generalized feature trajectory
(blue) and several feature trajectories resulting from executing the sequence
of primitives selected by SICS. Results are dependent on the number of
primitives available to choose from (given by the threshold of similarity ξ )
and the maximum tree depth d. The primitives used belong to the same set
of segments, but in function of ξ , the most diverse are selected. Notice the
plot is not representing joint or spatial trajectories, but feature ones.

In general, allowing a greater maximum tree depth d
increments the possibilities of finding a solution, but results
in an exponential evaluation complexity. The use of a larger
set of primitives leads to a greater number of possible
combinations, so the algorithm is more likely to find a
solution.

B. Non-Spatial Task: Painting

In the second experiment the task goal is to paint a wall,
without teaching the robot the necessary motor parameters.
In the simulated scenario, there is a wall, composed by 16
small gray squares, in front of the robot. The action goal is to

change the color of all the squares. The generalized action
has been created synthetically and it has only one feature
(plus time). This feature represents the percentage of wall
that has been painted, which increases constantly with time.
The generalized feature trajectory is split in 16 points.

The generalized feature trajectory is used as the reference
and SICS is used to find primitive sequences. Every time
the robot hand gets closer than 120 mm to a wall square,
this square changes its color. This is a simplification to
emulate the real action of sliding a paintbrush over a surface.
Cost is evaluated when a primitive sequence is executed, by
analyzing wall features (by counting the number of colored
squares).

Several values of ξ were used to generate different sets of
primitives. With these primitives, SICS was applied to find
a primitive combination with an error lower than ε = 0.1 for
each point. This ε represents a 0.1% error in this experiment
as the feature space was set to represent the percentage of
the painted wall. The resulting feature trajectories for the
painting task can be seen in Fig. 7.
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Fig. 7. Painting: Plot superposing the generalized feature trajectory (blue)
and several feature trajectories resulting from executing the sequence of
primitives selected by SICS. Results are dependent on the number of
primitives available to choose from (given by the threshold ξ ). Remember
the plot is not representing joint or spatial trajectories, but feature ones.

The results show that the system can accomplish the
painting task with a small number of primitives (example
in Fig. 8). By increasing the number of primitives, the
probabilities of a correct performance rise. However, a new
primitive may alter a path and lead to worse results for
posterior points. This is the case of the figure when using 10
primitives.

V. DISCUSSION

An improvement over our previous work [4] is the repro-
duction of non-spatial feature tasks, such as those involving
color. In [4] we were restricted to spatial characteristics, as
we had not found a method with acceptable results. The
use of guided motor primitives is new in the framework
and the inclusion of a human in their generation is also
valuable. By benefiting from human-robot interaction, the



Fig. 8. Several screenshots taken during the painting experiment. Motor
sequence obtained from combining primitives using SICS.

complexity of the framework is reduced when generating
primitives. Other self-discovery approaches, such as motor
babbling, requires programming joint-limits and computing
self-collisions. Despite GMP and motor babbling aim to
fill similar technological niches, our approach simplifies the
process as it is the human who leads the exploration of the
joint space.

VI. CONCLUSIONS

This paper describes the discovery and combination of
Guided Motor Primitives (GMP) to perform goal-directed
actions. The primitives are extracted from a random joint
trajectory generated when interacting with a human. After
only 47 seconds of human interaction, the robot has learned
enough primitives to perform several tasks in simulation. By
combining the discovered primitives with the Sequential In-
cremental Combinatorial Search the robot is able to perform
the execution of tasks encoded as Continuous Goal-Directed
Actions (CGDA).

Regarding the experimental results, we have demonstrated
that CGDA encoding is feasible for action reproduction even
with non-spatial features and also that GMP are reusable for
different tasks. The results show an increase in performance
when using a greater number of primitives, as it has more
combinations to choose from. Furthermore, longer combina-
tions of primitives also tends to improve the results.

Future works will involve adapting the proposed GMP to
work on real robotic platforms. This adaptation will imply
smoothing final joint trajectories and also implementing a
learning process during the tree search, as it is not feasible
to evaluate all primitives combination for each task.
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