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Resumen

La sociedad está experimentando un proceso de envejecimiento que puede provocar un desequilibrio
entre la población en edad de trabajar y aquella fuera del mercado de trabajo. Una de las soluciones
a este problema que se están considerando hoy en día es la introducción de robots en multiples
sectores, incluyendo el de servicios. Sin embargo, para que esto sea una solución viable, estos robots
necesitan ser capaces de interactuar con personas de manera satisfactoria, entre otras habilidades. En
el contexto de la aplicación de robots sociales al cuidado de mayores, esta tesis busca proporcionar
a un robot social las habilidades necesarias para crear interacciones entre humanos y robots que
sean naturales. En concreto, esta tesis se centra en tres problemas que deben ser solucionados: (i) el
modelado de interacciones entre humanos y robots; (ii) equipar a un robot social con las capacidades
expresivas necesarias para una comunicación satisfactoria; y (iii) darle al robot una apariencia vivaz.

La solución al problema de modelado de diálogos presentada en esta tesis propone diseñar estos
diálogos como una secuencia de elementos atómicos llamados Actos Comunicativos (CAs, por sus
siglas en inglés). Se pueden parametrizar en tiempo de ejecución para completar diferentes objetivos
comunicativos, y están equipados con mecanismos para manejar algunas de las imprecisiones que
pueden aparecer durante interacciones. Estos CAs han sido identificados a partir de la combinación
de dos dimensiones: iniciativa (si la tiene el robot o el usuario) e intención (si se pretende obtener o
proporcionar información). Estos CAs pueden ser combinados siguiendo una estructura jerárquica
para crear estructuras mas complejas que sean reutilizables. Esto simplifica el proceso para crear
nuevas interacciones, permitiendo a los desarrolladores centrarse exclusivamente en diseñar el flujo
del diálogo, sin tener que preocuparse de reimplementar otras funcionalidades que tienen que estar
presentes en todas las interacciones (como el manejo de errores, por ejemplo).

La expresividad del robot está basada en el uso de una librería de gestos, o expresiones,
multimodales predefinidos, modelados como estructuras similares a máquinas de estados. El
módulo que controla la expresividad recibe peticiones para realizar dichas expresiones, planifica
su ejecución para evitar cualquier conflicto que pueda aparecer, las carga, y comprueba que su
ejecución se complete sin problemas. El sistema es capaz también de generar estas expresiones en
tiempo de ejecución a partir de una lista de acciones unimodales (como decir una frase, o mover una
articulación). Una de las características más importantes de la arquitectura de expresividad propuesta
es la integración de una serie de métodos de modulación que pueden ser usados para modificar los
gestos del robot en tiempo de ejecución. Esto permite al robot adaptar estas expresiones en base
a circumstancias particulares (aumentando al mismo tiempo la variabilidad de la expresividad del
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viii RESUMEN

robot), y usar un número limitado de gestos para mostrar diferentes estados internos (como el estado
emocional).

Teniendo en cuenta que ser reconocido como un ser vivo es un requisito para poder participar en
interacciones sociales, que un robot social muestre una apariencia de vivacidad es un factor clave
en interacciones entre humanos y robots. Para ello, esta tesis propone dos soluciones. El primer
método genera acciones a través de las diferentes interfaces del robot a intervalos. La frecuencia e
intensidad de estas acciones están definidas en base a una señal que representa el pulso del robot.
Dicha señal puede adaptarse al contexto de la interacción o al estado interno del robot. El segundo
método enriquece las interacciones verbales entre el robot y el usuario prediciendo los gestos no
verbales más apropiados en base al contenido del diálogo y a la intención comunicativa del robot.
Un modelo basado en aprendizaje automático recibe la transcripción del mensaje verbal del robot,
predice los gestos que deberían acompañarlo, y los sincroniza para que cada gesto empiece en el
momento preciso. Este modelo se ha desarrollado usando una combinación de un encoder diseñado
con una red neuronal Long-Short Term Memory, y un Conditional Random Field para predecir la
secuencia de gestos que deben acompañar a la frase del robot.

Todos los elementos presentados conforman el núcleo de una arquitectura de interacción
humano-robot modular que ha sido integrada en múltiples plataformas, y probada bajo diferentes
condiciones. El objetivo central de esta tesis es contribuir al área de interacción humano-robot
con una nueva solución que es modular e independiente de la plataforma robótica, y que se centra
en proporcionar a los desarrolladores las herramientas necesarias para desarrollar aplicaciones que
requieran interacciones con personas.



Abstract

Society is experiencing a series of demographic changes that can result in an unbalance between
the active working and non-working age populations. One of the solutions considered to mitigate
this problem is the inclusion of robots in multiple sectors, including the service sector. But for
this to be a viable solution, among other features, robots need to be able to interact with humans
successfully. This thesis seeks to endow a social robot with the abilities required for a natural
human-robot interactions. The main objective is to contribute to the body of knowledge on the area
of Human-Robot Interaction with a new, platform-independent, modular approach that focuses on
giving roboticists the tools required to develop applications that involve interactions with humans. In
particular, this thesis focuses on three problems that need to be addressed: (i) modelling interactions
between a robot and an user; (ii) endow the robot with the expressive capabilities required for a
successful communication; and (iii) endow the robot with a lively appearance.

The approach to dialogue modelling presented in this thesis proposes to model dialogues as a
sequence of atomic interaction units, called Communicative Acts, or CAs. They can be parametrized
in runtime to achieve different communicative goals, and are endowed with mechanisms oriented to
solve some of the uncertainties related to interaction. Two dimensions have been used to identify the
required CAs: initiative (the robot or the user), and intention (either retrieve information or to convey
it). These basic CAs can be combined in a hierarchical manner to create more re-usable complex
structures. This approach simplifies the creation of new interactions, by allowing developers to focus
exclusively on designing the flow of the dialogue, without having to re-implement functionalities
that are common to all dialogues (like error handling, for example).

The expressiveness of the robot is based on the use of a library of predefined multimodal gestures,
or expressions, modelled as state machines. The module managing the expressiveness receives requests
for performing gestures, schedules their execution in order to avoid any possible conflict that might
arise, loads them, and ensures that their execution goes without problems. The proposed approach
is also able to generate expressions in runtime based on a list of unimodal actions (an utterance,
the motion of a limb, etc...). One of the key features of the proposed expressiveness management
approach is the integration of a series of modulation techniques that can be used to modify the
robot’s expressions in runtime. This would allow the robot to adapt them to the particularities of a
given situation (which would also increase the variability of the robot expressiveness), and to display
different internal states with the same expressions.
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x ABSTRACT

Considering that being recognized as a living being is a requirement for engaging in social
encounters, the perception of a social robot as a living entity is a key requirement to foster
human-robot interactions. In this dissertation, two approaches have been proposed. The first
method generates actions for the different interfaces of the robot at certain intervals. The frequency
and intensity of these actions are defined by a signal that represents the pulse of the robot, which can
be adapted to the context of the interaction or the internal state of the robot. The second method
enhances the robot’s utterance by predicting the appropriate non-verbal expressions that should
accompany them, according to the content of the robot’s message, as well as its communicative
intention. A deep learning model receives the transcription of the robot’s utterances, predicts
which expressions should accompany it, and synchronizes them, so each gesture selected starts at
the appropriate time. The model has been developed using a combination of a Long-Short Term
Memory network-based encoder and a Conditional Random Field for generating a sequence of
gestures that are combined with the robot’s utterance.

All the elements presented above conform the core of a modular Human-Robot Interaction
architecture that has been integrated in multiple platforms, and tested under different conditions.
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CHAPTER 1 1

Introduction

1.1 Motivation

The field of robotics has experienced a remarkable growth in recent years. According to an study
conducted by Oxford Economics in 2019 [1], the number of robots has multiplied three-fold in the
last 20 years, reaching 2.25 million, and observed trends point towards an even faster growth in the
near future. By the year 2030, the number of active robots in the world is expected to be around 20
million, 14 of those on China alone. Figure 1.1 shows the increase of new installations of robotic
applications between 2000 and 2016. Among the different taxonomies that can be used to classify
robots [4], focusing on the field in which those robots are going to be applied, we find a distinction
between two types of robots: industrial and non-industrial robots. The former can be classified
depending on the task they are built for (welding, palletizing, assembly, etc...) while, for the latter,
two subgroups can be identified: (i) robots for production of goods, and (ii) service provider robots.
While industrial robots are already common in factories all over the world, the usage of robots in the
service sector is starting to gain traction. Data provided by the International Federation of Robotics
shows that the market for professional service robots grew a 61% between 2017 and 2018, primarily
due to the expansion of logistics robotic systems. In the same period of time, personal robots sales
saw a 59% increase. In this last category, cleaning robots accounted for 67% of total sales, with toy
robots in second place. While robots designed for helping the elderly and people needed of assistance
currently represent a small percentage of total personal robots sales (1.3%), this percentage is expected
to grow on average a 29% per year between 2019 and 2022, which shows their promise.

1
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Figure 1.1: New robot installations by country in the 21st century. Figure extracted from the Oxford
Economics report[1].

There are several factors that can explain this growing interest in robotics. Besides the economic
factors (for example, robots are starting to become more cost effective than humans[1]), there is also a
demographic factor that plays a part in this expansion. According to information provided by the
World Health Organization, in 2015, 12% of the population was over 60 years old. This percentage is
expected to raise to a 20% by 2050. The pace of population ageing is also increasing drastically. While
it took nearly 150 years for an 10% increase in population over 60 years old in France (from 10% of
the population to 20%), is going to take slightly more than 20 years for countries like India, China,
or Brazil to see the same variation. This trend will cause important economic [5] and social [6] effects
on our society. On one hand, this ageing process will bring a change in the balance between the
sizes of the population of working age and the population of not-working age. Due to the current
economic structure of developed countries, where the benefits of retired persons are covered by
people in working age, a decreasing workforce will have to support an increasing elder population.
This shortage of workers could be palliated with an increase on retirement age, and the inclusion of
the older sectors of the population into the labour market, which in turn will require businesses
to attend the needs and capacities of older employees. On top of this, an ageing population has an
associated increase on the need for healthcare services and a change on the distribution of public
spending, with an increase on healthcare financing. In part, this is due to an expected increase on
the size of the population suffering from diseases commonly associated with old age (for example,
Parkinson’s disease or Alzheimer’s disease) [7], which will bring an increase of the demand for adult
primary care.
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The combination of the growing interest on robotics and the problems that society will
experience in the near future suggests that the development of robotic platforms that can perform
tasks in the service sector, both in professional environments (public relations, commerce, etc...) and
as providers of personal care (companion robots, healthcare assistance, etc...), can help to mitigate
the challenges presented above. But for the integration of robots in the service sector to be a viable
solution, robots will require to be endowed with a series of capabilities that give them the ability to
interact with humans in a natural way. In order to be considered as natural, an interaction needs to
abide by the social rules enforced in the domains in which the robot will be inserted, and meet the
expectations that the humans in said domains have for human-human interactions. The subfield of
robotics that focus in providing a solution to this problem is known as social robotics.

Cynthia Breazeal [8] defined a social robot as “an autonomous robot that can communicate with
humans in accordance to a social model that is applied by the human observers”. A similar definition
was proposed by Bartneck et al. [9]: “Autonomous or semi-autonomous robot able to interact and
communicate with humans according to the behavioural norms expected by these humans”. Based
on the degree to which the robot adheres to the social model attributed by the humans interacting
with the robot, Breazeal categorizes social robots into the following classes, from lower to higher
social intelligence:

1. Socially evocative: robots that encourage users to attribute them social responsiveness,
without actually possessing it.

2. Social interfaces: robots that can use human-like social cues and interaction modalities, but
in a predefined and often reflexive social behaviour.

3. Socially receptive: robots that can learn from human social cues and use them to modify
their behaviour, without being proactive and have its own communicative goals.

4. Sociable: robots that are socially participative, posses their own interaction goals, and can
proactively engage people in communication.

Based on the definitions given above, what characterizes a social robot is how a human observer
perceives it in the context of a given social model. But the concept of social model is completely
subjective, as it is created by said human observers. Although individuals belonging to the same
demographic group might have a similar expectation of how a robot should behave, this might
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not be necessarily true for individuals from different groups. Also, the social rules defined for
human-human interactions are not universal, but instead depend on the situation and the context.
For example, how persons interact in a professional environment can be completely different from
how two persons with a personal relationship interact. Because of this, the design of a social robot
is usually dependant on the field in which the robot is going to be used [10, 11, 12]. Still, there are
a series of common features that have been deemed necessary in the studies presented above. For
example, multimodality (the ability to use multiple communication channels, either separately or
in combination) is usually desired, both for communicating with the robot and for the robot to
convey messages. Also, social robots need to adapt to the user and their surroundings, and show a
large range of conversational responses to multiple events (something that could be achieved through
this adaptation). However, not all the participants in the studies cited above agreed on if these
responses have to be human-like, or can be closer to the response expected from animals. Another
feature that people find important in a social robot is the capability to express affect states (either
mood or emotions) and to recognize those same states on the humans. Part of these features can
be associated to the cognitive aspects of the interaction (making decisions about how the robot
should react given the internal state of the robot, the previous action of the human with whom it
is interacting, and the knowledge that can be extracted from the environment), while others are
tied to the expressiveness capabilities of the robot. The latter will be the main focus of this dissertation.

1.2 The problem

As seen in this chapter, for robots to be able to serve as companions, assistants, or providers of services,
they need to possess a series of interaction capabilities that allow them to comply with the set of rules
and behaviours that society has accorded for each of these positions. Among other features, robots
must possess a high level of adaptability, social and emotional intelligence, and expressiveness, in
order to provide an experience as satisfactory as possible. But achieving a satisfactory interaction
presents a set of problems that need to be solved. The work developed in this thesis will focus on
three of these problems: 1) how to control the flow of the dialogue and decide what the response of
the robot should be (dialogue management), 2) how the robot should convey information to the
user (expressivity management), and 3) how the robot can transmit an appearance of being a living
being (animacy expression).
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1.2.1 Dialogue Management

In robotic architectures, the module that endows a social robot with the ability to interact with
humans is usually named Dialogue System. A Dialogue System is a computational agent designed
to converse with a human using everyday language. While starting as text-based applications
for Human-Computer interaction, soon they evolved to include other means of interaction. In
particular, Spoken Dialogue systems have beenthe ones attracting more attention, as spoken language
is a cornerstone of a person’s daily interactions with the world, due to the fact that speech can
convey complex ideas in a highly efficient manner [13]. Nowadays, dialogue systems have become a
part of our society with the proliferation of portable computer systems and smartphones, and the
emergence of voice assistants [14] like Alexa, or Cortana. These systems manage a wide range of
tasks, from speech recognition or perceiving stimuli coming from the environment, to modelling
how a response should be given so it conveys the desired information. Inside a Dialogue System,
the element that manages the flow of the interaction and decides on the next action of the system
based on previous steps of the dialogue and the knowledge base of the system is the Dialogue Manager.

The Dialogue Manager is the core element in a Dialogue System [15, 16, 17]. It is in charge of
maintaining the representation for the robot’s dialogues. The Dialogue Manager receives information
coming from the input processing modules of the system, and advances the dialogue accordingly,
selecting the most appropriate system actions at every moment. In a sense, the Dialogue Manager
acts as the brain of a dialogue System. Thus, all the features of a social robot that give it the ability of
react appropriately to the user’s communicative actions and assure that the conversational goals are
fulfilled are usually integrated in this module. In this area, one of the questions that this dissertation
will aim at answering is how to model dialogues for a social robot in a way that makes them easy to
design, and how to endow the robot with the ability to manage and complete said dialogues.

1.2.2 Expressiveness in Robotics

According to the Cambridge dictionary, expressiveness is defined as “the state of showing what
someone thinks or feels”. This implies that there is a communicative component to expressiveness, as
its final objective is to convey a particular message. But expressions are not only a tool to communicate
information to other humans, they also have an effect on how those persons perceive us. For
example, studies [18] suggest that individuals who are non-verbally skilled and extroverted, and thus
display outwardly focused and fluid expressive behaviours, tend to make a better impression on people.
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This means that the development of expressiveness features for a social robot has to be addressed
from two different perspectives. On one hand, the robot has to be able to express itself in a way
that is understandable and feels appropriate to the user. In order to achieve this, roboticists have to
design models that can be used to represent multimodal expressions for social robots, and also to
design strategies for conveying said expressions. These strategies should be able to adapt the robot’s
expressiveness to the particularities of the human interacting with it and the characteristics of the
environment, while maintaining the integrity of the message that has to be conveyed. On the other
hand, it is imperative to consider the effect that the robot’s expressions have over the persons that will
interact with it. The goal is to design this expressiveness in a way that helps the robot to be perceived
as a social agent. This can be achieved through the development of methods for modulating the
expressions, so they can reflect the internal state of the robot at every moment, and also be adapted to
the particular circumstances of an interaction.

Endowing a social robot with the proper expressiveness that combine the two perspectives
presented above will help the robot to provide more engaging interactions, help to create emotional
bonds between the robot and the human user, and overall improve the ability of the robot to fulfil
the role for which it has been designed.

1.2.3 Animacy and social robots

The biophilia hypothesis [19, 20] proposes that “humans have an innate tendency to focus on and
affiliate with life forms and life-like processes”. Based on this theory, it could be possible to argue that
robots that display life-like characteristics will be easier to accept for humans than those that clearly
convey a machine-like appearance.

This premise has been supported by research in the field of psychology. In 2009, Wheatly et al.
[21] proposed that animacy (the quality that an entity has of being recognized as a living being) is a
keystone for social interactions, and the fact that a human recognizes his/her interaction partner
as a living being is a prerequisite for other high level social functions, like the establishment of
communication. The degree to which this animacy has to be achieved in social robotics is still an
open question, though. For example, Melson et al. [22], when studying the use of robotic pets as
companions and therapeutical tools, observed that persons would recognize the robotic dog as a
machine, but still assign it some attributes associated with living beings. Thus, they defended the use
of a separate category when defining robots: “sort of alive”.
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A significant amount of work has been dedicated in the field of social robotics to how
this animacy can be given to a robot, and what features result relevant. Authors like Bartneck
et al. [23] proposed a combination of vibrant facial expressions and human-like physical
features as a method for achieving a high animacy perception. Nakayama et al. [24] found
that robots with abstract shapes and simple mechanisms can convey the impression thanks to its
movement. Castro et al. [25] also evaluated the use of motion, but also the effect of bodily appearance.

The work developed in this thesis seeks to contribute to the body of knowledge on animacy
in social robotics with the development of two methods for endowing a robot with a lively appearance.

1.3 Objectives

This thesis focuses on how to provide a social robot with the capabilities that are required for
achieving a natural interaction with users. In this context, a natural interaction is defined as an
interaction that abides by the social rules that an agent in that environment is expected to follow,
and that meets the expectations that the human interacting with the robot might have. Thus, the
main objective of this dissertation is to endow a social robot with the necessary communicative

abilities in order to provide a interaction that feels satisfactory to a human user. The
proposed solution will be integrated in several robotic platforms, and evaluated through user studies
that will validate its usefulness. Although the work presented in this dissertation has been integrated
in robotic platforms developed with a specific field of application in mind (companion robots for
older adults that suffer from mild cases cognitive impairment), the desired solution should not be
constrained to a specific task, and instead be used in multiple domains.

To achieve this main objective, a series of subgoals have been defined:

1. The proposed system has to be easy for developers to use. The objective is to achieve an
interaction architecture that can manage the interaction-related aspects of communication in
a way that feels natural to a human observer, while simplifying the design of new dialogues in
different domains.

2. The proposed system has to be highly modular, in order to simplify the process of upgrading or
replacing the different components of the architecture without affecting the rest of the system.

3. The proposed system has to be application independent, and it should be possible to integrate
it in robotic architectures for multiple domains without the need for major adjustments.
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4. The overall performance of the proposed system has to allow an interaction that meets the
temporal constraints that apply to human-human interactions. Thus, the reaction time of the
system will be used as a key benchmark feature.

5. The proposed system has to be flexible enough to adapt to the particularities of different users,
in order to introduce as little friction as possible in the interactions between the human and
the robot.

6. The final architecture has to be validated through an extensive subjective evaluation. The
participation in this evaluation will not be restricted to users belonging to the field of application
of the robots used in the study (older adults).

7. The proposed architecture will have to be installed and run in a robotic platform. Due to the
limited hardware resources (mainly, the RAM memory and the processing power) that robots
have, and the fact that other modules have to be running in the robot as well, it is necessary to
evaluate the proposed architecture’s performance.

Besides these general objectives, specific subgoals for each of the three aspects of human-robot
interaction considered in this thesis will be presented in their respective chapters.

1.4 Overview of the document

The work in this thesis has been divided in three main parts that correspond to three areas of
human-robot interactions: i) dialogue management, ii) expressivity management, and iii) animacy
expression. Next, the contents of the different chapters in this document are presented in depth:

• Chapter 2: This chapter presents the robotic platforms in which the tools developed in this
thesis have been integrated. It starts with a brief description of the hardware of each robot,
and then presents the software architecture, which is common to all platforms.

• Chapter 3: This chapter focuses on dialogue management in social robots. First, a brief
introduction to the challenges that have to be solved in this field is presented, as well as the
research objectives that we have defined. Then, a review of the state of the art in dialogue
management is conducted, divided in the different approaches that can be followed for
solving this problem. The final part of this section shows a comparative analysis of the
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works reviewed, focusing on highlighting the voids in the state of the art that the proposed
approach is trying to fill. Next, the chapter presents the concepts of dialogue management
in human-human interactions that serve as the theoretical foundation for the proposed
dialogue management system. Then, the technical aspects of the implementation of the system
developed are presented, along with its integration into the robot’s software architecture.
After, an evaluation of the proposed approach is conducted in order to assess its performance.
Finally, I review the conclusions extracted from the work conducted in dialogue management,
and present the main contributions of this research. The main limitations of the proposed
dialogue management approach are presented, along with a series of possible future lines of
work.

• Chapter 4: In this chapter, the expressiveness aspect of human-robot interactions is
presented. First, an introduction to expressiveness in social robotics and the definition of the
expressiveness-related objectives of this thesis are presented. Then, I conduct a review of the
state of the art of expressiveness architectures for social robots. The next section introduces
the proposed expressiveness approach, from a theoretical point of view. Then, the technical
aspects of the proposed solution are presented, as well as the integration of this solution in the
general architecture of the robot. After, I present a series of studies aimed at evaluating how
users perceive the expressiveness of our robots when using the proposed system. This chapter
is closed with a compilation of the conclusions extracted regarding the expressiveness of social
robots, an evaluation of the goals defined beforehand, the main contributions of the work
developed in this particular area, and also the limitations of the proposed system and future
lines of work.

• Chapter 5: The last area of human-robot interaction studied in this thesis is presented in this
chapter: how can robots convey a liveliness appearance. Following the structure of chapters 3
and 4, I begin with an introduction to the problem in need of solving, the goals that have to be
achieved, and a review of the current state of the art in this field of robotics. The core section
of this chapter introduces the proposed liveliness generation methods, as well as its integration
in the robotic platforms.Next, I present the evaluations performed to test the performance of
the proposed liveliness generation approaches. Finally, the conclusions for my research on
liveliness expression are presented, highlighting the main contributions of this work. This last
section also presents the limitations of the work developed, as well as possible future works.
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• Chapter 6: In this last chapter, I summarize the general conclusions extracted from my
research, and provide an overall evaluation of the work presented in this dissertation.



CHAPTER 2 2

Framework of the thesis

2.1 Introduction

The embodiment of a communicative agent plays an important role on how its interaction
capabilities are designed. The strategy followed for managing the dialogues between the robot and the
agent has to take into account the type of messages the agent can convey, and also the different sources
of information that can be received. The solution proposed for dealing with these platform-related
particularities was the development of a modular architecture that tries to separate those aspects of a
robot’s software architecture that are platform-specific from those that are more generic. Each part
of the architecture is compartmentalized, and the communication is done through standardized
interfaces. This simplifies the process of upgrading or replacing individual components, or adding
new skills. In order to integrate the architecture in a new robot, only the modules in contact with the
robot’s hardware need to be modified, while the rest of the modules can remain unchanged.

This section introduces the robotic platforms in which the proposed interaction architecture has
been implemented and evaluated, along with a review of their hardware features. This includes a brief
presentation of the research group and some of their research projects. Next, the chapter presents the
software architecture that has been integrated in these robotic platforms. Finally, this chapter will be
closed with a summary of the key concepts discussed.

11
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2.2 Robotic platforms

All the work developed for this thesis has been conducted in the Robotics Lab of the Carlos III
University of Madrid, inside the Social Robotics Group. This research group focuses on developing
social robots and their applications. The main research lines include robotic perception, decision
making, dialogue management, expressiveness management, Human-Robot Interaction, and
cognitive stimulation. The research group has taken part in research projects with Spanish and
European companies and institutions. Among the different projects, the following can be highlighted:

• Development of social robots for assisting older adults with cognitive impairment

(ROBSEN): This project had the goal of developing a social robot for assisting older
adults that suffer from mild cases of cognitive impairment. In this case, the robot helps the
caregiver (without replacing him/her), and provides assistance to the patient in four scenarios:
entertainment, stimulation, personal assistance, and security and safety.

• Social robots for physical, cognitive, and affective stimulation for older adults

(ROSAS): This project focuses on the use of robotic platforms to perform cognitive, physical,
and affective stimulation therapies with older adults.

• MOnarCH (Multi-Robot Cognitive Systems Operating in Hospitals): This research
project took place between 2013 and 2016, and focused on using social robots to interact with
children, staff and visitors in the pediatric unit at the Portuguese Oncology Institute of Lisbon.
A new social robot was specifically designed and built for this project. The work conducted in
the Social Robotics Lab focused on developing the HRI capabilities of the robot.

Since 2005, multiple robotic platforms have been developed, and/or used for research purposes
in the Social Robotics Lab. The first robot that was completely designed and built inside the group
was Maggie [26], a personal social robot designed as a research platform for studying Human-Robot
Interaction (HRI), robot cognition, and robot autonomy. Another platform used in the research
group is Mbot [27], a child-sized mobile robot for interacting with paediatric patients in an
oncological hospital. Both robots are shown in Figure 2.1

In the frame of the more recent research projects, two new platforms designed to assist older
adults that suffer from mild cognitive impairment were developed: Mini and Gero. These are the
robotic platforms in which the interaction architecture designed for this thesis has been integrated
and evaluated. They will be presented in depth in the following subsections.
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Figure 2.1: Maggie, a social robot designed as a research platform (left), and Mbot (right), a robot for
entertaining children in a hospital (source: [2]).

2.2.1 Mini

Mini [28], shown in Figure 2.2, is a social robot designed to help older adults and their caregivers in
their daily life activities, either in nursing facilities or in the users’ houses. It was conceived as a tool
that can be used by physicians, instead of replacing them. Users can play games with Mini, request
different multimedia content (movies, photos, music...), ask for a weather report or the news, and
also complete cognitive stimulation exercises and therapies.

Modelled after the robot Maggie, Mini has an anthropomorphic shape, although its appearance
is closer to that of a cartoon, being soft and squashy. Unlike Maggie, Mini was designed as a tabletop
robot, based on the feedback provided by experts in the assistance care field. The internal skeleton of
the robot is 3D printed, and houses the microcontroller that manages the sensors and actuators. The
box at the bottom of the robot contains the computer that serves as the robot’s brain. Regarding its
perceptual capabilities, a RGB-D camera is used for user detection in short distance human-robot
interactions, while an unidirectional mono microphone is used for recording the verbal activity of the
user, in combination with an Automatic-Speech Recognition (ASR) module for speech extraction.
Mini has also touch sensors in its belly and shoulders for tactile interactions. Finally, the robot is
equipped with an external touch screen for displaying multimedia content and also interacting with
users through menus.
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Figure 2.2: Mini, a social robot designed for assisting older adults suffering from cognitive impairment.

Mini is equipped with several actuators that provide the expressiveness capabilities of the robot.
Although it was designed as a tabletop robot, Mini’s body has 5 degrees of freedom: two in the neck,
one on each shoulder, and one on the waist. These movements are performed using servomotors that
can be controlled in position or velocity. Coloured Light-Emitting Diode (LED) are placed in the
robot’s chest and cheeks, and allow Mini to express different internal states. The chest LED simulates
the heart of the robot, and its intensity, heart rate, and colour can be controlled. Mini also has a LED
array in the mouth, synchronized with the audio output of the robot so it works as a VU meter. In
the robot’s face, two screens are used to represent the robot’s eyes. These screens can convey different
gazes by displaying a series of predefined GIFs. Finally, a speaker located in its chest endows Mini
with the ability to emit verbal and non-verbal sounds. The speech of the robot is generated using a
Text-To-Speech (TTS) module.

Because Mini was designed to be used as a research platform, some of its hardware capabilities
were oversized, in order to allow the extension of its perception or actuation features as required. Due
to the high cost of the oversized hardware features, a new low-cost robot was designed based on Mini,
with the objective of obtaining a platform that provides the same features and applications that Mini
has, but is affordable by a wider segment of the target population. This new robot was named Gero.



2.2 Robotic platforms 15

2.2.2 Gero

Figure 2.3: Gero, a low-cost social robot designed for assisting older adults suffering from mild
cognitive impairment.

Gero is a low-cost social robot designed for assisting older adults that suffer from mild cognitive
impairment. It is based on the robot Mini, and was built in collaboration with a company that
specializes in healthcare technology-based applications. It offers a subset of all the applications
developed for Mini, while its hardware architecture has been resized so it can perform all the required
tasks with the lowest cost possible.

Like Mini, Gero is also a 3D-printed tabletop robot, although it switches Mini’s soft and squashy
appearance for a fully printed shell. It maintains the coloured LED in heart, cheeks and mouth,
the speaker located in the chest, the microphone, and the touch sensors, but removes the RGB-D
camera installed in Mini. This was decided due to concerns being raised about the possibility of
users perceiving a robot with a camera as a threat to their privacy. Gero also has limited mobility, as
it cannot move its waist. In Gero, the screen modules used in Mini were replaced by TFT screens,
which allow for a manual control of the design of the eyes instead on relying on predefined GIFs.
The luminosity of these screens is modulated based on the levels of ambient light, measured with a
Light Dependent Resistor.
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Although Mini and Gero present some differences regarding its hardware configuration, and
the capabilities that each platform has, both share the same modular software architecture, which
has been entirely developed by researchers of the Social Robotics Lab. This architecture will be
introduced in the next section.

2.3 The control architecture

Figure 2.4: Software architecture for the robots Mini and Gero. Green boxes are common to the
robotic platforms and grey boxes are platform-dependent.

The software architecture developed in the Social Robotics Lab [28] has been designed with a
key concept in mind: modularity. This simplifies the process of upgrading, removing, or adding new
modules and features to the system. An overview of the software architecture can be seen in Figure
2.4. In this diagram, the following blocks are present:

• DMS: the Decision Making System module, in charge of selecting the behaviour of the robot
at any given time.

• Apps: the applications that represent the different tasks that the robot can perform. For
example, one app can allow the robot to read the news to the user, while another can implement
a game between the robot and the user. Applications are started and stopped by the DMS, and
they return feedback indicating the progress of their task.
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• HRI System: module of the architecture in charge of controlling all interactions between
the robot and the user. It is in charge of processing all information captured by the sensors,
decide the most appropriate way to advance the current dialogue (based on the needs of the
applications), and display all the communicative actions that have to be performed. This
module receives from the applications requests to start interactions, and sends back to them
the result of these dialogues.

• Liveliness: this module generates behaviours designed to endow the robot with a liveliness
appearance.

• Input modules: software modules that control the robot’s sensors. They relay the information
perceived by the sensors to the rest of the architecture. The rest of modules can send
commands to the input modules in order to modify their configuration. This modules are
platform-dependent.

• Output modules: software modules that control the robot’s actuators. They receive
commands detailing the actions that have to be performed, and can return feedback about the
execution of said actions. This modules are platform-dependent.

• Context: module that represents the robot’s memory and details its state at any given time.
All other blocks can retrieve this state or update it.

The work presented in this dissertation has been integrated in the blocks highlighted with a red
frame. For any application that requires that the robot interacts with users, the architecture divides
the control over the robot’s decision processes in two levels: the Application Level and the HRI
System. The Application level decides what the robot has to do at any given time and controls the
correct execution of the robot’s behaviours, based on task-related information (knowledge required
for advancing the tasks the robot performs). Whenever one of the applications has to establish a
dialogue with the user, the HRI system takes command and controls the flow of the interaction
to achieve the communicative goal requested by the application. This process involves the use of
interaction-related information. The applications and the DMS can communicate directly with the
input and output modules of the robot for tasks that do not involve an interaction with the user.
An example of this could be an application that sends commands to the robot’s navigation system.
However, all the information that has to be retrieved through an interaction (for example, asking the
user his/her name) and all the communicative actions of the robot (for example, the robot greeting
the user) have to be managed by the HRI system.
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2.3.1 Application Level

As stated before, in the Application level is where the decisions about the robot’s behaviour are
made. This level is conformed by the Decision Making System, or DMS, and the applications. In our
architecture, the DMS serves as the supreme control module, and directs the general behaviour of the
robot, while the applications represent all the tasks that the robot is able to perform. At any given
time, the DMS can request the activation or deactivation of any application, based on the internal
state of the robot, the knowledge it has about the user and his/her preferences, and the information
extracted from the environment, including verbal and non-verbal communication with the user.

2.3.1.1 Decision Making System

A Decision Making System, when applied to robotics, is the module that endows a robot with the
ability to make autonomous decisions. The DMS uses the available knowledge about the internal
state of the robot and the current state of the environment to select the next action of the robot. In
our platforms, this is the highest layer of the robot’s software architecture, and has control over all the
other systems. Two different approaches were developed: (i) a state machine is used to model the tasks
that the robot can perform [28]; and (ii) a bio-inspired approach that uses needs and motivations to
drive the robot’s behaviour [29]. Thanks to the modular design of the architecture and the definition
of standard interfaces among modules, replacing one approach with the other is a simple task.

Although there is a significant difference in the process that each of the two DMS integrated in
our robotic platforms follows in order to select the next action of the robot, their interaction with
the rest of the software architecture is fairly similar. The actions selected by the DMS correspond to
the different applications integrated in the robot. The DMS requests the activation of one of these
applications, and then waits until the application completes its task, or until changes in the external
or internal state of the robot require the interruption of the current task and the execution of a new
one.

2.3.1.2 Applications

The applications are the modules that provide the functionalities, or tasks, of the robot. They follow
a common template that provides a standard interface between the application and the rest of the
architecture. This eases the integration of new applications in the robot. Applications start always
in an idle state, and can be activated, deactivated, and paused by the DMS. Also, at given intervals,
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Figure 2.5: Example of the life cycle of one of the robot’s applications. The app receives an activation
request, and performs its task until a deactivation request is received in the DMS.

the applications can give feedback to the DMS about the state of the task. When developing a new
application, the roboticist only has to create the loop that controls the execution of the task, knowing
the structure that the activation request is going to have, and also the structure that the feedback
expected by the DMS requires. An example of the control loop integrated in the apps can be seen in
Figure 2.5

Mini’s and Gero’s applications have been designed around the idea of a robot that acts as a
personal companion for a single senior, and is installed in his/her home, or in daycare centres. This
led to considering exclusively one-to-one interactions with humans during the development process.
The applications developed for these robots can be divided in two general categories: cognitive
stimulation and entertainment. In relation with cognitive stimulation applications, Mini and Gero
were developed to help older adults with mild cognitive impairment by presenting them with
cognitive stimulation exercises and therapies. A list of exercises derived from applications used by
physicians in stimulation therapies were integrated in the architecture.
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There is two different ways for the robot to perform these exercises:

• Individual exercises can be completed as part of the robot’s entertainment applications. They
can be started by the robot, or requested by the user.

• The user’s physician can prescribe a customized therapy composed of a combination of
these exercises. The robot offers the user to complete the therapy, based on the physician’s
prescription.

Regarding the applications that are oriented to providing entertainment to the user, these include
[30, 31]:

• Games: We have tested the implementation of several popular games where we replace one
of the players with the robot. In the current version of the robot’s architecture, there are
two games available. The first one is Bingo, a game in which players have cards with random
numbers, and have to scratch them as they are drawn by a caller. In our implementation, the
robot plays the role of both caller and player at the same time. The second one is Tangram, a
game where the user has to create different shapes proposed by the robot using a set of pieces.

• Information: We implemented this category of apps as a tool for the user to keep in contact
with the outside world. The robot can download the latest news and read them to the user,
while displaying relevant images in the tablet. The user has the choice of selecting the type of
content he/she wants to hear about (current news, sports, international, etc...). The robot can
also provide a weather report for the current location of the user.

• Multimedia player: The robot can display multimedia content using the touch screen in
order to entertain the user. The options available include movies, songs or audiobooks, but also
personal photos showing the user’s family, his/her home town, relevant moments in his/her
life, etc...

• Jokes and Sayings: This application compiles a collection of jokes and popular sayings that
the robot can say. While the sayings are completely random, the user can select the theme for
the jokes (animals, robots, etc...), or just ask for a random one.

2.3.2 Context

In the presented software architecture, the context is used as the robot’s memory, both short and
long-term. Short-term memory is used to store non-persistent data that is generated during the
operation of the robot, while long term memory stores persistent data about the robot, the users,



2.3 The control architecture 21

and the environment. Developers can add new knowledge to the context by hand, or it can be
downloaded from an online database. Besides serving as a knowledge storage unit, the modules of the
software architecture can share in the context any information considered relevant for the whole
system. This makes the context one of the main methods for sharing asynchronous information
among applications, the DMS, and the rest of the architecture.

The knowledge stored in the context can be categorized in the following categories:

• User data: Personal information about a user (e.g., his/her name or date of birth).

• Agenda: Information regarding the temporal scheduling of specific robot actions. For example,
it could be programmed that the cognitive stimulation therapy has to be started at 18:00 every
day.

• External state: Contextual information about a user regarding his/her capabilities (e.g.,
his/her level of proactivity, if he/she has any disability that can difficult interactions, like having
hearing problems).

• Internal state: Internal information about the robot. (e.g., its affect state, location...)

• Multimedia: Details about the content that can be displayed through the robot’s touch screen
(in particular, their URL).

2.3.3 HRI system

The HRI system is the level of the software architecture in charge of managing all communications
with the user. This is the module where this thesis is framed. This system receives interaction requests
coming from the Application level, sets up the appropriate dialogue based on the communicative
goal that the interaction request defines, uses the relevant information coming from the perception
modules of the robot to advance the dialogue, and conveys information to the user through the
expression modules. This part of the architecture is divided in three modules that control all the
perceptual (Perception Manager) and expressiveness (Expression Manager) capabilities of the robot,
when used for interaction tasks, and also manage the flow of the dialogue and advance the interaction
based on the information captured by the robot’s sensors (HRI Manager). Figure 2.6 shows an
overview of the HRI system and the exchange of information with the rest of the architecture. The
blocks highlighted with a red frame are the ones that fall under this thesis’ scope.
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Figure 2.6: Overview of the HRI System and the Liveliness module inside the software architecture.

The input information coming from the sensors is processed by the Perception Manager using
three levels of abstraction. In the lowest level, the information is simply formatted into a standardised
message as it is received, processing each input modality independently. In the middle layer, a
temporal aggregation of all the information retrieved inside a time window is performed, but without
establishing any relation between the information coming from different sources. Finally, in the
highest level of abstraction, the multimodal information is fused in order to infer complex knowledge.
For example, if a gesture detection module recognizes a greeting gesture, and a face detection module
recognizes the face of an user A, the system could infer the following information: “User A is greeting
the robot”. So far, only the lower and middle levels of abstraction have been integrated in the robot,
while the high level has been conceptually designed, but has not been implemented yet.

At the core of the HRI system, the HRI Manager executes the dialogues required by the
applications and the DMS. These dialogues are built as a combination of basic units that allow to
convey information to the user, retrieve information from him/her, or respond to any unexpected
input provided proactively by said user. The HRI System is equipped with a series of mechanisms
for managing any unexpected situation during the interaction (including errors in the perception
of the environment, or unexpected behaviours from the user) in a way that assures that the
communication does not break, and that the communicative goal can be achieved. With this
approach, the applications can model their own complex dialogues as a sequence of communicative
goals that have to be fulfilled, while the HRI System controls the interactions required for achieving
each goal, and also manages other tasks related with dialogue management (for example, error
handling).
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Finally, the HRI system also has the control over the expressiveness capabilities of the robot,
through the Expression Manager. This module uses a library of predefined gestures that have been
handcrafted by the developers. Based on the needs of the interaction, the appropriate expression
is performed in order to convey a message. There is the possibility of selecting individual actions
for each communication modality (a sentence that has to be uttered, a particular motion for one
of the arms, etc...) and create a multimodal expression by combining them. The expressiveness of
the robot can be adapted to convey different internal states, through various modulation strategies.
Besides executing these expressions, the HRI system also ensures that there are no conflicts when
trying to use the different modalities (for example, more than one expression trying to use the same
communication channel at the same time).

Both the modelling and management of interactions and the design of multimodal expressions
for a social robot are part of the work developed in this thesis. Chapter 3 of this dissertation will focus
on the dialogue management aspects of the HRI system, while Chapter 4 will present an in-depth
description of the expressiveness management features of the proposed system.

2.3.4 Liveliness

The Liveliness module is in charge of generating random behaviours that do not have a specific
communication intention, but instead complement the actions of the rest of the architecture in order
to make the user perceive the robot as a living being. The behaviours generated by the Liveliness
module can be adapted online so they represent different inner states of the robot.

Chapter 5 of this manuscript presents the two approaches that have been developed for endowing
the robot with a liveliness appearance. The first method discussed is the implementation of the
Liveliness module integrated in the robot’s software architecture is presented in detail. This approach
is based on a sinusoidal signal that represents the pulse of the robot. This concept takes inspiration
from the human heart rate, and its variations depending on a person’s internal state. The pulse
of the robot is defined by its amplitude and its frequency. While the amplitude of the signal is
only going to be used to modify the actions generated by the Liveliness module, the frequency can
also alter the time it takes for new behaviours to be generated. Depending on the robot internal
state, the amplitude and frequency of the signal can be altered, so the appearance of the robot
changes in order to convey said state. At the moment, the only internal states that are considered
are the emotions of the robot. For example, happiness would be translated into an increase in both
amplitude and frequency, while sadness would be translated into a decrease of both parameters. The
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second approach presented consists on a method for enhancing the robot’s verbal communication by
pairing its speech with an appropriate sequence of predefined gestures. The selection of these gestures
is based not only on the content of the speech, but also on the intention that the uttered sentence has.
In this case, the concept of intention is defined as the end goal that the speaker expects to achieve
with that sentence. For example, the utterance “How old are you?” has the intention of obtaining
personal information from the other speaker. The proposed method combines several machine
learning models in order to first extract the intention of the sentence from the verbal content of the
speech, and then generate the required sequence of gestures.

2.3.5 Input Modules

Being able to perceive the environment is a key feature for a social robot, as the information extracted
from the world is going to affect the decision making process of the robot (as shown in Section 2.3.1.1),
and also will change how the interactions between the robot and the user will be conducted. The
software architecture presented in this section is equipped with a collection of input modules that
can retrieve multimodal information from the environment and the users interacting with the robot.
This perceptual information can be classified in four categories, according to its type:

• Visual information: As stated before, Mini is equipped with a RGB-D camera. Using this
sensor, Mini can detect the face of the users in front of it using RGB images, and upper-body
information from depth data. The depth data can also be used to identify gestures performed
by the users.

• Auditory information: The speech of the user is recorded using a microphone, and then
sent to an ASR module, which first extracts a list of words from the speech and then extracts
the lexical meaning of this sequence of words using handcrafted grammars.

• Tactile information: The touch sensors placed in the robot’s body notify if the robot is
being touched or not, and where. This is done based on which sensor is detecting the touch.
Also, Gamboa-Montero et al. [32] proposed a new tactile perception architecture that uses
contact microphones to detect not only if the user touches the robot, but also locate where the
contact was made, and classify the type of contact (stroke, hit, etc...).

• Screen-based information: All of the robotic platforms presented in Section 2.2 can use a
touch screen to display menus for interacting with the user.
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2.3.6 Output Modules

While being able to extract information from the environment is crucial for social robots, the range
of actions that said robots can perform with their output interfaces will also play an important role
on how humans perceive them. Endowing the robot with the ability to convey both verbal and
non-verbal messages is essential for human-like communication. Mini and Gero can act over the
environment using one of the following types of actions: body movements, gaze, coloured LED
patterns, auditory communication, and multimedia content display.

• Body motions: both Mini and Gero have motors that can be controlled independently, using
position, speed, and acceleration commands.

• Gaze: different strategies are used for Gero and Mini. Mini uses a set of fixed gazes that can
convey different affect states, motions and positions of the eye, as well different blinking speeds.
On the other hand, Gero’s eyes allow for a dynamic generation of the gaze. The module in
charge of controlling Gero’s gaze can modify the shape, size, colour, and position of each of the
elements that conform the eye, and combine them in order to dynamically generate different
expressions.

• LED patterns: RGB LED located in the chest and cheeks of the robots can be used to convey
different internal states with a change in colour, brightness, or fading in and out. While the
chest LED can use all of these features, the ones placed in the cheeks have been limited to use
only the colour red, as multicoloured cheeks could be perceived as strange by the users.

• Voice-based communication: the robotic platforms presented in this chapter can use either
verbal communication, thanks to a TTS module that generates utterances from text strings, or
also use non verbal sounds like yawns or laughs, in order to enrich the robot’s expressiveness.

• Multimedia content: the touch screen of the robot can be used to display multimedia content,
like images, videos, audios...

2.4 Summary

In this chapter, the robots used during the development of this work have been introduced, along
with their software architecture. The chapter started with the introduction of the research group
where the research for this thesis was conducted: the Social Robotics Group. The most important
robotic platforms developed inside this group were presented, highlighting the two robots in which
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the proposed system has been integrated and tested: the robots Mini and Gero. An overview of the
hardware for both platforms was given. Finally, the software architecture for Mini and Gero was
presented in depth, with a complete description of how it operates. The work developed in this
dissertation is connected to three main blocks in the software architecture: the dialogue manager
and expressiveness manager that conform the HRI system (along with the Perception Manager), and
the Liveliness module. These three blocks will be presented in depth in Chapters 3, 4, and 5 of this
manuscript, respectively.
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Multimodal Dialogue Management

3.1 Introduction

In Human-Computer Interaction, a dialogue model can been defined as “a model that represents
important information about the static and dynamic structure of the conversation” [33]. Mark Green
proposed a similar definition in [34]: “an abstract model that is used to describe the structure between
a user and an interactive computer system”. Although both definitions are proposed in relation to the
field of HCI, they can be applied to describe the process of modelling interactions between a human
and a robot. The dialogue model has to maintain the state of the interaction at every moment, the
context in which the dialogue is taking place, and provide strategies for selecting the most appropriate
action of the system.

No matter what specific model is used for describing the robot’s interactions, there is a need for a
system that controls the correct execution of the dialogue. This is called the Dialogue System. As a
general definition, a dialogue system is a module designed to control interactions with a human. It has
to manage all the aspects involved in communication: extracting and processing input information,
maintaining the state of the dialogue, selecting the most appropriate response of the system, and
handling the execution of said response. From an application standpoint, dialogue systems can be
grouped in two different classes [35]: task-oriented, and chat-oriented.

Task-oriented dialogue systems [36, 37, 38] are designed with the goal of helping the user
completing a specific task. The system will manage the flow of the dialogue in the direction that leads
towards the completion of an objective, and usually will not be able to manage conversation topics

27
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outside the task’s domain. Examples of these systems include online help support systems, or booking
assistants at an airline or an hotel, for example. Opposite to task-oriented systems, chat-oriented
dialogue systems [39, 40] aim to to provide a general conversation to the user, without a specific
goal to achieve or a task to complete. Some task-oriented dialogue systems include a chat-oriented
module to manage conversations outside the domain of the task they were built for (or as a fallback
mechanism) [41]. The most common example of this type of dialogue systems are what is known as
chatbots. [42, 43].

Figure 3.1: Example of the relationship between a Dialogue System, a Dialogue Manager, and a
Dialogue Model.

Regardless of the application they were built for, or the channels that can be used to retrieve
and communicate information, many dialogue systems have the same module at its core: a Dialogue
Manager [44, 45]. According to Lison [13], a dialogue manager is the module that is in charge of
maintaining the representation of the current dialogue state (which includes the knowledge that the
system has regarding the interaction, the dialogue history, the external context and the communicative
goal) and deciding which actions the system has to perform based on the state of the dialogue. Figure
3.1 shows an example of the relationship between a Dialogue System, a Dialogue Manager, and a
Dialogue Model. If we consider the definition proposed by Traum et al. [46], dialogue management
groups the following four functionalities inside a dialogue system:

1. Update the context of the dialogue based on the information provided by other communicative
agents (either human users or other computer systems).

2. Provide context-dependent expectations for how input signals have to be interpreted as
communicative behaviours.

3. Interfacing with domain processing modules to coordinate dialogue and non-dialogue
behaviour and reasoning.

4. Select the actions of the system and when to express them.



3.1 Introduction 29

In order to apply the concepts presented in this section to dialogue management in human-robot
interactions, the following problems have to be tackled. First, it is necessary a model that represents
the interaction and captures all the particularities of the dialogue, the Dialogue Model. Second,
it is necessary to develop the software infrastructure that can handle that representation of the
interaction, the Dialogue System, and in particular the Dialogue Manager. Figure 3.2 shows the
software architecture that was introduced in Chapter 2. The red box indicates the module of the
architecture where the work presented in this chapter will be integrated.

Figure 3.2: Diagram representing the software architecture described in Chapter 2. The work
developed in this chapter of the dissertation focuses on the module of the architecture highlighted in
red.

3.1.1 Objectives

In relation with the first problem of dialogue modelling, this thesis proposes a modular approach
where dialogues are represented as a combination of basic interaction units, called Communicative
Acts, or CAs. These CAs are highly parametrizable so they can be used in multiple domains, and can
be executed on its own, or combined with other CAs. This approach to dialogue modelling allows
to integrate all aspects of interactions that are task-independent in the CAs, leaving the control of
the dialogue flow, which usually requires task-related information, to the applications of the robot.
This way, developers can use the CAs as a tool to create all the interactions that their applications
might need, without having to worry about managing all low-level interaction tasks. Regarding the
implementation of the Dialogue System that can handle this dialogue model, this is a very complex
task that involves multiple modules. The dialogue system integrated in the software architecture
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presented in Section 2 is the HRI System, which at is core has one key component: the HRI Manager.
This is the dialogue manager that controls the proper configuration and execution of the CAs.

The final objective of the work developed in this area is directed to endowing a robot with the
required abilities for conducting an interaction that is deemed as satisfactory by a human observer. In
order to achieve this, the main goal that has to be achieved is the design and development of a

dialogue manager that allows to control multimodal interactions between a human and a

robot using a combination of basic, parametrizable dialogue units. On top of implementing
and managing this type of dialogues, this dialogue manager has to also be able to control the
interaction-related uncertainties that might arise during any dialogue.

This objectives have a high complexity, and include multiple aspects of both dialogue modelling
and management. For each main goal, a series of subgoals were proposed:

1. The dialogue model has to allow the usage of multiple communication channels, both as
inputs and outputs. The selection of the input and output channels has to be independent,
and any possible combination of channels has to be allowed.

2. The creation of complex dialogue structures has to be achieved through an appropriate
combination of more simple dialogue units. Thus, a modular approach to dialogue modelling
has to be followed.

3. The dialogues built with the proposed architecture have to abide by the temporal restrictions
that apply to regular human-human interactions. This means that the response of the system
to an action performed by a human observer has to be delivered in a time that feels appropriate
to said observer.

4. The proposed dialogue manager has to overcome communication problems related to errors
in perception with an appropriate strategy that avoids a communication breakdown. The
system cannot stop an interaction with an user due to partial information being provided by
the perception modules.

5. The dialogue manage has to control user-related unexpected situations. This includes changes
in initiative during the dialogue, and also a sudden disengagement by the user.

While the first two subobjectives are related to the modelling of dialogues, the last three are
connected to the management aspects of the main objective.
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3.1.2 Overview of the Chapter

An overview of the contents of each section is presented next:

• Section 3.2: In this section. a review of the state of the art on dialogue management is presented.
First, the section gives an introduction to the different approaches that can be followed for
developing dialogue managers, and then a series of relevant works from each approach are
reviewed. In order to highlight the contributions made with this thesis, a comparison between
the proposed dialogue manager and the solutions reviewed is conducted, stating the similarities
and the differences.

• Section 3.3: This section focuses on the theoretical aspects of dialogue modelling, and presents
a series of concepts extracted from the field of linguistics that have been used for developing the
dialogue model proposed in this work. Here, the concept of Communicative Act is introduced
as the basic unit that will be used to build interactions in this HRI architecture.

• Section 3.5: The dialogue manager developed for this thesis is presented: the HRI Manager,
along with all the technical aspects of its implementation. Next, a review of all the features
offered by this dialogue manager is conducted. Finally, all the CAs developed for the robotic
platforms in which the system has been integrated are presented.

• Section 3.6: This section presents the evaluations conducted for testing the performance of
the proposed approach. In this evaluation, the robotic platforms interact with real users in the
context of their target application (robots that provide entertainment and cognitive stimulation
exercises). A series of objective tests are presented to showcase the system’s performance, and a
case of use is described to explain how the different features of the proposed dialogue manager
are used in a real task.

• Section 3.7: This section compiles the conclusions extracted from the work developed on
dialogue modelling and dialogue management. The main contributions of this section of the
thesis are highlighted, and a review of the goals that were set at the beginning of this research is
conducted. Finally, a series of possible future lines of work in the area of dialogue management
are presented.

3.2 State of the Art

This section presents a review of a relevant collection of works in the field of dialogue management.
The main objective is to give the reader a comprehensive idea of the different approaches that can be



32 chapter 3 | Multimodal DialogueManagement

Figure 3.3: Classification of dialogue managers proposed by Keyvanpour et al. [3].

followed to model and manage dialogues, and the main differences between the proposed approach
and the rest of the works reviewed in this section. Although the dialogue model and manager
proposed in this dissertation were developed to be integrated in a social robot, the review will also
include approaches designed for other communicative agents.

3.2.1 Approaches to dialogue management

Depending on the approach used to model the dialogue, there are different taxonomies that can be
used to categorize dialogue managers. In 2006, Trung [47] proposed the following categories: (i)
finite-state and frame-based dialogue managers, (ii) Information state-based and probabilistic-based
approaches, (iii) plan-based approaches, and (iv) collaborative-agent approaches. In recent years,
with the advances in the field of machine learning, new dialogue managers and end-to-end dialogue
systems have been developed using neural-based approaches. These managers are left outside of
Trung’s categorization, and thus, require the modification of traditional classifications. In 2020,
Keyvanpour et al. [3] proposed a new taxonomy that, while maintaining some of the categories
used by Trung, also included the new machine learning-based methods. In their approach, dialogue
managers are first categorized in two global classes: hand-crafted and probabilistic. In handcrafted
approaches, the developers of the system define the rules that will be used to decide which action the
system should perform at every turn. This category includes all the dialogue manager types proposed
by Trung. Probabilistic approaches rely on statistics and machine learning techniques for managing
interactions. They have the advantage of being more flexible than handcrafted systems, as they can
keep learning during interactions and adapt to new situations, but, on the other hand, they require
large datasets for training, and its computation can be complex. This type of dialogue managers can
either be classified as neural network-based, or approaches that describe the dialogue as a Markov
Decision Process. Figure 3.3 depicts an overview of the dialogue manager classification proposed by
Keyvanpour et al.
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In this section, following the Keyvanpour et al.’s classification, the most relevant works will be
presented and analysed in depth. Then, all the approaches will be compared according to a series of
characteristics that have been defined explicitly for this research: (i) multimodality, (ii) scalability and
re-usability, and (iii) expressiveness.

3.2.1.1 Finite state-based approaches

Finite state-based dialogue managers model interactions using a state transition network. In this case,
the states represent the different actions of the system, while the actions of the other communicative
agents (humans or other systems) activate the transition between states. Dialogues are handcrafted by
developers before hand, and the actions of the system are fixed. On one hand, this approach provides
a straightforward method for encoding interactions, but on the other hand, these interactions tend
to be deemed as unnatural, as they are rigid regarding which user answers can be accepted, and how
the dialogue flow has to advance.

In 2010, Peltason and Wrede [48, 49] presented the PaMini framework, a dialogue modelling
approach in which dialogues are designed by combining generic interaction patterns. This framework
also includes a novel task-state protocol that connects the dialogue system through an asynchronous
event bus with the back-end modules of the robot. This back-end includes all the task servers
that provide domain-specific knowledge, but also modules that provide specific perceptual and
expressiveness capabilities. In this approach, the modules of the architecture can request the
execution of tasks. The information required for this execution is stored in the task’s specification,
which can be updated at any moment. The task-state protocol connects the dialogue system with
the clients and servers that manage the tasks. Under this approach, interactions are modelled using
Interaction Patterns, defined as “a sequence of human dialogue acts, robot dialogue acts and system
actions” [49]. They represent sub-dialogues that can be reused in different domains. When the
developers need to create an interaction, they use a Java API to generate the dialogue acts that will be
required, select the appropriate Interaction Patterns related to each dialogue act, and parametrise
them with task-related information. Multiple sub-dialogues can be run at the same time, and they
can be stopped at any time. While they are self-contained, these sub-dialogues can also be interleaved
to create more complex behaviours. The system manages a context with information shared by all the
patterns, and they can modify said information at any given time. The API also allows to define
different parameters of the interaction, like the strategies for selecting patterns, interleave them,
asking the user for a clarification, and for opening the interaction, among others.
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3.2.1.2 Frame-based approaches

Frame-based dialogue managers, also known as slot filling methods, were developed as an extension
of finite state-based approaches with the objective of overcoming some of the limitations of these
approaches. In frame-based dialogues, the system looks to collect a set of information by filling
multiple slots, which are grouped in frames. According to Keyvanpour et al. [3], the advantages of
this approach are a relatively higher flexibility and a more natural dialogue than the finite state-based,
as they allow the user to provide information to fill multiple slots at the same time. But this approach
shares some of the disadvantages of the finite state-approach: it is not well suited for complex
problems, and also limits what the user can communicate to the system.

In 2000, Souvignier et al. [50] presented in their work a collection of tools used in spoken
dialogue systems through the description of their system. Being a Spoken Dialogue System, the
perception architecture is based on a combination of an Automatic Speech Recognition module and
a Natural Language Understanding module, while the output of the dialogue manager is sent to a
text-to-speech module. In this approach, the dialogue manager follows the slot-filling approach. After
every user input, the dialogue manager assigns the information extracted from the user’s speech to fill
as many information slots as possible. Then, the system queries the database searching for a valid
response. If multiple responses are found, the system asks for more information in order to fill more
slots. In this case, the question would be aimed at filling the slot with the highest disambiguation
potential. The system includes the recent slot values stored in the following dialogue turn so the user
can request a correction if needed. Under this approach, slots, questions and verification strategies are
defined in a declarative way, while the mechanism for filling slots is common to all frames, and stored
in the dialogue manager. Thus, the task-specific aspects of dialogue are handcrafted by developers,
while the general, task-independent aspects are handled internally by the system. The developers can
also specify conditions for emptying the value in the slots. The proposed approach also keeps track
of the dialogue history so it can be used in later turns, if the user makes an implicit reference to it.
The history is also used to ensure consistency between the values stored in the slots, and that the
user did not provide an invalid value (one that does not match any entry from the database, or that
corrects a slot value that cannot be altered).

More recently, in 2015, Alonso et al. [51] proposed a multimodal dialogue system for social
robots. In this architecture, the information coming from the perception module is sent to a
multimodal fusion node that aggregates this data in packages of semantic values. The aggregated data
is sent to the dialogue manager, which advances the current dialogue based on this input data. If
the dialogue manager decides that an action has to be executed (an action that could imply the use
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of multiple modes of interaction), then it is sent to the multimodal fission node, which sends the
necessary instructions to all the output modules involved in said action.

In their approach, Alonso et. al used Iwaki, an agent-based dialogue manager for flexible
turn-taking in mixed-initiative dialogues, similar to the COLLAGEN manager [52]. The interactions
are modelled using a tree-based structure. Two years later, Wessel et al. [53] presented OntoVPA,
an ontology-based multimodal dialogue manager for Virtual Personal Assistants. This system is a
declarative, knowledge-based system that combines generic, dialogue-specific ontologies with a set of
dialogue management rules that implement the dialogue system’s core capabilities. The ontologies
are used for dialogue and domain representation, as a collection of classes and relation types. On the
other hand, the dialogue management rules are in charge of controlling the dynamic aspects of the
dialogue.

In OntoVPA, ontologies can be divided in domain ontologies and dialogue ontologies. The first
type contain all the domain-related information structured in classes and subclasses (for example
restaurant might be a class, while one of its subclasses could be Italian restaurant). The domain
ontologies also specify the relations between classes. The dialogue ontologies follows a similar
class-based structure, but in this case the classes define the dialogue acts of the user (the dialogue acts
of the system are generated by the ontology-based rule engine). On the lower level of the system, a
set of ontology-based rules are used for generating the actions of the system, as well as the domain
workflows and the domain-specific application logic. Tasks in this framework are defined using a
frame-based approach, and the ontology-based rules are in charge of how the information provided
by the user is used to fill the slots, retrieving missing information, and in general conducting the flow
of the interaction. Also, the rules also include conflict-resolution strategies that might be necessary
for solving all the uncertainties related to spoken interactions.

Wahde [54] presented DAISY in 2019, a dialogue system for virtual agents based on the use
of dialogue building blocks that represent situations that are common to multiple dialogues.
While the author argues the proposed system cannot be categorized as either state-based or
frame-based, for the purposes of the analysis, it will be considered an example of the latter
type, as it maintains multiple objects that try to match the inputs of the user to a series of
templates, instead of just keeping an state active and transitions that are triggered based on
these inputs. In this system, the agent can handle dialogues through a combination of these
dialogue building blocks, and use a sequence of basic actions involving cognitive processing
to manage the information required to solve a given task. The dialogue building blocks are
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dialogue manager independent. They model small common interactions present in dialogues
(e.g., requests of information, branching, error handling, or dialogue flow control...), can manage
context-dependent information, and can communicate with the memory of the system to select the
appropriate answer to a given request, and to carry out the necessary deliberations to solve this request.

3.2.1.3 Information state-based approaches

Information state-based dialogue managers use probabilistic techniques as a way to overcome
the limitations in both finite-state and frame-based approaches. These type of managers usually
include the following components: (i) a description of the informational components of the
system (like the participants in the interaction, or the knowledge they share, among others), (ii)
formal representations for those components, (iii) the dialogue moves that will lead to an update of
the information state, (iv) the update rules that will control the update of the information state,
and (v) the update strategy that the system will use to select which update rule to apply at any moment.

In 2012, Morbini et al. presented FLoReS [55], a combination of information state-based and
plan-based dialogue manager that makes use of forward inference, local dialogue structure, and
plan operators that represent the structure of sub-dialogues. This manager consists of the following
elements: (i) an information state that keeps the history of the interaction and any information
that might be relevant; (ii) a set of inference rules for adding new knowledge to the state, based
on conditional relationships between the state variables; (iii) an system for handling events that
might trigger an update of the state (these events might come from the user, the system, or the
environment), and (iv) a set of operators that handle the modelling of the dialogue structure and
select the next steps in the interaction. These operators can be reused across different domains, and
are modelled as a tree of system and/or user multimodal actions, and resulting states. Each state in the
tree is associated with a communicative goal, and provide a reward for reaching said state, which is
stored in the information state. If multiple operators can be used in a situation, the goal of the system
will be used to decide which operator to use. Operators in this approach can have preconditions,
that indicate when the operator can be activated and in which state should start, and effects, which
produce modifications in the information state.

The interaction flow in the FLoReS dialogue manager works as follows. When an event is
received, it is matched against the different event listeners in order to decide which action or actions
should be performed. If these actions lead to a change in the information state, then the inference
rules are evaluated continuously until the state is stable. Next, the dialogue manager decides which
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operator should be triggered. If the active operator cannot handle the event, the system computes
the rewards obtained in two scenarios: ignore the event and trigger an operator that handles system
initiative (either the current one or switching to a new one), or handle the event with one of the
paused or inactive operators. The option of ignoring or reacting to the user’s input allows to create
mixed-initiative interactions. The reward for each operator is computed by simulating the possible
dialogues that can happen, starting with the current information state, until the simulated dialogue
reaches a termination condition. After all rewards have been computed, then the operator with the
highest estimated reward is set as active, and the current active operator is paused, if possible, or
deactivated.

Three years later, Pierre Lison proposed in 2015 [56] a hybrid approach to dialogue management
that relied on the concept of probabilistic rules: structured mappings between logical conditions and
associated probability distribution effects. Probabilistic rules represent the transition and utility
models of a dialogue POMDP. In this approach, the dialogue state is represented by a Bayesian
network, while its variables represent different aspects of the current context. The probabilistic rules
are applied on runtime to update the state based on new observations, and to select the next action of
the system. These rules are implemented following an if-else-then structure, and formally expressed as
an ordered list of branches. Each branch is a pair composed by a logical condition (a logical formula
over a subset of the dialogue state variables) and a categorical probability distribution over a set of
effects that have to be mutually exclusive, and that lead to changes in the rule’s output variables.
The probability associated to each effect can either be manually defined or estimated empirically.
The formalism described for probability rules can be extended to express utility functions, this
is, how to select the action with the highest expected utility for every state. This is done through
the utility rules. They follow the same structure than the probability rules: an ordered list of pairs
composed of a condition and an associated utility table over possible assignments of specific values
to decision variables. This utility table connects each possible decision with its utility value. For
example, a specific action might have a utility value of 5 if it has been requested, but -5 if it has not.
This framework was developed using OpenDial, a domain-independent platform for developing
probabilistic spoken dialogue systems. In 2018, Milhorat et al. [57] proposed a conversational
dialogue manager for the android ERICA. This dialogue manager is composed of four elements: a
question-answering engine, a statement response module, a backchannel module, and a proactive
initiator. A top-level controller is in charge of selecting which module should handle the next
interaction, depending on the current state of the dialogue.
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When an utterance is received from the user, the system sends it to the question-answering
engine and the statement-response module. These modules classify the utterance as either a question
or a non-question through a dialogue act tagging process. Then each module returns a confidence
score based on the dialogue act, and possible keywords and focus phrases identified in the utterance.
The system will select the module with the highest confidence score, if its over a threshold, or it will
fallback to the backchannel module. The question-answering module uses a handcrafted database of
adjacency pars to manage its knowledge. These match user utterances with system responses, so
for each utterance coming from the user, the system selects the closest example in the database and
executes its corresponding response. If there is no examples that are similar enough, the system falls
back to the backchannel module. Statement responses are based on a partial repetition of the user’s
utterance. The system starts by selecting the focus phrase in the utterance, then extracts all the nouns
in this phrase, and finally searches for the combination of a focus noun and a question word using a
n-gram language model. If the probability of this combination is above a threshold, then the system
action will be the generated question. Otherwise, it will be a partial repetition of the user’s statement,
using a raising tone to indicate a question. If no focus phrase is found, then it will try to generate a
question on the utterance’s main predicate, or will fallback to a backchannel response if this also
fails. Finally, a proactive initiator is used to respond to different events (pauses in the dialogue of
different lengths, or an user approaching/leaving the robot). Strategies for handling these events
including asking a question about the most recent topic, pick a new topic close to the current one, or
the activation of greeting or farewell dialogue.

A year later, Kiefer et al. [58] presented VOnDA, a framework for implementing dialogue
management functionality in dialogue systems. It works not as a complete dialogue manager, but as a
implementation layer for building complex reactive systems. VOnDA implements the information
state approach to dialogue management as a combination of a rule-based approach and statistical
selection. The information state is built using an RDF (Resource Description Framework) store
and reasoner, which can assign temporal information to every data chunk stored, obtaining a
complete history of all changes that have been effected over an object. This RDF store contains all
the knowledge the system has about the hierarchy of dialogue acts, semantic frames, and objects, as
well as specifications for the type and properties of data.

Data coming from the sensorial modules of the system or the applications, speech recognition
results, or expired timers can effect changes over the information state, which in turn triggers the
evaluation of a set of reactive condition-action rules, which can cause more changes, the execution of
actions, or the generation of a proposal (a block of code kept in storage). If the system reaches a stable
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point (no more state changes or proposals generated), then the stored proposals are evaluated to
select the best way to continue the dialogue.

3.2.1.4 Plan-based approaches

Plan-based dialogue managers describe any dialogue as a goal that has to be achieved. Inputs to the
dialogue are described as speech acts [59] that will be used to achieve those goals. The listener in the
dialogue is expected to understand the plan and help the speaker to fulfil it. The main advantage
of this approach is its scalability, while its disadvantage is that its performance suffers in complex
domains, although it performs better than frame-based and finite-state based [3].

In 2000, Jennifer Chu-Carrol [60] presented MIMIC, an adaptative mixed-initiative spoken
dialogue system for information queries through phone calls. In this approach, the input is first
transformed in a frame-based semantic representation, and then used to generate a response, along
with the domain knowledge and previous history. The response generation is a three-step process.
First, the system detects cues (based on semantic representation and history, or on domain-specific
knowledge) present on the user’s utterance, and uses their effect to adapt the initiative for the turn,
modelled as a basic probability assignment (probability of each speaker holding the initiative). The
speaker with the highest degree of support for having the initiative will be considered the initiative
holder. Once the initiative has been determined, the system selects the goal that has to be achieved
with the response, using information from the cues extracted from the user’s utterance. Next, a
strategy for achieving the selected goal is planned, accounting for the initiative distribution. Finally,
MIMIC uses a template-driven utterance generator to create the system’s response.

In 2009, Bohus et al. [61] presented RavenClaw, a plan-based, task-independent dialogue
management framework that separates the domain-specific aspects of the dialogue from
domain-independent conversational skills. In this framework, the developers design the dialogue
flow, while RavenClaw handles low level tasks, like error-handling or turn-taking. The objective is to
simplify the development of mixed-initiative systems for complex, task-oriented domains.

The dialogue specifications designed by the developers are executed by the dialogue engine. It is
composed of a dialogue stack, which maintains the structure of the dialogue during runtime, and
an expectation agenda that stores predictions for the user’s actions at any given dialogue turn. The
execution of a dialogue can be divided into the execution and input phases. During the former, the
system executes the routine for the agent at the top of the stack (initially, this will be the agent at the
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top of the dialogue tree), which will perform different actions depending on the agent, including
adding new agents from the dialogue tree to the stack. Then, the system removes from the stack any
agent that has been completed. The next step is running the error handling routines if necessary.
RavenClaw can manage errors related to two common situation in speech-based interactions:
non-understandings and misunderstandings. The error handling decision process decides which
strategy (if any) should be performed. Individual modules generate a series of strategies, which
are then queued by a gating mechanism into the dialogue stack. Finally, a new agent is selected
from the stack, based on a series of conditions defined for each agent. If the agent executed in a
dialogue turn requires an input from the user, then an input phase is performed. The system starts by
composing the expectation agenda with the expected input from the user. When an input is received,
the information contained in it is used to update the concepts in the agenda (taking into account the
different hypothesis for each concept, and also context information). The end of the input fase leads
to a new execution phase. User initiative is controlled by defining which expectations in the agenda
can be updated.

RavenClaw also offers a series of functionalities that will be required in multiple dialogues. This
includes mechanisms for handling timeouts, repeating utterances, or stopping and resuming the
interaction, among others. These features are modelled as dialogue agencies, and can be specified
by the developer during the dialogue task specification creation. The engine will invoke these
functionalities when required by the situation. System developers can create new conversational
strategies and add them to RavenClaw.

3.2.1.5 Agent-based approaches

In agent-based approaches, dialogues are described as a collaborative process between communicative
agents. The objective is that all the agents involved in the process achieve a mutual understanding of
the dialogue. The agent-based approach to dialogue management focuses on the motivations behind
an interaction, and its intrinsic mechanisms, instead on focusing on the task at hand. The system
models the beliefs of the participants in the dialogue and, similar to the plan-based approach, defines
a goal that will drive the actions of all the agents. This type of dialogue managers are hard to craft due
to their complexity, but they provide a natural dialogue and can handle complex tasks [3].

In 2009, Turunen et al. [62] presented an adaptive architecture for interaction and dialogue
management in spoken dialogue applications. This architecture uses dialogue agents, evaluators, and
managers to represent interaction strategies and the coordination among them. The agents are in
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charge of presenting the interaction techniques, the evaluators select the most appropriate agents for
a specific situation, and the managers coordinate the whole system. The dialogue system is divided in
three modules that follow the same structure: an input model, a dialogue model, and a presentation
model.

The interaction agents implement different interaction strategies, and can be specialized on
performing specific tasks (for example, error handling). Each agent has a set of attributes that indicate
what task can they perform, and how proficient they are. The managers are the modules that control
the interaction tasks. They evaluate how well a strategy suits the current situation, based on the
attributes of each agent and the context (dialogue history, current inputs, or user preferences), and
select the agent that should handle it. The interaction manager is the one that controls all the others,
and is designed by the application developers to suit their needs. The comparison between agents is
done by the evaluators, which focus in different aspects of the agents. For example, one can evaluate
the output modalities of the agents, while other might focus on how well the agents fit with the
discourse history. The evaluation from each evaluator is combined to generate a final score. In the
proposed architecture, three different models exist. The dialogue model handles the communication
between the user and the system, while the input and presentation models focus on the interaction
tasks. An interaction is then defined as a sequence of dialogue units formed by the agents of the
dialogue model. This dialogue management approach supports different dialogue strategies (i.e.
mixed-initiative, or system-initiative), dialogue control models (state machine, forms...) and reusable
dialogue components.

In 2012, Nestorovič [63] proposed an agent-based dialogue agent based on the
Beliefs-Desires-Intentions architecture. This dialogue agent is composed of five modules: a
context module, a history module, a strategy selection module, a core module, and a prompt
planner module. The context module keeps information about the state of the dialogue. The
history module is in charge of solving contextual references to the dialogue history. The strategy
selection module decides which is the most suitable initiative mode for the agent’s response in
familiar situations. The core module selects the next action of the system based on the current
state of the dialogue. Finally, the prompt planner module receives the action selected by the core
module and transforms it in a utterance. In the version of the system presented in [63], the last
module is not integrated, and the action selected by the core module is sent directly to the TTS module.
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3.2.1.6 Neural Network-based approaches

Advances in the field of machine learning, and specifically in the area of deep learning have led to
the use of neural networks for dialogue management tasks. These approaches aim to overcome the
domain constraint of handcrafted approaches by learning from a dialogue corpus. This solution has
the advantage of automatically generating the dialogues, without the need for handcrafting any part of
the process. However, it requires large training datasets to train the different modules of the system [3].

In 2016, Su et al. [64] presented a network-based model initially trained with a supervised spoken
dialogue dataset, and then improved through a reinforcement learning process in which the system is
used to interact with a simulated user. This has the advantage of combining both machine learning
strategies without having to modify the architecture, and also the system can operate on a full set of
actions, instead of constraining it to minimize the training cost.

In this approach, the system receives a belief state s that encodes the recognized intents from the
user and the dialogue history. On the other end, the manager outputs actions that decide the system’s
semantic reply, which is then sent to a Natural Language Generation module. The dialogue manager
is represented with a Policy neural network that predicts dialogue acts and queries, and manages
offers made by the system (slots of information the system can mention). The goal of the system is to
decide what the intent of the system’s response has to be (based on the knowledge about the user)
and also to select the slot of information that the system should talk about. The actual values for the
slots are decided by a database parser. The query to the database contains the top prediction for
each user-informable slot (slots used by the user to constrain the topic) in the dialogue state, while
the response is the system’s semantic response. In an initial phase, the policy network is trained on
corpus data, and then refined through a policy-gradient based reinforcement learning training.

That same year, Cuayáhuitl et al. [65] proposed a deep reinforcement learning approach to
dialogue management based on a network of Deep Q-networks, or DQN. In this approach, each
DQN represents a conversational skill for a particular sub-dialogue. This approach allows for
transitions between all DQN agents in order to provide flexible and unstructured dialogues. Also,
when a user response leads to a change of topic, the completion of the sub-dialogue in the new
domain triggers a transition back to the previous topic, so the interaction can be resumed.

A year later, Wen et al. [66] presented a network-based, task-oriented dialogue system. Their
model follows an end-to-end approach to training, while still being a modular system. In this work,
dialogue is modelled as a sequence-to-sequence mapping problem. For each dialogue turn, the model
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generates two different representations of the user’s input: a distributed representation generated by
an intent network (authors tested a convolutional neural network and a long-short term memory
network), which can be compared to dialogue act representation, and a probability distribution over
the belief state (task-related information), represented by a set of slot-value pairs, and generated by
a set of belief trackers. The system has an specialized tracker for each slot in the ontology. Then,
the database operator queries the database with the values of the belief state that have the highest
probability. The entry returned by the database, the intent representation, and the belief state are
transformed and combined by a policy network into a vector that represents the next action of the
system. The vector is then sent to a generation network that generates a template as a sequence of
tokens, using the language model probabilities. This template is then filled using the information
retrieved from the database. All the modules in the model are connected by the policy network.

Also in 2017, Li et al. [67] presented an end-to-end learning framework for task-completion
dialogue systems. The proposed framework includes a user simulation for training the dialogue
management module. The other elements in the system are a language understanding unit, the
dialogue manager, and a back-end database. The components are trained using a reinforcement
learning approach. In the dialogue system, a language understanding unit generates a semantic frame
with the relevant information in the user’s utterance, as well as his/her intention. Both tasks are
performed simultaneously by a Long-Short Term Memory network trained using back-propagation.
The system generates a concatenated sequence of IOB-format slot and intent tags. The resulting
semantic frame is sent to the dialogue manager, which then performs a two-step process: dialogue
state tracking and policy learning. During the dialogue state tracking phase, the system starts by
querying the database with the information contained in the semantic frame. Then, the dialogue sate
is updated based on the user input and the result of the query. Finally, the state tracker prepares a
state representation to be used during the policy learning phase. This representation contains the last
actions from the user and the system, the information extracted from the database, information about
the current dialogue turn, and historic information about the dialogue. Based on this representation,
the policy has to decide what the next action of the system should be. The policy is represented
using a deep Q-network, and can be optimized through supervised learning or reinforcement learning.

That same year, Eric et al. [68] presented a neural dialogue agent for grounded multi-domain
discourse through an attention-based key-value retrieval mechanism over a knowledge base. This
makes the system able to learn how to extract relevant information from the knowledge base
without requiring an explicit training of belief or intent trackers. The proposed model uses an
encoder-decoder architecture augmented with the attention-based retrieval mechanism. The encoder
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of the dialogue system is represented by a Long-Short Term Memory network. In a given turn, the
system encodes an aggregated dialogue context composed of the system and user utterances in all
previous turns. First the sequence of tokens is embedded using an approach that maps each token
to a fixed-dimensional vector, and then fed to the encoder to generate a context-sensitive hidden
representation. Then, a sequence-to-sequence decoder predicts the system response.

In 2019, Xu et al. [69] presented an end-to-end dialogue system that adds domain knowledge
graphs to the dialogue management topic transition. In particular, the application considered in their
work is medical diagnostics. The proposed model includes a knowledge-routed deep Q-network that
combines a relational refinement branch for encoding the relations between symptoms and diseases,
and a knowledge-routed graph branch for making decisions about dialogue topics.

The dialogue system can be divided in three modules: natural language understanding, dialogue
manager, and natural language generator. The overall pipeline of the system is as follows. First, the
natural language understanding module extracts the intents of the user and the information that
will be used to fill a set of slots from the utterance. In this module, a Bi-directional Long-Short
Term Memory network tags words in the sentence with BIO labels and extracts the intention
simultaneously. Then, information slots are filled based on the context of the dialogue and medical
term normalization. The dialogue manager controls the transition between topics based on the state
of the context. The interactions with the user are conducted according to a dialogue policy designed
to select the action that maximizes the future reward (encouraging making the correct diagnosis
with precise symptom request in the minimum number of turns). First, a preliminary action is
generated using a deep Q-network with a Multilayer Perceptron, based on the state of the dialogue.
Then, in the relational refinement branch, the system can modify individual symptoms or diseases
through the aggregation of information regarding other related symptoms or diseases. Parallel to this
relational refinement process, the knowledge-routed branch starts by computing the conditional
probabilities between diseases and symptoms in both directions (from disease to symptoms and
from symptoms to diseases). Based on the candidate diseases and symptoms probabilities, the system
generates the knowledge-routed action probabilities. Finally, the preliminary action, the refined
action, and the knowledge-routed action are summed, using a symptoms filter to avoid repeated
requests. The utterances that represent the actions selected by the dialogue manager are generated by
the template-based natural language generator. Multiple templates were designed for each possible
action of the system, while the medical information is conveyed through the use of daily expressions
related to specific symptoms and diseases extracted from a compilation of medical terms.
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Xu et al. [70] proposed an end-to-end dialogue model that uses a discrete latent variable to infer
dialogue intentions from the user’s utterance. In the proposed system, a Bi-directional Long-Short
Term Memory network is used to encode the utterance of the user. This encoding is sent to a
dialogue-level Long-Short Term Memory network, along with the latent intention derived from
intent network, which is modelled as a Multilayer Perceptron. This network generates a discrete
latent variable that models the user’s intention. The output of the intent network, the dialogue-level
network and a variable indicating if there are items that satisfy user’s constraints are sent to the
attention decoder module, which generates the system’s response. Context is maintained by a
higher-level context Recurrent neural network. It processes the vector representation of each
user’s utterance iteratively. Thus, the hidden state of the network represents a summary of the
dialogue history. This dialogue model can be trained using either unsupervised, semi-supervised,
or reinforcement learning frameworks. For parameter estimation, authors proposed to apply exact
maximum log-likelihood, instead of variational inference.

3.2.1.7 Markov Decision Processes-based approaches

A Markov Decision Process is a discrete-time stochastic control process that provides a mathematical
framework for decision making on situations where outcomes are partially random and partially
under control. Markov-Decision Processes-based approaches to dialogue management share the
advantages and disadvantages of the neural network-based models: on one hand they remove the
need for handcrafted rules and dialogues, but on the other hand require large datasets for training [3].

ReinForest [71] is a dialogue framework for the development of multi-domain, mixed-initiative
dialogue systems. In this approach, dialogue developers need to define a knowledge ontology for
all domains, while the dialogue task tree generation and execution are domain-independent. The
execution of the dialogue task trees is formalized as a Semi-Markov Decision Process, thus allowing
to train a traditional plan-based dialogue manager using machine learning algorithms from the field
of Hierarchical Reinforcement Learning.

The core of the ReinForest framework can be divided in two modules: a knowledge ontology
and a dialogue engine. The dialogue engine was designed to be domain-independent, and decides
the actions of the system based on the state of the dialogue at a given point. It is divided in four
components: hierarchical policy execution, belief update, tree transformation, and error handling.
On the other hand, the knowledge ontology is designed by the developers, and is represented by
a domain-dependent knowledge graph that holds the concepts of the domain knowledge and the



46 chapter 3 | Multimodal DialogueManagement

relations among them. Inside these concepts, the basic memory units are the attributes, which
include an ID, a value and a normalised value, and a confidence score. The concepts hold an
attribute map, which maps from a key to an attribute, a set of subscribed entities and domains that,
when recognized in the user input, will trigger updates of the concept, and a set of dependencies
among concepts. Both modules are connected by the dialogue state, represented by a pointer to the
knowledge ontology and complementary dialogue information.

Two years later, Lin et al. [72] proposed a multimodal dialogue system for Conversational Image
Editing. It allows users to use speech for specifying the effects that should be applied to an image.
The dialogue system is modelled as a Partially Observable Markov Decision Process, and the dialogue
policy is trained using a Deep Q-Network.

The architecture of the system can be divided in four modules: multimodal state tracker,
dialogue manager, vision engine and image edit engine. The multimodal state tracker maintains a
representation of the state of the dialogue, composed by the user state (estimation of the user’s goal
at a given dialogue turn) and the system state. This tracker has to store user utterances, gestures, and
also the state of the image edit engine. A bidirectional Long-Short Term Memory network is used to
extract the relevant information from utterances, which includes the user intent (the edit command),
and the arguments that these commands require. For the gestures, slots in the state are set to 1 if
gestures are present or 0 if not.

The dialogue manager uses a dialogue policy to observe the state of the system and perform the
most adequate action to complete the edit operation requested by the user. These actions can be used
to either request or confirm slot values with the user, or to send commands or retrieve feedback from
the image edit and the vision engines. The dialogues are evaluated through two reward functions,
one that takes into account the degree of success for the dialogue and its length, and another that
only considers if the user goal was correctly fulfilled or not. Regarding the dialogue policy, authors
compared a handcrafted rule-based and a Deep-Q-Network-based policies.

More recently, Saha et al. [73] proposed a method for incorporating the sentiment of the user
during policy learning in a dialogue system for multi-intent conversations. The users proposed a
two-level virtual agent modelled as a semi-Markov Decision Process, where the top level contains
the intent meta-policy and the low level contains the controller policy. The rest of the system is
composed of a natural language understanding unit and a natural language generation module. The
intent meta-policy receives the current state of the interaction and selects the most appropriate
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subtask from a list compiled based on the user requirements. The controller policy is common for all
the intents of the user, thus satisfying slot constraints amongst overlapping subtasks. This policy
receives also the state of the interaction and generates a sequence of primitive actions. An internal
critic is in charge of giving rewards to both policies at every timestep based on the actions selected.
The user sentiment is incorporated to the training phase of the agent, by combining sentiment-based
rewards and the rewards generated by the internal critic. The objective is that the system is able to
avoid negative sentiment during the dialogue. The sentiment is extracted using a sentiment classifier,
and then incorporated into the state of the interaction and the reward models of the agent. Thus,
the state space incorporates three sources of information: information about the intention, a set of
confidence scores for the information slots, and the sentiment score. The controller policy will select
appropriate actions to fill relevant slots pertaining to the intent in control.

3.2.2 Comparison between approaches

When comparing the works presented in the sections above, the specific issues related to human-robot
interactions were taken into account. Dialogue systems for robotic applications need to manage
multiple sources of information, both as inputs (e.g., the speech of the user, information coming
from touch sensors...) and outputs (e.g., voice, motions, gaze...). The feature of a system concerned
with this aspect of dialogue management will be defined as multimodality and it refers to the ability
of the system to manage different sources of information. It includes both analysing multimodal
perceptual information coming from the user and environment, and also being able to generate
multimodal expressions that represent the actions of the system. As stated in the introduction to this
chapter, speech is the primary communication channel in human-human interaction, while other
modalities enhance the interaction by complementing the speech [74]. Also, while the speech is going
to be the preferred interaction channel, certain situations might require the use of other modalities
to overcome unexpected problems (For example, in noisy environments where the speech-based
communication might fail, being able to use gestures can help the user to understand what the robot
is trying to convey). Thus, being able to convey a communicative goal through different channels,
or being able to fuse multiple channels to enhance the user’s experience becomes a key feature in a
dialogue manager for social robotics.

A second factor that has to be taken into account is the scalability of the system, this is, the
complexity of adapting the dialogue manager to new domains. While multiple applications of social
robotics can be tied to a specific domain (i.e. robots in stores, or robots for guiding people in malls,
airports and other closed spaces), if a social robot is expected to be placed at the user’s home and
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serve as a companion, usually this is going to require the robot to be able to face multiple tasks along
different domains. From a dialogue management point of view, this involves creating dialogues for
all tasks and domains. Simplifying the expansion of the dialogue system to new domains and tasks
becomes a coveted feature in these type of applications.

Finally, having the ability of perceiving or emitting multimodal information is an important step
in providing the user with a satisfactory interaction. But being able to use multiple output sources is
not enough; the information conveyed through each channel has to be combined appropriately. The
system should be able to adapt the communication channels based on the particularities of the current
interaction, the state of the dialogue, and other dynamic circumstances (for example, the affective
state of the robot). Also, repetitive actions should be avoided, and instead, the robot’s actions should
present a high variability. These characteristics will be grouped under the feature called expressiveness.
The result of the comparison between the works reviewed in this section can be observed in Table 3.1.

3.2.2.1 Multimodality

The majority of the works reviewed in this section (16 out of 23) focus on the design of a speech-based
interaction system. If we group this by the approach to dialogue management selected, we can see
that all the presented approaches to neural network-based dialogue management are exclusively
speech-based. Regarding the works that include multimodality, we see different solutions. The
approaches presented by Peltason et al. [49], Kiefer et al. [58], or Lin et al. [72] include natural
lenguage understanding and generation modules for speech-based dialogues, and also can request
the performance of actions using other output channels (i.e. body movements, for example) to the
back-end applications. Dialogue managers for virtual agents, like the ones proposed by Wahde [54]
and Morbini et al. [55] usually include animations of the virtual avatar alongside the speech or text
outputs. The latter can also use visual information captured by the perception systems into the
dialogue process, while in the former, user inputs are conveyed through speech or text. In the work
proposed by Wessel et al. [53], the actions of the system can define multiple communication sources,
while for the user input multimodal information can be stored in the dialogue act slots, alongside
with the communication channel the information was received through.

Finally, the approach proposed by Alonso et al. [51] uses a fusion process to combine the
semantic representation of inputs coming from multiple sources, and a fission process for output
actions, where the manager selects the most appropriate multimodal action, and the multimodal
fission module decouples the different modalities and sends them to the respective output modules.
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[49]
Yes. Speech and modes provided
by back-end modules

Handcrafted generic interaction
patterns configured manually

Manually defined outputs

[50] Spoken Dialogue System
Add context-related data to database
and handcraft new frames and slots

Templates filled with information
from the system belief

[51]
Input: aggregated multimodal info.
Output: multimodal actions

New Iwaki recipes
Actions defined in the recipes, then split
and sent to each channel

[53] Only system responses
Add new ontologies and ontology-based
rules for dialogue specific items

Modalities handcrafted separately.
Labels in utterances replaced in runtime
with proper value

[54] Yes
Generic multi-domain dialogue
building blocks configured by hand

Template-based generation

[55]
Yes. Output: speech, animation, text.
Input: text, speech, visual info

Add new inference rules, event listeners Not specified

[56] Spoken Dialogue System Add new set of probabilistic rules
Actions adapted through rules.
Natural language generation

[57] Spoken Dialogue System
Extend the database for the
question-answering engine

Template-based approach

[58] Yes Rules and ontologies need to be extended
Template-based approach.
Application actions predefined

Table 3.1: Comparison among the works presented in section 2. Each approach has been evaluated according to scalability, multi-modality,
and flexibility.
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[60] Spoken Dialogue System
Add new domain knowledge.
Expand the number of goals and strategies

Template-based approach

[61] Spoken Dialogue System Handcraft new dialogue task specification
Outputs defined in the dialogue agents.
Natural language generation

[62] Spoken Dialogue System
Modify the interaction manager
and add new agents

Outputs defined in the presentation agents

[63] Spoken Dialogue System
Define new intentions,
and plans to satisfy them

Templates filled with context information

[64, 67] Spoken Dialogue System
New dataset and
new user simulator

Natural language generator

[66, 68]
[70, 73, 65]

Spoken Dialogue System New datasets for policy learning Natural language generator

[69] Spoken Dialogue System
New datasets for policy learning.
New specific knowledge graphs

Natural language generator

[71] Spoken Dialogue System Expand the knowledge ontology Natural language generator

[72] Yes
New domain ontology. Either
new rules or new dataset

Not specified

Table 3.1: Comparison among the works presented in section 2. Each approach has been evaluated according to scalability, multi-modality, and
flexibility.
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3.2.2.2 Scalability

This has been one of the important issues considered when designing dialogue systems, independently
of the approach selected. One basic idea is present in many of the works reviewed in this section:
decoupling the domain-specific aspects of the interaction from those that are task-independent,
and thus can be reused when expanding the system to new domains and tasks. Different solutions
have been proposed for implementing said idea. Frame-based approaches like the one presented
by Souvignier et al. [50] can be extended to new domains through the creation of new frames
and information slots. The dialogue manager presented by Alonso et al. [51] allows the creation
of new dialogues through the addition of new Iwaki recepies. In both cases, the knowledge for
conducting a slot-filling interaction is managed internally by the system, and is common for all
domains. Ontology-based systems usually require the extension of the ontology with domain-specific
knowledge, as well as new rules for conducting the interactions. An example of this type of dialogue
managers can be seen in the works of Wessel et al. [53], Kiefer et al. [58], or Zhao [71]. Probabilistic
approaches use sets of probabilistic rules to control the flow of the interaction. Thus, these sets of
rules will have to be extended so they include the new domains. While the work of Lison [56] or
Kiefer et al. [58] can be extended to new domains with this approach, the dialogue system proposed
by Milhorat et al. [57] separates itself from the rest of information-state based approaches. In this
work, the system holds a database that connects directly the user input with the appropriate response,
for questions. New domain-specific elements would have to be added to the database. On the other
hand, statement response strategies are multi-domain.

Following with the idea of decoupling the domain-specific and domain-independent aspects
of dialogues, the RavenClaw framework propsed by Bohus et al. [61] provides a collection of
general communicative abilities, while the dialogue designers focus on developing the dialogue
task specification. If new domains have to be added using this framework, the task specification
tree has to be expanded and redesigned. Approaches like the one presented by Nestorovič [63]
require the addition of new goals and plans that can be used to accomplish the new tasks, while
agent-based approaches similar to the one presented by Turunen et al. [62] can be adapted to new
tasks with the addition of new agents that can manage the new domain. Finally, neural network-based
approaches, as well as other dialogue systems that include machine learning solutions, will require
the creation of extended datasets that represent the new domain, which can lead to scalability issues.
The work proposed by Cuayáhuitl et al. [65] uses multiple neural networks to manage multi-domain
interactions, having individual networks for each domain.
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Finally, the dialogue systems proposed by Peltason et al. [48] and Wahde [54] have to be
highlighted in this section, as they follow a similar strategy for dialogue modelling to the one
considered in this dissertation: modelling dialogues as the combination of basic building blocks, that
can be parametrised with domain-specific data as required. In this approach, the system can be used
in new domains by building new dialogues as a combination of these basic interaction patterns and
adding the domain-specific knowledge to the system’s knowledge base.

3.2.2.3 Expressiveness

When analysing the expressiveness capabilities of the works reviewed in this section, two main
approaches can be found. In general, approaches that fall under the category of handcrafted dialogue
systems tend to use also handcrafted actions. The dialogue managers proposed by Wessel et al.
[53], Souvignier et al. [50], or Peltason et al. [48] are examples of handcrafted outputs. Usually,
for utterance generation, the handcrafted sentence can include labels that later will be replaced
dynamically with information obtained by the system, increasing the flexibility of this expressiveness
generation approach. Other works, like the ones presented by Milhorat et al. [57], Kiefer et al. [58],
or Chu-Carrol [60] generate the utterances of the system based on the action selected by the dialogue
manager and contextual information using a template-based approach to language generation.
Finally, dialogue systems rooted in the machine learning field tend to incorporate natural language
generation modules, that can either be template-based, or based on language models. The works of
Saha et al. [73] and Xu et al. [69] are examples of this approach to expressiveness management. Also,
in approaches that can communicate with back-end applications for executing actions, like the ones
presented by Peltason et al. [48] or Kiefer et al. [58], the actions selected by the dialogue manager
are sent directly to the application, which has the knowledge of how to perform said action. Other
authors, like Wessel et al. [53] allow to specify by hand the individual actions for each modality when
creating the dialogues.

Here, the work of Alonso et al. [51] is going to be highlighted due to the similarity between the
expressiveness generation approach followed in that work and the one developed for this thesis. In
Alonso’s dialogue manager, multimodal actions can be handcrafted as a single item, combining all
information sources. The dialogue manager selects which action has to be performed, and a separate
module decides what set of individual instructions should be sent to each output module.
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3.2.3 Comparison with the solution proposed in this thesis

There are a series of similarities between the works presented by Peltason et al. [48] and Wahde [54].
The dialogues are modelled using basic building blocks that represent small subdialogues. These
blocks are configured using task-related information to complete certain communicative goals. In
these approaches, developers handcraft the dialogues beforehand, and then the system activates them
depending on the inputs received from the user, or other applications of the system. But in both
works, dialogues have to be designed and added to the dialogue manager beforehand. The dialogue
manager proposed in this thesis faces this issue by allowing dialogues to be built and configured in
runtime by the applications of the system. On one hand, this has the advantage that only the dialogue
blocks related to the tasks and inputs that the robot needs to handle when being in a given state will
be active, reducing the complexity of the solution. On the other hand, this allows the developers to
combine handcrafted approaches for designing dialogues for their applications with approaches that
generate these dialogues automatically, as long as the basic actions in the dialogue can be represented
with the building blocks provided by the dialogue manager. Regarding the management of errors
during the interactions, the approach proposed by Whade require the use of specific blocks for error
handling, while Peltason et al. integrate the error-handling mechanisms in all dialogue blocks. The
interaction units presented in this thesis follow the latter approach, but seek to extend the range of
situations that can be controlled with cases where the system is expecting to receive information from
the user, but it never arrived.

The works reviewed in this section also present differences on how they manage the flow of the
interaction. In DAISY, the dialogue building blocks indicate how to continue with the interaction
by specifying which block should be executed next (although received inputs can move the focus
to a new block). In the work of Peltason et al., the dialogue manager contains all the parametrised
interaction patterns, and these are executed depending on the inputs from the user or the back-end
applications. In both cases, the dialogue manager and the building blocks are the ones that define the
flow of the interaction. The approach presented by Bohus et al. [61] diverges from that solution
by dividing the control in two areas, where the dialogue engine provides general communicative
abilities, while the structure of the dialogue is handcrafted in a higher level. But this still has the
manager controlling all aspects of the interaction, and also forces developers to design their dialogues
using a specific paradigm. The approach proposed in this thesis proposes a more strict division of the
control over dialogues by not only separating the general communicative tasks from the structure of
a particular interaction, but also taking the latter out of the dialogue manager and implementing it
directly in the applications. This creates a two-level approach, where the applications are the ones that
control how the dialogue has to continue, while the dialogue manager receives requests to activate
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the required building blocks, controls their execution and returns the result of these sub-dialogues,
while controlling that there are no conflicts between the different blocks. This allows developers to
use any paradigm they want to design the structure of the dialogue, as long as the individual turns
can be represented with the building blocks provided by the dialogue manager.

Regarding the expressiveness features, the proposed solution follows a similar approach to the
one described in Alonso et al. [51], where the actions of the system can be a combination of multiple
sources of information defined individually, or a single multimodal action that is then sent to a
different module of the architecture with the expertise for dividing the action into the unimodal
instructions that have to be sent to each output module. But, while in Alonso’s approach the actions
of the system are defined in the Iwaki recipes, in the proposed dialogue manager the actions are sent
by the applications in the request used to activate a specific building block. This reinforces the idea of
a two level system that externalizes the task-related aspects of the interaction. The proposed approach
adds a control mechanism that ensures that the execution of the action has been completed before
continuing with the dialogue, and manages situations where the execution of the action fails. Because
the development of the expression capabilities of a social robot is also an important contribution
of this thesis, an in depth analysis of the proposed expressiveness management architecture will be
performed in Chapter 4.

3.3 Dialogue Modelling in Social Robotics: theoretical

foundations

As stated by the Greek philosopher Aristotle, “Man is a social animal”. Humans spend their whole
life in society, and tend to connect and interact with each other. Thus, the capacity for establishing
communication is one of the key abilities for a person, and something that should be replicated in
robots that are expected to live among humans. The question of ¿How should interactions between a
social robot and a human be modelled as? is one of the key research questions in this dissertation,
and the work presented in this chapter tries to provide an answer to it from both a theoretical and
technical point of view. The model designed in this thesis is rooted in the Speech Act theory [75],
proposed in the context of a pragmatic analysis of language. All of these concepts are part of the area
known as philosophy of language.
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3.3.1 Philosophy of language

Philosophy of language is the branch of analytic philosophy that studies the nature of language,
and its relations with the users and the world. Linguistics is the scientific discipline that focuses
on the study of language, including its form, meaning, and context. While investigations in
philosophy are of a conceptual nature, linguistics focuses on empirical findings. [76]. Philosophy
of language has been attracting significant attention since the early 20th century, although the
issues started to be discussed in depth in the 1960s [77]. The philosophers in this era were
driven to study language in the 20th century based on the idea that it could be the path to
understand the nature of reality and truth [78]. Three aspects of language were considered
by most philosophers: syntax, semantics, and pragmatics. Syntax studies how words, with or
without appropriate inflexions, can be arranged to show connections of meaning within the
sentence [79]. Semantics focuses on the study of the meaning of language. This is an important
concept in the philosophy of language, and has attracted a significant amount of attention, which
resulted in the proposal of several theories of meaning. While syntax and semantics are important
areas of philosophy of language, the one that is of interest for this dissertation is the area of pragmatics.

Lycan [77] defines linguistic pragmatics as “studying linguistic expressions’ uses in social contexts”.
Leech [80] proposes a similar definition: “the study of how utterances have meaning in situations”.
From these definitions, it can be established that, while semantics is the study of what the language
means, pragmatics focuses on how the language is used. This definition is also applicable when
analysing pragmatics from the point of view of philosophy. Other researchers, like Bach [81],
consider that the difference between semantics and pragmatics goes beyond a mere separation
between meaning and use, and considers that is related to the type of information. While semantic
information is encoded in the sentence uttered and the relevant data from the context, pragmatic
information is generated by the act of uttering a sentence, and is relevant for determining what the
speaker is trying to communicate.

During the first half of the 20th century, the study of meaning attracted more attention in
the field of philosophy of language than the study of language use [81]. According to Austin
[75], philosophers had the assumption that the only function of an utterance was to describe
the state of the world or to state facts, which could be done truly of falsely. Austin argued that
there are uses of language that, although resembling fact-stating elements, are not aimed at
making mere statements. In [82], four key topics are identified in the field of pragmatics. The
first one is the study of deixis and indexicality [83]. Deictic systems identify the points where
the linguistic structure of the sentence and the social context in which the sentence has been
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used intersect. The second topic introduced is related to the concepts of reference and anaphora
[84]. The former tries to find an answer to what is the relation between language and the world,
this is, the relationships between linguistic expressions and the things of the world they denote.
Regarding anaphora, these are expressions that refer to specific antecedents in the discourse. Thus,
a theory of anaphora specifies under which conditions can anaphora uses be resolved and how
these resolutions are connected to the meaning of the antecedents in the discourse. The third
topic mentioned in [82] is related to inference, and its different types [85]. Inference is defined as
the process of accepting a statement based on the acceptance of other statements. It involves the
deduction, induction, and abduction of facts. The last topic presented in [82] has to do with the
concept of Speech Acts. This is the one that roots the model of interaction proposed in this dissertation.

3.3.2 Speech Act theory

The Speech Act theory defended initially that there are performative utterances that do not state or
describe anything, but serve to perform social acts, which are called speech acts [77]. This idea was
later extended to point out that there is not a division between constative (sentences that describe or
state facts) and performative utterances, but instead all sentences can have both aspects. Thus, a
new distinction was established between two aspects of a single utterance: content and force. In
particular, force refers to the intention behind the sentence. Examples of forces that a sentence can
have include make a judgement, give a command, or suggest something. The original idea of speech
acts was originally proposed by J. Austin in a series of lectures that he gave at Oxford and then at
Harvard University. The notes of the lectures imparted at Harvard were then compiled after his
death and published in the book “How to do things with words” [75].

According to the Speech Act theory, three aspects can be observed in utterances:

• Locutionary act: the sentence that is being uttered. This includes three acts: phonetic, phatic,
and rhetic. The first one refers to the action of uttering sounds, the second one refers to the
fact that said sounds have sense and reference, and the last one refers to the fact that the sounds
uttered belong to a language, vocabulary and grammar.

• Illocutionary act: the action performed by uttering the sentence. It is tied to the force
associated to that particular linguistic structure. It is affected by social conventions that allow a
speaker to perform a recognizable action verbally. In [75], Austin presented a list of possible
forces and the differences between them. He also presented the connection between these acts
and the generation of effects [86]. First, both the force and the content of the sentence have to
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be understood by the target. Second, the illocutionary act has to take effect. Lastly, in some
occasions there might exist a need for a certain degree of cooperation from the listener.

• Perlocutionary act: The effect that the sentence uttered has over the world. This effect is not
directly tied to the force of the sentence, and can be intentional or unintentional.

In order to distinguish these three aspects, consider the following example. If during lunch, a
person sitting at a table utters "Please, pass me the salt", the locutionary act would be the sentence
itself, the illocutionary act would be the request performed by the speaker with the intention of
getting the salt, and the perlocutionary act would be the listener giving him/her the salt.

P. Grice [87] presented a theory of speaker’s meaning that changed the study of language.
This theory establishes a difference between the meaning of natural events and that of intentional
communicative actions performed by humans. This last category depends on the intention of the
speaker when uttering the communicative action. Grice considered that linguistic meaning has to be
always included in this category. A second distinction was established between speaker and sentence
meaning. Thus, a communicative act requires understanding what the communicative intention of
the speaker is. Searle [88], one of Austin’s pupils, criticized this theory because it puts an excessive
weight on the speaker’s intention. Searle’s theory of speech acts tries to find a balance between the
views of Grice and Austin, this is, the importance of intentionality and social conventions. This
theory considers that the term speech act refers exclusively to the illocutionary act of a sentence,
and divides it into a illocutionary force and the propositional content, which are signalled by the
illocutionary force indicator and the propositional indicator respectively. A correct understanding of
both components by the listener is required to successfully completing the act (the listener has to be
able to recognize the speaker’s intention).

3.3.2.1 Speech Act theory in artificial intelligence and Human-Machine Interaction

Speech Act theories have left a big mark not only in the field of linguistics and philosophy of language,
but also in other areas. The ones that are relevant for the work presented in this dissertation are
the fields of Artificial Intelligence (AI) and Human-Machine Interaction, the latter divided into
Human-Robot Interaction and Human-Computer Interaction.

Traum presented in [89] a review of relevant work in speech acts for dialogue agents, including
their uses in AI. The work presented by Cohen and Perrault [90] had an important influence on
the application of speech act theory in the field of AI. In this work, they modelled speech acts for
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the actions of request and inform as operators in their planning system. Two preconditions are
considered for these operators: that the action can be performed, and that the agent wants to do that
action. In a later work, Perrault and Allen [91] used the same methodology to propose an account
of indirect speech acts that can be used for requesting and informing. Their work suggests that a
listener is able to recognize the action performed by the speaker, infer which goal he/she wants to
achieve, and then try to help him/her to achieve this goal. Sadek [92] presented in 1992 a formal
theory of intention that can be integrated in autonomous agents. It follows a logic similar to the
one proposed by Cohen and Levesque for defining the semantics of speech acts. Opposite to the
theory proposed by Cohen and Levesque, the one presented by Sadek is not only a meta-theory, but
is instead oriented to be installed in real agents. In this approach, the communicative actions of the
agent are defined based on a set of preconditions and intended effects. Vieira et al. [93] presented a
work in which they added speech agent-based semantics to an agent designed using AgentSpeak,
a logic-based language for programming dialogue agents. In particular, this language is used to
program the practical reasoning component of the agent. The agent includes a belief base that
represent the state of the world (and that can be updated), and also has access to a library of plans
that indicate the actions that the agent can perform.

In the areas of HRI and HCI, one of the most common applications of speech acts occurs in the
task of Natural Language Understanding known as dialogue act tagging. Dialogue act is a term that
refers to the illocutionary act identified by Austin, which is equivalent to the concept of speech act
as understood by Searle. It represents the intention of the speaker, and thus can be considered the
basic unit of linguistic communication [94]. An example of this is the work presented by Allen et
al. [95], in which they present their research on building spoken dialogue systems for HCI. The
language parser installed in the dialogue system used in this work parses the input utterance to extract
a sequence of speech acts. This sequence is then used for intention recognition. Another example of
this is the work presented by De Carolis and Cozzolongo [96], in which the use of social robots as
interfaces between users and services in a smart environment is proposed. Authors also discus how
important is to recognize the attitude of the human user on top of parsing the linguistic information
from the utterance. The proposed system extracts the speech acts present in the utterance, and
the acoustic characteristics of said utterance, and uses a bayesian network to infer the intention of
the user. The last example that will be presented here is the work of Williams et al. [97], where an
experiment was designed with the objective to determine how humans used indirect speech acts in
human-robot interactions, and how the ability of the robot to recognize these speech acts affected the
human’s perception of the robot. Their results suggest that users tend to use more indirect speech
acts during task-oriented interactions, even if the robot displays an inability to understand them, that
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these speech acts are more common in contexts where conventionalized social norms exist, and that
the inability to understand the indirect speech acts hinders the perception that the user has of the
robot, as well as how the robot performs at a task.

As shown by the examples presented, speech act theory has played a big role (and still does) in
how communication can be modelled in order to design autonomous interaction systems, both
embodied and virtual. This supports the initial step taken in this dissertation when designing a
dialogue management architecture for a social robot, which was the identification of the basic
intentions that were required in order to build task-oriented dialogues for the robot. This led to
the identification of the basic communication units in the proposed system: the Communicative Acts.

3.3.3 Communicative Acts

In the context of this dissertation, a Communicative Act (from here on, CA) is the basic
communication unit that will be performed during a human-robot interaction. It is an atomic
element that can be configured to represent different multimodal actions, with varied intentions.
Also, CAs can be combined to create more complex behaviours. Thus, whenever an application
needs the robot to interact with a user, the dialogue will be modelled as a combination of CAs.
The application will parametrise these CAs with task-related information required to complete a
specific communicative goal. Inspiration for the CAs was taken from the concept of Dialogue Act,
as each CA is supposed to represent a unique communicative intention. Theoretically, CAs can
be understood as speech acts according to the definition given by Searle [88], as they represent the
illocutionary acts of the dialogue. However, from an implementation point of view they are closer to
the idea proposed by Cohen and Perrault [90], as they are built as a sequence of methods that seek
to achieve a particular communicative goal. Based on this, intention became the first dimension of
communication that was used to identify the basic units of interaction.

In [75], Austin presented a recollection of possible illocutionary acts and how to differentiate
them, He grouped them into five main categories: vedictive, expositive, exercitive, behabitive, and
commissive. Since then, multiple authors have proposed taxonomies for speech act classification
according to their illocutionary act. The intentions selected for classifying speech acts vary from
work to work, and while some works use more task-independent intentions, other rely on a bigger set
of task-related speech acts. But while having this level of distinction between intentions is important
when extracting information that can be used to advance a task, is not as important for modelling
the external structure of the interaction. For example, Moldovan et al. separated Wh-Questions and
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Yes/no-Questions, but in both cases, the agent has to relay some information (in this case a question),
wait for an answer from the other party, and deploy any strategy necessary to counter unexpected
errors that can endanger the exchange of information. Based on this conclusion, it was considered
that all communicative goals can be represented using two dialogue structures: either the agent
provides information without expecting an answer, or requests information from the other party.
This are the possible intentions considered for the Communicative Acts, and is similar to the work of
Perrault and Allen [91], where two speech acts were considered: inform and request. A combination
of these two intentions, along with a proper definition of the message conveyed by the CA should be
enough to fulfil more complex communicative goals. For example, if the robot has to give a command,
the application can use the CA with the intention of conveying information, and parametrise it with
a utterance that represents said command to transform the intention into giving an order.

The first dimension selected led to a dialogue model that allows to create interactions for
accomplishing the communicative goals that a social robot should face across multiple domains.
But this model would still present an important flaw: it would only account for interactions seen
from the point of view of the agent, this is, it would not allow the human to take the initiative in the
dialogue. This is why a second dimension had to be introduced: initiative. This endows the dialogue
model with the ability to define which participant in the interaction is the one in charge, and will try
to advance the conversation in order to fulfil his/her communicative goals. Due to the applications in
which the model is going to be used, only two possibilities existed for this dimension: either the agent
has the initiative, or the user has it. Because the CAs represent atomic units of interaction, there
is no place for mixed initiative inside a single CA, while the model would still allow for building a
mixed-initiative dialogue through a combination of CAs.

3.3.3.1 Basic CAs

The combination of the two dimensions considered (initiative and intention) led to the definition
of the four core building blocks of the proposed dialogue model, as shown in Table 3.2. If
the agent (in this particular case, the robot) has the initiative, then two possible CAs can be
defined: Robot Gives Information and Robot Requests Information. In the former, the CA sends
the message that has to be conveyed to the appropriate output interfaces, and ensures that
the delivery of said message was completed successfully. For example, this would be the CA
used to model an interaction where the robot greets the user. The Robot Requests Information
CA asks a question through the corresponding output channels, ensures the correct delivery
of the question, waits for a response, and checks that the information received from the user
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provides a valid answer to the question. An example of this would be the robot asking the
user if he/she liked a game that they just played, and waiting until the user answers yes or not.
On the other hand, if the initiative is held by the user, then similar CAs can be defined: User
Gives Information and User Requests Information. While the former serves as a relay that sends
information provided by the user to the module of the robot that finds it relevant (e.g. the user giving
a command to stop an activity the robot is performing), the latter has to also wait for that module’s
response and convey it to the user appropriately. For example, this CA would allow the user to
ask the robot for the time. These pieces will set the foundation of all dialogues conducted by the robot.

Initiative

Robot User

Intention

Giving Info Robot Gives Information User Gives Information

Requesting Info Robot Asks for Information User Asks for Information

Table 3.2: Description of the basic CAs that have been developed based on the two dimensions of
communication considered: intention and initiative.

An argument can be made that, following the presented paradigm, any request of information is
just a combination of an instance where the agent gives information (the question) and an instance
where the user gives information (the answer). However, there are two reasons for why I did not
follow this option. The first one is the fact that requests of information are core communicative
actions that will appear multiple times in each interaction, regardless of the domain. Thus, having a
CA that can represent this extremely common dialogue structure is going to simplify the design of
interactions. The second reason is that, although both speakers are performing an act of providing
information to the other party, the second act is constrained by the first, as it has to be an acceptable
answer to the question. Having a single CA for managing both uttering the question and retrieving
the answer simplifies the process of ensuring that the information obtained from the other party
makes sense as an answer.

3.3.3.2 Complex CAs

With the four blocks described above, developers of applications can design interactions that achieve
a variety of communicative goals without the need of having to micromanage every little detail in the
dialogue. CAs also provide a set of embedded functions that are required in almost all interactions.
An example of this would be the deployment of error-handling strategies. This approach gives
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developers the freedom of selecting the CA combination strategy that better suits their needs. The
problem with relying exclusively on four basic blocks is that, if a particular dialogue structure tied to
a certain domain appears multiple times in an interaction, developers are forced to repeat the same
combination of CAs, over and over. This is time consuming, and thus, a solution had to be proposed.

Because one of the key features of basic CAs (from now on BCAs) is that they can be combined
with other blocks, the solution was to create new predefined dialogue structures represented as a
parametrizable combination of BCAs. These new structures are known as Complex Communicative
Acts, or CCAs. 1 While a combination of CAs can be requested in runtime, CCAs have to be
handcrafted first, before they can be used in interactions. In runtime, CCAs can be requested and
parametrized by any application, and combined with other CCAs or BCAs. With this approach,
developers can decide which parts of the interactions that their app is going to require can be
modelled as independent CCAs, and then design all dialogues either relying on these CCAs, or on
the basic units. For example, if the robot asks a question during a quiz game, where the user has to
provide the correct answer, the developer of the game could use a Robot Requests Information CA
for the question and a Robot Gives Information CA to provide feedback, or develop a new CCA
that combines both BCAs to represent all the questions in the game. This transforms interactions
into hierarchical structures in which a dialogue is modelled as a combination of CCAs, which in
turn represent a combination of basic interaction units (in the previous example, the game would
be a sequence of CCAs for the questions in the game, while each CCA would be composed of a
question CA and a feedback CA). The number of levels in this structure is not limited, meaning that
new CCAs can include any combination of either BCAs or CCAs. Also, there is no limit for how
many CCAs can be created, as any dialogue structure is susceptible of being described with one of
these elements. The goal is to find the perfect balance between the re-usability and modularity that
the reliance on basic interaction units provides, and the time saved by predefining certain dialogue
sections as CCAs beforehand.

3.3.4 Division of dialogue management in two levels

The CAs presented above allow to represent short interactions between two peers. But in order
to create a complex dialogue, these CAs have to be properly configured and combined. While the
dialogue structures represented by the CAs are generic, and can be applied to any domain, their
configuration, as well as the design of the dialogue flow, requires task-related information. This led

1For the sake of clarity, from now, on this manuscript will use the term CA to refer to both basic and complex
Communicative Acts, while BCA or CCA will be used for each subgroup respectively.
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me to propose a division of the control over the interactions between the robot and the user in the
software architecture described in Chapter 2.

In the top level, applications can model an interaction as a combination of the Communicative
Acts introduced in the previous section. In the bottom level, the HRI architecture loads, configures,
and executes the requested CAs. Three key tasks are performed in this level: (i) Process all the
information coming from the perception systems of the robot and package it into different levels of
abstraction; (ii) send commands to the output interfaces to perform all the required communicative
actions; and (iii) decide how to complete satisfactory the communicative goals defined by the CAs.
Each of these tasks is carried out by a separate module: the Perception Manager controls all the input
information processing (this module is left out of this thesis’ scope), the Expression Manager is in
charge of the output capabilities of the robot (this module will be presented in detail in Chapter 4),
and finally the HRI Manager is the central piece in the HRI Architecture, and controls the execution
of the CAs. In the proposed division of the control over communication tasks, the HRI Manager
provides the blueprints for building interactions as a combination of CAs that seek to achieve different
generic communicative goals, while the applications provide the task-related information necessary
for properly configuring the CAs and adapt those generic goals to the specific needs of the task in hand.

3.4 Requisites identified for a social robot’s dialogue

manager

During the design stage of the new dialogue manager for our robotic platforms, a series of requisites
that have to be met by this module have been identified:

• Multimodality: The proposed manager has to be able to manage multiple sources of
information, both as inputs and outputs. Any combination between input and output
communication modalities should be allowed. The goal is give complete freedom to the
developers, so they can choose the communication channels that better suit their applications.

• Easy configuration: Under the proposed approach to dialogue management, the applications
of the robot have to create dialogues as combinations of appropriately parametrized CAs. While
the division of the control over the interactions between the applications and the proposed
manager can simplify the creation of new dialogues, this advantage could disappear if the
process for requesting the execution of CAs is too complicated. Thus, it is necessary to develop
a standard interface between the applications and the CAs that is easy to use.
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• Conflict management: The proposed dialogue manager has to be as robust as possible against
unforeseen circumstances that might arise, either in the interaction with the user, or in the
communication with the rest of the software architecture. This has been divided in two
requisites. Regarding the interactions with the software architecture, the proposed manager
has to include mechanisms for managing multiple interaction requests in a way that ensures
that no conflicts arise. Examples of possible conflicts include the request of multiple CAs with
incompatible communicative goals, or that try to use the same interfaces.

• Error-handling: The second requisite related to robustness involves ensuring that the
interactions between the robot and the user are fluid and natural. One of the factors that
will affect the naturalness of interactions is how the robot manages errors that appear during
any communication (for example, problems in the reception of input information, a sudden
disengagement of the user...). The implementation of the CAs has to include all the mechanisms
necessary to correct some of the most common errors bound to appear in any interaction.

• Response time: While a proper error handling strategy can help to make interactions more
natural, there is another factor that plays a role in this: the response time. The proposed
dialogue manager has to be able to configure and execute CAs at a speed that guarantees that
the robot is able to follow the rhythm of human communication.

Combining this requisites with the features provided by the CAs, which have been presented
in Section 3.3.3, will result in a dialogue management approach able to control multimodal
human-robot interactions in a way that feels natural to the users.

3.5 The HRI Manager: implementation and technical details

This section presents the HRI Manager, the dialogue manager of the proposed HRI architecture,
and the library of CAs that have been currently developed. The first part of the section introduces the
list of requirements that the HRI Manager has to meet. Next, the HRI Manager is presented, along
with the technical aspects of its implementation, and the features that it offers. This includes the
mechanisms for activating and managing CAs. Then, the library of CAs that have been developed up
to this point is presented, both basic and complex.
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Figure 3.4: Flow of interaction-related data through the HRI System, from the information extracted
from the environment by the robot’s sensors to the actions performed by the robot. The parentheses
in the CA blocks indicate the type of input information the CA requires.

3.5.1 The HRI Manager and its internal structure

The HRI Manager, located at the core of the HRI architecture, is the module that ensures the
success of interactions between the robot and the user. It receives requests coming from the robot’s
applications to load and execute CAs, which serve as templates for human-robot dialogues. The
information collected from the environment is sent by the perception modules to the Perception
Manager, which in turn filters, formats, and packages this information according to different criteria
(time window, type of data, connections between different sources of information, etc...). The
packaged data is then received by the HRI Manager, and from there is relayed to the CAs that
need it to complete their particular communicative goals. While the input information is filtered
by the HRI Manager first so it is only sent to the CAs that were expecting it, the CAs have a
direct communication with the Expression Manager. CAs can request the execution of predefined
expressions or specify a set of unimodal actions that have to be performed by the robot. Flow of data
through the HRI System is depicted in Figure 3.4. The operation of both the Perception Manager
and Expression Manager are left out of the scope of this chapter.

In the proposed software architecture, all communications between modules are handled using
ROS [98], a middleware for robotics that provides a communication layer on top of the operating
system in order to interconnect an heterogeneous collection of software modules.

From a structural point of view, the HRI Manager can be decomposed into two main elements:
the HRI Manager core and the CA Library. These elements are shown in Figure 3.5. The HRI
Manager core serves as a hub that connects the perception architecture and the applications of the
robot with the CAs. It is in charge of processing all requests for CA activation, managing conflicts that
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Figure 3.5: Schematic view of the HRI Manager, depicting the relation between the HRI Manager
core, the CAs, and the other modules of the software architecture.

might arise among CAs, and filter all the information coming from the Perception Manager so only
the relevant one is sent to the CAs. This core is designed as a single process that combines a control
loop where CAs are loaded, parametrized, and executed, with a series of callbacks for managing the
reception and formatting of information coming from different parts of the software architecture. In
particular, this module takes care of the following tasks:

1. Manage CA requests.

2. Configure the perception modules.

3. Execute the requested CAs.

4. Manage input information.

An activity diagram representing the relationship between these steps is shown in Figure 3.6.
All of these tasks will be presented in more depth in the following sections. Figure 3.7 shows the
class diagram for the HRI Manager and the CAs. The HRI Manager core has been modelled as an
individual class, named HRIManager. This class can instantiate objects from the CAThreadBase
to create individual execution threads for each CA. Each of this threads in turn instantiates an
object from either the ContinuousCA or the ImmediateCA class. These classes manage the loading
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and execution of CAs. In the software architecture shown in Figure 3.7, all the CAs that have
been developed inherit from a common template: the CommunicativeAct class. In the proposed
architecture, the CAs are represented as state machine-like structures that include different states (for
example, a state can be used for sending info to the user, while another can be used for waiting for a
gesture to end). All states developed inherit from a common class, called BaseState. All the elements
and processes mentioned here will be presented in depth in the following sections.

Figure 3.6: Tasks that the HRI Manager core has to complete.

3.5.2 Managing CA requests

All the interactions that the robot has to conduct are designed as a combination of adequately
parametrized CAs. Applications can send requests for the activation of specific CAs to the HRI
Manager, along with any task-related information required to configure it (e.g. the grammar that
will be used to recognize the user’s utterances). The HRI Manager core receives these requests,
and decides how the CA will be executed. While some CAs are incompatible, meaning that they
cannot be executed at the same time (for example, the robot cannot and should not ask a question
and provide unrelated information at the same time), others can be performed concurrently. The
latter is useful for example for managing different conversation topics at the same time. Combining
the execution of different CAs is not a trivial process, as the clash of two incompatible CAs
could result at best on an interaction that does not feel natural (for example, if the robot starts
switching between topics and communicative actions incoherently), and at worst in a conflict
that puts the whole operation of the HRI Manager at risk (for example, several CAs trying to
access the same system resources at the same time, causing some of them to crash). Thus, the
most important decision that the HRI Manager core has to make when processing CA activation
requests is to decide which CAs can be executed immediately, which should be ignored, and
which should just be kept in store to be executed when possible. The solution to this problem
was to develop a priority system that could be used to compare the importance of performing each CA.
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Figure 3.7: Class diagram representing the relationships between the HRI Manager core and the library of CAs. The list of attributes and
methods for each class can be found in Appendix B.
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The proposed system considers three different levels of priority: low, medium, and high. By
default, applications will use the medium level of priority for their CAs. It can be considered that
there will never be a situation where multiple applications try to push different communicative goals
through the request of medium priority CAs. This is because the DMS controls the activation and
deactivation of applications. If a situation that requires an immediate response from the robot arises,
the application in charge of managing said situation can send high priority CAs in order to ensure
the immediacy of the robot’s response. Finally, non-essential abilities of the robot are restricted to
moments where no task is being conducted, and thus they will request CAs with low priority. The
operation of the priority system can be better understood through the following example. A user
wants to engage in a game with the robot. In this situation, all the interactions conducted in the
context of the game will have medium priority, as the application in charge of games is the one driving
the robot behaviour at the time. While the robot and user play the game, a scheduled event requires
that the robot notifies the user that it is time for him/her to take his/her medicines. Because this is a
critical notification, it will be pushed with high priority to ensure that the user receives the message as
soon as possible. Finally, while the robot is able to answer basic questions, like the time of day, this
ability is considered to be non-essential, and thus the CAs coming from the application that provides
answers to these questions will have low priority, so they do not interrupt the execution of the game.

Besides priority, there is a second factor that plays a part on deciding which CAs can be executed
and which should be ignored: which speaker is holding the initiative in the interaction. This is due
to the fact that, while the system always knows which interaction goals the robot wants to achieve
at any given time, what the user might want to do cannot be accurately predicted. This led to the
design decision of assuming that two CAs that manage interactions where the robot has the initiative
would never be active at the same time, as it makes no sense to have the robot trying to achieve two
completely unrelated communicative goals at the same time. This does not mean that the robot
cannot try to obtain multiple pieces of information at once, but instead that there can only be one
end goal. For example, while a communicative goal can be obtain personal information about the
user, which could be obtained through a single CA that asks for his/her name, surname, and date of
birth, there will never be a situation where the robot tries to achieve at the same time the goals of
ascertaining these facts about the user and giving him a weather forecast, for example.

On the other hand the system needs to be ready for the user to try to achieve one goal amongst
many at any time, which is done by keeping multiple CAs where the user has the initiative active at
the same time.
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Figure 3.8: Activity diagram showing the priority management strategy for CAs where the robot has
the initiative.

The HRI Manager core maintains individual queues for each priority level. If an application
requests the activation of a CA to manage a situation where the robot has the initiative, then the
subscriber in charge stores this request in the appropriate queue depending on the priority level
defined in the activation request. In this architecture, the priority queues follow a first-in, first-out
approach, where the coincidence of CAs with the same priority is solved by giving more importance
to the CA that was requested first. If the new CA requested has a higher priority that the one that
is currently being performed, then the HRI Manager core stops what the robot is doing, handles
the urgent situation immediately, and then goes back to the CA that was being executed. This is
achieved by storing the CA that has been stopped at the beginning of the corresponding priority
queue, instead of at the end. The process for managing priorities for CAs where the robot has the
initiative is shown in Figure 3.8

Regarding the CAs managing situations where the user has the initiative, priority queues are
no longer required, as these CAs can be executed immediately. The only issue is ensuring that the
activation of a new CA does not cause a conflict with regards to the usage of the robots interfaces. For
example, if two CAs need to use the same touch sensor to retrieve information, then it is impossible
to ascertain to which CA belongs the information coming from the perception modules. This
limitation is not tied to the usage of specific communication channels, but instead to the ability of
the HRI Manager to discern to which CA should be sent the information coming from the user. For
example, while it has been established that two CAs cannot share the same touch sensor, they can
both wait for speech-based information, as the distinction between CAs can be established based on
the semantic information extracted from the speech. Based on this, when a request for activating a
CA that handles user-initiated interactions is received, the HRI Manager core checks if it is safe to
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Figure 3.9: Activity diagram showing the priority management strategy for CAs where the user has
the initiative.

execute the CA immediately. In the event of a conflict between the new CA and one of the active
ones, then the one with the higher priority is left active, while the other is discarded. The process for
managing priorities for CAs where the user has the initiative is shown in Figure 3.9

The last situation that has to be considered is the possibility that a CA where the robot has the
initiative and one where the user has it require the same interfaces. An example would be the robot
asking the user to touch its shoulder in the context of a game, and a CA that allows the user to stop
what the robot is doing by touching that same shoulder. A practical solution was found to solve
this problem. CAs that allow the user to take initiative are usually active for extended periods of
time, and might end not being used at all. On the other hand, CAs where the robot has the initiative
are only active for short periods of time, and are requested when the robot needs to complete a
specific task immediately. The solution implemented was to consider CAs that handle robot-initiated
interactions as having a higher priority, as it is preferable that the robot ignores temporarily some of
the user’s actions over skipping one or more of the robot’s actions, which could end up affecting the
applications negatively.

3.5.3 Configuration and execution of CAs

In the HRI Manager core’s control loop, the priority queues are checked once every 0.1 seconds.
This frequency was selected in order to balance the time constraints involved in human interaction
and computational load. The status of the queues is checked in order of priority, from high to low. If
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a request is found in one of the queues, then the HRI Manager analyses the information contained
in that request and prepares the execution of the CA. First of all, the appropriate template has to be
loaded from the CA library (see Section 3.5.6 for a detailed description of all the available templates).
In the proposed module, CA templates are loaded as individual configurable software modules.
Once the appropriate template has been loaded, the next step is to configure it properly, so it reflects
the communicative goal that the application wants to achieve. For this, two types of configuration
parameters can be found: generic and CA-specific. Generic parameters are common to all CAs, and
used by the HRI Manager core to build all the structures required to execute and control the CA,
while CA-specific parameters include all the task-related information.

The generic parameters include:

• Name: String used to uniquely identify the CA. This is necessary due to the fact that there
might be more of one instance of a given CA template in use at the same time, and the HRI
Manager core needs to control them independently. For example, the name of the CA will be
used when defining the communication channels between the CA and the HRI Manager core.

• Type: The name of the CA template that has to be loaded

• Priority: The priority level that will be assigned to the CA in order to solve any potential
conflict that might arise with other CAs, as presented in the previous section. Three possible
values: high, medium, and low.

• Emitter: The name of the application that is requesting the activation of the CA. This will
be used to return the result of the interaction directly to that application.

• Duration: This parameter allows to define the condition for finishing the execution of the
CA. It will be defined more in depth in the following paragraphs.

There are two possible configurations for the duration parameter: ending or continuous. If a
CA is configured as ending, then it is executed once and then discarded, after sending the result of
the interaction (if it was successful, a failure, or if it was cancelled), along with any information
retrieved by the CA that might be of interest to the application. Continuous CAs are executed in
a loop, and will remain active until an explicit deactivation request is sent by the application that
requested its activation, or any other software module with knowledge of the CA’s name. Every time
the interaction described by the continuous CA is completed, the result is sent to the application, just
like in the case of ending CAs, but instead of discarding it, the CA is executed again from the beginning.
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There is no restrictions about which CAs can be configured as ending or continuous. Nevertheless,
there is a criteria that is followed in the majority of situations: CAs where the robot take the
initiative will be configured as ending, while CAs where the user is the one taking the initiative
will be configured as continuous. This criteria has its roots in the fact that applications know the
time instant in which a robot-initiated interaction should start, and there are not many reasons for
constantly repeating a particular interaction, while user-initiated interactions are unexpected, and
can be required more than once. An example of the latter would be a CA that allows the user to
issue commands to the robot. The CA would stay active for as long as those commands have to be
controlled, and it might be necessary to manage more than one command. Meanwhile, if the robot
needs to remind the user about a scheduled appointment, then the CA can be configured as ending,
as this interaction only has to happen once, at a particular moment in time.

While the parameters described above have to be present in every CA, there is also information
that is connected to the communicative goal that a particular CA has to achieve, and thus might not
be essential for all CAs. In general, these CA-specific parameters are connected to one of two tasks:
sending information to the user, or configuring the reception of the user’s response. Parameters
related to the first task include not only the message that has to be conveyed to the user through one
of the available communication channels, but also any other parameter needed to configure those
channels (for example, the distribution that has to be used to arrange multimedia content that will be
displayed in a touch screen). Parameters related to the second task involve both the configuration of
the input modules of the robot (for example, displaying a menu on a touch screen so the user can
select an option, or loading a grammar in the grammar-based ASR) and also the configuration of
how the CA will retrieve information coming from the user. This includes defining which input
channels can be used, how long will the CA wait for an answer, or what is the correct answer (if
the CA is used to ask a question that has a correct answer). While most CA-specific parameters are
handled internally by the CA, the configuration of the input interfaces of the robot is performed by
the HRI Manager core during the parametrization of the CA template.

Once the CA template has been loaded and properly configured, the HRI Manager core starts its
execution. Each CA is run on a separate thread in order to obtain a concurrent execution. Whenever
the interaction described by a CA is completed, the result is relayed first to the HRI Manager core
and then sent from there to the application that requested the interaction in the first place. This was
designed as a two-step process in order to centralize the communication between the high level of the
software architecture and the HRI Manager. Also, at any given time, applications can send requests
to deactivate any CA currently in execution or stored in one of the priority queues. The deactivation
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request contains the name of the CA that has to be cancelled. If it is active, the HRI Manager core
sends a cancellation command that leads to the preemption of the CA and notifies the application. If
it is not active, but the CA is stored in one of the priority queues, then it is simply discarded.

3.5.4 Processing input information

As stated in Section 2.3.3, in the software architecture of the robotic platforms used in this thesis,
the information captured by the perception modules of the robot is packaged in different levels
of abstraction. In particular, although three levels have been proposed, only two of them have
been currently implemented. The HRI Manager core uses individual callbacks for processing
the information coming from each level of the Perception Manager. In both cases, the inner
workings of the callback is identical. When a CA is ready to be executed, the HRI Manager core
checks if any information coming from the environment will be required. If so, the name of
the CA and the type of information expected is stored in an individual dictionary for later use.
Information type is not restricted to the communication channel used to retrieve the information,
but instead the feature used to connect this information to a particular CA. For example, while all the
detections captured by the robot’s touch sensors are sent to all the CAs expecting touch information,
speech recognitions are only sent to specific CAs based on semantic information provided by the ASR.

(a) Activity diagram representing steps taken during the configuration of a new CA for managing input data.

(b) Activity diagram representing the process followed when new input data is received.

Figure 3.10: Activity diagram representing the management of input data by the HRI Manager core.

Whenever the Perception Manager sends new input data from any of the two abstraction
levels, the HRI Manager core has to check which CA/s can find that particular information useful.
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Because CAs can be expecting information to come from multiple sources, or even a combination
of perception data, the HRI Manager core has to ensure that all required information types are
present in the message received from the Perception Manager before relaying it to a CA. For example,
if a CA is waiting for a combination of touch and speech-based perception data, then the HRI
Manager core will only send the perception messages that contain both types, while ignoring those
that contain only one of them or neither. First, the perception message is processed so it fits the
standardised structure expected by the CAs, and then sent to all CAs expecting it. Figure 3.10 shows
the steps followed by the HRI Manager core for configuring CAs expecting input information and
for managing new inputs received from the Perception Manager.

3.5.5 Creation of new CCAs

In the proposed approach, CCAs can be developed through two different methods. The first one
involves manually coding them, following the same process used to develop the BCAs. This task can
be time consuming, and requires a certain level of knowledge about the internal mechanisms of the
system and the libraries used to develop the CAs. In order to simplify the creation of new CCAs, a
second method was designed: define the structure of a CCA using markup language. This type of
CCAs have been called Frequent CAs. They are identified by an unique name, which will be used to
request their activation, and contain a sequence of sub-CAs, as well as the parameters needed to
configure them. These parameters include the name (which has to be a number, starting in 0 and
increasing one by one), the type and the parameters needed to configure the inputs and outputs
to the sub-CA, as the rest of generic parameters (emitter, priority, and duration) are taken from
the activation request. Also, each sub-CA has an extra parameter called transitions, which is used to
define which of the sub-CAs should be executed after the current one has been completed.

Whenever the HRI Manager extracts a CA from one of the priority queues, it checks if the type
of the CA is included in the list of available Frequent CAs. If it is, the list of interfaces used by all the
sub-CAs is added to the activation request, and then the HRI Manager analyses the conflicts that
could arise between the Frequent CA and the rest of active CAs, following the procedure described in
Section 3.5.2. Then, the HRI Manager loads the first sub-CA from the Frequent CA template (the
first CA is the one named 0) and executes it. When the execution of the sub-CA is completed, the
result is used to select the proper transition and start the execution of the next sub-CA. Transitions
can be connected to the result of the sub-CA (if it has been successful or not) or to information
retrieved during the interaction (for example, have a sub-CA for asking a yes/no question, and
then move to one of two sub-CAs depending on the answer). If the transition leads to an outcome
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(succeeded or failed) instead to a new sub-CA, then the execution of the Frequent CA is completed
and the result is sent to the applications, like for any other CAs.

3.5.6 Library of Communicative Acts

In the proposed architecture, CAs are modelled as structures similar to finite state machines, but
with extended capabilities (for example, the possibility of having concurrent states). The technical
implementation of the CAs has been done using SMACH, a python library for a fast prototyping
of hierarchical state machines 2. The library of CAs includes both the templates developed for
each individual CA and a collection of the states that will be combined to create new CAs. From a
programming perspective, all CAs are inherited classes of a common template that provides the
implementation of the mechanisms for cancelling the execution of the CA, as well as the creation
of the communication channel required to use this feature. This common template also provides
tools for creating logs of the interactions. States also inherit from a common state template that
implements a single method for sending commands to the output interfaces of the robot. This
is necessary because there are multiple states that need to be able to send actions to the robot’s
expressiveness. On the other hand, inputs will only be received by a single state.

This section introduces all the CAs that have been currently develop, starting with the four
BCAs that were presented in Section 3.3 (Robot Asks for Information, Robot Gives Information,
User Asks for Information, and User Gives Information), and then continuing with all the complex
CAs (or CCAs). While the set of BCAs is closed and was defined based on the combination of the
initiative and intention dimensions, the number of CCAs is not fixed, as they have been identified
empirically during the interactions with the robot, and thus is possible that new CCAs are found in
the future. Also, although from a theoretical point of view it is stated that CCAs are combinations of
the four BCAs (and possibly other CCAs), in reality they are a combination of BCAs with other
states used for controlling the flow of the interaction (for example, a state that receives the result of
one BCA, and based on that decides which is the next BCA that should be executed).

The robotic platforms used in this thesis have been designed to, among other tasks, propose
cognitive stimulation exercises to the users (the robot is targeted to older adults that suffer from
mild cognitive impairment). Considering the application of these robots and the requirements that
these exercises have, the following CCAs have been identified: Right-Wrong Question CCA, Question

2https://wiki.ros.org/smach



3.5 TheHRIManager: implementation and technical details 77

with Confirmation CCA, Switching Mode Question CCA, Manage Multimedia Content CCA, and
Communication Warning CCA.

3.5.6.1 Robot Gives Information

Figure 3.11: Activity diagram for the Robot Gives Information CA.

This CA, shown in Figure 3.11, is used to model interactions where the robot initiates a
dialogue with the goal of conveying information to the user the user. The robot can deliver this
information through any communication channel available, or even through multiple channels
at once. The CA-specific parameters include the message that has to be emitted, as well as all
necessary information for configuring the output modules of the robot. After the message has
been sent to the output interfaces of the robot, the CA waits for the action to be completed,
and then returns the result of the interaction, which depends on the success or failure of the
expression sent to the Expression Manager. For example, if the robot has to inform the user
that is time to take his/her medicines, the utterance is sent to the Expression Manager, which
in turn relays it to the TTS module (the inner workings of the Expression Manager will be
introduced in the next chapter of this manuscript). Then the CA waits until the Expression Manager
notifies that the etts has finished uttering the sentence, and returns the result to the HRI Manager core.

3.5.6.2 Robot Asks for Information

The robot seeks to retrieve information from the user. This includes asking questions or giving
commands that involve a response from the other peer. Similar to the Robot Gives Information CA,
the communicative action of the robot can be displayed through one or more interaction channels.
In this case, the response of the user can also come through different input channels (the interfaces
that the user can use are defined in the CA-specific parameters). The user can be given the choice
of which interaction channel to use, or he/she can be requested to use a specific one, or even a
combination of them.
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Figure 3.12: Activity diagram for the Robot Asks for Information CA.

Figure 3.12 shows the activity diagram for this CA. The structure of this CA template can be
divided in either three or four stages, depending on the necessity of providing a specific answer. The
three stages that will be always present are: (i) sending the robot’s action to the Expression Manager
and waiting for its completion; (ii) waiting for the user’s response, which involves ensuring that the
answer received meets the CA’s expectations (comes through the appropriate channels); and (iii)
return the result of the interaction to the HRI Manager core. If there is a correct answer, then an
extra stage is required to check that the answer given by the user is in fact the correct one. Finally,
while the HRI Manager core configures the input modules as required by the CA, if the user’s answer
has to be collected through a menu, it will be sent to the Expression Manager alongside the expression
that the robot has to perform, and displayed once the execution of this expression has been completed.

3.5.6.3 User Gives Information

Figure 3.13: Activity diagram for the User Gives Information CA.

This CA template allows the user to communicate any information to the robot. Because the CA
has to be requested by one of the applications, this ensures that the robot will only pay attention
to those commands that can be processed. This CA assumes that the user is not requesting any
information back from the robot, although the command of the user itself can have a visible effect
on the interaction. For example, if the user asks the robot to stop a game they are playing, the
cancellation of that game could be considered a response to the request of the user, but this response
does not involve the transmission of information.
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The activity diagram for this CA can be seen in Figure 3.13. Once the CA has been activated, it
waits indefinitely for a command of the user. If one arrives through the appropriate channels, then
it is relayed to the application that requested the activation of the CA, and the execution of the
CA ends. If the application requires that the CA remains active in order to process more than one
command, then it should configure it as a continuous CA.

3.5.6.4 User Asks for Information

Figure 3.14: Activity diagram for the User Asks For Information CA.

This CA, shown in Figure 3.14, manages all interactions initiated by the user where the objective
is to obtain information from the robot. From a conceptual point of view, the effect of this CA
would be similar to the combination of the User Gives Information and Robot Gives Information
CAs. The User Asks for Information CA waits indefinitely for the user to issue a command, then
relays it to the proper application, and waits for a response. The application gathers the information
requested by the user, and sends it back to the CA, which in turn sends it to the Expression Manager
to be conveyed. Once the information has been properly expressed, the execution of the CA is
completed. An example of a possible use for this CA would be an application that provides answers
to frequent questions that users might have, like the current time, or date.

3.5.6.5 Right-Wrong Question CCA

As stated before, one of the key applications of the robotic platform used in this thesis consists on a
series of cognitive stimulation exercises in which the robot proposes a series of questions to the user
oriented to stimulating different areas of cognition (memory, perception, etc...). These exercises
showed that there is a need for a series of features that are not covered by the basic Robot Asks for
Information CA. Thus, the Right-Wrong Question CCA, shown in Figure 3.15, was developed to
include these capabilities.

Among the new features, this CCA is able to give feedback to the user after an answer was
provided for a question that has a specific correct answer. The CCA would congratulate the user if
the answer is correct, or would encourage him/her if it was wrong. A second feature included in this
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Figure 3.15: Activity diagram for the Right-Wrong question Complex Communicative Act (CCA).
In this example, the CCA expects a sequence of answers in a given order.

CCA is the ability to give the user multiple attempts to provide a correct answer. This would affect
also to the feedback provided by the robot, as the CA would encourage the user to answer again if a
wrong answer was given but the attempt limit has not been reached, or would try to cheer him/her up
if there are no more attempts. A third feature allows this CCA to ask for a single response (e.g. What
is your name?), or for a series of answers (e.g. Which are your three favourite TV shows?). In the case
of multiple answers, the user can be given the freedom of choosing the order in which they are given
(an example would be the previous question about the user’s preferences on TV entertainment), or
might instead be required to provide the answers on a predefined order (for example, asking the user
to repeat a list of words that the robot said to him/her as a part of a memory game).

The basic configuration of this CCA (a question that looks for a single answer) parametrizes a
Robot Asks for Information CA with the question that has to be asked to the user, and a series of
Robot Gives Information CAs to manage all the possible variations of the feedback that the robot can
provide. The CCA would select one of these feedback CAs depending on the result of the Robot Asks
for Information CA (if the user’s answer was correct or wrong). If more than one answer is required,
then the CCA has to configure as many Robot Asks for Information CAs as answers are required
(thus, a question that seeks multiple answers would be modelled as a sequence of questions that seek
for an unique answer each). They will be connected in a sequence, using Robot Gives Information
CAs to connect them (the robot would utter something similar to “Correct, go on”, or “Perfect, let’s
continue”). If the answers have to be given in a particular order, each Robot Asks for Information CA
will have only one correct answer (the first CA will look for the first answer in the sequence, and
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so on). On the other hand, if the answers can be given in any order, then the first Robot Asks for
Information CA will accept any of the expected answers, while for the next ones the answers already
obtained would be removed from the list of expected answers. In any case, once all the answers are
obtained, the CCA gives feedback to the user similar to the one given in the case of a single answer.

3.5.6.6 Question with Confirmation CCA

There can be many unexpected issues that arise during an interaction and that might hinder the
ability of the robot to communicate with the user. In speech-based interactions, an error during the
recognition of the user’s speech might result on an interruption of the communication. Having a
strategy for correcting the recognition of the user’s speech can help to improve the quality of the
interactions. This is the goal of the Question with Confirmation CCA, shown in Figure 3.16.

Figure 3.16: Activity diagram for the question with confirmation CCA. This CCA asks the user for
an explicit confirmation if the confidence of the answer recognition is below a given threshold.

The CCA configures a Robot Asks for Information CA to ask a question to the user. If the ASR
module of the robot cannot produce a recognition of the user’s speech with a level of confidence that
is high enough, the CCA would use a different Robot Asks for Information CA to ask for an explicit
confirmation of the result of the recognition. If the user confirms the recognition, then the question
continues its execution normally. On the contrary, if the user rejects the result provided by the ASR,
then a Robot Gives Information CA would be used to issue an apology, and then the question would
be repeated.
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3.5.6.7 Switching Mode Question CCA

While asking for an explicit confirmation might be a possible solution for an unreliable recognition
of the user’s speech, it is not applicable to other communication issues that might arise during
an interaction (for example, an absence of a recognition). Thus, having a backup plan in case the
primary interaction channel fails can be another effective way of correcting communication problems.

Figure 3.17: Activity diagram for the switching mode question CCA. This CCA can be configured
with multiple input modes, and then it switches from mode to mode in case of communication
problems.

The Switching Mode Question CCA, shown in Figure 3.17, allows to configure multiple versions
of the same question, each of them using a different input channel. The application can specify the
order in which the channels should be tried. If communication using the primary channel proves to
be impossible, then the CCA switches to the next modality. The process is continued until one of
the questions can be completed successfully, or until all modalities have been tried without success.
For this CCA, instead of using the basic Robot Asks for Information CA to obtain information from
the user, the Right-Wrong Question CCA is used. This demonstrates the modularity of the proposed
dialogue model, where BCAs can be combined to obtain Complex CAs, which in turn can be
combined into more and more complex interactions.
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3.5.6.8 Manage Multimedia Content CCA

One of the application included in the robotic platforms used in this thesis can use the robot’s touch
screen to display multimedia content, like videos, music, or text. The application needs to provide
the user a way to control the content being displayed (pause, stop, or resume it). While this could be
achieved with a proper configuration of BCAs, it was deemed to be a structure common enough to
be modelled as a CCA.

Figure 3.18: Activity diagram for the manage multimedia content CCA. This CCA sends the content
to the touch screen and allows the user to control the execution of the content with voice commands.

The Manage Multimedia Content CCA, shown in Figure 3.18, executes concurrently two
BCAs: a Robot Gives Information CA and a User Gives Information. While the former is used
to send the multimedia content that has to be displayed to the tablet, the latter relays all the
commands coming from the user to the multimedia application. It is important to mention that the
functionalities related to pausing, stopping, and resuming the multimedia content are not included
in the CCA, but instead are managed directly by the application.

3.5.6.9 Communication Warning CCA

The last CCA developed was created with the goal of protecting the system from failures in the
robot’s hardware, specifically the elements that provide the communication capabilities of the robot,
both perceptual and expressive. It is the only CA that is not used by the applications, but instead
managed internally by the HRI Manager core. Whenever the connection between the HRI Manager
and one of the robot’s input or output interfaces is broken, the Communication Warning CCA is
loaded and parametrized with the information related to the interface that failed.
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Figure 3.19: Activity diagram for the communication warning CCA. This CCA is requested if
external peripherals used by the robot stop working. The CCA requests help from the user, waits for
the problem to be solved and then thanks the user.

This CCA, shown in Figure 3.19, uses a Robot Gives Information CA to notify the user about
the problem with the communication channel and to provide the instructions required to solve it, if
possible, or to instruct him/her to seek for help, if the problem cannot be fixed by the user. On top
of notifying the user, the CCA also warns the applications about the communication problem, so
they do not try to use the broken interface to interact with the user. Once the warning has been
issued, the CCA waits until the connection between the HRI Manager and the broken interface is
fixed. Finally, the CCA thanks the user for fixing the issue, and then finishes its execution. One of
the more common examples of this CCA is related to the touch screen. The connection between
the screen and the robot tends to fail from time to time. When this happens, the Communication
Warning CCA is used to ask the user to close the application running in the tablet and launch it again.

3.5.7 Handling Errors in Communication with Basic and Complex CAs

Uncertainties in interactions are so common that all CAs should be equipped with a set of basic
features to deal with them. One of the uncertainties already discussed in this section is the possibility
of a failure of the robot’s input sensors, either due to the dynamic characteristics of the environment
itself (for example, trying to retrieve the voice of the user in a very noisy environment, or the user
not speaking in a clear enough manner) or due to an internal problem with the hardware and/or
software of the robot. Under this situation, the Perception Manager would send a notification about
the failure of the recognition process (Currently, the only communication problems considered are
related to speech-based interactions, as the other communication channels have shown to be more
reliable). To solve this problem, CAs are equipped with a strategy that allows to ask the user to repeat
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his/her last utterance if a recognition failure is received. If the issue is that an input has been received,
but the confidence level is not high enough, the CA will inform the user about what has been
recognized, and then asks him/her to repeat the utterance anyway. In this case, the CA also stores the
confidence level associated to that particular recognition. If the same utterance is recognized, the CA
adds the new confidence level to the stored value. This allows the CA to make the decision that a low
confidence recognition is correct if it has been recognized multiple times in a row. Regardless of the
issue, if the communication problem persists, CAs will give up after three failed attempts and just
notify the application that the interaction has been cancelled due to communication issues.

A second uncertainty that has been identified as being fairly common is also connected to the
process of retrieving information from the user. Specifically, the problem comes when the user
decides to ignore the robot, or just stops interacting without notifying the robot. In this situation, if
the robot keeps waiting for an answer, or just keeps repeating the request for information, it could
lead to the system getting stuck. To avoid this, CAs can define the amount of time that the user
has to provide an input (this is one of the CA-specific parameters that can be configured by the
application in the activation request). If the user does not deliver an input in time, then the CA
will try to encourage the user to give the information, clarifying the input channel that should
be used. For example, in menu-based interactions, the robot would ask the user to select one of
the options displayed in the touch screen. After three failed attempts to obtain an answer, the
CA cancels the interaction and notifies the application that the engagement with the user has been lost.

In addition to the embedded recovery mechanisms, three CCAs have been developed to deal with
communication issues. These CCAs are the Question with Confirmation, Switching Mode Question,
and Communication Warning CCA.

3.6 Evaluation of the proposed Dialogue Manager

This section presents the results of the implementation and integration of the HRI Manager in the
robot’s architecture. First, a case of use is presented in order to show the operation of the proposed
dialogue manager in a real environment (Section 3.6.1) and to illustrate the particularities of the
system’s implementation. Because the control over interactions is divided between the applications
and the HRI Manager, the perception that users have of the robot during an interaction is caused by
both the application design and the features the proposed dialogue architecture introduces. Thus, it
would be tough to extract from a subjective evaluation conclusions related exclusively to the HRI
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Manager. Next, an objective evaluation is conducted in order to evaluate the performance of the
system (Section 3.6.2). This includes measurements of the resources used (both CPU and RAM
usage), and also statistics about the performance of recovery methods in interactions with real users.

3.6.1 Subjective evaluation: Case of use

In the proposed case of use, the robot Mini interacts with older adults in the context of a series of
cognitive stimulation exercises (one of the main features included in the robotic platforms used
in this thesis). These tests were conducted in a daycare centre located in Zamora (Spain). Figure
3.20 depicts an example of an interaction between Mini and an participant. The presented case of
use is a compilation of situations that arose during the trials, and that can be used as a showcase of
the features of the proposed dialogue manager. Medical personnel working in the daycare centre
reviewed and approved the experiments conducted, and participants gave their signed consent when
asked to participate in the trials.

Figure 3.20: Example of an interaction between Mini and one of the participants in the trials.

In these trials, the robot Mini conducted a cognitive stimulation therapy composed of a sequence
of exercises that test different abilities of the user (memory, perception, etc...). The goal is to stimulate
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the user’s brain and try to slow down the deterioration of his/her cognitive abilities. The robot was
placed on top of a table in an office, and set in a standby state that imitates the appearance of being
asleep. The participant sat in front of the robot, accompanied by a member of the facility’s medical
personnel and one of the robot’s developers. After introducing he robot to the participant and
explain how the trial was going to work, the participant woke up the robot by touching its shoulder.
After performing an waking up expression, the robot greeted the participant and asked him/her
what to do next. A menu displayed in the robot’s touch screen allowed to select one of the robot’s
applications. The participant selected the Appexercise and, after acknowledging the selection, the
robot started the session.

There is a second application that is relevant for the presented case of use: Appwarnings. The
robot maintains a schedule where the user can program warnings and notifications that will be
issued by the robot to help him/her remember certain events. For example, given the robot’s target
audience, the robot could remind the user about his/her medicines, or about an incoming visit from
a relative. Due to the fact that these warnings are tied to specific moments in time, the Appwarnings

will send its CAs always with high priority, so they can interrupt what the robot is doing at any time.
The Appexercise, on the other hand, is a regular application, and thus will have medium priority.

The following sections present 5 particular situations that arose during the trials conducted
with Mini. These situations demonstrate how the proposed dialogue system can be used to create
human-robot interactions as combinations of basic and complex CAs. They also serve as a showcase
for most of the features provided by the CAs and the HRI Manager.

3.6.1.1 Interaction 1: waking up Mini

The first situation described took place at the beginning of one of the trials, and involves the
participant waking up the robot, selecting the Appexercise and solving the first question in the first
cognitive stimulation exercise. It is an example of how a standard interaction is conducted using CAs.
In this context, a standard interaction can be defined as a dialogue between the user and the robot
where nothing unexpected happens.

Whenever the robot goes into the sleeping state, the DMS requests the activation of a User
Gives Information CA configured to receive information coming from either the touch sensors
(specifically, the right shoulder) or the ASR. These are the channels that can be used to wake up the
robot. In the interaction, after the participant woke up the robot by rubbing its shoulder, the robot
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Figure 3.21: Initial interaction between Mini and the user, from the moment the user wakes the robot
until the first question in the exercise is asked.

responded by using a Robot Gives Information CA to perform a waking up expression and greet the
participant, and finally asked the participant what she wanted to do. This was done using a Robot
Asks for Information CA that sends a menu to the touch screen and allows the participant to provide
an answer either through voice commands or by selecting one of the options in the menu. When the
participant selected the exercise option in the menu, the DMS received this answer and launched the
Appexercise. In turn, the app started by requesting the activation of an User Gives Information CA
that will be used to capture any command that the participant issues to control the application. All
applications can be paused, stopped, and resumed at any time by touching the robot’s shoulder. This
CA will be configured as continuous, so it can capture every command coming from the participant,
and will remain active until the application itself is stopped. At the same, the app explained how the
cognitive stimulation session is going to work and the rules of the first exercise using a Robot Gives
Information CA. This exercise is designed to test the awareness of the user through a series of general
questions, like What day are we in? or What month are we in?.

In order to shield the interaction from communication problems, all the questions in the exercise
are asked using the Switching Mode CCA. As shown in Section 3.5.6, this complex CA can be
configured to try to retrieve the answer from the user through a sequence of interfaces, so if one fails,
the CCA just moves to the next one. In the Appexercise, the CCAs are configured to use speech-based
answers as the default mode, and then switch to tablet-based answers if speech communication
proves impossible. The first question asked was What season are we in?. The trials were conducted
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in February, so the right answer was winter. Once the participant provided the correct answer, the
CCA sent an expression to the Expression Manager for congratulating the participant. This was
done by uttering a congratulation message while the robot shakes its arms up and down, changes the
expression of the eyes to happy, and also changes the colour of the heart. Then, the CCA informed
the Appexercise that the interaction had been a success, and the application continued with the
remaining questions in the exercise.

3.6.1.2 Interaction 2: communication problems

Figure 3.22: Second question of the awareness exercise. The boxes represent actions performed by
the different agents and the arrows represent the connections between these actions.

The second situation that will be highlighted in this review, shown in Figure 3.22, happened in
the same exercise (awareness evaluation), and has to do with the presence of unexpected conditions
that hinder the communication between the robot and the user, and the basic strategies that CAs
can use to manage them. In the awareness exercise, the second question was What day is today?
(in this case, the question was regarding to the month, not the week). Again, the CA requested
was the Sequential Mode Question CCA, configured so the robot asks the question aloud, and
then waits for a speech-based answer. In one of the trials, the participant did know the answer,



90 chapter 3 | Multimodal DialogueManagement

and tried to say it a couple of times. Although the ASR was able to generate a recognition, this
would not have a confidence high enough to be accepted by the CA (the threshold for accepting or
rejecting a recognition is 0.4). The mechanism implemented in the CAs for managing this particular
situation is to repeat to the participant the result provided by the ASR and then ask the participant
to repeat his/her answer so the robot can get a clearer recognition. In the situation presented here,
the participant kept answering, trying to be clearer, but the ASR kept failing at providing a confident
recognition. After the third failed attempt to retrieve the participant’s answer, the CA switched
from a speech-based to a menu-based answer, and repeated the question to the participant, but this
time displaying a menu in the touch screen. This solved the communication problems, and allowed
the participant to provide the correct answer. This lead to the CA congratulating the participant
with the procedure described at the end of Interaction 1, and then informing the Appexercise that the
interaction was a success (the result sent to the application also includes the amount of attempts that
failed due to communication problems). The application then moved on to the next question.

3.6.1.3 Interaction 3: failing to answer in time

The next relevant interaction that deserves to be highlighted, displayed in Figure 3.23, happened
while the participant was going through a different exercise. It showcases another of the generic
mechanisms that CA have integrated for dealing with unexpected situations (in particular when the
user fails to provide an answer or selects the wrong one). In this exercise, the user is presented with a
picture of a famous monument and had to answer in which city it is located, selecting one of the
options in a menu displayed in the touch screen. The goal of the exercise is to test the user’s executive
function (the cognitive processes and mental skills oriented to planning, monitoring, and executing
goals).

The first question in the exercise had the robot showing a picture of the Leaning Tower, located
in Pisa (Italy). Again, the Appexercise used a Switching Mode Question CCA to do this. But in one
of the trials conducted, the participant was not able to provide an answer in the amount of time
defined in the CA. When this happened, the Switching Mode Question CCA tried to encourage the
participant to provide an answer, while reminding her that in this exercise she had to use the menu to
answer, just in case she forgot. The question was repeated, and the menu was displayed again. The
participant kept doubting about the city where the Leaning Tower is located, but because she wanted
to answer in time. this led to her selecting a wrong option. The robot then told the participant
that the answer was wrong, encouraged her to try again, and finally repeated the question. Again,
the option selected by the participant was the wrong one, and on top of that, she had run out of
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Figure 3.23: First question of the monuments exercise. The boxes represent actions performed by the
different agents and the arrows represent the connections between these actions.

attempts. Thus, the CA sent an expression oriented to cheer the participant, using an encouraging
utterance, a change on the eyes’ expression and the heart’s colour. As always, the result of the
interaction was sent to the Appexercise, and the robot continued with the next question in the exercise.

3.6.1.4 Interaction 4: pausing CA with lower priority

The fourth interaction presented here, shown in Figure 3.24, is an example of how the priority
system is used in a real situation, and how a high priority CA can interrupt the task that is currently
being performed by the robot. As a test, the robot had some warnings already programmed in the
internal schedule. In particular, the robot had to notify whenever is time for the user to take his/her
medicines. This warning was still active during the trials conducted.

In this interaction, the robot asked the user where the Eiffel Tower is located using one of
the Switching Mode Question CCA. While the participant was thinking about the answer, the
Appwarnings detected that it was time to trigger one of the preprogramed warnings. Thus, a Robot
Gives Information CA was requested with high priority so the robot would utter the reminder
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Figure 3.24: Example of a situation with several CAs with different priorities. The boxes represent
actions performed by the different agents and the arrows represent the connections between these
actions.

for the user to take his/her medicines. Due to the fact that this CA has a higher priority, the HRI
Manager cancelled the Switching Mode Question CCA, stored it in the appropriate priority queue
(medium priority, in this case), and executed the Robot Gives Information CA. The robot uttered the
reminder about the medicines, extracted the Switching Mode Question CCA from the priority queue
and executed it again to continue with the exercise. The participant provided the right location for
the Eiffel Tower, the CCA congratulated the participant with the expression described in Interaction
1, and returned the result of the interaction to the Appexercise.

3.6.1.5 Interaction 5: recovering from a network error

The last situation that will be presented in this case of study, depicted in figure 3.25 shows how the
system can deal with a complete breakdown of the communication between the HRI Architecture
and one of the robot’s interfaces. This is a feature provided by one of the CCAs presented in Section
3.5.6: the Communication Warning CCA.

This interaction took place while the participant was completing an exercise designed to evaluate
his perception skills. In this exercise, the Appwarnings sends to the tablet a menu with multiple
buttons, each of them with an image. The task of the participant is to select the image that is
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Figure 3.25: Fourth question of the exercise. The boxes represent actions performed by the different
agents and the arrows represent the connections between these actions.

different from the others. As in all the other exercises, these questions are asked using Switching
Mode Question CCA. In the situation presented here, the robot displayed a menu with the following
images: a cat, a tiger, a panther, a leopard, and a dog. In this case, all animals are feline except for the
dog, which makes it the correct answer. While the participant was considering which option to select,
suddenly the connection with the table was interrupted, making the menu disappear.

The proposed interaction architecture has implemented safety measures for this type of problems.
In the situation described here, the tablet sends a signal to the robot at a fixed rate. On the other end,
the Expression Manager has a watchdog timer that is reset every time the signal is received. If the
timer goes off, the Expression Manager starts the recovery process by requesting the activation of the
Communication Warning CCA with high priority. The HRI Manager cancelled the question that
was active, stored it in the corresponding priority queue, and loaded the Communication Warning
CCA. First, the participant was warned about the problem with the tablet, and asked to reset the
application. The developer that was present during the trials restarted the application. When the
tablet started to send the signal again, the Expression Manager notified the CA that the problem had
been fixed. The Communication Warning CCA thanked the user using an expression that shows a
display of happiness, changing the expression of the eyes and the colour of the heart of the robot.
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Once the emergency was solved, the HRI Manager extracted the Switching Mode Question
CCA from the priority queue and executed it again. The robot repeated the question, and waited
for the participant to answer. At that point, the participant informed the developer that he was
already tired and wanted to stop the session. Using the User Gives Information CA that was activated
at the beginning of the session, the participant touched the robot’s shoulder. The DMS paused
the Appexercise and used an Robot Asks for Information CA to ask the participant if he wanted to
continue with the session. This explicit confirmation request is used to ensure that an application will
not be cancelled by mistake, or by a perception error in the touch sensor. The participant confirmed
the cancellation order, prompting the DMS to stop the Appwarnings and request the cancellation of
any CA related to the cognitive stimulation session.

3.6.2 Objective evaluation

This section presents an objective evaluation of the HRI Manager and the CAs aimed at
demonstrating that the proposed dialogue modelling and management approach is able to comply
with the constraints that exist in a real world application. The objective metrics presented in this
section are three: (i) the use of hardware resources (namely, CPU and RAM usage), which shows
that the proposed system can be integrated inside a robotic software architecture without the
need for a specially powerful hardware; (ii) the response time of the system during different parts
of the interactions, which shows that the CAs are able to abide by the temporal constraints that
dominate human-human interactions; and (iii) the statistics regarding the use of the different
mechanisms integrated in the CAs to manage unexpected situations that arise during interactions, as
a demonstration of their effectiveness to handle these situations in a real environment.

3.6.2.1 Resource usage

When developing any robotics application oriented to be integrated in a real platform, success cannot
be measured exclusively on the performance of said application. It is not enough that the new module
is able to carry its task successfully, it also needs to do it in an efficient manner that minimizes the
amount of resources required to run this application. This becomes even more important if the new
module will have to perform any of the tasks that can be considered as essential in any social robot.
Dialogue management can be considered one of this tasks, at least in the context of this thesis.
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Figure 3.26: Graphics showing the resources used by the HRI Manager. The use of CPU is computed
as a percentage of the processing power of a single core.

All the measurements that will be presented in this section have been taken in Mini, under real
conditions (all the modules of the robot running at the same time). Mini is equipped with 16 GB of
RAM, and an Intel i5-3550 CPU, with four cores running at 3.3 GHz. The software architecture
is running on Ubuntu 16.04 64 bits. Measurements were taken under three different conditions:
standby, passive, and active.

Under the standby condition, the HRI Manager was tested individually, without launching any
other module in the robot’s architecture. In this situation, the usage of RAM measured was a 0.2%
of the available memory, a value that showed no variation through time. Regarding the CPU usage,
this variated between a 0.0 and 0.7% of the processing capacity provided by one of the CPU’s cores.
Under the passive condition, the whole software architecture of the robot was launched, and the
robot was left in the standby state. In this state, the HRI Manager was maintaining a User Gives
Information CA active for waking up the robot. The measurements shown the same memory and
CPU usage that the ones measured when the HRI Management was working alone. Finally, during
the active condition, measurements for both resources were taken during an active interaction, where
Robot Gives Information and Robot Asking for Information CAs were used to establish a dialogue
with the user, while the User Gives Information CA was kept active. Under these conditions, which
can be defined as the regular state of the robot whenever is not in the standby state, the memory
usage was maintained (0.2% of the available RAM). An increase on CPU usage was perceived, with
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fluctuations that went from a 0.0% at the lowest point, and a 3.7% at its highest. Being one of the
core systems of the robot, requiring the allocation of 1/500 of available RAM and 1/108 of the
robot’s processing capacity has been considered to be acceptable.

3.6.2.2 Response time

It has been already established in multiple sections of this manuscript that the response time is a
feature that plays a big role in perceiving interactions as natural. This is a reality not only in HRI,
but also in interactions that occur between humans. As an example, lets consider an interaction
between two friends. At some point one of them shows no sign of acknowledgement of the previous
communicative action performed by the other. In this situation, the person that has been ignored
usually tries to perform a possible action oriented to repair the communication (repeat the sentence,
try to get the other person’s attention, or ascertain what the problem might be) or even disengage
from the conversation.

There is a design rule that is commonly followed when defining the threshold that can
be used as the limit for maintaining a natural interaction. This is known as the “Two Second”
rule [99] and, as it can be inferred from the name, establishes that the response of the system
in a human-computer interaction has to be provided in under two seconds to be considered
acceptable. Other studies set this threshold in under a second [100]. There is also some research
that shows that users tend to prefer robots that delay responses for some time (i.e. 1 second) than
robots that give immediate responses [101]. In order to be as restrictive as possible, one second
will be the response time limit that will be used for evaluating the performance of the proposed system.

All CAs in the proposed approach have been equipped with loggers that assign timestamps to
each of the steps performed during an interaction. These timestamped points in the interaction
have been retrieved for all the CAs that were involved in the situations described in the subjective
evaluation. In this study, three different situations have been identified as having a potential effect
over the perception that the user has of the interactions:

• Action time: How long it takes the robot to convey any message that has to be transmitted
to the user. This includes the time that passes from the moment the HRI Manager receives the
CA activation request until the communicative action that the robot has to perform has been
sent to the Expression Manager. The time required for performing said action is left outside of
this evaluation, as it is not affected by the implementation of the dialogue manager. If the CA
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requested needs to configure any output or input interfaces for achieving its communicative
goal, the time required to do it is also included here. Finally, any delay in the execution of a
CA as a result of priority management operations (the time lost in stopping the active CA and
store it in its priority queue) is also included in this category. All CAs, regardless of the type of
communicative goal they model will be affected by this.

• Reaction time: How long it takes the robot to process the communicative actions performed
by the user (for example, utter a sentence, select an option from a menu displayed in the tablet,
or touching the robot) and generate an appropriate response, if required. Not all CAs are
designed to expect any actions coming from the user, and some of the ones that do expect such
actions do not respond to them, so this time will vary from CA to CA.

• Completion time: How long it takes the CA to complete its execution after the interaction
modelled by it has been completed. It encompasses the time between the interaction’s end until
the moment the HRI Manager publishes the result of this interaction. Usually, this time is not
directly perceived by the user, but instead it is combined with the first situation described, as
the time that passes since one robot action to the next one involves completing the execution
of one CA and configuring and executing the next one. All of the CAs developed have to go
through this process.

The response time is going to show a big variation not only between different CAs, but also
between different configurations of the same CA. This is due to the fact that not all CAs have the
same mechanisms integrated. For example, while both the Robot Asks for Information CA and the
Question CCA are used to retrieve information from the user, only the second provides feedback to
the user after. There are other factors that will play a role in the response time, like the amount of
CAs running in parallel, the existence of CAs with different priorities, or even the communication
channel used to retrieve the user’s action (e.g. a speech-based answer is more complex to process than
a touch-based one). All the measurements extracted for this analysis were taken across five different
participants in the trials. The results were extracted for the same CA in the session for all participants,
in order to ensure that the particular configuration of the CAs did not have an effect. Then, the
average for all five interactions was computed.

Figure 3.27 presents the results obtained for the three situations considered for each type of CA.
In this case, bars represent the average value for each type of CA, while the whiskers represent the
standard deviation. Figure 3.27 shows that the response time for all CAs is significantly below the
selected threshold of one second, which allows to confirm that the proposed dialogue manager is able
to abide by the temporal constraints imposed in Human-Robot Interactions, without imposing time
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Figure 3.27: Measurements for each of the three times defined (Action time, reaction time, completion
time) for each of the CAs used in the subjective evaluation. The bars represent the average value,
while the whiskers represent the standard deviation.

limitations on other modules of the architecture (for example, in order to achieve the one second
response time, according to the results presented, the Expression Manager would have to perform its
task in under 0.65 seconds, which is manageable). Next, the response times measured for each of the
five interactions presented above are discussed more in depth.

Figure 3.28 shows an overview of the Action, Reaction, and Completion Time for each of the
CAs that are used in the first situation presented during the subjective evaluation. Greeting and
Instructions correspond to instances of the Robot Gives Information CA, Select App represents the
Robot Asks for Information CA used to ask the participant want he/she wants to do, App Control
is the User Gives Information CA that allows the participant to control the cognitive stimulation
session, and Question 1 represents the Switching Mode Question CCA used by the robot to ask the
first question in the exercise. As expected, the Switching Mode Question CCA presents a significantly
higher Action and Reaction Time delays. The former is due to the fact that, being a complex CA,
needs to build the state machines for each of the BCAs that compose it. The latter is because it is the
only CA used that provides feedback to the participant. In any case, all the delays measured are under
0.33 seconds, which is well below the threshold established. Is important to mention that the User
Gives Information CA does not present Reaction or Completion Time because this CA played no
role in Interaction 1, besides being activated.
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Figure 3.28: Measurements for each of the three times defined (Action time, reaction time, completion
time) for each of the CAs used in interaction 1. The bars represent the average value, while the whiskers
represent the standard deviation.

Figure 3.29: Measurements for each of the three times defined (Action time, reaction time, completion
time) for each of the CAs used in interactions 2 and 3. The bars represent the average value, while the
whiskers represent the standard deviation.

The detailed measurements taken for the CAs used in Interactions 2 and 3 are shown in Figure
3.29, respectively. Both situations can be analysed together, as in both cases the CCA attempts to
retrieve a speech-based answer three times (after the third time, the result of the interaction is sent
back to the application in Interaction 3, while in Interaction 2 the CCA switches the input mode
to the tablet). Regarding the Action Time, it is significantly higher for the first attempt than for
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any of the others in both Interaction 2 and 3. This is due to the fact that the Action Time for the
first attempt includes the time required to build and configure the CA, while for the others it only
includes the time required to sent the question to the Expression Manager. The fact that the second
highest Action Time is tied to the attempt that uses the tablet in Interaction 2 was also expected, as it
includes the delay introduced by the process of switching interfaces. For the Reaction Time, the fact
that it is higher in all the attempts that use the speech as input method could be explained due to
the higher complexity involved in processing this type of answers. However, there is no particular
explanation for the variations in Reaction Time that can be observed in Interaction 3 between the
first attempt and the other two. Similar to the results obtained for Interaction 1, the highest delay
observed in both Interactions 2 and 3 is the time required for setting up the CCA.

Figure 3.30: Measurements for each of the three times defined (Action time, reaction time, completion
time) for each of the CAs used in interactions 4 and 5. The bars represent the average value, while the
whiskers represent the standard deviation.

Like in the previous case, Interactions 4 and 5 present a similarity that can be exploited for
comparing them. In both situations, the task that the robot was performing had to be interrupted to
manage a CA with a higher priority. The results are shown in Figure 3.30. As in all of the previous
interactions, the highest delay is the Action Time, in this case the one related to the CA with
high priority. This was expected, as the Action Time includes the time required for cancelling the
CA with lower priority. Overall, the detailed evaluation of all the interactions presented in the
subjective evaluation seems to confirm the idea that the proposed CAs are able to work under the
time constraints that have been defined for a natural Human-Robot Interaction.
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3.6.2.3 Interaction statistics

The last evaluation performed is an overall study of how the interactions between the robot and
the participants in the trials were conducted, analysing the appearance of problems that triggered
the intervention of any of the mechanisms integrated in the CAs, and what percentage of these
interventions where successful. As part of the experiments conducted, all interactions between the
participants and the robot were recorded. This analysis was performed over four of these trials, all
conducted by different participants, and in different days. The overall duration of all interactions
reviewed is 71 minutes, combining the results from all participants. In this time, 354 CAs were
performed, including complex CAs. This amount of CAs includes only CAs where the robot has
the initiative, as the User Gives Information CA cannot be perceived in the videos unless the user
makes use of them, which did not happened in the interactions analysed. In any case, this is not a
big drawback of the study, as the CAs for user-initiated interactions that were used in these trials
tend to be the most robust, due to the fact that they generally use the robot’s touch sensors to
retrieve information. In the videos reviewed, only 41 out of the 354 CAs used faced any complication
and had to resort to any of the built-in recovery mechanisms. This means that an 88.42% of the
interactions were conducted without any complication by means of the HRI architecture presented
in this thesis. A summary of this information is presented in Figure 3.31.

Figure 3.31: Summary of the interactions reviewed.

During the 41 interactions that faced any communicative problem, CAs had to activate one or
more recovery mechanisms a total of 65 times. This means that some of the CAs had to face more
than one situation where the interaction was interrupted by one or other issue. Out of these 65
situations handled by the CAs, 29 of them occurred during (and due to the use of) speech-based
interactions. This represents a 44.62% of all uses of recovery strategies. Usually, voice-related
communication problems involve the ASR failing to provide an accurate recognition of the
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participant’s speech, either due to noise in the environment, unclear voice, or problems with the
robot’s microphone. Specifically, in 17 of these 29 speech-related problems, the ASR was not able to
recognize any speech, while in the other 12 a recognition was generated, but with a confidence level
below the threshold required by the CAs. The second most common situation that arose during
the interactions evaluated, accounting for 19 out of the 65 situations handled (29.23% of the total),
involved the user not providing an answer in time. This includes interactions where the participant
did not know what to answer (inferred from the conversation between the participant and the
personnel present during the trials), took too long to answer, or the microphone failed to record
the participant’s voice. The remaining 17 times (26.15% of the total) the CAs had to correct the
interaction where due to the participant failing to answer one of the questions asked by the robot
correctly. This can be handled by inviting the person to submit a new answer (if he/she has any
attempt left), or by cheering him/her up (if there are no more attempts left). Figure 3.32 shows a
summary of all the situations handled by the built-in recovery mechanisms integrated in the CAs.

Figure 3.32: Summary of the unexpected situations that had to be managed by the CAs.

The results presented above show that the proposed approach to dialogue management is not
only able to manage the majority of dialogue actions in the trials without encountering difficulties,
but was also able to manage appropriately those interactions where unexpected problems arose in a
way that led to no situations where the communication between the robot and the participant was
broken beyond repair. This suggests that the recovery mechanisms that have been integrated in the
CAs are able to handle the most common causes of communication failure, although this does not
ensure that no more strategies will have to be developed in the future.
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3.7 Conclusions

Dialogue Systems are software modules that are used to communicate with humans in an
understandable way. This implies using a communication system based on symbols that have an
agreed upon meaning (for example, spoken or written language, signs, etc..). Dialogue Systems have
to manage a variety of subtasks related with interactions, including managing inputs perceived
from the environment, processing them in order to extract the relevant information, or form the
communicative actions that the robot will perform during the interactions. The central task that has
to be handled by these systems is the control of the interaction’s flow, using communicative actions
and the perceived inputs to advance the conversation appropriately. This task is usually going to be
handled by a core module: the Dialogue Manager. In the work presented in this chapter, the role of
the dialogue management is performed by the HRI Manager.

While the proposed system has proven to be useful under real conditions, with the robot
interacting with real users (not only developers), the current state is not considered a final version, but
instead a stepping stone over which new modelling and management techniques can be integrated
and tested, in order to create the best possible experience for the users, and the simplest possible
development process for roboticists.

3.7.1 Contributions and achievements

The main goal of this part of the thesis is twofold. First, a dialogue model for Human-Robot
Interaction that is based on atomic interaction units has been proposed. These pieces have been
named Communicative Acts, or CAs. They model small, self-contained dialogues based on two
dimensions: intention and initiative. The former represents the communicative goal that has to
be achieved with the CA, while the latter represents which speaker is the one imposing his/her
goals during the dialogue. In an attempt to make the system highly modular and cover any possible
situation that each of the robot’s apps might need to handle, the possible communicative goals that
can be achieved have been generalized to the maximum degree possible: either the speaker with the
initiative tries to convey information to the other peer, or tries to retrieve information from him/her.
Any other goal normally identified in interactions can be considered as a particular case of one of
these two generic intentions. For example, encourage, warn, explain, or greet could be considered
as communicative goals on their own, but all of them involve conveying certain information to
the other peer, with the specific objective being defined by the type of information. Regarding the
initiative dimension, only two possibilities were considered: either the robot has the initiative or the
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user does. This is because the dialogue model was developed for robotic platforms designed with
strictly one-to-one interactions in mind.

The second major contribution presented in this chapter is the implementation of the HRI
Manager, the module that processes the requests for interaction sent by the applications and
creates the corresponding dialogues as a parametrized combination of communicative acts. It also
provides a priority-based conflict management strategy that allows applications to request CAs in an
asynchronous way without having to worry about what other applications are doing. Under the
proposed implementation, CAs are modelled using structures similar to state machines, and can be
loaded and configured to suit the goals of the applications that request them.

The proposed dialogue management structure divides the control of the interactions in two
levels: the CAs take care of the tasks that are interaction-specific, while the applications control
every aspect that requires task-related information. On top of that, the CAs also integrate a series of
mechanisms to control unexpected situations that might arise during a conversation. This includes
input perception errors, or user disengagement in the middle of an interaction. This solution has
the advantage of giving developers complete freedom to design interactions as better suit their
applications, without having to manually design those aspects that are common to all dialogues. The
use of generic Communicative Acts that can be parametrized simplifies the development of new
dialogues, as the request of all CAs is done through a standardised template that can be easily filled to
achieve different goals.

The CAs developed not only can be combined to form complex dialogues, but also can be nested
into what has been called Complex Communicative Acts. This results in modular interactions
where any section of a dialogue can be transformed into a new block that will be used in the future
to build interactions. The combination of modularity and parametrisability results in a dialogue
manager that takes part of the load of developing new interactions away from the developers, without
enforcing limitations on how to structure the dialogues, as long as the structure selected can be
modelled as a combination of CAs.

Several tests have been conducted to evaluate if the proposed approach is able to perform under
the constraints that human communication imposes. The overall integration of the HRI Manager
has been demonstrated through a case of use based on real trials conducted using Mini in a daycare
centre, where the robot conducted a cognitive stimulation session with the participants. Some key
situations were extracted from these trials to provide an overall example of all the possibilities that
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the CAs provide. Also, the results obtained show that the CAs’ response time allows the robot to
adhere to the rhythm of human interactions, without imposing strict time limitations to the rest of
the modules in the architecture. Also, along with the case of use and the temporal analysis, statistics
about the interactions were used as an objective measure of the system’s performance. It shows that
the majority of the interactions were conducted without any problem, and the few problems that
appeared were successfully handled by the recovery mechanisms integrated in the CAs.

3.7.2 Achievement of the proposed goals

In Section 3.1.1, the goals that this chapter of the dissertation aspired to achieve were presented. Two
main objectives were devised, which in turn were divided into a series of subgoals that would lead to
the achievement of the principal goals. This section describes at which degree each of these subgoals
have been achieved:

• The first subobjective stated that the dialogue model developed had to allow the use of
multimodal communication, in a way that allowed to create any combination of input
and output communication channels. This goal has been successfully achieved, through
the configuration of the proposed Communicative Acts. The template used to request the
activation of CAs allows to specify both the information that will be conveyed to the user, as
well as the input channels that can be used to communicate with the robot in the context of
the interaction being described by the CA. The applications can define the message that will
be conveyed through each different channel individually, or request one of the multimodal
expressions that are stored in the gesture library of the robot. Regarding input processing, CAs
that have the goal of retrieving information from the user can specify which input channel to
use. CAs can force users to communicate through a specific channel, request a message that
comes through multiple channels at once, or give the user the freedom to select which channel
to use (from a list of options included in the CA’s activation request).

• The second subobjective sought to achieve a modular interaction where complex dialogue
structures are created as a combination of more basic units. This goal was achieved with the
creation of the Communicative Acts, and then the result was reinforced with the development
of Complex and Frequent CAs. Under the proposed dialogue model, applications can create
interactions as a sequence of BCAs, each of them with a specific communicative objective.
The transition between BCAs is defined in the application, following whichever paradigm
the developer considered most appropriate. Also, if some dialogue structures are common
inside a particular domain, developers can choose to either model them as a Complex CA or as
a Frequent CA. Complex CAs are more complex to craft, but have the advantage of allowing
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to combine CAs (basic or even other CCAs) with other SMACH-based states that provide
extra functionalities. Frequent CAs, on the other hand, are simply a way for defining a small
dialogue as a combination of CAs by specifying the configuration of each individual CA, and
the transitions between them. They are easier to code, but only provide the functionalities
included in the sub-CAs that compose them.

• The third subobjective defined the temporal requisites that the dialogues generated using the
HRI Manager and the CAs. In this case, it was a requisite that the dialogues would follow the
same temporal constraints that affect human-human interactions. In Section 3.6.2.2, it was
defended that the robot should be able to perform any given action in under 1 second, for an
interaction to be considered natural (although other works propose different thresholds, like
the one extracted from the “Two second” rule). The experiments conducted for evaluating the
performance of the HRI Manager and the CAs showed that, under the worst case scenario
observed in a real situation, the response time of the proposed system was around 0.34 seconds,
which is well below the 1 second threshold considered. Based on these results, this goal can be
defined as successful.

• The fourth subgoal is connected to the management of communication problems that
arise due to perception errors. The goal aimed at developing strategies that ensure that the
communication does not break due to these errors, and that the system can manage them
correctly. This goal was achieved through the implementation of a safety measure added to all
BCAs that try to obtain information from the user. This strategy allows CAs to respond to
perception errors or to input information that has been captured with a low confidence level.
If no input is perceived, the CA can inform the user of the problem, and then ask him/her to
repeat what he/she said or did. If is a confidence issue, the robot will inform the user about the
input received. If the same low confidence input keeps being received, the CA can decide to
accept it. In any case, if communication proves to be impossible, the CA notifies the application
of the failure and ends its execution. The robustness of the proposed dialogue management
approach against input recognition errors has been increased with the development of two
CCAs that implement more proactive strategies to solve this issue. The first one can ask the
user for an explicit confirmation if a low confidence input is received, instead of simply asking
him/her to repeat it. The second one allows to define multiple channels for retrieving the
input from the user, and switch between them depending on their success to obtain this
information. Also, it has to be mentioned that all CAs have the possibility of giving the user the
possibility to provide inputs through multiple modes, which could also be used to counteract
possible environmental effects that affect a particular input interface (this is not considered
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as an strategy for handling communication errors because it puts the responsibility on the
application requesting the CA).

• The last subobjective seeks to shield the interactions from unexpected situations that are directly
caused by the other peer. The situations considered are two: (i) the user forces a change in the
initiative of the dialogue; and (ii) the user disengages and leaves mid-dialogue (or just stops
answering). The first situation was solved with the combination of multiple elements. In first
place, the initiative was considered as one of the fundamental dimensions in communication,
and CAs have been developed to manage interactions where either the robot or the user have
the initiative. In second place, the HRI Manager can keep multiple CAs active at once, and
indefinitely. A priority management system ensures that there are no conflicts between the
active CAs (for example, two CAs that try to use the same interfaces). With this in mind,
the HRI Manager allows applications to take the initiative in the dialogue by requesting the
activation of CAs for robot-led interactions, and activate multiple user-led CAs for managing
potential changes in initiative. Regarding the loss of the other peer during interactions, all
CAs have been endowed with watchdog timers that control the amount of time that have
passed without receiving a response from the user. If the timer is set off, the CA will at first
try to encourage the user to answer. If this fails, the CA will notify the application about the
communication failure and ends its execution.

3.7.3 Limitations of the system and future lines of work

After analysing the goals defined for this chapter of the thesis, it can be concluded that the proposed
approach fulfils all the needs identified for a dialogue manager that will have to be installed in a social
robot. However, there are several aspects that will be addressed by future works:

• In the current implementation of the HRI System presented in Chapter 2, interactions are
divided in two levels, where the developers of applications have to design the flow of interactions
as a combination of CAs and CCAs. The advantages of this approach have been described in
several points of this dissertation. However, developing a method for creating this combination
of CAs automatically (while still allowing for a manual combination if desired) could improve
the flexibility of the proposed approach to dialogue management. This method would receive
the high-level communicative goal that has to be achieved (for example, greet the user), and
executes as many CAs as required to achieve this goal. The applications would still have to
provide all the task-related information required for achieving this goal.
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• The CAs are configured with the channels that can be used to receive information from the
user. Although developers have the possibility of specifying multiple interfaces to increase the
options that users have, only one CA can use a particular interface (in the case of the voice,
multiple CAs can expect this type of information if they use different grammars). This limits
the amount of CAs that can be active at the same time, as for example only one CA that uses
touch sensors, or a specific grammar for the ASR can be used. Future works should aim at
improving the analysis of input information, in order to optimize how this information is
passed to the CAs. An extra advantage of this improved analysis is that specifying the interface/s
that has to be used to retrieve information would be no longer necessary, and the users would
only be limited by the robot’s perception capabilities. For example, for a yes/no question, the
user could answer verbally, but also select the option in a menu, or even just give a thumbs up
or a head shake, and the CA would be able to understand all these actions as responses to the
same question.

• Besides forcing developers to specify the communication channels that can be used, there
are other limitations regarding the use of input interfaces. For example, for communicating
verbally with users, the CAs rely exclusively on a grammar-based ASR for recognizing the
user’s speech. This implies that the CAs will only be able to understand those utterances that
have been taken into account during the creation of the grammars. This limits the options
that the user has to respond to the robot, as the grammars might not account for synonyms,
or for speech patterns that are different than those from the developers (for example, slang
specific to certain cities or areas). Changing to an open ASR and adding a Natural Language
Processing unit that can be used to extract all the relevant information from the speech that
the CA might need could increment the versatility of the system and reduce the workload for
application developers, removing the need for creating new grammars. These improvements
might not fall under the HRI Manager responsibilities, but instead have to be implemented in
the robot’s perception architecture, while the HRI Manager would be in charge of supplying
the task-related information that the input modules might require.

• Both Mini and Gero (the robotic platforms in which the proposed dialogue management
architecture has been integrated) have been designed with one-to-one interactions in mind.
Although the CAs and the HRI Manager have been developed with the idea of being generic
tools that can be integrated in any platform, the truth is that their design has focused on this
particular type of interactions, from the possible values for the initiative dimension considered
(only two: robot or user), to the strategy developed for handling changes in initiative (having
user-specific CAs active to manage possible situations where the user wants to take control).
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An analysis of the requirements that multiparty interactions have should be conducted in order
to evaluate if the current functionalities are enough to handle this type of communication, if
new CAs are required, or if any of the functionalities implemented needs to be expanded.

• In line with the previous point, there are some limitations that the proposed approach has
regarding the management of user-initiated dialogues. The current version of the system relies
to a high degree on the applications for this. At any given time, the applications decide in
which situations the user can take the initiative and activate user-oriented CAs that have
to be constantly running to manage those situations. This means that, in order to allow
the user to take the initiative in order to direct the flow of the interaction towards his/her
own goals, particular user’s initiative-oriented CAs have to be active. For example, while the
participants in the case of use presented in Section 3.6 can stop the interaction using the
User Gives Information CA that is running alongside the CAs for managing the cognitive
stimulation exercises, they cannot directly request the robot to switch to a new application,
for example. Thus, it would be interesting to expand the capabilities of the HRI Manager to
react to user inputs that do not belong to any active CA. A possibility would be the addition
of a specific module for controlling these situations. For example, a chatbot could be used to
generate appropriate responses to user utterances that do not belong to any CA.

• The division of responsibilities regarding the creation of dialogues that has been implemented
under the proposed approach means that every new application that is added to the robot
has to implement an algorithm for managing the flow of any possible interaction that the
application might need. If the goal is to achieve dynamic conversations that are flexible and
feel natural, the design process can have a high complexity. On the other hand, the dialogue
management approaches that are easier to implement usually result in rigid interactions that
might end up feeling repetitive and mechanical. The HRI Manager provides the Frequent CAs
as a method for creating short, basic dialogues following a state-based approach, where each
CA represents one of the states in the dialogue. Future research should aim at extending this
functionality with the addition of other dialogue management paradigms that allow to create
more complex interactions without increasing the complexity of creating new dialogues.

• The modelling of the interactions HRI Manager has been designed to ease the development of
human-robot interactions, removing from the design process the common functionalities that
should be added to every dialogue. Thus, future tests should try to assess the usability of the
CAs from the point of view of the developers. These tests should measure the complexity of
creating a dialogue as a combination of CAs, or the learning curve required to use the proposed
system or to create new CAs, for example.





CHAPTER 4 4

Designing the expressiveness of a

social robot

4.1 Introduction

The design space of a system can be understood as the factors that can be controlled by the designers
in order to alter the appearance and behaviour of the system. When focusing on socially interactive
robots, this design space involves three elements [102]: (i) contextual factors, (ii) embodiment design,
(iii) and behavioural design. Regarding the context of the interaction, two core factors have to be
considered: task and social role. The task is the factor that is going to drive the interactions with the
robot. Communication with the social robot will be oriented to fulfilling this task. On the other
hand, the social role indicates the role that the robot will play in the interaction. According to [102],
the response that will be elicited on humans is going to be different if the robot plays the role of a
superior, a subordinate, or a peer.

Second, embodiment is a characteristic that presents a high variability among designs, due to the
fact of having multiple features involved. The review presented by Deng et al. [102] focused on two
specific dimensions: design metaphor and level of abstraction. The design metaphor indicates the
inspiration of the robot’s design. For example, the embodiment of the robot can be based on the
human body, or take inspiration from a particular animal. The level of abstraction indicates how
similar is the embodiment to the design metaphor. This will have an effect on the expectations that
the robot will create on people.

111
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The last dimension fo the design space considered by Deng et al. is behaviour design. In regards
to the expressiveness aspect of robotics, this involves designing the expressions that the robot will
perform. In this chapter, the terms expression and gesture are used indistinctively to describe a
combination of multimodal actions with a specific communicative goal. For example, a greeting
expression could be represented by the combination of arm motion resulting in the waving of the
hand and a greeting utterance, like “Hello user, nice to see you”. This chapter will focus on this feature,
as both the contextual factors and the embodiment are already determined by the robotic platforms
used in this thesis.

4.1.1 Modelling the expressiveness of a social robot

Designing the expressiveness capabilities of a social robot presents a series of challenges that have to
be overcome. One of the first things that has to be considered is the communication channels that
will be used during interactions. Traditionally, research on communication has focused on the verbal
component of expressiveness. As stated in previous chapters, speech is the main communication
channel used by humans in day-to-day situations, due to the ability to describe any mental concept in
a way that is understandable without the need for a common ground knowledge between speakers.
However, multimodality has been gaining more attention in recent years, as it mimics human
communication better than relying exclusively on verbal interactions. [103]. The ability to properly
combine modes of interaction during dialogues increases the communicative efficiency of the
speaker and adds robustness to the dialogue. Non-verbal communication plays an important role
in communication, accounting for 55% of all the information conveyed in a message [104]. The
remaining 45% is attributed to speech (7% for words, and 38% for vocal aspects). Phutela [105]
defended that body language contributed in the same percentage to the impression that the speaker
creates on others.

There have been multiple researches aimed at evaluating the importance that non-verbal
communication has. A large part of these works have focused on specific situations and environments,
although some authors have tried to give a general vision. For example, Zeki [106] studied the
importance that non-verbal communication has on a college classroom environment. The results
of this study show that the use of non-verbal cues can improve the student’s motivation and
concentration, as well as help the teacher to attract and keep attention. Wang [107] studied the
effect that non-verbal communication has on interpersonal communication. Four elements were
considered in this work: body behaviour, both through motion and posture, and also through
appearances; the use of space and interpersonal distance in interactions; silence as a communicative
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tool; and signs and symbols. Wang defends that the study of nonverbal communication can lead to
an improvement on how we use non-verbal behaviours, thus leading to a more effective interpersonal
communication. In 1986, Sabatelli and Rubin [108] presented the results of a study that suggested
that people who use more spontaneous non-verbal communication are perceived as being more
interpersonally attractive than those who display limited non-verbal expressiveness. In their study,
the non-verbal behaviours considered were those that are displayed intentionally. Earlier studies,
like those presented by Strong et al. [109] or Bayes [110], had already suggested a relation between
non-verbal expressiveness and interpersonal attractiveness. Thus, evidence points towards the
importance of developing embodied social robots that are able to use multimodal expressions during
interactions.

The next step during the development of a social robot is deciding how these multimodal
expressions will be generated. Although different approaches can be followed, in this dissertation
two main groups of systems have been considered: those that rely on predefined expressions
[51, 111], or those that learn how to generate expressions from scratch [112, 113]. While handcrafting
all the expressions ensures that they suit perfectly the situation they have been designed for, it
also constraints the possible responses that the system can execute. On the other hand, although
the gestures obtained through automatic generation might not have the quality of handcrafted
expressions, it makes it easier to extend the system to new domains, and also increases the variability
of the robot’s responses. Choosing between one approach or the other depends on the tasks that
the robot in which the system is going to be integrated will have to perform. Manual design of
expressions is a viable solution for robots that will be constrained to specific domains (for example, a
shopkeeper robot), while an expressiveness system that automatically generates behaviours might be
the most suited for general purposed robots. But in either case, individually selecting the appropriate
actions (commands sent through one of the communication channels) that will be conveyed through
each channel is not enough to guarantee a human-like expressiveness.

Multimodal expressions should not be understood as a collection of actions conveyed through
different communicative channels that are performed at the same time, but as a single unit where
these actions are connected to each other. This means that roboticists not only have to select the
individual actions, but also design an appropriate strategy for combine them. Synchronization
can be performed based exclusively on temporal information, which means that each action will
have attached a start time, and that multimodal synchronization is achieved by properly adjusting
these starting times. While this approach might work perfectly in virtual environments, in physical
platforms is harder to implement, as different factors (for example, the inertia generated during
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motions) might cause that the duration of a given action deviates from the estimated one. A possible
solution for this problem is to connect actions from different modalities, so the beginning of an
action is conditioned on the state of a different one. The most common example of this approach is
to tie the start of gestures to specific points in the speech, so they are triggered when certain words
are uttered. The advantage of this solution is that it accounts for any deviation from the planned
execution of the expression.

4.1.2 Modulation of a robot’s expressiveness

While the steps described above can lead to an expressiveness system that could be used to
successfully complete the robot’s tasks, functional behaviours (behaviours designed for achieving
a specific goal) might not guarantee that the communication with a social robot is completely
natural (as stated in previous chapters, a natural interaction is that in which the robot abides
by the social rules of the context and meets the expectations generated on the human user).
For example, although an automated telephone assistant for scheduling an appointment can
perform all the necessary actions to complete its task successfully, it is not able to interact in
a human-like manner, as users are able to recognize that there are missing elements of communication.

According to Buck and VanLear [114], communication can be decomposed into two different
components. On one hand, symbolic communication has the goal of conveying a specific message to
the other peer. This means that, during an interaction, the communicative goals of the participants
in the interaction will be achieved thanks to this component. On the other hand, spontaneous
communication is the act of non-intentionally conveying motivational or emotional states using a
biologically shared signal system. This type of communication is non-propositional, this is, cannot
be analysed as something that is true or false, as it is a reaction of an internal state. Messages conveyed
by the peers in an interaction combine both aspects of communication. For example, if a person tells
a friend ”I just bought a new car!” while pointing at a car parked in the street, both the utterance
and the gesture are examples of symbolic communication, as they are used to transmit a particular
message. On the other hand, features like the pitch of the voice, or the speed of the motions, while
not being essential for conveying this message, can indicate that the speaker is enthusiastic about this
purchase, and thus can be used to infer his/her internal state. This indicates that robots should also
be able to use both components during interactions with humans.

In robotic systems that rely on a library of handcrafted expressions, a possible solution for
integrating symbolic and spontaneous communication could be to design multiple versions of
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each expression that the robot can use, each version with variations that convey different internal
states. But this solution might show scalability problems, as the number of expressions required
would be increased a number of times equal to all the possible states of the robot. A second solution
could be to design individual expressions for each internal state, and then merge the symbolic and
spontaneous communication. Again, this approach has its disadvantages, as fusing expressions might
not be a trivial task, and in any case this approach would display discrete states. A third approach can
solve these issues: designing an strategy for an appropriate modulation of the robot’s expressions.
Therefore, developers would design the functional behaviours, while the spontaneous aspect of
communication would be generated internally by the system, through the parametrization of
different aspects of the expression (motion speed or amplitude, for example). This last approach has
been supported by several researchers [115, 116].

Summarizing the information provided in this section, in order to design the expressiveness for a
social robot (assuming that the embodiment has already been designed), several problems have to be
overcome:

1. The definition of a model that describes the expressions of the robot. This model has to provide
a description for multimodal actions, as well as a strategy for synchronizing these actions.

2. The development of a module that can schedule and execute the expressions of the robot on
time.

3. The implementation of a strategy for conveying non-task related information, like the internal
state of the robot.

While the first two steps are directed to endow the robot with the ability to engage in
symbolic communication, the last one tries to extend these interaction abilities with the addition
of spontaneous communication. In this chapter, a state machine-based model for multimodal
expressions will be introduced, along with the Expression Manager, the module that will schedule
and execute these expressions. The proposed model includes a series of methods for modifying
the expressions of the robot in runtime, in order to adapt them to different internal states. As a
proof of concept, these techniques have been used to convey different moods and emotions during
interactions. Figure 4.1 highlights in red the part of the architecture introduced in Chapter 2 where
the work that will be presented in this chapter has been integrated.
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Figure 4.1: Diagram representing the software architecture described in Chapter 2. The work
developed in this chapter of the dissertation focuses on the module of the architecture highlighted in
red.

4.1.3 Objectives

The main goal defined in this chapter of the dissertation is to endow a social robot with the ability

to generate a human-like expressiveness. This task has been divided into two main objectives:

1. The development of a model for describing multimodal expressions to be performed

by a social robot. This model has to describe each of the actions conveyed through the different
modes of interaction involved in the gesture, as well as the relationships between them.

2. The development of an expressiveness management module that will schedule and

execute the expressions that have been designed using the proposed model. This
module will be also in charge of managing any possible problem that might arise regarding the
robot’s expressiveness (multiple expressions being requested at the same time, or two or more
gestures requiring the use of the same interface, for example).

Because these are goals with a high complexity, they have been decoupled in a series of subgoals
that are easier to achieve, each of them related to a different facet of the global goals:

1. Expressions have to be easy to design, and creating them should not require specialized
knowledge. The objective is that people with other backgrounds that might result helpful (for
example, people with an artistic background) can participate in the design process without
needing any sort of technical background.
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2. The proposed system has to be able to modulate expressions, so they can be used to convey
different internal states of the robot without having to design multiple versions of each gesture.

3. In line with the previous subgoal, users interacting with the robot should be able to distinguish
the different internal states conveyed by the robot. An appropriate modulation strategy should
lead to an improvement of the user’s perception of the robot.

4. Expressions have to incorporate any combination of the interaction modes provided by the
robotic platform. The expressiveness system will ensure that no conflicts arise regarding the
use of the different output channels.

5. The system has to be able to manage the execution of multiple expressions at the same time.
Appropriate strategies will be designed to manage incompatibilities between gestures. The
idea is to combine expressions that are used for symbolic communication (conveying a specific
message) with other types of gestures (for example, expressions oriented to increase the animacy
of the robot).

6. Besides including basic actions (single commands sent to the output interfaces), the proposed
system has to allow adding complex skills to the expressions. An example would be coupling
the speech of the robot with a face tracking system. Expressions will control the activation and
deactivation of these complex skills, which can be designed externally.

7. The performance of the system has to allow the robot to perform expressions in a time such that
feels natural to the user interacting with the robot. This means that the maximum delay in the
execution of expressions abides by the temporal constraints that affect human communication.

4.1.4 Overview of the chapter

This chapter of the dissertation will be divided in the following sections:

• Section 4.2: This section presents a review of works were models for expressiveness for
communicative agents are described. This review will focus on systems that rely on a library of
predefined expressions. Next, three key features are defined, and a comparison of all discussed
works based on these features is conducted. Finally, this section presents the main similarities
and differences between the proposed approach and the rest of works.

• Section 4.3: Here, the theoretical foundations of human expressiveness are presented, dividing it
into verbal and non-verbal communication. For the non-verbal aspects of human expressiveness,
this section focuses on those communication modes that can be used in our robots. The last
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part of the section discuses the basis of affect state expression in humans, focussing on the
different communicative interfaces that the robots’ used in this dissertation are endowed with.

• Section 4.4: In this section, the expressiveness model developed in this thesis is first presented
from a theoretical point of view. The key elements and features of the expressiveness model
will also be introduced.

• Section 4.5: Here, this manuscript introduces the Expression Manager, the expressiveness
management module that has been developed. An overview of all the features that it provides
is presented from a technical point of view, along with the implementation of the model that
describes the robot’s expressions, and the tools used to create new gestures.

• Section 4.6: This section introduces the experiments conducted in order to evaluate the
proposed expressiveness architecture. First, the experimental setups are presented, followed for a
description of the tools used in the study (in this case, the description of the questionnaires that
participants had to complete during the experiment), and a presentation of the demographic
data of the participants (age, gender, education, and familiarity with technology/robotics).
The experimental results are analysed and the overall performance of the proposed approach is
discussed.

• Section 4.7: This last section contains the conclusions extracted from the development of
an expression model for social robots. The goals that are presented in this introduction are
evaluated in order to assess if they have been achieved, and the contributions of the work that
has been described in this chapter are highlighted.

4.2 State of the Art

In this section, a review of relevant works in the field of expressiveness design is conducted, in order
to highlight the similarities and differences between the solution presented in this dissertation and the
current state of the art. This review focuses on works that are applied in the field of robotics, although
it also includes a few researches that design expressiveness for virtual characters and environments, as
in most cases, those systems could be adapted to be integrated in a real robotic platform.

As a general taxonomy for how to classify expressiveness design approaches, this dissertation
considers that the main differential factor among works is how the gestures that the agent can
perform are generated. In general, two categories were considered: (i) approaches that rely on a
handcrafted library of expressions, and (ii) approaches that generate the different modalities for
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the expression on runtime. The former have the advantage of allowing the developers to tailor the
expressions of the robot so they convey the exact message and internal state that the situation requires.
On the other hand, they can lack variability, as the possible actions of the robot are limited to a finite
number of expressions. Automatic generation of expressions allows for a bigger variability, although
the generated gestures might be perceived as being more generic.

In this dissertation, the expressiveness architecture developed follows the first paradigm presented.
The reason behind this decision is that it gives freedom to application developers to define the robot’s
expressions in as much detail as required. Because of this, the analysis of the state of the art performed
in this section will focus on expressiveness architectures that rely on libraries of predefined actions.
While works in this section use different terms to refer to the communicative actions performed by
the robot (e.g. expressions, behaviours...), in this analysis the terms expression or gesture will be used
in general, for the sake of consistency.

In 2006, Kopp et al. [117] presented the SAIBA model, a multimodal behaviour generation
framework for Embodied Conversational Agents. The goal was to develop a common specification
for multimodal generation skills that would allow researchers to combine works that involve different
aspects of multimodal behaviours. As part of the SAIBA framework, two representation languages
were proposed: the Behavior Markup Language, or BML and the Function Markup Language, or
FML, both application and domain-independent.

The proposed framework divides the generation of multimodal output in three stages: (i) intent
planning, (ii) behaviour planning, and (iii) behaviour realization. The stages are sequential, and
each provides feedback to the earlier stage. The framework focuses on defining the communication
between stages, while the processing performed in each stage is treated as a black box, and left to each
developer. This allows for a modular architecture where solutions proposed by different researchers
for each stage can be combined without the need for complex modifications. The interface between
the first two stages, specified with FML, describes the communicative and expressive intention
of the system, while the interface between the second and third stages defines the multimodal
behaviour that the last stage has to realize, and is specified in BML. Although the realization of this
behaviour is going to depend on the particularities of the output modules of the system (for example,
the realization engine can generate movements from scratch, or rely on a library of predefined
animations), the BML is independent from the actual implementation of the behaviour realization
stage, and instead provide a general description of the behaviour, from the actions involved and their
temporal synchronisation to a detailed description of said behaviour’s form. In this language, each
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behaviour has an unique identifier that can be used to reference it. This can be used to synchronize
two behaviours by specifying an identifier and a synchronization point, i.e. the points of alignment
between them.

Along the years, developers have proposed expressiveness approaches that follow the SAIBA
model. Anh et al. [118] presented a model for generating communicative gestures paired with speech
for humanoid robots. This model was developed as an extension of the GRETA framework [119], a
platform for virtual agents that follows the SAIBA framework [117]. It is divided in three modules:
the intent planner, the behaviour planner, and the behaviour realizer. In this work, the authors have
developed a new behaviour realizer for the GRETA system.

The system presented in this work was developed to control both virtual agents and physical
robots. For this, two different lexicons were developed, one for each type of platform. They contain
a library of symbolic gestures that describe the stroke phase for each gesture (the part of the
gesture conveying meaning), represented as a sequence of key poses. The rest of the animation
is then generated automatically by the system. A year later, van Welbergen et al. [120] presented
the AsapRealizer, a behaviour realizer for achieving fluent incremental behaviour generation. It
combines incremental multimodal behaviour generation with interactional coordination. This
realizer allows for dynamically adapting behaviours already in execution without modifying the
original specification constraints. The AsapRealizer module acts as the behaviour realizer under the
SAIBA framework [117].

An execution engine runs the generated plan, while continuously apply modifications to the
shape or the timing of the actions in the plan representation. These changes can be caused by events
predicted by a set of anticipators and exert top-down plan or behaviour modifications. In this system,
the generation of BML blocks and their individual behaviours is managed by two state machines:
a behaviour state machine and a BML block state machine. Behaviours can be interrupted at any
time. Also, in order to co-articulate behaviours, each of them has a priority that will be updated
depending on their state. The engine uses this priority to decide which behaviour should take control
over a given output interface. In 2016, Ribeiro et al. [121] presented the SERA (Socially Expressive
Robotics Architecture) ecosystem, a model developed for combining an artificial intelligence agent
with a robotic embodiment in Human-Robot Interaction tasks.The SERA ecosystem is divided in
three levels (following the SAIBA framework [117]): the Decision Making module, the Behaviour
Manager, and a series of output modules that represent the behaviour realization level in SAIBA.
These include a text-to-speech engine, an animation engine called Nutty Tracks, and a multimedia
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application. In this approach, multimodal actions are stored in XML files, containing speech
information and markups for multimodal actions. Ribeiro et al. extend the SAIBA framework with
the addition of the user’s perception.

Animation programs in Nutty Tracks follow a box-flow type of interface, in which a set of
animation controllers are connected sequentially to compose animations, either procedurally or
based on a set of predefined animations. This sequence is then separated into a hierarchy of layers
that can be activated or deactivated in runtime. The animation controllers can be programmed
separately and then added to the animation engine as plug-ins. The body structure of the robot and
the configuration and constraints of the different joints are stored in a robot-specific plug-in, which
will be used to execute the animation frames in the robot.

While there is a fair amount of developers that decided to follow the SAIBA model for developing
their expressiveness systems, other authors decided to follow other paths. For example, Meena et al.
[122] proposed in 2012 a method for integrating speech and gestures (hand and head movements,
and gaze following) to enhance interactions between humans and robots. The interaction system is
based on WikiTalk, a speech-based dialogue system that can use Wikipedia as a knowledge database.
The non-verbal gestures designed are aimed at marking the end of sentences and paragraphs,
highlighting potential new conversation topics, or backchannelling.

In the version presented in [122], the system synchronizes speech and gestures by computing
the average number of words that should be uttered before triggering the gesture, so the key pose
coincides with the content word. The duration parameter of a gesture is then obtained based on
the duration of the gesture’s template and the length of the utterance. Punctuation signs and the
structural details of the Wikipedia article being discussed are used to time the turn-management
gestures. Trajectories for the gestures are the result of the interpolation of a series of poses. A year
later, Salem et al. [123] presented the first closed-loop approach for generating speech and gestures
for a humanoid robot. Modality synchronization is achieved by a scheduler module based on two
features: a experimentally fitted forward model and a feedback-based adaptation mechanism. The
former predicts the time required for gesture preparation, while the latter serves as an adjustment
mechanism for cross-modal adaptation. In this approach, multimodal utterances are specified using
an XML-based markup language, where only the stroke of the gestures is described in these utterances.

In 2015, Alonso et al. [51] proposed a multimodal fission module that receives a series of actions
selected by the robot’s dialogue manager and relies them to the output interfaces. This part of the
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dialogue system is also in charge of the temporal synchronization of all the actions. The actions
sent to the fission mode can be unimodal (an utterance, for example), or a multimodal expression.
These are represented as an ordered sequence of unimodal actions stored in a XML file. Each action
indicates the output interface, the configuration of the action (for example, the text that has to be sent
to the TTS, or the final position of a joint), and a starting point, relative to the start of the expression.
More recently, in 2017, Hemminahaus et al. [124] proposed a method for generating multimodal
behaviours for assistive robots. Reinforcement learning is used to map high-level behaviours to
low-level actions that have to be executed by the robot. The proposed system selects the optimal
high-level behaviour based on the state of the interaction and the user, and then selects the appropriate
actions for completing this behaviour. The work of the authors in [124] focuses on studying if the
proposed method is able to guide the attention of the user towards a specific object in the environment.

Once the current affective and attentive state of the user has been determined, the system selects
the more appropriate high-level function for accomplishing the intended communicative goal. This
behaviour is then mapped into a series of primitives that, in turn, select and synchronize the actions
to perform. They can be arranged into nested or sequential structures. The control layer of the robot
executes the generated structures. Instead of generating robot-specific commands, the system can
also describe the required instructions using BML, which will then be interpreted and executed by a
behaviour realization tool. Q-Learning is used to improve the selection of these low level actions,
to adapt the expressiveness of the robot to its experiences in the interaction. A year later, Ravenet
et al. [125] presented a model for automatic production of communicative gestures for embodied
virtual agents. The proposed approach is based on the concept of Image Schemes, recurring reasoning
patterns used to map conceptual representations that ground abstract and concrete concepts between
different domains. These image schemes will be used as a common ground between the verbal
and non-verbal modalities. The system receives the speech that the agent has to utter, infers the
image schemes from the surface text of the utterance, and then generates an appropriate set of gestures.

The first element in the architecture is the Image Schema extractor, a module that analyses the
speech that has been generated for the agent, identifies the underlying schemes and aligns them
with the utterance. The individual words in the utterance go through a disambiguation process
first, and then each word is assigned to a synonym set (set of words with the same meaning). Then,
the hypernymic relations of the set are used to find a synonym for each word that is connected
to one of the image schemes proposed by the authors. Next, the aligned set of schemes is sent to
the gesture modeller. For each schema, the module selects the proper gesture invariant (features
used for conveying meaning) and builds the gesture as a combination of a beginning and end
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phases parametrized to reflect this invariant. Finally, once the set of gestures have been defined
and parametrized, the last module in the architecture combines them with either a hold or an
intermediate pose to produce the final animation. One of the gestures is selected to be the main one,
and the others are modified so they present the same features, except for those that have to remain
invariant. Also on 2018, Balit et al. [126] presented the PEAR framework for prototyping expressive
animated robots. This framework is based on Blender, an open-source 3D creation software. The
system maps the state of an object animated using Blender to the actuators of a robot (in particular,
the motors and a screen used to display facial expressions, icons, text, etc...). The architecture of the
PEAR framework is divided in two main levels: (i) the dispatcher is in charge of the communications
with Blender, and (ii) the controllers are the modules that communicate with the actuators.

The dispatcher is the main module in the proposed framework. It uses a mapping file to translate
the modifications applied to virtual objects in Blender into a real world effect over the robot (for
example, the position of a specific object could be translated into a specific motion of a motor).
Developers can modify these virtual objects by hand, thus allowing for a teleoperation of the robot,
or animate them using Blender’s animation capabilities. In 2020, Gomez et al. [111] presented their
approach to how to design the expressiveness for the Haru tabletop robot. The expressiveness
is designed using animation techniques and expertise extracted from film-making, and then is
transferred to the robot. Namely, the proposed method uses the 12 Principles of Animation [127].
Due to the morphology of the robot, the primary non-verbal communication interface is Haru’s eyes,
although the designed expressions also include body motions, sound, and LED patterns. Each mode
of communication is animated separately. After the design phase, the multimedia elements (videos
for the eyes, audio for the sound...), and the trajectory of the joints are exported from the design
suite, packaged into a routine file, and transferred to the robot in a way that both complies with the
required physical constraints and maintains the integrity of the principles and techniques of the design.

On top of proposing methods for managing the expressiveness for robotic platforms, some
authors have also focused on how this expressiveness can be used to convey the internal state of the
robot. Among the different states that could be conveyed, one of the most prominent is the affect
state. In this line, Xu et al. [115] presented in 2013 a method for endowing a robot with the ability
to express mood while performing functional behaviours (behaviours oriented to completing a
task), through the modification of the gestures’ appearance (both pose and motion). The proposed
behaviour model follows a layered approach, where the affect is used to alter pose and motion
parameters, and then these parameters change how a gesture selected by the system’s task scheduler is
performed. The appearance of these gestures is described in behaviour profiles. More recently, in
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2017, Bertacchini et al. [128] presented a robotic shopping assistant using a NAO robot. The design
of the system was focused on endowing the robot with the ability to analyse multimodal perception
data about the user’s emotional state and other related information (taste, cultural background...),
and also the ability to express its own emotional state. In this work, the developers relied on NAO’s
software environment for developing all the expressiveness capabilities of the robot. In NAO, body
motions are programmed using Choregraphe [129], a graphical interface for programming robot
behaviours in the platforms developed by SoftBank Robotics. This application provides a series of
both low and high-level actions (walk, basic postures, speech synthesis, LED control, etc...) that can
be combined into complex behaviours. New actions can be programmed in python and then added
to the library in order to add new capabilities to the robot. In the interface, the library of behaviours
is represented by blocks that can be dragged and connected one to another. The new behaviours
can then be executed on a virtual representation of the robot or on a real platform. Time control is
implemented through a timeline that allows to specify the length of each action contained in the
behaviour.

In 2018, Van de Perre et al. [130] proposed a gesture generation method for social robots. Two
modes of execution were developed inside this method: (i) the block mode allows to create gestures
that rely on a correct position of the arm, and (ii) the end-effector mode is used for gestures where
the position of the end-effector becomes the critical factor (for example, pointing expressions).
Both modes are combined in order to create deitic gestures and emotional expressions. Under this
approach, functional behaviours can be modified so they convey different affect states.

Also in 2018, Churamani et al. [131] proposed a neural model for multimodal affect recognition,
analysis and behaviour modelling. Once the mood of the robot has been correctly defined, it is
conveyed to the user through facial expressions. In the robotic platform used in [131], a LED
projection system located inside the robot’s head is used to display the different expressions, which
are defined by a set of wavelet parameters that represent the position of the eyebrows and mouth.
The system uses a Deep Deterministic Policy Gradient based actor-critic architecture to learn the
optimum policy for selecting the most appropriate wavelet parameters based on the emotional state
of the robot. A pair formed by the state of the robot and the action generated is sent to a critic
network that predicts the pair’s Q-value based on the reward received for executing that action in
that state. The reward function encourages symmetry in the facial expression. The authors also
designed emotion-specific rules based on studies conducted with users about the expression of
affect states in that particular robot. A year later, in 2019, Desai et al. [132] proposed a system for
developing expressive behaviours by editing their control parameters in a semantic space. In the
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version presented in [132], the system supports semantic design robot motions that convey one of
six possible emotions: happy, sad, angry, scared, surprised and disgusted. This framework consists
of four steps: (i) generate a dataset of expressive motions; (ii) use a crowd-powered framework for
evaluating how well these motions express a particular emotion; (iii) find the relationships between
motion parameters and the expression’s emotional perception through the use of a regression
analysis module that relies on the evaluations conducted in the previous step; (iv) finally, create new
expressions using a design tool that relies on the relationships found in the previous step.

That same year, Mier et al. [133] proposed a method for generating expressive motions for
social robots. Designers with a background in animation created a series of motion animations that
displayed different expressions with various intensities. Then, these animations are used to generate
new expressions through an interpolation process that combines them.

In this work, the expressions considered are happiness, shyness, sadness, agreement, and
disagreement, and the following combinations are allowed: happy-agree, shy-agree, shy-disagree,
and sad-disagree. Each expression has a parameter that indicates the intensity of the internal state
conveyed (for example, how happy a particular expression looks), rated on a 1 to 10 scale, and
only expressions with the same intensity value can be combined. Both the expression and the
intensity are mapped to a set of coordinates in a 2D wheel of emotion, proposed by Plutchik [134].
In 2020, Suguitan et al. [116] proposed a neural network-based method for modifying affective
robot motions. This approach tries to overcome the limitations of expressiveness approaches based
on limited sets of gestures by adapting the expressions so they can express different affect states.
In order to do this, the system uses variational autoencoders, classification networks and latent
space editing methods. The approach learns a low-dimension latent representation of the affective
motions, which is used to classify the movements by their intended emotion. Arousal and valence
variations are performed over the latent representation of the motion, in order to modify the
affect state conveyed. Finally, the new motion is reconstructed from the modified latent representation.

In order to map the low-dimension latent space into a 2D arousal-valence space, the system uses
linear regression. The first step is to map the centroids of the emotions classes in the latent space.
Next, the centroid is recalculated to reduce the effect of motion samples that belong to one class, but
can be confused with a different class. Finally, the linear regression model transforms the movements
into the arousal-valence space. To modify the expression, first the arousal-valence representations
of the data samples are ranked on a high-low scale for valence and arousal features. Then, for each
feature, an attribute vector is computed. These vectors are then used to change the arousal and
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valence of the motion. In their work, the authors also presented a graphical interface that allows
to visualize the arousal-valence representation of the motions. The different emotion classes are
highlighted using coloured dots (green for happiness, red for anger, and blue for sadness). Developers
can select a movement in the interface, and modify its valence and arousal using sliders, which will
then translate into a variation of the feature weights that are used to modify the latent representation
of the movement. Another possibility is to directly select the new emotion, which will lead the
system to update the sliders. After the latent representation of the motion has been modified, the
decoder reconstructs the gesture in the form of motion trajectories.

4.2.1 Comparison between approaches

All the works presented in this section of the manuscript were compared according to a series of
characteristics that were considered relevant for Human-Robot Interaction. First, for interactions to
feel natural to the human user, the robot should be able to blend multiple modes of interaction in
order to accomplish a specific communicative goal, taking advantage of the strengths of different
output sources. Endowing a social robot with this ability gives interactions a higher flexibility and can
help to enhance the experience of the user. The addition of new communication sources that are not
commonly used in day-to-day human-human interactions (patterns of coloured LED, or multimedia
content displayed on screens, for example) give robots more tools to convey communicative goals
or internal states in a way that is engaging for the user. Thus, having a expressiveness system that
can work with multiple sources of information and coordinate all the modalities with precision
becomes a highly desirable feature when developing a human-robot interaction architecture for
social robots. In this context, multimodality is understood as the feature that indicates the different
output channels that an approach can use to communicate a message, and how the actions for each
of the interaction modes are synchronized among them.

Second, when creating a new expressiveness management strategy, one of the first decisions that
has to be made is the format that will be used to define the expressions. This includes aspects like if
an external GUI or software will be used for the design process, or the structure that the gestures
are going to take, among others. The goal is to select a gesture format that is advanced enough to
describe complex multimodal expressions, but can be built with the minimal amount of effort and
skill required. This can help to bring into the design process people with expertise in areas like
animation, without the need for being familiar with how the interaction system is built or even
having a programming background. This idea will be referred to in this section as gesture design,
and is defined as the way new expressions can be added to the robot’s expressiveness. It analyses the



4.2 State of the Art 127

format used to represent expressions, and the possibility of using external design programs to create
new gestures.

However, even if the robot can use a large set of multimodal expressions that have been expertly
crafted, the interactions can still feel repetitive if the robot always performs the same actions in each
situation. The expressiveness of a robot should be able to reflect different internal states and adapt to
the context of the interaction, generating different expressions for conveying the same information in
a variety of situations. One of the most common examples is showing multiple emotions with the
same gesture. This feature is known in this thesis as adaptability, and describes how the expressions
in the proposed approach can be adapted to different circumstances that arise in the dialogue. This
does not focus on how a specific expression is modified to reflect a situation in the interaction, but
on how the expressiveness system as a whole can adapt to these circumstances.

The following sections will present a comparison of all the works reviewed according to the
features presented above, in order to identify the differences between them. A summary of the results
of this comparison can be seen in Table 4.1.

4.2.1.1 Multimodality

After analysing all the works presented above, it can be observed that the mode of communication
that almost all the approaches include is body motion, followed closely by speech (all but three
approaches use both motions and speech). The exception is the work of Churamani et al. [131],
which uses facial expressions through LED-based features (eyebrows an mouth). LED patterns, gaze,
facial expressions, and screens to play multimedia content are less common in the works reviewed, as
those modalities are more closely related to the design of the robotic platform. For example, the work
of Suguitan et al. [116] and Desai et al. [132] focus exclusively on body motions, while authors like
Balit et al. [126] and Gomez et al. [111] introduce the use of LED. The latter work separates itself
from the rest of the works due to the fact that the eyes, both the gaze and the motion, represent the
main communicative feature of their robotic platform. Using the same robotic platform, Mier et al.
[133] decided to ignore the other modalities and focus exclusively on motions. Finally, the work of
Alonso et al. [51] has to be highlighted here, as it was developed combining speech, LED patterns,
motions, gaze (through animations displayed on two TFT screens) and the use of a touch screen for
both displaying multimedia content and also receiving inputs from the user.
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[117]
Gestures specified in BML format.
Single actions or combined

Not mentioned
Voice, body motion, facial expression.
Tags used to indicate synchronization

[118]
Stroke poses stored in a lexicon,
gesture built through interpolation

Not mentioned Speech, gestures

[120] Multimodal behaviour described in BML
Shape and timing of expressions
adapted before and during execution

Voice, body motion, facial expression.
Tags used to indicate synchronization

[122] Poses interpolated with b-spline algorithm Not mentioned Voice, gestures

[123]
Stroke described in the utterance,
motions to and from that pose generated

Speech-gesture synchronization
corrected based on gesture’s timing

Voice, gestures

[115]
Gestures created as behaviour functions,
non-task features adapted to the robot’s state

Behaviors parametrized through
motion and pose parameters

Voice, gestures

[51]
Expressions stored in xml files as a list of actions.
Actions can be requested individually

Not mentioned
Gaze, Voice, Motions, LED,
multimedia content

[121]
Speech and multimodal action markups
stored in Skene Utterances. Animations
designed externally or generated procedurally

Not mentioned
(animations can be moduled)

Gaze, Speech, body motions,
animations

[128]
Gestures designed through Choregraph
and then combined with other modalities

Gestures adapted based on
the user’s emotion

Voice, gestures, LED

Table 4.1: Comparison among the works presented in this section. Each approach has been evaluated according to gesture design, adaptability,
and multi-modality.
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[124]
Reinforcement learning for action selection,
based on interaction goal

Reinforcement learning for
adapting action selection

Voice, gaze, gestures, facial expression

[125] Schemas into invariants into gestures Not mentioned Voice, motions

[130]
Target gestures predefined (block mode).
final position of the chain defined,
pose generated (end-effector mode)

Speed and amplitude used
to generate affective behaviours

Gestures

[131] Facial features generated based on affect Not mentioned Facial expression

[126] Designed in blender, played in the robot Not mentioned Not mentioned

[132]
Gestures designed through a interface
and adapted based on the desired emotion

Gestures desinged to convey
affect, not adaptables

Motions

[133]
Animations handcrafted for certain states,
combined through interpolation

Not mentioned Motions

[111]
Modalities designed independently externally,
packaged, and transferred to the robot

Not mentioned Body motions, LED, voice, eyes

[116]
Head motions designed through a phone
app that copies the movement of the phone

Motions can be altered to
convey different affect states

Body motions

Table 4.1: Comparison among the works presented in this section. Each approach has been evaluated according to gesture design, adaptability,
and multi-modality.
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Finally, regarding the synchronization of the different output modalities, the approaches followed
usually depend on the strategy used to design the expression. Works where the expressions are
handcrafted tend to rely on assigning time points to the different actions. The work of Alonso et
al.[51] is an example of this. Other approaches use the speech as the central element, and synchronize
the other modalities to points or words in the utterance. This can be seen in the work of Ribeiro et
al. [121], Anh et al. [118], or van Welbergen et al. [120], among others. Finally, approaches that use
external animation design software to create all the modalities of the expression can rely also on the
features of the animation software to combine the different actions. This can be seen in the work of
Gomez et al. [111].

4.2.1.2 Gesture design

This feature was the one that showed the highest variability among the reviewed works. Kopp et al.
[117] has to be highlighted here, as the authors proposed a structure for expressiveness management
systems and a format for describing expressions that became very popular in the field. For example,
the approaches proposed by Ribeiro et al. [121], Anh et al. [118], or van Welbergen et al. [120] are
compliant with the SAIBA framework defined in Kopp’s work. Overall, a big diversity on how
gestures are designed can be observed among the works presented in this section. When designing
body motions, specially if the morphology of the robot is not simple (for example, humanoid robots
with a high number of degrees of freedom), using animation software is a highly used solution.
Examples of this can be seen in the works of Balit et al. [126], Ribeiro et al. [121], or Gomez et al. [111].
The work presented by Desai et al. [132] also relies on a interface for desinging the expressions, but in
this case is custom made, specifically designed to suit their needs. Also, a very popular platform in the
field of robotics is the Nao robot, developed by SoftBank robotics, which provides a proprietary
interface to generate the behaviours of the system, the Choregraphe framework. The use of this
software can be seen in the work of Bertacchini et al. [128]. Finally, the work of Suguitan et al. [116]
proposes an unique solution for the design of motions: use a phone app to capture the motion of the
device and then transfer it to the robot.

If the comparison between approaches is focused on how the expression is structured, an
approach that can be found in multiple works is the use of markup languages to define a script that
defines when each action has to be performed. For example, in the work of Ribeiro et al. [121], they
use a xml-based structure that contains the speech of the robot and mark-ups that indicate where the
other modalities have to be executed. A similar approach was followed in the work of Salem et al.
[123], which defines multimodal utterances that indicate the point of the speech that has to be used
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to align the stroke phase of the gesture, or the work of Alonso et al. [51], which created multimodal
expressions using XML files that store a sequence of actions labelled with the time point in which
they have to be performed. Other approaches, like the ones presented by Ravenet et al. [125], Meena
et al. [122], and Anh et al. [118] maintain a library of poses, while the actual motions are synthesized
in runtime as an interpolation of the poses. Ravenet’s work defines a series of gesture invariables to
constraint this synthesis process. The approach presented by Van de Perre et al. [130] also defined a
library of poses in one of the two proposed modes of execution, while in the other the trajectory for
all joints is generated based on the position of the end-effector. The system presented by Mier et al.
[133] introduces a library of animations that represent different internal states of the robot. New
animations that convey multiple states at once can be generated as an interpolation of two examples
from this dataset. Finally, three works propose a more unique approach to design their expressions.
Xu et al. [115] handcrafted the expressions in behaviour profiles as behaviour functions, which are
task-specific, and non-task behaviour parameters. Lastly, the work presented by Hemminahaus et al.
[124] introduced the use of reinforcement learning to convert a communicative goal into a sequence
of low-level multimodal actions.

4.2.1.3 Adaptability

The approaches presented by van Welbergen et al. [120] and Salem et al. [123] propose techniques
for adapting the non-verbal side of the expression to circumstances that hinder the predefined
synchronization of the multimodal behaviour. While the former proposes a solution where
behaviours are generated incrementally, which allows the system to adapt the timing and shape of the
gesture to changing circumstances in the interaction, the latter focuses only on the timing, and can
introduce pauses on the speech to correct the synchronization between speech and motion if the
gesture’s execution deviates from the simulation computed beforehand (if the motion trajectories
take longer or shorter to complete the preparatory stage of the gesture). Here is also interesting to
mention the work of Hemminahaus et al. [124], which can adapt which actions are performed by
the robot to achieve its goal using reinforcement learning. In this case, while the actions themselves
are not modified, the combination of actions is improved during the interaction.

As stated before, one of the more common applications of gesture modulation techniques is
the display of affect states. An example of this can be seen in the work of Xu et al. [115], where the
task-specific aspects of the expressions are defined in behaviour profiles, while a set of behaviour
parameters can be used to modulate the expressions without affecting the overall meaning of the
gesture. This approach can be used for conveying different states of the robot (in their work, the
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authors tested it for mood expression). A similar approach was proposed by Van de Perre et al.
[130], where the body motions of the robot can be modified according to two dimensions: speed
and amplitude. Similar to Xu et al., these two parameters are used to display affect states. Authors
like Desai et al. [132] and Suguitan et al. [116] also proposed methods for generating emotional
expressions. While Desai’s approach allows the developer to define which emotion should a motion
convey, and also use a library of motions to start the design process from, the work of Suguitan et al.
proposes a method for automatically create versions of predefined motions with a change on the
emotion being conveyed.

4.2.2 Comparison with the solution proposed in this thesis

The works of Alonso et al. [51], Ribeiro et al. [121], and Kopp et al. [117] use a similar approach for
describing the behaviours that the robot will have to perform. They use different markup languages
to represent the multimodal actions that will be performed, along with any information required to
synchronize them. The advantage of this approach is that represents the expressions in a language
that is easily understandable by humans, and thus it is easy to craft new expressions. But this type
of solutions can complicate the process of synchronizing the different modalities, as expressions
usually rely on temporal information for synchronization, which is susceptible of being affected by
different factors, like the inertia of the motions. Another possibility is to include synchronization
points in these expressions, to specify how the different actions connect to each other, but this again
requires crafting specific synchronization methods. This thesis proposes the use of a structure for
representing expressions that is at the same time easy to craft and visualize, and that takes care of the
synchronization of actions internally.

In the work presented in this manuscript, expressions are modelled as state machine-like
structures, where the actions that the robot has to perform are represented as states of this machine.
On top of this, there are also states used specifically for controlling the flow of the expression, and
perform synchronization tasks. That way, the synchronization between actions is represented with
the transitions between states. For example, if the arm of the robot has to be risen after a utterance
has been spoken, each action can be modelled as an individual state and the transition between
states specifies the temporal relation between actions. Although the work of van Welbergen et al.
[120] also presented the use of state machines for expressiveness, their work uses this structure to
control the process of executing expressions, while here the state machine represents the internal
structure of each expression. Opposite to traditional finite state machines, the proposed structures
can maintain multiple states active at the same time, so the robot can perform multiple actions



4.2 State of the Art 133

at the same time. This approach presents some advantages. On one hand, it allows to combine
different synchronization approaches observed throughout the works reviewed and use either time
points to indicate the beginning of each individual action, or set the execution of these actions
based on the completion of one or more previous steps of the gesture. Particular states have been
developed to control the start point of an action, and to force the expression to wait until an
action has been completed before continuing with the next one. Also, the solution proposed in
this thesis also gives developers the ability to include aspects of traditional control logic into the
development of expressions. For example, a gesture can include loops to specify the repetition of
either individual actions or entire sections of the expression, or use branching to define multiple paths
that the execution of the gesture can follow depending on some external variable. All the control
functions have been encapsulated in independent blocks that can be shared among expressions, thus
eliminating the need to program them again for each new gesture.

In order to simplify the design of new expressions, the proposed approach also provides a
graphical interface for the creation of gestures, similar to the solutions proposed by Gomez et al.
[111], or Desai et al. [132]. In this thesis, the graphical interface was included as a tool to simplify the
process of crafting the expression files, instead of being a tool for animating the robot in a visual and
direct way. Developers still need to follow a trial and error process to adjust the expressions in the
proposed approach. The interface selected allows developers to create expressions by dragging and
connecting blocks, which simplifies the design process and allows persons without a programming
background to create or modify expressions without much effort. Also, the interface allows them to
visualize the pipeline of the expression, making it easier to appreciate the connections between the
different modalities used.

Regarding adaptability, works like the ones presented by Xu et al. [115] or Van de Perre et al.
[130] propose to use external parameters to modify the appearance of the expressions developed
in order to convey the different internal states of the robot. While Xu et al. defined multiple
behaviour parameters, Van de Perre et al. focused on the modulation of the expression’s speed
and amplitude. While both approaches have their advantages, they also present weak points.
Thus, having the possibility of combining multiple techniques can help to adapt the system to a
larger amount of situations. Also, these techniques only modify the appearance of an expression,
but cannot change the value of the actions contained, to increase its variability. This thesis
proposes the combination of different modulation methods for altering features tied to both
the symbolic and spontaneous aspects of the expression (for example, altering the pitch of the
voice, or changing the sentence that the robot has to utter). One of the techniques included
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follows the idea of Van de Perre et al. and modulates a multimodal expression on the speed and
amplitude dimensions, while the second relies on modulation profiles to specify a more detailed
adaptation of each interface. Also, a third technique was introduced to modify the configuration
of any action in an expression on runtime. This not only allows to convey the internal state of
the robot through an appropriate modulation strategy, but also allows the system to modify any
action conducted by the robot in order to better adapt the expressions to the context of the interaction.

4.3 The anthropological foundations of expressiveness

According to some authors [74], communication is one of the key factors that define our society,
and separates humans from the rest of the animals. Although other species are able to develop basic
gestural communication systems, the thing that is completely unique to the human kind is the
development of language. This communication system allows humans to describe any abstract
mental concept in a way that can be understood by any other language knowledge, without the need
of establishing first a common ground. On top of this, humans are able to use non-verbal behaviour
(for example, body gestures or facial expressions), either on its own, or as a way to enhance the
information conveyed by the speech. Due to the fact that social robots are designed to perform tasks
that involve a large amount of interaction with humans, endowing them with the expressiveness
capabilities that allow them to be perceived as social agents is an important problem in the area
of Human-Robot Interaction. This section presents an analysis of both verbal and non-verbal
communication in humans, and their ties to the task of robot expressiveness design. This analysis
seeks to highlight a series of features involved in human multimodal communication that will be
integrated in the expressiveness management approach proposed in this chapter.

4.3.1 Verbal communication

Although is has been largely discussed if other animals are able to produce intentional vocal displays
that have a communicative purpose, something that cannot be argued about is the fact that humans
are the only animals that have developed a vocal communication system as complex as language.
According to the Cambridge Dictionary, language can be defined as “a system of communication
consisting of sound, words, and grammar”. Different expressions of language can be distinguished,
including writing (using a set of symbols to visually represent language) and speech (the vocal
expression of language), among others. Language is learnt innately by children in early stages of
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their development [135]. Around 6 months old, their gurgle starts to become babbling. A year later,
they are able to utter around 50 words, and are able to understand three times that amount. By the
time they are 2 years old, the characteristics of the language used in their environment (tone, accent,
rhythm) can already be appreciated in their speech. By the time they turn 3 years old, children are
usually able to utter complete sentences, and have a vocabulary of around 1000 words. This amount
is increased tens of times during a person’s lifespan. The ability for learning new languages fades with
age, being easier for children than adults. Along the process of learning language, different challenges
appear. For example, recognizing the borders of words in speech is an arduous task. According to
the research of Saffran et al. [136], children overcome this problem by learning a probability-based
combination of sounds, where they are able to learn that if a combination of sounds has a low
probability, it might indicate the presence of a border between two words.

Speech production in humans is a complex process that involves the coordination of sets of
muscles that control the lungs, larynx, and mouth [135]. The larynx plays a central role in this
process. In order to produce sound, the air kept in the lungs is exhaled and goes through the larynx.
In here, two bands of muscle, called vocal chords, vibrate due to the air that is passing through the
larynx. On its own, this is not enough to generate sound. But if the vocal cords are tightened, then
the vibrations will translate into sound. This is the reason why no sound is emitted while breathing.
The pitch of the generated sound can be regulated through a variation of the tension applied over
the vocal cords. This sound is then further modulated in the throat and mouth. In the last stage
of the process, the components in the mouth transform sound into phonemes, the basic sounds
used to build speech, through a series of fast shape changes. Although one could think that speech is
exclusively tied to the auditory modality, in reality it also involves the visual channel. This is due
to the fact that part of the articulatory organs used for generating speech are visible by the listener
(i.e. the mouth). An example of this relationship is the McGurk effect [137]. It refers to the fact
that speech recognition is affected by the visual modality as well. For example, if one phoneme can
be identified through the auditory modality, and a second phoneme can be identified visually by
focusing on the speaker’s mouth motion, then the listener might not perceive neither, and instead
perceive something new. Visual cues can also be used to focus attention on the speaker, and to help
the listener to discriminate background noise from the speaker’s voice [138].

4.3.2 Non-verbal communication

Non-verbal communication can be understood as the process of sending and receiving communicative
messages that do not involve the use of words. This definition also includes the non-verbal aspects
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of language, which are known as paralanguage. This discipline of communication was initially
proposed by Charles Darwin [139]. In [140], Burgoon and Bacue presented that, according to
some estimations [141, 142], around 60% of the information conveyed during an interaction is
transmitted through non-verbal methods. There are five main abilities of non-verbal communication
when paired with verbal messages [105]: (i) repetition, which reinforces the verbal message; (ii)
contradicting the message conveyed by the speech (iii) substituting words in the verbal message; (iv)
complementing what is being conveyed through the speech; and (v) accenting specific parts of the
speech. While encoding verbal communication is a discrete process, as it is constrained by the words
used, non-verbal signals can be encoded in a gradual or continuous way by changing the intensity of
the message in order to convey different reference magnitudes [143]. For example if a non-verbal
expression signalling stop is done at a high speed, it indicates the need for a more abrupt stop. In any
case, although there is the possibility of adapting non-verbal behaviours so they adhere to different
cultural or social conventions, or to achieve specific communicative goals, non-verbal communication
tends to be a rather automatic process that relies on implicit knowledge that is innate to humans [144].

Non-verbal cues can be displayed through a large variety of communicative channels, and can be
performed in ways that are more explicit or implicit. Types of non-verbal cues include body motion,
which in turn can be decomposed into the movements performed with different parts of the body
(hand gestures vs whole body expressions, for example), and also posture, which is static; the way in
which participants in a conversation engage in eye contact; the display of certain facial expressions;
the use of distance between speakers; non-verbal sounds; the use of touch in specific ways; and even
the use of time itself (a discipline known as chronemics, which studies how people uses time to
influence communication). But non-verbal messages can be conveyed as well in a less intentional
manner. An example could be how wearing specific clothing can convey a certain social status or role
that is going to have an effect on interactions between individuals (for example, wearing a lab coat
and scrubs in a hospital might indicate that a person is a doctor or nurse, thus prompting different
responses of people with whom they interact). Among all the possible types of non-verbal cues, this
section will focus on the following: body motion and posture (kinesics), facial expressions, and
paralanguage and prosody. The reason behind this is that the expressiveness capabilities of a robotic
platform are constrained by the hardware it includes, and these modes of communication are the
ones that the platforms used in this thesis share with humans.
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4.3.2.1 Kinesics

According to the work of Birdwhistell [141], who is considered to be the founder of this research
area [145], Kinesics can be defined as the study of human communication involving body motions
and gestures. This not only includes actions where the body is in motion, but also static postures.
There is no direct translation from body movements to verbal communication [145], as the
meaning of the majority of body motions will show a high variance within and across cultures,
while words have a fixed meaning that is known for any speaker of that particular language.
Although motions can involve a large number of joints and body elements, when focusing on
the use of motion in social interactions, the attention is usually focused on the terminations of
the limbs. Specifically, most of the movement that is related to interaction is performed with
the hands and the head, and thus research on body movement has paid special attention to these limbs.

In kinesics research, strategies for coding body motions have focused on action behaviours
[145], which are discrete motions that do not have the purpose of positioning the body, do
not require to be intentional, and have a distinguishable start and end, These actions are
supported by position behaviours, which involve the static positioning of the body to convey a
message. Body position tends to display a smaller variation between individuals, and their change is
not very frequent. Usually, the position of each limb is not considered individually, but as a whole unit.

Gestures can be interpreted differently depending on their timing with regards to the situation in
which they are performed, and context plays a big role in giving them a distinctive meaning. Also, on
top of the configurations of the limbs and the shape and direction of movements, features like speed,
acceleration, strength, etc... also can change how a specific gesture is perceived.

4.3.2.2 Facial expressions

A facial expression involves the positioning of the muscles of the face to convey a specific message.
Even though elements of the face (for example the eyes) can have diverse communicative functions
(examples would include establishing eye contact, or performing conventionalized facial expressions
in the context of a sign language), seems that facial expressions are mainly associated with the display
of emotional states. Voluntary facial expressions follow a series of socially learned norms that define
how facial expressions should be regulated in social interactions, while purely emotional expressions
are usually not performed on command [146].
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Regarding the expression of affect states through facial expressions, there has been a long
discussion about the nature of these expressions. On one side of the argument, the opinion is that
facial expressions of emotion are universal, while the other side argues that they are cultural-specific.
Ekman conducted a review of the evidences and counterarguments for both postures in [147]. The
conclusions from Ekman’s work state that it exists a universal connection between certain facial
configurations and emotions being conveyed. The evidence does not indicate how many universal
expressions exist for each emotion, or if all emotions have an associated universal expression. Cultural
and individual differences exist and play a role on how emotions are expressed, both in the encoding
and decoding aspects, and also on the social rules that govern the display of emotions.

4.3.2.3 Paralanguage and Prosody

Paralanguage, term coined by Trager in 1958 [148], is the component of non-verbal communication
that rely on the modulation of the non-phonetic features of the voice to affect the message of the
voice, or convey an affect state. The field that studies paralanguage is known as paralinguistics.
Although some definitions of the term paralanguage consider also visual communication, this section
will follow the criteria shown in the work of Schuller et al. [149] and include exclusively those aspects
of paralanguage related to the modulation of the speech. These aspects are entangled in the word
chain, and can denote the internal state of the speaker, his/her affect state, characteristics tied to the
individual, and the like [149]. Schuller et al. [149] presented a more detailed list of traits that play a
role in speech modulation, divided into three classes: (i) long term traits, which include biological
aspects (age, body type, gender...), cultural traits, personality of the speaker, and other speaker-related
idiosyncrasies; (ii) medium-term traits and states, which include temporary internal states like health
or mood, and structural signals related to social, behavioural, and interactional domains; (iii) and
short-term states, which include the speaking style and voice quality, emotional states (which are
short-lived, opposite to moods) and other related states, like stress or politeness.

While some authors proposed that all non-verbal aspects of speech should be considered as
paralanguage, others establish a distinction between paralinguistic and prosodic features [150].
Prosody can be defined as the rhythmic and intonational aspect of language, or as a set of variables
that are used to differentiate vocal patterns. Prosodic features of the voice include tempo and rhythm,
intonation, emphasis, and also the pauses made on the speech. Intonation refers to the variation of
the pitch during spoken utterances.
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4.3.3 Applying human communication features to a robot

From the review of the human communication abilities conducted above, several conclusions can be
extracted and used to plan the integration of an expressiveness architecture in a robot. First of all,
because speech is the only method of communication that is exclusive to humans, robots designed to
interact with people should be endowed with the ability to speak as well. This might not only involve
the integration of a speech generation module that creates the auditory component, but also the use
of other visual cues to reinforce the information contained in the speech. This can involve techniques
ranging from using visual cues that indicate that the robot is speaking (for example, a LED that is
turned on while speech is being uttered) to modifying the shape of the mouth so it matches the
words being uttered.

A second major conclusion is the importance of non-verbal displays during communication
[141, 142]. Non-verbal communication should not be considered as a discrete mode of interaction
(having predefined actions that are performed always the same way), but as a continuous system
with an intensity that can be modified during an interaction. Because the situations under which
non-verbal behaviours are used can be considered culture-specific, they should be adapted to the
context in which the robot will be used. Also, the fact that there is an unintentional component
to non-verbal communication that will have an effect on interactions and that is related to the
appearance of the speaker (for example, the use of specific clothing to indicate a particular social role)
could suggest the importance of adapting the appearance of the robot to the social role it will be taking.

Regarding the specific use of the different non-verbal modalities reviewed, there are also a series
of conclusions that can be extracted:

1. The head, arms, and hands tend to be involved in the majority of motions used for interaction
purposes. This suggests that the expressiveness architecture should prioritize the control of
these limbs over other body motions (for example, gait).

2. In the study of kinesics, researchers tend to focus on groups of limbs, instead of individual
motions. This could point towards the importance of combining multiple limbs in a single
expression, instead of developing individual expressions for each limb.

3. A correct timing of the motions and a proper modulation of the motion parameters can help
to modify how an expression is perceived, and adapt them to the particularities of a given
interaction.
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4. Facial expressions, and in particular the eyes, are commonly tied to the expression of affect
states. This is a complex task, as each emotion can be tied to different features of the face. Also,
while some emotional expressions can be considered universal, the cultural environment in
which the robot will be integrated should be considered when developing these expressions.

5. During speech generation, not only the verbal content should be considered, but also the
non-phonetic features of the voice. Based on the division proposed by Schuller et al. [149], the
modulation of the voice could be used to display long term traits that can endow the robot
with a personality, while modulation for conveying medium and short term traits could be
used to adapt the voice to the context of the interaction.

6. As stated in Section 4.1.2, humans not only communicate using goal-oriented expressions,
but they also transmit involuntarily their own internal state. This indicates the importance
of considering also how to endow the robot with the ability to convey these states. While
spontaneous communication involves an extensive range of states, this dissertation will focus
on one of the most prevalent: affect states. Due to this, Section 4.3.4 will analyse how humans
are able to express these states.

4.3.4 Expression of affect states in humans

How humans express emotions and moods is one of the earliest research questions in the field
of human expressiveness. The origins of these studies can be traced back to the work of Darwin
in his book “The Expression of the Emotions in Man and Animals” [139]. He considered that the
communicative functions performed by emotional expressions presented an added adaptive value,
on top of the biological advantages of emotion (preparing the body to react to a specific situation).
In [151] Hess and Thibault discussed the principles presented by Darwin, and then presented some
lines of research that found their root in Darwin’s work. One of the research topics discussed has
to do with the meaning of expressions. While Darwin considered that expressions were simple
manifestations of emotional states, other researchers saw emotional expressions as cultural signs,
based on the idea that facial expressions are culturally learned. Later theories proposed that emotion
expressions are connected to behavioural intentions, and that they should be seen as communicative
signals modulated by social norms. Another issue discussed in [151] is the existence of prototypical
emotional expressions. While an argument in favour of this is the fact that the emotional expressions
that Darwin, Ekman, and Friesen described tend to be recognized correctly, there is not the same
amount of support for the idea that these expressions are actually displayed by people under that
particular emotional state (there are works that report the existence of that connection for certain
emotional states, while other works do not find any relation). A third research topic analysed is
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the universality of emotions. While Darwin was convinced that emotions are universal, and this
conclusion was supported by Ekman, several issues were raised about how the experiments were
designed in the works defending universality. Other researchers argued that emotional displays
are culture-related, based on the evidence pointing that people tend to recognize more accurately
emotional expressions performed by individuals in their own cultural group.

Next, the expression of affect states will be decoupled according to the different communicative
channels described in this section (speech, body motion and posture, and facial expressions).
Regarding the use of facial expressions to display emotion, authors like Darwin [139] and Ekman
[152] presented a description of those emotional expressions related to the emotions considered to
be universal. In another work [153], Ekman assured that the measurement of emotional expressions
should not be done focusing on specific facial features, but on their combination. The example
he provided was that pulling down the lips’ corners conveys sadness if it is accompanied by a rise
on the inner corner of the eyebrows and by drooping eyelids, while it can convey disbelief if it is
accompanied by a rise of the entire brow and a push up of the lower lip.

Although the internal state of a person can affect to the verbal content of the messages he/she
conveys (for example, a question can be formulated in a harsher manner if the speaker is angry),
affective information is mainly connected to the non-lexical component. Thus, the analysis will be
directed towards determining the effect that affect states have over the non-verbal features of speech
(prosody and paralanguage). This effect is going to be perceived primarily on the rate of the speech
and its fundamental frequency, also known as pitch.

The effect that affect states have over the posture and motions of a person was already discussed
by Darwin in “The Expression of the Emotions in Man and Animals” [139]. In 2009 [154], de Gelder
stated that less of the 5% of works that research emotion in humans focuses on bodily expression,
while 95% of them relied on the analysis of facial expressions. Kleinsmith and Bianchi-Berthouze
[155] conducted a survey of the existing literature on affective body motions. As part of this survey,
the authors analysed how the different works connected certain affect states to body motions. This
review shows that, although some authors report similar body features associated to a given emotion,
not all reports coincide.

The relationship between colour and emotion has been considered in diverse areas, from art
to biology, or even language. For example, in English, feeling blue is used as a synonym for being
sad, while in Spanish envy is connected to the colour green. Along the years, there have been several



142 chapter 4 | Designing the expressiveness of a social robot

researches aimed at finding the connection between colour and emotion. In [156], da Pos and
Green-Armytage performed an study to connect facial expressions for basic emotions with colours. If
we consider the position that defends the universality of the expressions for basic emotions, then an
assumption could be made about how connecting colours to said expressions could indicate the
relationship between colours and basic emotions. Valdez and Mehrabian [157] studied the emotional
reactions elicited by colour hue, saturation, and brightness. While the two latter showed a strong and
consistent effect, the same cannot be said for colour hue. Sutton and Altarriba [158] presented a
study that had the aim to obtain a set of norms that could connect positive and negative emotions
and emotional terms with colours.

4.4 Principles of the proposed approach for managing a

robot’s expressiveness

This section introduces the requisites and principles, both theoretical and technical, that have been
defined for the development of an expressiveness management architecture for social robots. First,
the design requisites that the final approach has to fulfil are described. Next, I justify the selection of
state machine-like structures as the best solution for describing the expressions of the robot. Finally,
the three proposed modulation techniques are introduced more in detail, although without going
into technical details.

4.4.1 Design requisites for a robot’s expressiveness system

In early stages of the work developed for this dissertation, a series of requisites were defined for the
design of the new expressiveness architecture:

• Easy design: It is important that new expressions can be generated with ease and without
requiring programming experience. The benefit is twofold: it reduces the time cost of creating
expressions for new applications integrated in the robot, and allows developers to include
people without a technical background into the design process.

• Adaptability: To overcome one of the problems of relying on a limited library of predefined
expressions, it is desirable that each expression can be parametrized and modulated. That way,
the expressions can be adapted to different situations , and used to convey the internal state of
the robot.
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• Complexity: While an expressiveness system could be developed using exclusively basic actions,
like move joints, utter sentences, or change the expression of the eyes, having the option of
integrate complex communicative skills can help to achieve a more realistic behaviour without
adding complexity to the expression design process. An example of a communicative skill
would be tracking and following the face of the other speaker.

• Concurrency: The need for handcrafting very complex expressions that combine multiple
actions through several communicative channels can be avoided if that complex expression is
modelled as a combination of several basic expressions. In the proposed HRI System, the most
clear example is the combination of expressions coming from the Liveliness module, which have
the goal of enhance the robot’s animacy, and those coming from the HRI Manager, which aim
at achieving specific communicative goals. Instead of having to combine both expressions into
one, it is simpler to allow both to be executed independently. Thus, the proposed architecture
needs to be able to perform multiple expressions at the same time.

• Modularity: A modular architecture simplifies the process of adding, removing or upgrading
the different functionalities that the expressiveness system provides. It is important to find a
balance between the benefits of having a distributed architecture and the possible drawbacks
(mainly, the delay that can be generated by the communications between the different modules
of the architecture).

• Response time: In Section 3.6.2.2, it was stated that, for communication to be successful,
messages have to be conveyed in a specific period of time, or their meaning might be lost. Thus,
the expressiveness architecture has to be able to execute expressions at a speed that meets the
requirements for human communication.

• Action Synchronization: The proposed architecture should give freedom to the developers
when combining unimodal actions (actions involving a single mode of communication) into
expressions. This means that expressions should allow for an undetermined amount of actions
to be performed, either sequentially or in parallel, and also should allow developers to tie the
execution of these actions to either points in time, or to the completion of other actions.

The combination of these features will provide a multi-purpose expressiveness system
that is easily extensible with new behaviours and adaptable to unforeseen circumstances
and changes in the robot’s internal state. Once the main characteristics of the new system were
defined, the next challenge to solve was to decide how the expressions of the robot would be modelled.
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4.4.2 Developing a model that represents multimodal expressions

The model used to represent the expressions of the robot is going to define how the individual
actions of the robot have to be described, as well as how these actions connect with each other. When
facing this task, two possibilities were considered: decouple the different communicative channels, or
consider multimodality from the beginning of the process. With the first option, the actions that
will be performed by each communicative interface are generated separately, and then synchronized
afterwards by timing appropriately the start of each unimodal action sequence. The second option
allows to connect actions from different interfaces directly in the model, providing a more precise
synchronization between all the modalities, instead of relying exclusively on timing. This is the
approach followed in this thesis.

In previous versions of the expressiveness architecture of the robots used in this thesis, expressions
were modelled after music scores. Each expression contains a list of multimodal actions, and the
points in time in which each action has to be performed. While this approach allows to consider
multimodality during the design of the expressions, it has the limitation of having to use time points
as the only synchronization mechanism. This presents two potential drawbacks. On one hand, it
forces developers to measure manually the length of each action, and usually rely on trial and error to
ensure that the end result of the synchronization is the expected. On the other hand, if the execution
of one or more actions deviates from the ideal (for example, if the initial position of a joint is not
the one expected, which would lead to a longer or shorter motion), then the timing of the whole
expression would be off, which could lead to the expression losing its meaning, or at least not having
the same effect. The solution to both problems was to allow the connection of the end of one action
and the beginning of the next one. This would eliminate the need for measuring the length of the
actions, and at the same time would take into account any unexpected delays in the performance
of actions. While this synchronization approach is easy to implement for unimodal expressions, it
becomes more of a challenge when multiple types of actions are involved. Thus, an appropriate
structure that would allow to represent these connections between actions had to be chosen.

After considering different possibilities, a decision decision was made to use state machine-like
structures to model multimodal expressions. Under this approach, states represent the actions
integrated in the expression, while the transitions between states take care of the synchronization.
States in this model can be categorized in one of two types: action states and flow management states.
The former are used to command the different interfaces of the robot, while the latter are used to
control the execution flow of the expression. On top of controlling action states, flow management
states also allow to integrate in the expression design structures taken directly from a computer
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science background, like loops or branching structures. Loops help to simplify the creation of new
expressions, as developers can generate repetitive motions by specifying only one motion cycle and
the number of repetitions. A case of use for this feature would be the design of a waving expression
with only two arm movements that are repeated multiple times. Branching, on the other hand, can be
used to design multiple action sequences for a single expression, and then select one of the sequences
depending on context. For example, a greeting expression could be design with different actions
depending on the time of the day, or the type of user. Without branching, this would have to be
solved by creating two expressions that could be almost identical with only slight variations, which is
time consuming and makes the library of expressions less manageable.

While traditional state machines have the constraint that only one state can be active at the time,
the proposed structure for modelling expressions allows for concurrent execution of states, as a mean
for performing multiple actions at the same time. With this, developers have the freedom of selecting
how much actions should depend on each other. An expression could choose to separate actions
from different interfaces in individual branches in the state machine that are executed concurrently,
and use only timing as a synchronization strategy. This not only gives developers more tools for
expression design, but it also allowed to port all the expressions developed for the previous version of
the expressiveness architecture without changing their structure. Finally, is important to mention
that action states not only perform basic unimodal actions, but can be used to activate and deactivate
complex communicative skills. Continuing with the face tracking example given in the previous
subsection, an expression could activate the face tracking skill at some point, wait for a while, and then
deactivate it whenever is no longer required, without having to worry about how the face tracking
actually works. Finally, as a way to increase the modularity of the proposed approach, expressions can
be nested to create more complex behaviours. This allows developers to model combinations of
actions that appear in multiple expressions as a single gesture, and then create as many expressions as
needed by just integrating this gesture as a new state in the state machines representing the expressions.

4.4.3 Expression of internal states in a social robot

Having a model that can be used to represent the multimodal expressions of the robot is not enough
to guarantee a satisfactory interaction. Based on the knowledge discussed earlier in this section,
it would be beneficial that the robot’s expressions not only convey the communicative intention
(e.g. greeting a person, or asking a question), but also transmit the internal state of the robot. This
can help to make the expressiveness of the robot to look more human-like, and could facilitate
that the user grows more attached to the robot, improving their interactions, and thus helping the
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robot to perform its role better. Although there are different approaches for solving this particular
problem, this dissertation proposes the use of different modulation techniques for adapting the
robot’s expressiveness to its internal state.

Three different modulation strategies have been considered in this dissertation:

1. Dynamic reconfiguration: With this technique, actions in a expression can be changed
dynamically. For example, the default version of a greeting expression could make the robot
wave its arm and utter the sentence “Hello, how are you?”. An application could request the
performance of that expression, but replacing the sentence with “Good morning, how are you?”
in order to reflect the moment of the day. A variation of this strategy allows developers to use
keywords to mark points of the speech where information from the context should be inserted.
All keywords start with the @ character, and are directly mapped to information stored in the
memory of the robot (e.g. the @name keyword would be replaced with the name of the user
the robot is interacting with). If a keyword does not return a value, then the system simply
removes it.

2. Parameter-based modulation: This strategy allows to modify the global appearance of an
expression based on two dimensions: speed and amplitude. The effect that each of this variables
has is tied to specific parameters of each communicative interface. Speed affects the velocity of
the motions, the speech rate, the blink frequency of the eyes and also the LED, while amplitude
modifies the volume and pitch of the voice and the brightness of the LED. In this strategy,
both speed and amplitude are considered as discrete variables with seven possible values: low,
medium, and high increase and decrease, as well as a neutral state that will be used as the default
value.

3. Profile-based modulation: The last modulation strategy allows developers to define how
the state of the robot will affect to each communicative mode individually. In the proposed
expressiveness approach, each interface is controlled by a series of parameters that can be used
to generate actions (for example, for the voice, these parameters include the pitch, the prosody
rate, the volume, the sentence that will be uttered, etc...). Developers can create modulation
profiles that specify how each possible state of the robot affects to these parameters (e.g. if
the robot is happy, the pitch of the voice and the speed of the motions should be increased).
However, giving developers total freedom about what values to use for each parameter has two
main drawbacks. First, it is not very intuitive what effect these values have. It might be difficult
for a developer to know if increasing the speed of the motors from 1.5 to 2.75 (for example) is
an excessive change or not. Second, an excessively aggressive modulation could result in the
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expressiveness of the robot being unnatural (for example, raising the pitch above what would
be normal for a human). In order to avoid these drawbacks, the profiles specify the values for all
the interfaces’ parameters as a percentage of a range between two limit values, which have been
selected to ensure that the actions are still human-like. When the internal state of the robot
changes, the expressiveness architecture takes the new values from the modulation profiles,
and uses them to adapt any expression being performed.

The details of how these strategies were implemented will be presented in the next section of this
dissertation.

4.5 Implementation of the Expression Manager

This section presents the Expression Manager, the element in the software architecture that controls
all of the robot’s expressiveness capabilities. It manages the actuators of the robot when they
are used in communicative tasks, according to the requests coming from other modules in the
architecture. Although any module can request the use of one or more output interfaces, the majority
of requests come from either the HRI Manager (the dialogue manager introduced in Chapter 3) or
the Liveliness module (see Chapter 5). Based on the requests received, the Expression Manager loads
the appropriate expressions from the gesture library, and ensures their correct execution. Besides
controlling the loading and execution of expressions, the Expression Manager has to protect the
system against conflicts derived from two applications trying to use the same interfaces at the same
time. This is done through the prioritization of some expressions over others.

In the proposed software architecture, the Expression Manager is modelled as a combination of
several processes, and is in charge of the following four tasks:

• Planning of expressiveness: This is the first stage in the expressiveness pipeline. The
Expression Manager evaluates what interfaces the requested expression and the gestures
being performed (if any) require, and decides if and when the requested expression has to be
performed.

• Execution of expressions: Gesture requests are stored in priority queues until they have to
be executed.

• Internal State expression: The Expression Manager is in charge of conveying the internal
state of the robot through a proper modulation of the gestures.
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• Communication with the output interfaces: The Expression Manager creates a bridge
between the software architecture and the robot’s actuators when they are used for interacting
with users. For example, if the robot’s motors have to be used to greet the user by waving a
hand, this command is sent through the Expression Manager. However, if the motors are used
to navigate the environment (which does not involve communication with an user), then the
Expression Manager is not involved in relaying these commands.

Figure 4.2: Software architecture of the Expression Manager.

Structure-wise, the Expression Manager is divided in a series of modules that can share
information between them, as shown in Figure 4.2. These modules are (i) the Expression Scheduler,
(ii) the Expression Executor, and (iii) the Interface Players (there is one player for each output
channel). Figure 4.3 shows the class diagram for the Expression Manager. The Expression Scheduler,
Expression Executor, and each Player have been programmed as individual classes that interact with
each other through the infrastructure provided by ROS. In a robotic platform, individual instances
of the JointPlayer class exist for each joint. Expressions have been modelled as individual classes that
inherit from a common template: the BehaviourTemplate. Each expression can be composed of
one or more states, each modelled as an individual class. Finally, while the Expression Scheduler
loads the expressions directly by instantiating an object from the expression’s class, the Executor
instantiates first an object from the GestureSM class, which provides the features required for
running expressions in parallel execution threads, while this object in turn loads the expression. All
the elements and processes mentioned here will be presented in depth in the following sections.
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Figure 4.3: Class diagram representing the relationships between the modules of the Expression Manager and the library of gestures. The list of
attributes and methods for each class can be found in Appendix B.
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4.5.1 Software Modules

The first module in the Expression Manager is the Expression Scheduler. This module processes
all the requests for gesture execution coming from the rest of the architecture, checks the current
status of the robot’s interfaces (if they are being used or not) and matches this against the list of
communication modes that the requested gesture needs. Based on this analysis and on the priority
assigned to each expression, the Expression Scheduler can decide if the new gesture has to be executed
(at the cost of stopping any conflicting expression), queued, or discarded.

This module serves as the connection between the Expression Manager and the remaining modules
in the robot’s software architecture. Expressions are requested through a standard message containing
all the information required for loading and parametrizing the appropriate expression. The parameters
included in this request are:

• name: indicates which expression has to be loaded from the library.

• id: a unique string used to identify the expression. This will be useful in situations where
multiple instances of the same expression are active at the same time (this is a situation that
can arise for very specific gestures).

• emitter: The module in the architecture that requests the activation of the expression.

• priority: Priority level that will be used to solve any conflict between two expressions regarding
the use of the output interfaces. Three levels can be assigned: low, medium, and high.

• params: Key-Value Pair Array that allows applications to specify changes that have to be
applied to the requested expression.

There is a general rule for assigning priorities to the expressions. In general, gesture requests
coming from either the HRI Manager or the applications will be assigned a medium priority. This
will be considered the default value for any gesture request. Applications can send high priority
requests whenever they require that the robot displays an expression immediately, regardless of what
other actions the robot is performing. Usually, high priority gestures are used in situations where
the robot needs to react immediately to an external event. An example of this would be the robot
reacting to a loud noise. Finally, low priority is usually given to gestures that do not play a key role in
achieving communicative goals or reacting to events, but instead complement expressions with mid
or high priority, as a way to enhance the quality of the robot’s expressiveness. Primarily, this level of
priority is reserved for the expressions requested by the Liveliness module.
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Once the Expression Scheduler decides that an expression can be executed, then it sends an
activation request to the module in the Expression Manager in charge of activating these gestures:
the Expression Executor. This module receives activation requests coming from the Expression
Scheduler for loading and executing gestures (the message used for the request is the same one
described for the Expression Scheduler). While the Scheduler controls that there are no conflicts
between expressions and checks if a request can be processed or not, the Executor controls how the
requested gestures are loaded from the library, parametrised, and then executed. The activation
orders sent by the Scheduler are stored in priority queues, one for each priority level. At a certain rate,
the Executor extracts gestures from the queues, following a first-in first-out approach. While the
loading and configuration of these gestures is done one by one, they are executed in different threads,
so the system can have multiple expressions active at the same time. Also, any cancellation request
received in the Expression Scheduler is then relayed to the Executor, which in turn sends the signal
required to stop the expression.

The Interface Players (from now on, simply Players) are the modules that connect the
expressiveness architecture with the output interfaces of the robot. In the proposed system, there is
an individual Player for each communication channel, resulting on a total of 10 modules: one for
each joint (in Mini: head, neck, both arms, and base. The base player is not present in Gero), two for
the LED (heart and cheeks), one for the TTS, another for the eyes, and a last one for the touch screen.

All players have been designed using a common template based on ActionLib 1, a library included
in the ROS framework that defines a standard interface between a client and a task. In this sense,
it is similar to how a service works in ROS, but with a particularity: ActionLib servers can provide
feedback regarding the status of the task, and also have a mechanism that allows the client to cancel
the current task at any given time. While the task performed is different for each Player, the use of
ActionLib provides three features shared by all Players:

• At any given time, the Expression Manager can enable or disable a Player to adapt the interaction
to different situations. For example, in very noisy environments, speech-based communication
might be highly inefficient, and the TTS Player might be deactivated, switching to other
communication strategies.

• Regardless of the interface they are managing, all Players have strategies in place for controlling
the correct execution of their task. They will provide feedback about the state of the action
being performed, and notify the result once it has ended.

1https://wiki.ros.org/actionlib

https://wiki.ros.org/actionlib
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• An action in course can be interrupted at any time. This will be used primarily for stopping
the execution of expressions if a new gesture with a higher priority is received.

In the proposed architecture, the Players receive actions exclusively from the robot’s expressions.
Also, because no interface can perform two actions at the same time (for example, the TTS cannot
utter two sentences at the same time), the Players will only manage one action at a time. When a Player
receives a request for executing an action, it extracts from the ActionLib goal all the information that
will be used to configure the message that has to be sent to the output interface. This message is then
completed with information that is stored in the context of the robot. For example, an application
can include the keywords @name and @robot in utterances sent to the TTS Player, which would
replace these keywords with the names of the user and the robot, respectively. After the message for
the output interface has been properly built and sent, the Player keeps track of the requested action’s
status through the feedback provided by the interface, and relays this feedback to the gesture that
requested the action. Players also integrate safety mechanisms that isolate the HRI Architecture for
any unexpected failures in the output interfaces. These failures include the loss of communication
with the interface, or an unexpected cancellation of the action (for example, a motor stopping before
the final position is reached) among others. Once the action has been completed (successfully or not),
the Player sends the result of the task to the expression that requested the goal originally.

4.5.2 Modelling gestures

As already mentioned, the gestures used by the Expression Manager are modelled as state machine-like
structures. This opens the possibility of using design strategies that do not require manually coding
the expressions. Instead, the goal was to use a graphical interface to create new gestures, as a mean to
allow developers that do not have a background on computer science, but possess an expertise on
other areas (for example, in animation), to design gestures for our robots.

Multiple options were considered when evaluating the possible tools that could be used for
creating gestures, including the possibility of designing this tool from scratch. In the end, a decision
was made to use FlexBE [159], a ROS-based framework for designing high level behaviours for
robotic applications. It was built as a layer on top of SMACH, the same library that was used in
the creation of the CAs described in Chapter 3. FlexBE states and state machines inherit from
SMACH, adding new features on top of the ones already provided by SMACH states and state
machines. Besides expanding the features provided by SMACH, FlexBE also provides a Graphical
User Interface (GUI) that can be used to design new behaviours by connecting blocks that represent
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states, and also allows the roboticist to teleoperate the robot, giving feedback in real time on the status
of the behaviour being run. Figure 4.4 shows an example of a basic gesture created with FlexBE’s GUI.

Figure 4.4: Example of a basic gesture created with FlexBE. This gesture waits for 5 seconds, then
utters a sentence, and waits for the sentence to end.

Four modifications were applied to FlexBE in order to adapt it to the needs of the expressiveness
architecture proposed in this chapter. First, FlexBE’s source code had to be altered to account for
multiple state machines running in parallel. Second, the initialization of FlexBE state machines was
optimized by removing every feature that will not be used by the expressions. Third, the FlexBE GUI
was modified to automate the initialization of all the parameters common to all gestures. Finally,
a standard template was designed, from which all the expressions created inherit. This template
implements the functionalities required for finalizing the execution and returning the result of the
expression.

While FlexBE provides a library of states that can be used to create behaviours, a new library was
designed for the purpose of designing robotic expressions. This library includes individual states that
are used to communicate with each Interface Player. These states receive as inputs all the parameters
that define the action that has to be performed and use them to build the goal that has to be sent to the
corresponding Player. The library also include states that are in charge of controlling the gestures’ flow
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of execution. Table 4.2 shows a description of all the states developed. A more in depth description
of each state, along with the parameters that can be used to configure them, can be seen in Appendix C.

Under FlexBE, states in a state machine are grouped using a series of containers that provide
different functionalities. In particular, there are two that play an important role in the creation of
expressions: sequential and concurrent containers. Sequential containers allow for a lineal execution
of a sequence of states, while concurrent containers control multiple states that have to be executed
at the same time. These containers can be combined and nested to create structures that represent
expressions that are as complex as required. Developers load the states and containers as blocks in
FlexBE’s GUI, parametrize them accordingly, and then connect them to define how the expression
has to be executed.

State Description

Action Control

Waits for the completion of an action sent to a Player.
This state can wait for multiple actions.

Color LED State used to send commands to the LED Player.

Display Touch Screen State used to send commands to the Touch Screen Player.

Express Eyes State used to send commands to the Eyes Player.

For Loop

State used to implement a for loop.
It keeps the count of the iterations and returns a different
outcome depending on if the final iteration has been completed.

If Loop

State used to implement an if loop.
It checks the value of a parameter and returns a different outcome
depending on this value.

Move Joint State used to send commands to the Joint Players.

Reset Interfaces State used to reset all the robot’s interfaces to a default value.

Return Result

State used to return the result of the expression
(if the execution was successful or not).

Select Random Gesture State that selects a gesture randomly from a list.

Table 4.2: List describing all the states that have been developed for designing expressions.
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State Description

Execute Random Gesture

State that executes the gesture selected by the
Select Random Gesture.

Start Skill State used to activate complex skills.

Stop Skill State used to deactivate complex skills.

Speak State used to send commands to the ETTS Player.

Table 4.2: List describing all the states that have been developed for designing expressions.

4.5.3 Executing expressions

The process of executing an expression is a distributed task that involves all the modules in the
Expression Manager. Requests sent by the HRI Manager or other modules in the architecture are
managed by the Expression Scheduler. When one of this requests is received, the Scheduler has to
load the gesture from the library and extract the list of interfaces that will be required. Next, this list
is matched against the interfaces that the currently active gestures need. This does not only include
the interfaces in use whenever the request is received, but any interface that the gestures are going to
use during their whole execution. If a coincidence is found, then the priorities of the new and the
currently active gestures are compared. Four results can be obtained from this comparison:

1. If the new gesture has low priority, then it is discarded, regardless of the priority level that the
active expression has.

2. If the new gesture has at least mid priority level, and the active gesture has either the same or a
higher priority, then the new expression is stored in the proper priority queue and executed
whenever the interfaces are available.

3. If the new gesture has either mid or high priority and active gesture has low priority, then the
new expression is executed immediately, while the active gesture is stopped and discarded.

4. If the new gesture has a higher priority, but the active expression has mid priority, then the
new expression is immediately executed and the active one is stopped, stored in the priority
queue, and executed again whenever the interfaces are free.

From these situations, a series of conclusions can be extracted. First, high priority gestures
cannot be interrupted by anything new. The reason behind this decision is that if an expression is
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important enough to require high priority, it should always be executed completely. Second, low
priority expressions will be completely discarded if the interfaces are being used. This means that
only non-essential gestures that lose their meaning if they are not performed immediately should be
requested with low priority. Finally, the last conclusion is that anything that the robot is currently
performing is going to be more important than any new expression, if the priorities are the same.
This is done because it was considered preferable that the robot finishes whatever is doing before
jumping to something new, instead of just interrupting actions mid-execution, because this could be
perceived as strange by the user.

If either no conflicts arise, or the outcome of the comparison between the new and the active
gestures lead to the new expression to be immediately executed, then the Expression Scheduler
relays the activation request to the Expression Executor. At the same time, the Scheduler generates a
watchdog timer with the goal of ensuring that, in the event of an unrecoverable error, the expression
does not get stuck, blocking the access to the output interfaces. The request activation is then
stored in the corresponding priority queue. The Executor extracts the requests one by one, loads
the appropriate template from the gesture library, configures it with any extra parameter contained
in the request activation, and runs the expression in a parallel program thread, in order to achieve
concurrent, asynchronous execution of gestures. Whenever the gesture is completed, it sends a
message containing the name and ID of the expression, a string that indicates if the execution was
successful, failed, or was cancelled, and, if it failed, an optional field that might indicate the error
encountered. This result is received at the same time by both the Expression Scheduler and the
Executor, as well as the module of the software architecture that requested the gesture in the first
place. After removing the completed expression from the list of active gestures, the Scheduler checks
every gesture stored in the priority queues to see which of them were waiting for the interfaces that
were just freed. The gestures found are removed from the priority queues and sent to the Executor.
This process continues until all priority queues have been emptied.

Gestures can be cancelled at any given time. These cancellation requests are sent to the Scheduler
and the Executor. The former removes gestures that are scheduled to be executed, while the latter
stops expressions already in execution by sending them a termination command. Once the gesture
has been cancelled, the process described in the previous paragraph for extracting gestures from the
priority queues and execute them is repeated. Finally, if at any time one of the expressions fail, leading
to the watchdog timer going off, then the Scheduler forces its cancellation and sends a deactivation
command to the Executor.
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Figure 4.5: Activity diagram depicting all the steps performed by every module involved in the
execution of expressions.

4.5.4 Modulating Expressions

The modulation of the robot’s expressions is, by most part, managed internally by the Expression
Manager. In this dissertation, three different modulation strategies were considered: (i) state-based
customization; (ii) global modulation; and (iii) profile-based modulation.

The state-based customization method allows to modify expressions in runtime by changing the
parameters that define an action. Any parameter can be overwritten (e.g. the speed of the motions, or
the sentence that the robot will utter). The new configuration for the expression’s actions will be
included in the request that the Expression Manager receives for executing the gesture. The request
will also indicate to which state the changes have to be applied. For example, if the request includes
changes to a utterance, but the expression includes two different utterances in separate states, the
request has to indicate if it is the first one or the second one the action that has to be modified. The
following example can help to illustrate the utility of this modulation approach. The library of
gestures used by the robot includes an expression for greeting users, where the robot waves its arm
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and says “Hello”. This gesture can be used under any situation, but because of this, it can also be too
generic. A possible solution could be to alter the sentence and adapt it to the circumstances of the
interaction (for example, using a greeting that is specific for the user approaching the robot).

If the activation request for a gesture has any extra action in it, the Expression Executor passes
the new list of actions to the gesture during the configuration stage, before executing it. Each
action is tied to a specific state name. This list is sent to all the states in the expression, which in
turn check if their name is on the list. If it is, then the state extracts the new configuration for the
action and overwrites the default one. While this strategy is useful when an application needs to
modify specific parts of an expression, it has two main limitations. First, the overall structure of
the expression has to be maintained. This means that no new actions can be added, and none of
the existing actions can be removed. So, in the previous example about the greeting gesture, an
application could modify the arm waving or the utterance spoken, but neither remove the arm
waving nor add a head motion. Second, this method requires that each action in an expression
is modified individually. Thus, if a change has to be applied to multiple actions (for example,
increase the speed of all the motions in the expression), this would force to specify the same change
for all the states, which can be time consuming (specially if the expression has a high number of states).

Speed Amplitude

Voice Prosody rate Volume and pitch

Joints Motion speed None

LED Fading speed Brightness

Eyes Blinking speed None

Table 4.3: Effects that the modulation parameters have on each type of interface.

The global modulation method aims at solving this last limitation by providing control
parameters that allow applications to regulate the global behaviour of an expression. The two
parameters selected are speed and amplitude. The first parameter affects to the temporal dimension
of the actions, while the second one modifies the intensity of the expression. Both control parameters
have different effects for each of the interfaces, as shown in Table 4.3. On a first approach, speed
and amplitude were developed as scaling factors that were used as multipliers for the affected
parameters in each communicative action. But this solution was deemed to be too unintuitive,
as it is fairly hard to evaluate which effect an increase on speed of a 1.5 translates to with regards
to the speed of the motions, for example. Thus, the modulation of the control parameters was
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discretized into a finite amount of intervals: high decrease, medium decrease, low decrease, low
increase, medium increase, and high increase. A seventh value, normal, is used as the default
configuration for the expressions. Limit values were empirically determined for each of the parameters
presented on Table 4.3. These values do not represent the actual limits imposed by the hardware
(for example, the highest speed value that can be sent to the motor), but instead a threshold value
past which the action might no longer be perceived as natural. For example, while the TTS of the
robot allows to increase the pitch past the limit set, the voice that result from using those pitch
values stops resembling the voice of a person, and instead is more similar to that of a cartoon character.

Applications can include one of the six values for both control parameters in the activation
request for a gesture. When the expression is configured, the values for speed and amplitude are sent
to all the states. During the execution of a state that has to send an action to the Players, the following
steps are followed. First, the state retrieves the limit values for the parameters shown in Table 4.3. If
the speed/amplitude has to be increased, then the top limit is retrieved. Otherwise, the bottom limit
is retrieved. Second, the modulation for each parameter is computed computed using Equation 4.1:

Vf = Vi + s ∗ (Vl − Vi) (4.1)

In this equation, Vf is the value after the modulation was applied, Vi is the default value of the
parameter, Vl is the limit value selected (maximum or minimum), and s is the size of the step taken
during the modulation. It will take the value 0.33 for low increases and decreases, 0.66 for medium
increases and decreases, while for high variations it will take the value 1, which means that the final
value will be the exact limit value.

As stated in Section 4.1.2, human communication involves two components: the symbolic
component seeks to convey a particular communicative goal, while the spontaneous dimension
conveys the internal state of the speaker. Thanks to this modulation approach, expressions designed
with only the symbolic component in mind can be adapted to represent also the robot’s state.
For example, if the robot has to look enthusiastic, this would translate in a change in multiple
aspects of its expressiveness (higher speed and amplitude of motions, prosody rate increased, higher
voice volume, etc...). This state could be achieved by modulating the robot’s expressions with
both high speed and amplitude. But this solution still presents some limitations. From a theoretical
point of view, the suggested modulation strategy has the problem of tying the variations of all the
communication channels together. This makes it impossible to modulate a specific characteristic of
an expression without changing the rest of them. For example, one cannot use the speed control
parameter to change the speed of the robot’s motions without forcing a similar modification of
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the voice’s prosody rate. From a practical point of view, this modulation strategy forces developers
to specify values for every single parameter in an action when designing expressions. Currently,
interfaces are able to assign default values to any parameter that is not defined in the gestures, allowing
developers to focus only on those parameters that are important to the gesture. For example, when
creating a motion, developers can define only the joint positions, while the speed and acceleration are
selected by the software that controls the motors. But if a parameter is not defined in an expression,
then it cannot be modulated using the speech and amplitude parameters.

The profile-based modulation approach strategy developed corrects both the theoretical and
practical issues presented in the previous paragraph. It is based on the creation of modulation profiles
in which developers can define how a change in the robot’s internal state should affect to each
parameter in the robot’s interfaces. The basic idea is similar to the one followed in the previous
technique: the modulation that has to be applied to each parameter is defined as a variation in the
possible range of values that the parameter can take (this range is defined as the difference between the
top and bottom limits used in the global modulation method). But while speed and amplitude affect
to the parameters that were defined during the design of the expression, the modulation profiles work
the other way around, and only change those parameters that were left undefined. Thus, developers
can focus on defining the elements of the expressions that they consider critical to transmit the
meaning of a gesture, while the Expression Manager can use the remaining parameters to convey
different internal states. In the modulation profiles, the effects are described as the percentage of the
range between the limit values for each parameter. For example, if the pitch of the voice can take values
ranging from −5.0 to 10.0, then a value of 0 will be interpreted as the 0% of this interval (−5.0), a
value of 100 will be transformed into the top limit (10.0) and a value of 33.3 will be transformed into
the value 0 (a third of the range). For each profile, developers can define effects for multiple internal
states. Currently, this approach has been tested for conveying affect states, both emotions and
moods. The mood profile includes values for five possible states (neutral, happy, anxious, bored, and
calm), and the emotion profile considers another five possible states (neutral, happy, sad, angry, and
surprised). Figure 4.6 shows the values defined for the happy state, extracted from the emotion profile.

This modulation strategy is implemented directly in the Interface Players. During the startup of
the Expression Manager, the Players load all the available modulation profiles and store the effects
that all possible internal states can have over the parameters related to the interface controlled by each
particular Player. The neutral state is considered to be the initial one, and it is stored as the active
configuration. If a change in the internal state of the robot occurs, the Players upload the active
configuration with the modulation tied to the new state (for example, a change in the robot’s mood
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Figure 4.6: Example of the modulation values for the happy state in the emotions profile.

would lead the Players to load the modulation values that correspond to the new mood). Whenever
an expression sends a goal to one of the Players, it goes through all the parameters that can be sent to
the output interface. If a parameter is defined in the goal, then the Player uses the value sent by the
expression. On the other hand, for every parameter that does not have a value defined in the goal, the
Player checks the active configuration and selects the appropriate value.

4.5.4.1 Customizable expression

As discussed before, one of the disadvantages of using a finite amount of expressions is that
interactions tend to become repetitive if the size of the library is not big enough, and also that is time
consuming to create expressions that represent all possible internal states of the robot. While the
modulation techniques presented in the previous section can help alleviate this problem, it is still
desirable to make the expressiveness system as adaptable as possible. In order to cover any potential
situation not considered during the creation of the gesture library, a generic FlexBE template was
developed for generating an expression dynamically. This template can be requested through the
same process followed for any other gesture, with a request containing the list of actions that have to
be used to create the new gesture. Once the gesture is sent to the Expression Executer to be loaded,
the list of actions is sent to the customizable gesture template, and the state machine is built on the fly.
This sequence of actions is represented as a dictionary, where the values are all the parameters required
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to configure each action and the keys are a series of strings used to uniquely identify each action.
The configuration for each action can also include two extra parameters: (i) a start time for that
particular action (measured as a delay in seconds from the beginning of the gesture’s execution), and
(ii) the ID/s of the action/s that have to be completed before the execution of that action. All actions
that do not specify either parameter will be performed concurrently at the beginning of the expression.

The creation of the customized expression is done as a two stage process. First, the template
generates a tree that represents how the different actions relate to each other (when each action has to
be performed, which actions have to be executed concurrently, or which actions have to wait for a
previous one to be completed). Once this tree has been built, it is used as a blueprint for creating the
corresponding state machine. The following example can help to illustrate the process of creating
these dynamic expressions. In this example, the robot needs to perform a greeting gesture by raising
and lowering the arm, and at the same time utter the sentence “Hello! Nice to meet you”. The activation
request sent to the Expression Manager would then include three actions: (i) the utterance; (ii) the
motion to raise the arm; and (iii) the motion for lowering the arm. The first two are independent,
while the latter is connected to the completion of the previous motion. The resulting state machine
would be modelled as a concurrent FlexBE container, with two sequential containers inside. One is
used to utter the sentence, while the other includes the sequence for raising and then lowering the arm.

This customizable expression allows to create new gestures on the fly. Thus, expressions can
now be designed manually and stored in the gesture library, can be obtained through the proper
modulation of a predefined expression, or can be built from a set of individual, unimodal actions in
runtime.

4.5.5 Emotion display module

Section 4.3.4 presented a theoretical basis of the expression of affect states in humans. The
evidence presented in this section suggested that, according to some authors, basic emotions
tend to be recognized universally (although they do present small variations between different
groups of people). The section also presented some of the effects that affect states can have over
the different communicative channels of a person (e.g., facial expressions, body language, speech
patterns...). While adapting these features might be enough for users to recognize the affective
state of the robot, some times it is also important that the robot shows a specific reaction to the
stimulus that caused the change in the affect state, instead of just displaying a generic affect expression.
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In the proposed system, this was achieved with the development of an Emotion Display Module
that generates proper reactions to stimuli received. Figure 4.2 shows how the Emotion Display
Module is connected with the Expression Manager. This module has been programmed to show
reactions to a change in the dominant emotion. Using the software architecture in which the work
developed in this thesis has been integrated, the robot can convey four different emotions (happiness,
anger, sadness, and surprise), with an intensity value ranging from 0 to 100 in a continuous scale. At
any given time, the robot can be feeling more than one emotion, with different intensities. In this
context, the dominant emotion is the one with the highest intensity.

Whenever an emotion is triggered with an intensity level higher than a fixed threshold (in the
current implementation, this threshold was set to 80), the Emotion Display Module reacts by
requesting the execution of a gesture that conveys an appropriate display of that particular emotion.
This process is not only affected by the emotion that has been triggered and its intensity level, but
also the stimuli that triggered that emotion. For example, while there are multiple reasons that can
cause the robot to be angry, the reaction might not be the same if the robot was simply treated with
disrespect, or if the user hit it. In order to account for this distinction, the Emotion Display Module
loads during its initialization a configuration file that contains which expressions have to be requested
given an emotion and an elicitor.

Whenever the Emotion Display Module receives a new message from the robot’s affect generation,
first it has to extract the dominant emotion, its intensity, and the elicitor that triggered it from the
message. These parameters are used to retrieve the list of expressions that can be used as a reaction
to the emotion being triggered. The result of this search is an string made by the names of all the
possible expressions separated by a delimiter character. The module selects one of the expressions
at random and sends it to the Expression Manager to be performed. In this case, the emotional
reactions are requested with high priority, as they are behaviours that should override whatever the
robot is doing, and be executed immediately (Reactive behaviours can lose their meaning if they are
not performed immediately after the stimulus that triggered them). If the module receives a new
update of the robot’s emotional state while the previous expression request is still being executed,
then this update is ignored. Updates will be discarded until the Expression Manager notifies that the
current emotional gesture has been completed.
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4.6 Evaluating the Expression Manager

This section presents the experiments conducted to evaluate the effectiveness of the expressiveness
architecture presented in the previous section. First, an objective evaluation will show the level of
efficiency of the proposed expressiveness architecture, regarding the amount of resources consumed
when the Expression Manager is integrated in a robotic platform. Next, two subjective evaluations
have been conducted in order to understand how some of the capabilities of the Expression Manager
affect the perception that the user has of the robot. In particular, these evaluations will focus on
the effects of modulating the robot’s expressiveness in order to adapt them to the context of the
interaction.

4.6.1 Objective evaluation: Response time and resource usage

The objective evaluation has the goal of demonstrating that the proposed expressiveness architecture
is able to work under real conditions, integrated in a robotic platform where a full software
architecture is deployed. Under these conditions, the Expression Manager needs to ensure two
features: (i) being efficient enough so it does not hoard a large portion of the available resources; and
(ii) being fast enough to send the appropriate commands to the output communication channels
without hindering the quality of the interaction, regarding its naturalness. Similar to the HRI
Manager, the Expression Manager can be considered as another of the core modules in the robot’s
architecture, thus making these features that much important.

This evaluation has been performed on Mini, under the same conditions used for the evaluation
of the HRI Manager in Section 3.6.2.1 (the robot had the entire software architecture running
during the test).

4.6.1.1 Resource requirements

First, the results for the use of resources will be presented. As mentioned in Section 3.6.2.1, Mini
is equipped with 16 GB of RAM, and an Intel i5-3550 CPU with four cores running at 3.3 GHz,
and uses Ubuntu 16.04 64 bits as its operating system. The Expression Manager is conformed by
seven modules: Expression Scheduler, Expression Executor, Joint Player, TTS Player, Eyes Player,
Touch Screen Player, and LED player. At any given time, there is one instance of each module, with
the exception of the Joint Player, which requires individual instances for each joint (in Mini, there
are five joints: head, neck, left and right arm, and base). The CPU and RAM requirements will be
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presented individually for each module. The measurements provided for the Joint Player represent
the resources used by a single instance of the player. Due to the fact that the process performed by
every instance of the Joint Player is the same, regardless of the joint controlled, the total amount of
resources used when all the joints are in motion can be computed as the product of the resources
consumed by one instance of the player and the number of joints that the robot has.

Figure 4.7: Percentage of RAM used for each module in the Expression Manager under the three
conditions considered.

The three conditions under which the tests were conducted coincide with the ones used for
evaluating the HRI Manager: (i) under the standby condition, the Expression Manager is deployed
independently; (ii) under the passive condition, the software architecture is launched, and the
robot is kept in a standby state; and (iii) under the active condition, the software architecture is
launched and the robot is in operation. All the modules in the Expression Manager show a stable
use of RAM, around 0.2-0.3% of the available memory. This is depicted in Figure 4.7. Regarding
the CPU use, there is more variation from module to module, and also between conditions. Both
the Expression Scheduler and the Eye Player showed a variation of CPU usage between 0.0 and
0.7% of the processing capacity provided by one of the CPU’s cores under all three conditions.
Similar values were measured for the TTS Player under conditions 1 and 2, while showing an
increase under condition 3 to a maximum value of 1.3%, and for the Touch Screen Player under
conductions 2 and 3, while under condition 1 the CPU use variated between 0.0 and 1.1%. The
Expression Executor shows a significant increase on CPU use when the expressiveness architecture
is being used. Under the condition 1, the Executor consumed between 0.0 and 0.7% of processing
capacity. This percentage increased to a value between 0.7 and 2.0% under condition 2, and to a
value between 2.7% and 18.4% under condition 3. The increase under the last condition could be tied
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to the loading, configuration, and execution of FlexBE state machines. The LED Player showed a
CPU use between 0.0 and 1.1% under condition 1, between 0.0 and 0.7% under condition 2, and
between 0.0 and 1.2% under conduction 3. Finally, the Joint Player showed the highest CPU use,
ranging from 1.9-2.0% and 3.3-3.4% under conditions 2 and 3. The fact that this player is the one
that more resources uses can be attributed to the fact that is the only module that has to track the
state of the action send to the interface, and also provides feedback at a 10 Hz rate. A summary of the
CPU usage is shown in Figure 4.8.

Figure 4.8: Peak use of CPU for each module in the Expression Manager under the three conditions
considered. The use of CPU is computed as a percentage of the processing power of a single core.

Overall, considering the worst possible situation, the proposed expressiveness architecture
requires 1.5% of available RAM, and 42.2% of one of the CPU’s cores (assuming that the expression
being performed requires the use of all interfaces at the same time, which is not very realistic).
While the memory space used is acceptable, it would be beneficial to optimize the consumption of
CPU. Because 70% of all the processing power consumed by the Expression Manager is used by the
Expression Executor, this is the first module that should be improved (in particular, the process of
loading and executing the state machines representing the robot’s expressions).

4.6.1.2 Response time

Section 3.6.2.2 introduced the importance of endowing a robot with a system that allows it to
respond in a short enough time to stimuli coming from the user or the environment. On one hand,
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this manuscript already presented the “two second” rule as a criteria for the maximum delay between
dialogue turns in a conversation. But for an expressiveness module this might be only part of its
duties, as the robot might need to use expressions as a reaction to a perceived event, and this should
be performed as soon as possible. According to some researchers [160], reaction time in humans
tends to be around 200-250 milliseconds for simple reaction times (responding to stimuli appearing
suddenly in the environment), and around 380 milliseconds for recognition reaction times (situation
where the person has to discriminate between stimuli that should elicit a response, and those that
should not). Based on these reports, three thresholds will be used in this section to measure the
performance of the Expression Manager. On one hand, the combination of the HRI and Expression
Managers response times should be around one second for it to be considered acceptable. On top
of that, although the expressiveness architecture was designed mainly with conscious interactions
in mind, it is interesting to evaluate if the performance of the system would allow to replicate the
reaction times that can be observed in humans.

Similar to the strategy followed for measuring reaction times in the HRI Manager, loggers have
been added to different points in the process of executing expressions. These loggers provided the
timestamps that were used for computing the durations of the tasks performed by each individual
module in the Expression Manager involved in the execution of the expression. These tasks are:

• Schedule Action: the time required for managing the execution requests that are sent to the
Expression Scheduler. This task starts when the request is received in the callback, ends when
the activation command is sent to the Expression Executor, and involves checking possible
conflicts between the new expression and the active ones, and any action that has to be taken
to correct these conflicts (storing the request in the priority queues, or stopping one or more
of the active expressions and storing them in the queues).

• Preparation: time required for managing the tasks performed by the Expression Executor
that are not handed by FlexBE. These tasks include extracting the activation command from
the priority queue, checking that the expression is not already in use, checking if the activation
request includes restrictions about the interfaces that can be used (for example, performing a
gesture without using the voice), and loading the appropriate template from the gesture library.

• FlexBE config: time required for building and configuring the expression, using the methods
provided by FlexBE. This task ends when the expression is ready to be executed.

• Send action to player: time required to execute the state machine that represents the
expression and send the first action to the corresponding player.
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• Send action to interface: time required to handle a goal received in the Interface Players.
Is the duration between the moment in time when the goal is received in the player, and the
moment when the message is sent to the corresponding output interface.

• Clean Scheduler: time that passes from the moment the expressiveness system receives
confirmation that the last action in the expression has been completed, until the Expression
Scheduler receives and handles the message that notifies the end of the expression.

• Clean Executor: time that passes from the moment the expressiveness system receives
confirmation that the last action in the expression has been completed, until the Expression
Executor receives and handles the message that notifies the end of the expression.

On top of these elements, the results also include an extra category called Reaction time. This is
computed as the addition of the times required for completing the first five tasks, and represents
the time that passes from the moment the expression request is received in the Scheduler until
the first action in that expression is sent to the output interface. This will be the time that will
be compared to the thresholds introduced above, as it represents the delay that will perceive the
user whenever an expression has to be performed. Measurements were taken in six different trials.
The first five involve sending requests to the Expression Manager to perform individual actions
through interfaces managed by each of the five players. This is the most basic expression that can be
performed, and represents the most favourable situation that the Expression Manager will face. It is
also the most common in the current implementation of the software architecture, as the majority of
interaction requests handled by the HRI Manager and sent to the Expression Manager involve using
simple actions through a single interface, or a combination of a limited set of actions. In these five
conditions, the expression used is the customizable gesture, presented in Section 4.5.4.1. In the last
trial conducted, one of the predefined expressions was requested, in order to evaluate how the use of
a complex expression that involves multiple actions synchronized among them affects the reaction
time of the robot.

The results for the trials involving the execution of individual actions, which can be seen in
Figure 4.9, show similar results for most of the tasks measured. In almost all cases, the time required
for scheduling an action and for the different players to send commands is significantly shorter
than the time required to complete the other tasks (around two or three orders of magnitude,
depending on the task). The only exception is the Joint Player (in the trials involving this player, the
action requested was to move the right arm up and down once), which requires around 0.1 seconds
to send the first position in the trajectory to the motor. The reason behind this is that the Joint
Player checks that the feedback provided by the motor is being received correctly before sending the
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Figure 4.9: Duration of the different stages involved in executing an expression. The bars represent
the average value, while the whiskers represent the standard deviation. Reaction time is the time
since the expression manager receives the execution request until the first action is sent to the robot’s
interfaces.

command, which introduces a small delay. While the majority of the remaining tasks show similar
durations between trials (something that could be expected, as most of these tasks are independent
from the actual structure of the expression requested), the one that shows the highest disparity is
the time required to initialize an expression and send the action to the corresponding player. The
times measured oscillate between 0.085 seconds for motion actions and 0.23 seconds for LED
configuration commands. This variation was not expected, as the expression used in all five trials is
similar: a customizable expression conformed by an action state that sends the command to the player
and a control state that checks that the player has completed its goal. Because the only difference is
the action state used, variations should be attributed to the design of these states. Finally, it can be
observed that the Clean Scheduler/Executor times for the expression that uses the touch screen and
the one that uses the joints are significantly higher than for the other expressions. While for the
expression using the tablet this could be explained due to delays introduced by the control loop that
checks that the content sent to the tablet has been displayed for the specified amount of time, the
reason for the increase observed for the joints has to do with the presence of one measurement that
was significantly higher than the others, which leads to a high deviation.

In the last trial, the expression executed involved the motion of the right arm in a waving motion
and also the motion of the neck from side to side. Each interface receives a sequence of commands
that represent the different points in the trajectory. While current expressions can send multiple
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Figure 4.10: Time since the expression manager receives the execution request until the first action is
sent to the robot’s interfaces. The bars represent the average value, the whiskers represent the standard
deviation, and the horizontal bars represent the thresholds for reaction times in humans.

positions to the Joint Player through a single action state, this expression was one of the earlier
designs, and still uses individual action states for each position in the trajectory. Thus, it serves as
an example of the system’s reaction times when managing an expression that has been designed
without having optimization in mind. Overall, the gesture used is composed of a sequence of ten
Concurrency FlexBE containers, each containing two action states that are executed in parallel (one
for the neck and another for the arm). These containers are separated by wait states that introduce
delays between them, so the interfaces have enough time for completing the motions before receiving
new commands. The results obtained are shown in the bottom right graph in Figure 4.9. While the
times measured for the big majority of the tasks are similar to those obtained for the customizable
expression that performs arm motions (which makes sense, as the player used is the same), there
is a significant increase in the time required to start the execution of the expression. This can be
attributed to the increase of the gesture’s complexity and the extra amount of states that have to
be initialized. This highlights the importance of optimizing the design of the expressions, as the
addition of unnecessary states will hinder the performance of the Expression Manager. Figure 4.10
compares the reaction times measured in each of the six trials.

The reaction time that the user will be able to appreciate corresponds to the combination of the
reaction times for the HRI Manager, the Expression Manager, and the robot’s output modules,
described in Chapter 2. This combination is the one that has to be compared with the thresholds
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presented at the beginning of this section. In the results presented in Section 3.6.2.2, the worst
case scenario observed for reaction times in the HRI Manager was around 0.3 seconds. This means
that, in order for keeping the time required to perform an action below the 1 second threshold, the
time required to send an action requested by the CA to the interface should be kept around 0.5
seconds (this is a conservative estimation that assumes that the action will be performed in about
0.2 seconds once it has been sent to the interface). For the trials where the customizable expression
was used to convey individual actions, the worst case scenario observed occurred for the expression
that sent commands to the LED heart (although the value has a remarkable high deviation, due to
the presence of two measurements that were significantly higher than the others). In any case, the
expression was performed in 0.45 seconds or less in every attempt, which is below the threshold
defined for interactions managed by the HRI Manager. Regarding the reactive expressions, the
time required to perform actions involving the tablet or the eyes of the robot is close to the simple
reaction times measured in humans, and always below the reaction times for recognition tasks. For
actions involving the TTS or the joints, the time was slightly higher than the simple reaction time
threshold, but still below the recognition reaction time. Finally, for the heart, the time was higher
than both thresholds, although this is due to the presence of two measurements that distort the
results obtained. Finally, for the last trial (the execution of a complex expression), the reaction time
measured is around 0.82 seconds, well above the 0.5 second threshold defined. This means that,
under the worst conditions encountered during the experiments, the combined reaction time for the
HRI and Expression Manager would be around 1.16 seconds, above the one second threshold defined
in Section 3.6.2.2, but still below the limit defined by the "two second" rule. Also, this indicates that
complex expressions cannot be used to show an immediate reaction to a stimulus suddenly appearing
in the environment. Figure 4.11 shows a summary of the reaction times for the HRI Architecture
as a whole (the combination of the HRI Manager and the Expression Manager), along with the
threshold defined in this dissertation for a natural interaction and the threshold defined by the "two
second" rule.

Based on the results obtained from the objective evaluation, it can be concluded that the
performance of the Expression Manager when handling gestures involving individual actions (which,
as stated before, is the most common situation for the robotic platforms used in this thesis) is
enough to guarantee an interaction that satisfies the temporal constraints involved in human-robot
communication, and close enough to the reaction times that can be observed in humans for reactive
expressions. Regarding the use of complex expressions, the results suggest that they can be used
in conscious interactions between the robot and the human while maintaining an acceptable
performance, but should not be used to react to unexpected events that require an immediate
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response. The results also suggest that, in order to optimize the performance of the proposed
expressiveness architecture, the bottleneck that should be reviewed and improved is the process for
initializing the state machines that are used to represent the expressions.

Figure 4.11: Reaction time for the combination of the HRI Manager and the Expression Manager.
The bars represent the average value, the whiskers represent the standard deviation, and the horizontal
bars represent the two thresholds defined for interactions between the robot and the human.

4.6.2 Subjective evaluation: effect of the parameter-based modulation

The first subjective evaluation was conducted to evaluate two of the modulation mechanisms that
have been described in Section 4.5.4. The first method allows developers to replace actions from a
predefined expression with new values, in order to adapt that gesture to the context of the interaction.
The second mechanism can be used to modify the appearance of an expression with the variation of
two modulation parameters: speed and amplitude. The goal of the experiment is to evaluate if an
appropriate modification of the robot’s expressiveness using these two methods can improve the
overall perception that users have of a social robot that is endowed with a limited amount of different
expressions.

Due to the healthcare concerns caused by the COVID-19 pandemic, this study has been
conducted using video-based evaluations. This simplifies the process of adding participants to the
experiment, providing a larger body of results, and has also the advantage of ensuring the repeatability
of the experiment between participants (in-person evaluations can introduce small variations in the
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experiment conditions due to real world factors that could affect the perception of the participants).
On the other hand, video-based experiments can fail to capture all the details of the experimental
conditions, providing a less realistic experience, and thus leading to less accurate results.

4.6.2.1 Experiment definition

Figure 4.12: Mini playing the landmarks game with a user.

The interaction featured in the videos used in the experiment involved one of the cognitive
stimulation exercises introduced in the case of use presented in the subjective evaluation of the HRI
Manager. In this exercise, the robot presents a series of pictures of famous landmarks from all around
the world, and the user has to guess in which city they are located. Figure 4.12 shows the setup
during the interaction. At the beginning of the video, the robot is seen in a standby state, waiting for
the user to start the interaction, while the user is sitting in front of the robot, off-screen. The user
starts the interaction by waking the robot, rubbing its shoulder. Mini wakes up (performing the
wake up expression), introduces itself, notifies the user that they are about to play a game, and finally
explains the rules of the landmarks exercise. Next, the robot moves on to the first question of the
exercise. In this case, Mini showed in the tablet an image of the Eiffel Tower, and offered the user
the following options: Rome, Paris, and Madrid. The user was fairly convinced about the correct
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option, and answered “I think it’s in Paris”. This led the robot to congratulate the user for providing
the right answer. This was done with the congratulate expression, which has the robot raising the
arms, shaking them, and saying “Very good, that is the correct answer”. Then, the robot continues
with the second question of the exercise, saying “Lets move on to the next question”. Here, the image
shown is from the Colosseum, located in the Italian city of Rome. The options presented to the
user are: London, Beijing, and Rome. Again, the user comes on with the correct option, which in
turn makes Mini congratulate the user with the same congratulate expression, and moves to the next
question, repeating the same sentence uttered between questions 1 and 2. In the third question, Mini
asks the user about the location of the Leaning Tower. In this case, the answer provided by the user
was wrong, and the robot used the regret expression to provide feedback. This gesture makes the
robot shake its head and say “No, that is not the correct answer”. Once again, Mini repeats the “Lets
move on to the next question” sentence during the transition between the third and fourth question.
The last picture shown to the user is from the Roman aqueduct that is located in the Spanish
town of Segovia. The user is not sure about this answer either, and again selects the wrong option.
Mini repeats the regret expression, thanks the user for completing the exercise, and greets him goodbye.

4.6.2.2 Conditions

Two different conditions have been defined. Under the neutral condition, the interaction shown
in the video occurs as described in the previous section. Mini uses the predefined versions of the
congratulate and regret expressions to provide feedback to the user, repeats always the same exact
sentence in the transition between questions, with the same inflection, and performs every single
action using the normal setup for both the amplitude and the speed modulation parameters. This
means that the features of each communicative channel described in Table 4.3 will be kept unchanged
during the whole video.

The expressive condition, on the other hand, makes use of the modulation mechanisms to
improve the expressiveness of the robot. The method for replacing actions in the predefined
expressions is used to adapt the gesture used for transitioning between questions to the context of the
interaction. While the transition between the first two questions is left unchanged, after the second
question the utterance is replaced by a new one that acknowledges that the user has provided two
consecutive correct answers. The new transition between the third and fourth question Mini tries to
comfort the user for giving a wrong answer, and encourages him to do better in the last question.
Finally, the last transition is modified to mention that the user has given two consecutive wrong
answers. The actions performed by both the questions and the expressions used to provide feedback
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to the user after each answer are left unaltered. This does not mean that they will not be modulated,
only that the expressions are built with the predefined actions.

Figure 4.13: Evolution of the modulation parameters (speed and amplitude) during the entire
experiment for both conditions. The red line represents the variation of the parameters under the
neutral condition, and the blue line represents the variation of the parameters under the expressive
condition.

The mechanism that allows to modify the appearance of the gesture based on the values assigned
to the control parameters is used to alter the actions performed by Mini depending on how the user
is doing at the game. The feedback gestures are considered to be expressions that should convey
the extreme values of intensity, as the user giving the correct or wrong answer is considered to be
the stimuli that will be used to change the robot’s expressiveness. Table 4.4 shows the effects that
these stimuli have over the modulation parameters. In order to convey the idea that Mini is happy
whenever the user gives a correct answer, both the speed and amplitude will be set to high increase
when performing the congratulate expression. On the other hand, the regret expression will always
be performed with a high decrease, to represent that Mini is sad because the user gave a wrong
answer. The values of speed and amplitude used for the rest of the expressions performed during the
interaction will be continuously updated to represent the state of the game. Both parameters will be
set to normal at the beginning of the interaction. After the user gives the first correct answer, and
the robot performs the congratulate gesture, speed and amplitude are set to medium increase. This
will affect the transition between questions 1 and 2, and also the expression used to ask the second
question. The idea is that the happiness that the robot conveys with the congratulate gesture after
the correct answer diminishes after the expression is completed, but is still present in the actions
of the robot. After Mini performs the second congratulate expression, speed is kept at medium
increase, but amplitude is raised to high increase. This tries to convey the idea that the robot is
happier because the correct answer streak continues. While right answers increase the appearance of
happiness, wrong answers produce the opposite effect, this is, they make the robot look sadder. After
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the first wrong answer was provided in question 3, the speed and amplitude parameter are both set
to medium decrease. After the second wrong answer was given for the last question in the exercise,
both parameters are lowered to high decrease for the remainder of the interaction. The experimental
conditions are between-subjects, which means that each participant will only evaluate one of the
conditions, selected randomly.

Stimulus Effect

Correct answer

Increase the speed and amplitude of the
expressiveness. The effect is cumulative.

Wrong answer

Decrease the speed and amplitude of the
expressiveness. The effect is cumulative.

Table 4.4: Stimuli considered in the experiment for altering the amplitude and speed of the robot’s
expressiveness.

4.6.2.3 Questionnaire

The evaluation of the conditions presented above has been done using online questionnaires. The
first section of the questionnaire includes a series of fields for retrieving demographic information:
age, gender, education level, their level of familiarity with technology in general, and with robots
in particular, and their level of interest in interacting with a robot and in owning one. A control
question was included to detect participants that already knew the robot, as their responses could be
biased. Once the first section of the questionnaire is completed, the participants are presented with
the video corresponding to one of the conditions, and asked to watch the entire interaction before
advancing to the next question.

The evaluation of how the participants perceived the robot in the videos was done using the
Robotic Social Attributes Scale (ROSAS) [161]. In this questionnaire, the evaluation of the robot is
performed according to 18 items regarding different social attributes that the robot might present.
For each item, the participant is presented with two antonyms placed at opposite ends of a scale
(e.g., artificial-likelife). The 18 items are then used to compute three scale dimensions: warmth,
competence, and discomfort. In the questionnaire used in this evaluation, the 18 pairs were extracted
from the English version of the RoSAS, and then translated into Spanish. On top of this, an
extra control question was added to guarantee that participants watched the entire video. In this
question, the participant has to indicate the amount of different robots that appear during the whole
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interaction. The last section in the questionnaire included a text box where participants were allowed
to provide comments and suggestions oriented to improve the robot. Participants were randomly
distributed, and the number of participants in each condition was balanced.

4.6.2.4 Hypotheses considered

Based on the sub-scales of the RoSAS questionnaire and the conditions designed, the results obtained
will be used to evaluate the following hypotheses:

• H1: The modulation of the robot’s expressiveness will affect the perception that the
participants have of the robot.

• H2: The participants’ perception of warmth will be higher under the expressive condition
than under the neutral condition.

• H3: The participants’ perception of discomfort will be higher under the neutral condition
than under the expressive condition.

• H4: The participants’ perception of competence will not show significant differences between
both conditions.

4.6.2.5 Participants

Figure 4.14: Demographic analysis of the participants in the experiment.
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Participants were contacted through email and messaging applications for this experiment.
In total, 69 persons completed the questionnaire, split evenly between both conditions (34 for
the neutral condition, and 35 for the expressive condition). Out of these 69, 36 were male and 33
female. 4% of the participants have only basic education, 13% were high school graduates, 9% had
professional formation, 54% were college graduates, and 20% were master graduates. A large majority
of participants had either a medium or medium-high familiarity with technology in general (64%),
while a 23% had a high level of familiarity. However, close to an 80% of participants reported having
a medium or lower familiarity with robotics. Finally, 81% of participants reported medium or higher
interest in interacting with a robot, and almost the same amount of participants reported medium or
higher interest in owning a robot. A summary of these results is shown in Figure 4.14

4.6.2.6 Results obtained

Figure 4.15: Q-Q graphics for the competence dimension under the neutral (left) and expressive (right)
conditions. The line represents a perfect normal distribution.

Before starting the analysis, data was pre-processed to identify duplicated cases. Two of the
responses were marked as duplicated and removed. Next, based on the 18 item pairs evaluated in the
questionnaire, the three scale dimensions of the RoSAS, warmth, competennce, and discomfort, were
computed. First, normality tests were performed for the three dimensions under both conditions.
While the Saphiro-Wilk test showed that the warmth ratings did not deviate significantly from normal
(Wneutral(33) = 0.948, p = 0.118 and Wexpressive(34) = 0.951, p = 0.132), the same cannot
be said for the other two dimensions. In order to correct this, a squared root transformation was
applied to both the competence and discomfort dimensions. The Saphiro-Wilk test was repeated for
the transformed variables (sqrt_competence, and sqrt_discomfort). For sqrt_discomfort now follows a
normal distribution (Wneutral(33) = 0.954, p = 0.178 and Wexpressive(34) = 0.944, p = 0.08).
Although the results obtained for competence did not fall under the normality assumption, looking at
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its normal Q-Q plots for both conditions (see Figure 4.15), it can be observed that the data does not
present a significant deviation from the diagonal line that represents a perfect normal distribution,
and thus it will be considered from here on that the normality assumption is met for all three
dependent variables (warmth, competence, and sqrt_discomfort).

Figure 4.16: Ratings for the three sub-scales in the RoSAS questionnaire (warmth, competence,
discomfort) for the expressive and neutral conditions. The bars represent the average value and the
whiskers represent the 95% confidence intervals. The asterisk indicates the significant differences
between conditions.

The first evaluation of the results conducted was a review of descriptive statistics for the
RoSAS dimensions under both conditions. The result is shown in Figure 4.16. The addition of the
modulation causes an increase in both warmth and competence. The average rating for discomfort is
also higher under the expressive condition, although the difference between conditions is smaller for
this dimension than for the other two.

Independent Samples T-Tests were conducted for the warmth, competence, and sqrt_discomfort
variables in order to find if there are any significant differences between conditions. Levene tests
showed that the variances for all three dependent variables are equal. The results for the T-Test
show that there is a significant difference between the neutral and expressive conditions for
warmth (t(65) = −2.173, p = 0.033), while competence (t(65) = −1.563, p = 0.123) and
sqrt_discomfort (t(65) = −0.327, p = 0.745) did not show significant differences. These results
indicate that the modulation of the robot’s actions can lead to a higher perception of warmth in the
robot.
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Next, the responses to the questionnaire were divided based on the answers to the questions
included in the demographic information section, in order to evaluate the effect that each of those
characteristics had on the perception of the robot. An analysis of covariance (ANCOVA) was
conducted to compare the ratings of all three dimensions (warmth, competence, sqrt_discomfort)
using the variables familiarity with technology, familiarity with robotics, willingness to interact with
a robot, and willingness to own a robot as co-variables. The following results were extracted from this
evaluation:

1. There are significant differences in the rating of warmth when the familiarity with technology
is also controlled (F = 4.496, p = 0.038, η2 = 0.066).

2. There are significant differences in the rating of warmth (F = 4.555, p = 0.037, η2 = 0.066)
and marginal differences in the ratings of competence (F = 3.845, p = 0.067, η2 = 0.051)
when the familiarity with robotics is also controlled.

3. There are significant differences in the rating of warmth when the willingness to interact with
a robot is also controlled (F = 4.402, p = 0.04, η2 = 0.064).

4. There are significant differences in the rating of warmth when the willingness to own a robot
is also controlled (F = 4.687, p = 0.034, η2 = 0.068).

For each of the four co-variables that showed differences (almost all of them significant), extra
tests were conducted to obtain more information. All four variables can take five possible discrete
values (None, Low, Medium, Mid-high, and High). The results obtained were divided in two subsets
for each co-variable, High and Low. The division was made trying to ensure that the sizes of both
subsets were as similar as possible. For the familiarity with technology variable, it was considered that
participants with low familiarity were those that answered None, Low, or Medium, while participants
with high familiarity were those that answered Mid-high, or High. For the familiarity with robotics,
the participants that answered Medium were included in the group of high familiarity. The splits
based on the willingness to interact or own a robot follow the same distribution that the one for the
familiarity with technology. A summary of how the data was divided into the Low and High category
based on the responses given for each co-variable can be seen in Table 4.5.

This resulted in 8 different subsets of data. For each of them, Independent Sample T-Tests were
conducted, with Levene’s tests to ensure the homogeneity of variances. In all cases, the assumption
of homogeneity is met. For the variable warmth, the following results were obtained:
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Low High

Familiarity with technology None, Low, Medium Mid-High, High

Familiarity with robotics None, Low Medium, Mid-High, High

Willingness to interact with a robot None, Low, Medium Mid-High, High

Willingness to own a robot None, Low, Medium Mid-High, High

Table 4.5: Subsets of data created based on the values of the four co-variables included in the
demographic section of the questionnaire.

1. For the participants that reported a low familiarity with robotics, there is a significant difference
on the rating of warmth between the neutral and expressive conditions (t(37) = −2.835, p =
0.007).

2. For the participants that reported a low familiarity with technology, there is a significant
difference on the rating of warmth between the neutral and expressive conditions (t(24) =
−2.917, p = 0.008).

3. For the participants that reported a low interest on interacting with a robot, there is a significant
difference on the rating of warmth between the neutral and expressive conditions (t(26) =
−2.064, p = 0.049).

Figure 4.17: Significant differences found through the Independent Sample T-Tests for the warmth
dimension. The bars represent the average value and the whiskers represent the 95% confidence
intervals. The asterisk indicates the significant differences between conditions.
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Figure 4.17 summarizes the significant differences found for the warmth dimension. On the other
hand, for the variable competence, the following results were obtained:

1. For the participants that reported a high familiarity with technology, there is a marginal
difference on the rating of competence between the neutral and expressive conditions (t(39) =
−1.895, p = 0.066).

2. For the participants that reported a high interest on owning a robot, there is a significant
difference on the rating of competence between the neutral and expressive conditions (t(29) =
−3.122, p = 0.004).

Figures 4.18 shows a summary of all the differences found for the competence dimension.

Figure 4.18: Differences found through the Independent Sample T-Tests for the competence dimension.
The bars represent the average value and the whiskers represent the 95% confidence intervals. The
asterisk indicates the significant differences between conditions.

4.6.2.7 Discussion

Observing the overall ratings obtained for all three variables, participants did find the warmth of
the robot to be significantly higher under the expressive condition than under the neutral condition,
while no significant differences were observed for the other variables. This validates hypothesis H1, as
the modulation did, in fact, provoke a change in how participants perceived the robot. The fact that
the main effect of modulating the robot’s expressiveness to adapt it to the context of the interaction
is a higher rating in warmth and not in competence is not surprising, and validates hypotheses H2 and
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H4. Under both conditions, the robot is able to conduct the interaction with the user correctly,
reacting to the answers of the user, and showing knowledge about the task in hand. Mini knew where
each monument was located and was able to correctly assess if the answers given by the user were
correct or not. Thus, it is reasonable to assume that the items that compose the competence scale of
the RoSAS questionnaire (capable, responsive, interactive, reliable, competent, and knowledgeable)
would not be highly affected by a change in how the robot expresses itself. Regarding the rating for
discomfort, although it was expected that it would decrease with the addition of the modulation, the
lack of significant variation could be due to the role that other factors play (for example, the external
aspect of the robot, or the design of the interaction, among others). Another possible reason behind
it might be an excessive modulation. An intense variation in how the robot performs actions in a
short period of time (like in the interaction conducted during the study) could make the robot more
expressive, but also make it look less natural if it is taken too far. Further tests would be required to
obtain a better understanding of this. In any case, the lack of effect that the modulation has over the
rating of discomfort translates in hypothesis H3 not being validated.

Focusing now on the evaluation conducted while controlling the different co-variables, several
conclusions can be extracted. First, it seems that participants less used to technology and robots seem
to perceive the effect of modulation clearer, and find the robot to have more warmth when its actions
are being adapted to the context of the interaction. A possible explanation for this would be that a
lack of familiarity leads to not having a frame of reference for comparing the performance of the
robot. Thus, participants that have had less contact with robotics (or technology in general) will not
be able to compare Mini’s expressiveness to that displayed by other robots. Second, participants
that show interest in owning a robot or have a high familiarity with technology seem to believe the
robot to be more competent when it is able to adapt the expressiveness to the circumstances of the
interaction. Following the explanation given for the first conclusion presented, this could mean that
those participants with more knowledge (or interest to know) about the robot’s capabilities are more
susceptible of perceiving the variation that the modulation of Mini’s expressiveness introduces.
Finally, the fact that participants that are less willing to interact with a robot are able to appreciate a
difference between both conditions could be caused because this lack of interest makes them less
inclined to evaluate positively the robot, and thus there is more range for improvement. In any case,
the results obtained seem to indicate that there is a benefit to endowing social robots with the ability
to adapt their behaviour to different situations, and that in Mini this can be achieved with the two
modulation methods used in this study (replacing actions inside the expressions in runtime and
using the speed and amplitude parameters to modify the appearance of the expressions).
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4.6.3 Subjective evaluation: effect of the profile-based modulation

The goal of the second subjective evaluation conducted is to test the effectiveness of the third
modulation approach. In this case, the Expression Manager will use modulation profiles to adapt the
expressiveness of the robot to its internal state. In this case, the experiment focuses on the expression
of affect states, both mood and emotion, as these are one of the most prominent examples of internal
states that play a big part in shaping the actions of a social robot. Like in the previous study, a
video-based evaluation was chosen due to the concerns raised by the COVID-19 pandemic.

4.6.3.1 Affect state expression

Mini has been equipped with an affect generator that governs the emotional state of the robot based
on stimuli collected from the environment. The stimuli are classified inside an activation system (for
example, cognitive processes, or sensorimotor information). The value of these stimuli will affect the
valence and arousal of the robot, which in turn will determine the emotion/s active and the robot’s
mood. Under this model, the intensity of the affect state will increase in presence of a stimulus, and
then decay at a certain rate when the elicitor disappears. Based on the levels of arousal and valence,
the mood of the robot can be either anxious, happy, bored, or relaxed, while the emotions considered
are happiness, sadness, anger, and surprise. There is also a neutral state that represents the idle state of
the system, when no mood or emotion is active. This approach to affect state generation considers
moods to be discrete, while emotions are continuous, and have associated an intensity level that
ranges from 0.0 to 100.0.

In order to improve the integration of both affect states in the robot, the Players include a method
for fusing the effects that moods and emotions have over expressiveness. If the affect generator
notifies a change in the robot’s mood, the Players load the configuration related to the new mood for
each interface. In this approach, the robot will always be conveying a mood. When an emotion is
triggered with the highest intensity, the expressiveness will be modulated to represent exclusively
that emotion. Then, as the intensity of the emotion decays, the expressiveness will be continuously
adapted so it shifts from conveying only the emotion to conveying only the mood that the robot
is feeling, when the emotion disappears. In between, the modulation of the expressiveness will be
the result of the combination of the mood and emotion effects, with the importance of the latter
being proportional to the emotion’s intensity. During the integration of the proposed approach, it
was observed that there was a significant period of time between the moment when the effect of the
emotions’ intensity stopped being perceivable and the moment when the intensity actually reached
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0.0. Thus, it was determined that if the intensity drops below an empirically defined threshold (5.0
in this case), the modulation will immediately switch to conveying only the robot’s mood.

Also, when a new update on the robot’s state is received in the emotion display module described
in Section 4.5.5, the module starts by checking if there is a dominant emotion, and retrieves its
intensity if it exists. If the intensity is above a threshold (the value used in this evaluation was 80.0),
the appropriate expression is retrieved, and an activation request is sent to the Expression Manager.
The reason behind the implementation of the threshold is the idea that a explicit emotional response
to an stimulus should only be triggered by a highly intense emotional episode. These emotional
expressions have been carefully designed to react to the specific stimuli that will appear during the
experiment (the user gives a correct/wrong answer to a question, the user hits the robot, and the
user caresses the robot). Each emotional episode can only trigger the execution of a single emotional
expression.

4.6.3.2 Design of the affect-based modulation

As presented in Section 4.3.4, the relationship between affect states and expressiveness is a research
topic that has attracted a significant amount of attention. This section introduces the knowledge that
was used to define the specific effect that each emotion and mood has over the robot’s expressiveness.
According to the discussion presented in [151], Ekman proposed that there are six or seven basic
emotions (the consideration of contempt as a basic emotion was not as clear as the other six: happiness,
sadness, fear, disgust, anger, and surprise) that have associated prototypical expressions. Socially
acquired display rules can affect the relationship between an emotional state and its prototypical
expression. There is evidence that supports that there is an innate component of emotional
facial expressions, although the connection between expressions and states is not completely
understood. Another conclusion that can be extracted from [151] is that basic emotions tend to be
recognized universally, although it can be observed that several emotions show variations on how they
are displayed in different group. In any case. these differences are not big enough to hinder recognition.

Regarding the different communication interfaces that Mini can use, there have been multiple
studies that evaluate the particular effect for each emotion. Regarding facial expressions, the pioneer
is considered to be Charles Darwin. In [139], he stated that happiness is associated with the act of
smiling, where the cheeks are raised, pulling the corners of the mouth up. Displaying sadness involve
raising the inside corners of the eyebrows. An angry expression would be recognized by the eyes being
wide open, the nostrils being raised, and a furrowed brow. Finally, an expression of surprise presents
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open eyes and mouth, and raised eyebrows. Another feature connected with an expression of anger,
as presented in [152], is the red margin of the lips becoming tighter and narrower. In that same work,
Ekman argues that disgust, another of the so called basic emotions, can be conveyed through the
raising of the nares, the pull up of the infra-orbital triangle, and the wrinkling of the nose’s sides.

When considering the effect that affect states have over the speech, two components can be
considered: content and prosody. Because the former is fixed by the robot’s applications, the
expression of affect in Mini will be achieved through the modulation of the latter. Emotions ligated
to the arousal of sympathetic nervous system cause an increase on speech rate, voice volume, and also
high frequency energy. If the parasympathetic system is the one aroused instead, which can happen
when feeling sad or bored, then the opposite happens: low voice, pitch and high frequency energy,
and slower rate [162]. These findings are confirmed by other works [163, 164] that stablish how
surprise and anger lead to an increased pitch, energy, and speech rate, joy also causes an increase in
the first two features, while its connection with the rate of articulation is not always present. Finally,
sadness leads to a decrease of all three characteristics.

The work of Darwin [139] also studied the effect that emotions have over body motions. A
passive attitude characterized by a small amount of motion or a posture with the head hanging on
the chest are indicators of sadness, while anger would produce whole body trembling, clenched
fists, squared shoulders, and frantic movements. Regardless, not many researchers focused in this
particular channel of communication. In the survey conducted by Kleinsmith and Bianchi-Berthouze
[155], some authors report that anger is conveyed by bending the head forward and also bending the
elbows, while other work reported that the head is bent back when in anger. Happiness is connected
to the head being bent back and the arms being raised, according to several authors, while others
mention an upright position of the head and the arms being straight. However, although some
authors report similar body features associated to a given emotion, not all reports coincide.

The final modality considered is the use of colors to convey affect. The results of the study
conducted by da Pos and Green-Armytage [156], which were collected using participants from
Europe and Australia, indicate that there is not a one-to-one relationship between colours and
emotions. Anger and happiness generated a greater consensus than the rest of the expressions. For
anger, participants selected mainly reddish colours, while happiness was associated with red and
yellow tones. Surprise showed a similar choice of colours, although the reds selected were closer to
magenta, instead of orange. A majority of participants selected blue tones for sadness. Finally, the
colour selections for disgust and fear are more distributed. Other works evaluated the emotional
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response that each colour evokes on a person. In the study conducted by Valdez and Mehrabian
[157], the arousal dimension showed a direct relationship with colour saturation and an inverse
relation with brightness. On the other hand, pleasure was a joint positive function of both brightness
and saturation. Regarding hue, a relation was found between this colour feature and pleasure, while
the relation with arousal was weaker. Finally, Sutton and Altarriba [158] conducted an experiment
where participants were given 160 emotional terms, and were asked to select the colour they would
associate said terms with. The results of the study showed a connection between the colour red and
negative emotions, while yellow and white were connected to positive emotions.

Both the mood and emotion profiles that will be used to modulate the appearance of Mini’s
expressions have been designed to reflect the features presented above, to the extent that the robot
is capable. For example, because Mini lacks a mouth, the expression of affect states through facial
expressions had to be reworked to use only the eyes (only feature that can be controlled in Mini). An
evaluation was conducted to ensure that the modulation designed transmits affect states correctly,
The results of this evaluation will be presented in Section 4.6.3.7.

4.6.3.3 Experiment definition

In the interaction used to evaluate the robot in this study, the robot plays a quiz game with the user.
In this game, the user can select a category, and the robot starts asking questions about it, giving the
user four options to choose from. In the interaction depicted in the videos, the category selected is
History. The length of the game was set to four questions, as this was enough to showcase all the
possible affect states without overextending the interaction, which could be tiring for the participants.
Figure 4.19 shows Mini during the game.

At the beginning of the video, Mini can be seen in an idle state that simulates being asleep, while
a button is shown in the tablet with the text “Press to start”. After the user presses the button, Mini
executes the Wake up gesture, introduces itself, and then starts explaining the rules of the game. Once
the instructions have been explained, the robot asks the user to choose a category for the game. The
user answers: “I like history”. Then, the robot confirms the user’s selection, and starts with the first
question: “In what year did the attack on Pearl Harbour took place?”. The user selects the option
“1941” in the touch screen. This being the correct answer triggers the activation of the “Happiness”
emotion. Mini congratulates the user, and then gives a small explanation about the attack on Pearl
Harbour. Once this explanation has been completed, the robot asks the user about their opinion on
the topic of the question, and the user answers that he likes questions about History. Mini shares
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Figure 4.19: Mini playing the quiz game with an user.

with the user that it also likes learning about History, closing this small dialogue, and then moves on
to the next question.

Question two was about which was the oldest city in South America. Although the correct
answer was Caral, the user did not know this, and he answered “La Paz”. This triggered the “Sadness”
emotion, and made the robot perform the Regret gesture. After informing the user about the correct
answer, Mini gave a brief explanation about this answer, and then asked the user a personal question
(If he had visited Perú, the country where Caral is located). The user answered the question and the
robot gave a small feedback (because the user said he had never visited Perú, the robot recommended
him travelling there). Then the game moved on to the third question. This time, the user had to
answer who the husband of Cleopatra was. Again, the user thought the right answer was Julius
Caesar, when in reality all the answers were correct. This triggered the “Sadness” emotion, but this
time, the user felt like he had been cheated, so he hit Mini, which triggered the “Anger” emotion.
The robot admonished the user, and then continued with the explanation of the answer. After a
small dialogue between robot and user with another personal question, the game moved on to the
last question.

The last question was “What age started with the Renaissance?”. Now, the user was able to
give the correct answer (the Modern Age”). Mini congratulated the user, showing happiness,
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and in turn, the user celebrated with the robot, caressing its belly. This stimulus triggered the
“Surprised” emotion, to simulate that Mini was not expecting that response. After executing the
Surprise gesture, the robot gave the last explanation, and engaged in one last dialogue with the user.
The interaction ended with Mini summarizing the results of the game, before bidding the user farewell.

4.6.3.4 Conditions

Four conditions have been considered for evaluating the effect of profile-based modulation:

1. Neutral: Under this condition, the robot cannot display neither emotions nor moods. The
modulation strategy was removed from the players, so the robot always displays the neutral
state, and the emotional expressions sent by the emotion display module were replaced by
non-affective versions that only included the utterances, in a neutral voice.

2. Punctual-emotions: Under this condition, the robot cannot display emotions or moods,
but the emotional expressions were added back to the emotion display module.

3. Emotion-mood: Under this condition, the robot is able to display moods and the emotional
expressions. This was achieved by modifying the Players so they would ignore emotions, and
pay attention only to changes in the robot’s mood.

4. Full affect: Under this condition, the robot is able to display emotional expressions and to
modulate its expressiveness to represent both emotions and moods, including the decay of an
emotion’s intensity. The decay of each emotion was adapted so there is enough time to show
how the robot’s expressiveness changes from the moment the emotion is at is highest, to going
back to displaying only mood.

Figure 4.20 shows the different affect states that the robot shows during the entire interaction, as
well as the conditions under which those states are conveyed.

4.6.3.5 Questionnaire

The questionnaire developed for this evaluation is similar to the one that was used in the first one.
The first section includes the questions oriented to retrieve demographic information from the
participants, the second section included the video that shows the interaction that will be evaluated,
and the third section presents the participants with the items from the RoSAS questionnaire. Because
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Figure 4.20: Affect states displayed during the interaction depicted in this experiment. Asterisks over
each column indicate under which conditions is each type of affect state displayed. Green asterisk
refers to the punctual-emotions condition. The red asterisk refers to the emotion-mood condition.
Finally, the blue asterisk refers to the full affect condition.

these items are about generic social attributes that can be displayed by a robot, an extra section
was added to explicitly evaluate the participants’ perception of the robot’s mood. In this section,
participants were first asked if they were able to perceive any mood in the robot, and if their answer
was affirmative, then were asked to specify which one. This was done through a text box that allowed
each participant to provide the answer in their own words. Four versions of the questionnaire
were prepared, each one with the video associated to one of the four conditions. Participants were
redirected randomly to one of the questionnaires, in order to balance the number of participants in
each condition.
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4.6.3.6 Hypotheses considered

Because the goal of both subjective evaluations conducted is to prove if the modulation methods can
be used to improve the perception that users have of the robot, the hypotheses considered for this
second evaluation are the same four tested in the first one:

• H1: The modulation of the robot’s expressiveness will affect the perception that the
participants have of the robot.

• H2: The participants’ perception of warmth will be directly related to the affect
expression (warmthneutral < warmthpunctual−emotions < warmthemotion−mood <

warmthfullaffect).

• H3: The participants’ perception of discomfort will be inversely related to the affect expression
(discomfortneutral > discomfortpunctual−emotions > discomfortemotion−mood >

discomfortfull_affect).

• H4: The participants’ perception of competence will show no significant differences between
all four conditions.

4.6.3.7 Pre-evaluation stage

Although the goal of the experiment was to evaluate the effect of the modulation on the overall
appearance of the robot, there is a previous step that had to be performed beforehand: ensuring
that the modulation can be perceived correctly and has the desired effect. This means that the
participants have to be able to recognize the emotions and moods that the robot conveys, and also
that the emotional expressions designed are perceived as expected. In order to do this, an independent
evaluation was conducted among participants that were not invited to take part in the study, so the
results would not be skewed.

In this pre-evaluation, the robot was recorded performing the four emotional expressions
designed, and then performing a generic gesture under all affect states used in the experiment (neutral
and happy for the mood, and all four emotions). This resulted in ten separate videos. In an online
survey, participants watched all ten videos, and then were asked to assign one mood or one emotion
to the robot in each video (participants were told if they had to assign mood or emotion). This was a
two stage process, where first they were allowed to write whichever affect state they considered the
robot was displaying, and then were presented with all the affect states the robot can display and had
to choose one.
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Figure 4.21: Recognition rates for the different moods and emotions displayed by Mini.

55 participants took part in the pre-evaluation. Among all affect states, the worst recognition
results were obtained for the videos where the robot was displaying mood. This is understandable, as
mood is less intense, and thus a change in mood has a smaller effect over the robot’s expressiveness.
When presented with a limited set of options, the correct mood was the most selected option
(44% for neutral and 49% for happiness). In the open question, the neutral mood was described
as serious by the majority of participants (44%), with neutral being the second option (27%), and
the happy mood was correctly recognized by the majority of participants (36%). The results for
emotion recognition are much more positive. Because the first design showed a low recognition
rate, the emotion modulation profile was modified and a second questionnaire was developed and
completed by 36 participants. Happiness, anger, and surprise show recognition rates of over 90%
when the participants were presented with a closed set of options. For sadness, the recognition rate
was significantly lower (69.44%), but still the most selected option. In the free text evaluation, the
four emotions were still the most common options provided by the participants (58.3% for anger,
69.4% for happiness, 41.67% for sadness, and 50% for surprise). Figure 4.21 shows a compilation of
these results. Finally, the emotional expressions were correctly recognized by more than the 70%
of participants. Specifically, the recognition rate was 78.2% for anger, 87.3% for happiness, 70.9%
for sadness, and 80% for surprise. Similar to the other affect states, the recognition rate was lower
when the participants were allowed to provide an open answer. Still, the majority of participants still
recognized correctly all the expressions. These results can be seen in Figure 4.22.
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Figure 4.22: Recognition rates for the different emotional expressions designed for Mini.

Overall, the results obtained for this pre-evaluation can be considered as satisfactory. Emotions
and emotional expressions were recognized by a significant majority of participants. The differences
on recognition rate between open and closed questions can be explained with the fact that only terms
that were close enough to the correct answer were considered as correct. For example, although serious
could be considered an appropriate description for the neutral mood, it was considered as a different
answer, which affected the results. The low recognition rates for the robot’s mood were expected,
due to the inherent difficulty that its recognition has without a proper context. Nevertheless, the
majority of participants were still able to correctly recognize it.

4.6.3.8 Participants

Participants were contacted using the same methods described for the first subjective evaluation.
In total, 166 participants took part in the experiment, 38 assigned to the neutral condition, 43
to the punctual-emotions condition, 40 to the emotion-mood condition, and 45 to the full affect
condition. The split between male and female participants was 44%-56%. 12% of the participants
had basic education, 16% were high school graduates, 11% had professional formation, 43% were
college graduates, 15% had a masters degree, and 3% had a PhD. 86% of participants reported having
medium or higher familiarity with technology, while only the 37% reported having a mid, mid-high
or high familiarity with robotics. Regarding their interest on interacting and owning a robot, 82%
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Figure 4.23: Demographic analysis of the participants in the experiment.

reported at least a medium interest in interacting, and 80% reported at least a medium interest in
owning one. Figure 4.23 shows a summary of this demographic analysis.

4.6.3.9 Results

The 166 responses were analysed first in search for any duplicate answers. Next, the three dimensions
of the RoSAS questionnaire were computed for each response, and the average value for each
of these three items were computed for the whole set of data. Normality tests were conducted
for the three dimensions. The results of the Saphiro-Wilk test show that the warmth ratings for
all conditions did not deviate significantly from normal (Wneutral(38) = 0.977, p = 0.599,
Wpunctual−emotions(43) = 0.968, p = 0.276, Wemotion−mood(40) = 0.974, p = 0.491,
Wfull_affect(45) = 0.982, p = 0.707), while the same cannot be said for competence and
discomfort. Trying to achieve normality, a square root transformation was applied to both the
competence and discomfort dimensions, resulting on the creation of the sqrt_competence and
sqrt_discomfort variables, respectively. The Saphiro-Wilks test was conducted again for both variables,
and the results show that the transformation was enough to achieve normality for the sqrt_discomfort
variable (Wneutral(38) = 0.967, p = 0.317, Wpunctual−emotions(43) = 0.959, p = 0.127,
Wemotion−mood(40) = 0.945, p = 0.052, Wfull_affect(45) = 0.956, p = 0.084), but not for the
sqrt_competence. Nevertheless, an analysis of the normal Q-Q plots for the competence variable does
not reveal any major problems with kurtosis or skew, and the data in the graph tends to group around
the diagonal line, which represents the perfect normal distribution. Thus, normality is going to be
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also assumed for competence. Figure 4.24 shows the Q-Q plots for the competence dimension under
all four conditions.

Figure 4.24: Q-Q graphics for the competence dimension under the neutral (top left),
punctual-emotions (top right), emotion-mood (bottom left), and full_affect (bottom right) conditions.
The line represents a perfect normal distribution.

After the normality assumption was checked, descriptive statistics were computed for all three
variables (warmth, competence, and discomfort). The results for the warmth factor shows the highest
rating for the emotion-mood condition, followed by the neutral condition, while the lowest rating
was observed for the full affect condition. Regarding the competence factor, the highest rating was
observed for the neutral condition, while the lowest was observed for the full affect condition.
Finally, for the discomfort factor, the lowest rating was observed for the neutral condition, while
the highest was observed for the full affect condition. In any case, none of the differences found
between conditions for any of the three dependent variables proved to be significant. The results of
the descriptive statistics can be seen in Figure 4.25.

The next step in the study was to use the four questions added to the demographic information
section of the questionnaire as co-variables that will be controlled during the comparison of the
dependent variables. The only co-variable that led to differences between conditions being found
is the willingness to interact with a robot. First, an one-way ANCOVA was used to compare the
ratings for sqrt_discomfort under all four conditions using the willingness to interact as co-variable.
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Figure 4.25: Ratings for the three sub-scales in the RoSAS questionnaire (warmth, competence,
discomfort) for all four conditions. The bars represent the average value and the whiskers represent
the 95% confidence intervals.

Normality assumptions were met, the result of the Levene’s test carried out showed that homogeneity
of variances can be assumed, and a Sidak correction was performed. The results show that there is a
significant difference on the ratings for sqrt_discomfort (F (4, 161) = 3.207, p = 0.014, η2 = 0.74).
In order to understand which pairs of conditions are significantly different from each other, post-hoc
tests were conducted. They revealed that the ratings for sqrt_discomfort under conditions neutral
and full affect are significantly different (p = 0.0443). This means that the modulation of the
robot’s expressiveness using emotional expressions, intensity-based displays of emotion, and
expression of mood lead to significantly higher ratings of discomfort when compared with a robot
that is not able to express any affect state. Next, another one-way ANCOVA was conducted to
study the variations on the ratings of competence while controlling the willingness that participants
have to interact with a robot. In this case, the differences found were only marginally different
(F (4, 161) = 2.305, p = 0.061, η2 = 0.54). The results indicate that there is a direct relation
between the willingness to interact with a robot and how competent it is perceived. Finally, no
correlation was found between the ratings of warmth and how willing to interact with a robot were
the participants.
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4.6.3.10 Discussion

None of the differences found in the analysis of the results obtained were significant, and
thus, no conclusions can be extracted from these results, beyond the fact that is necessary
to conduct more trials to try to understand which could be the reason behind this lack of
significant differences. With this results, hypotheses H2 and H3 are not validated, as there was no
significant differences in the ratings of warmth and discomfort. H1 can also be considered not to
be validated, as there are only significant differences under a very particular condition (when the
willingness to interact with a robot is used as a co-variable). Finally, the only hypothesis validated
by the results is H4 as there are no significant differences in the rating of competence among conditions.

There is a series of possible reasons that explain why this experiment did not show any significant
results. First, Mini was designed to look cheerful and friendly, with a squashy body, and a voice that
is intended to be warm. This could suggest that the configuration used for the neutral condition
could not been perceived as neutral by the participants (here I refer to the appearance of the robot
during the entire interaction, and not to the neutral mood that was tested for a single expression in
the pre-evaluation stage). However, a more thorough evaluation of the robot’s neutral appearance
should be conducted. The fact that the lowest rating of discomfort was observed for the neutral
condition and the highest was observed for the full affect condition could be tied to the definition
of the experiment. In the quiz game depicted in the videos, the robot changed its affect state after
every question, and the explanations that the robot provided went on for approximately 1 minute.
This means that the robot changed from maximum happiness to maximum sadness, and then to
maximum anger and maximum surprise in 1 minute. On top of this, the emotional expressions and
displays of affect were developed with the idea that they should have a high intensity, so they could be
recognized in videos without problem. There is a possibility that all of this led to changes in affect
display that were too extreme, and thus were perceived as being more abnormal. One last possible
reason is the interaction selected for the evaluation. A quiz game where the robot plays the part of the
host might not be the situation where one would expect a heightened emotional response, and thus
the neutral configuration could be perceived as appropriate. A possible solution could be identifying
a situation where the desired emotional reactions are more appropriate. In any case, further tests are
required in order to identify how to improve the proposed approach for displaying internal states
using modulation profiles.
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4.7 Conclusions

The design of an expressiveness management approach is one of the core tasks that has to be
completed for endowing a social robot with the ability to interact with users in a human-like way.
This task can be divided on two components. On one hand, the main goal of an expressiveness
management module is to ensure that the gestures performed allow the robot to achieve its
communicative goals successfully, in a way that meets the expectations that humans might have.
This means that the actions should be performed in a human-like manner (avoiding repetitive or
mechanical interactions), obeying the temporal constraints of communication. On the other hand,
expressions not only have the goal of conveying messages, but should also transmit the internal
state (emotional and motivational) of the robot. Any approach designed to generate multimodal
expressiveness for a robot has to take care of both aspects simultaneously. In this chapter, an approach
for developing multimodal expressiveness for a social robot has been presented.

The proposed approach has proven to manage both aspects of communication, being able to
convey complex multimodal messages while abiding by the rules that control interactions between
humans (particularly, the temporal constrains involved in all dialogues), while at the same time
providing the tools required to transform these multimodal expressions so they are able to convey the
internal state of the robot while still being able to complete their communicative goal.

4.7.1 Contributions and achievements

The solution proposed for describing expressions for a social robot represents multimodal gestures
using state machine-like structures. In this approach, each of the unimodal actions (e.g., utter a
sentence, move a joint...) that compose an expression is controlled by a single state. Under this
approach, developers can design expressions from a global point of view, instead of focusing on
developing the actions for each interface separately. This allows to combine two methods for
synchronizing multimodal actions: (i) use timestamps to indicate the moment in which each action
has to start, or (ii) tie directly the beginning of one action to the completion of a previous one. In
order to simplify the process of creating new expressions, the state machines are based on FlexBE, a
framework for developing high level behaviours for robotics. Among other features, this framework
allows developers to create the expressions using a graphical interface, which allows to incorporate to
the design process any person with the expertise required for creating human-like gestures, regardless
of his/her background on programming.
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The second contribution that has to be highlighted is the development of the Expression
Manager, the software architecture that controls the process of loading, configuring, and executing
expressions. This module is divided in three main components: (i) the Expression Scheduler receives
requests for executing expressions coming from the rest of the robot’s software architecture and plans
their execution, using a priority-based approach for deciding the order in which these expressions
should be performed; (ii) the Expression Executor receives activation commands coming from the
Scheduler, loads the corresponding expression, configures it, and ensures its correct execution; and
(iii) the Interface Players receive all the different actions that the expression needs to perform, and
format them into commands that can be processed by the robot’s output interfaces.

In order to diminish the negative effects of using predefined expressions, the third main
contribution of this chapter is the development of a series of strategies designed to generate and
modify expressions in runtime. First, a template was developed to build expressions from a list of
actions. This approach starts by building a tree that represents the connections between the different
actions in the list (the order in which they have to be executed, and if any of the actions needs to wait
on the completion of a previous one). This tree is then used to create the appropriate state machine.
This frees developers from the need to model everything the robot needs to do as a predefined
expression.

Second, three modulation strategies have been devised for increasing the variability of the
robot’s expressiveness, allow it to display internal states, and adapt the predefined expressions to
the current context of the interaction. The first strategy allows to replace individual actions inside
an expression during the process of loading and configuring it in the Expression Executor. With
this, gestures can be adapted in runtime to better suit the interaction requirements (for example,
replacing the utterance in a greeting gesture so it references the time of the day, or the name of
the user). The next modulation strategy can modify the global behaviour of an expression with
two control parameters: speed and amplitude. Each parameter will have a specific effect over the
robot’s interfaces (for example, speed will control the velocity of the motions or the prosody rate,
while amplitude can be used to change the pitch of the voice or the intensity of the robot’s LED).
Changes in the internal state of the robot, or specific needs of the robot’s software architecture can
lead to changes in the values of these two parameters, which in turn will result in the modification
of an expression’s appearance. The final modulation strategy allows developers to create specific
modulation profiles detailing the effect that each internal state has over the parameters that control
the robot’s expressiveness. For example, while a change on the value of the speed control parameter
will result in changes in both the speed of the robot’s motions and its prosody rate (either both are
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increased or decreased), using the modulation profiles allows roboticists to specify individual effects
for each parameter.

The approach presented has been evaluated through a series of experiments, both subjective and
objective, in order to ensure that is able to cover both dimensions of communication (conveying
messages and displaying internal states) in an appropriate manner. This evaluation shows that the
expressiveness architecture has a reaction time under most conditions below the more strict threshold
defined for a natural interaction, and below the maximum threshold considered under all conditions.
The results also suggest that, while not being its main purpose, the expressiveness system could be also
used to manage reactive behaviours at a speed comparable to that of a person, if the behaviour is not
excessively complex. Regarding the use of the modulation strategies, results suggest that they are able to
serve their purpose, that the states conveyed through the modification of the gestures are recognizable
by users, and that a proper modulation strategy that adapts the expressions to the state of the
robot and the circumstances of the interaction can improve the perception that they have of the robot.

4.7.2 Achievement of the proposed goals

The goals regarding the implementation of an approach for managing the expressiveness features
of a social robot were presented in Section 4.1.3 of this manuscript. The main objective that had
to be achieved is the development of a model that allows to represent multimodal expressions for a
social robot. Due to the complexity of this goal, it was decoupled in a series of subgoals that would
serve as milestones of the progress made. This section evaluates the degree of accomplishment of each
subobjective:

• The first subgoal defined in the introduction of this chapter was related to the process for
creating new expressions. They should be easy to craft, and require as little programming
knowledge as possible, in order to allow roboticists to involve in the design process people
without a technical background, but with knowledge on other areas of interest, like animation.
This has been solved through the use of FlexBE for creating new expressions. It provides a
graphical user interface where developers can drag blocks representing the different states that
can be used to build an expression and connect them to specify the transitions. This eliminates
the need for touching any code, simplifying the design of new gestures. The original version of
FlexBE has been adapted so it fits better the requisites of the task at hand.

• The second subgoal required the implementation of modulation strategies that could be
used to modify the expressions in order to adapt them to the context. This goal was achieved
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through the implementation of three modulation techniques: (i) allow the replacement of
actions in a expression with new values in runtime; (ii) the use of two control parameters (speed
and amplitude) to modify the overall behaviour of the expressions; and (iii) the definition of
modulation profiles tied to specific states of the robot that allows an individual control over
each parameter of an interface. The combination of the three proposed methods has been
deemed enough for the situations that have been identified so far (for example, the expression
of affect states through the modulation of the robot’s expressiveness).

• The previous subgoal was extended with a second objective related to the users being able to
properly recognize the different states that the robot might try to express using the modulation
techniques implemented. This means that the modulation not only has to create a perceivable
change in the robot’s expressiveness, but the control of the modulation has to be precise enough
to generate recognizable states. The results extracted from the subjective tests conducted for
evaluating the Expression Manager suggest that this goal has been achieved successfully. In
particular, a preliminary test was conducted during the experiment that studied the effect that
different levels of affect display had over how users perceived the robot. This test showed that
both the emotions and moods displayed using the profile-based modulation were recognized
correctly by the majority of participants. Also, although no particular internal state was
expressed through the adaptation of the speed and amplitude parameters, or the replacement
of the communicative actions in an expression, the results of the second experiment suggest
that these two methods can be used to improve the perception of warmth coming from the
robot.

• The next subgoal defined that the model used for representing expressions had to allow
any combination of communication modalities, while ensuring that this does not lead to
a potential conflict between interfaces. The use of a state machine-like structure where all the
communicative actions are sent to the Interface Players through one of the expression’s states
allows to combine these individual actions in any order required, or even perform them on
parallel. While the developer is the one that has to ensure that the structure of the gesture
does not causes conflicts in the use of the Interface Players, problems between expressions
are handled by the Expression Manager itself. A priority system was implemented to solve
any potential conflict during the planning stage. As a result of this process, expressions can
be executed immediately, stored to be executed as soon as possible, or even discarded (if the
priority is too low).

• As long as two expressions do not require the use of the same interfaces, they should be executed
in parallel. This increments the expressiveness of the robot, as expressions that use limited
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channels of communication could be enhanced with other less important expressions. An
example of these less important expressions are behaviours that, while not having a particular
communicative goal, can be used to endow the robot with a liveliness appearance. Thus, one
of the subgoals defined for this research was the addition of the functionality required for
executing multiple expressions at the same time. The completion of this objective required the
modification of the FlexBE architecture. FlexBE was originally meant for managing high-level
robot behaviours, and as such, was designed to control one behaviour at a time. Through the
proper adjustments in FlexBE’s source code, multi-behaviour execution was achieved.

• The expressiveness that a social robot needs to be able to display could involve more than
just individual actions, or even multimodal expressions. Some situations could require the
activation of more complex behaviours that need to be performed for extended periods of time.
An example could be the use of a face tracking behaviour, where the robot follows the face of the
user with whom it is interacting. Although the development of this type of complex behaviours
falls outside of the scope for this dissertation, one of the goals defined was to expand the
Expression Manager with the mechanisms required to integrate these behaviours in the robot’s
expressiveness. This goal was successfully completed through the implementation of a series of
FlexBE states: one for sending the signal required to activate a complex behaviour, another
for controlling that the behaviour is being performed correctly, and a third one to deactivate
the behaviour. These three states can be connected sequentially to create an expression that
follows the same structure that the rest of the robot’s gestures, and that can be used to establish
a communication between the robot’s expressiveness and external modules that implement
these complex behaviours.

• Finally, the last subgoal that had to be accomplished was related to the performance of the
Expression Manager. As stated in several parts of this manuscript, there are temporal constraints
in human communication that have to be met. For example, if messages are not conveyed in
under a certain amount of time, they could loose their meaning. In Sections 3.6.2.2 and 4.6.1.2,
it was stated that the robot should be able to perform communicative actions in under 1 second,
with the maximum delay being fixed at 2 seconds, in order to be compliant with the “Two
Second” rule. The objective evaluation of the Expression Manager showed that, even under the
worst conditions observed for the delay introduced by the HRI Manager, all communicative
actions that involved the use of a single expressions were performed in under 1 second. For a
complex expression involving multiple actions through different interfaces, the delay observed
was slightly above the 1 second threshold, but well under 2 seconds, which was deemed to be
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acceptable. Thus, although there is room for optimizing the performance of the system, it can
be considered that the objective was completed successfully.

4.7.3 Limitations of the system and future lines of work

While the evaluation of the objectives that were defined for this chapter of the thesis suggests that
the implementation of the new expressiveness architecture was completed successfully, there are still
some areas that could benefit from extra developments. Based on this, a series of future lines of work
have been identified:

• Currently, the approach presented designs all of its expressions using FlexBE, a framework
designed for controlling high-level behaviours in robotics applications, which is built on top of
SMACH, a library for developing hierarchical state machines in Python. While this solution
proved to be effective for representing the expressiveness of a social robot, it might not be the
most efficient. First, FlexBE was developed with high-level behaviours in mind, where only
a single state machine would be running at a time, during the entire life of the robot. It was
also designed with teleoperation in mind, where the graphical interface used to design the
behaviours can also be used to control them. Second, the temporal analysis of the proposed
expressiveness architecture showed some weak points in the process of executing expressions.
In particular, the main bottleneck was found at the beginning of the execution process (the
time that passes from the moment the execution method of the expression is called, until the
first action is sent to the corresponding Interface Player). While under most conditions this
delay is not enough to cause the loss of the message’s meaning, the results pointed out that
this delay is proportional to the complexity of the expression being executed. Third, FlexBE’s
interface provides a series of functionalities that are not required for creating expressions for a
robot. Also, because all expressions follow a common structure, many parameters that have to
be defined to create a FlexBE state machine will have the same value. Thus, automating the
process of completing the values for these common parameters reduces the complexity of, and
the time required for, creating new expressions. While using FlexBE for building expressions
proved to cover all the needs identified for an expressiveness system, it could be positive to
replace this framework with another approach that better suits the needs of the application
at hand (the design of multimodal expressions for social robots). This would also imply to
develop/find a new graphical interface for designing expressions.

• The current method is able to enhance the expressiveness of a robot by allowing the execution
of multiple expressions at once. For example, while one expression can be used for achieving the
communicative goal imposed by the current interaction, other expressions could be performed
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for displaying the state of the robot, or simply to increase its appearance of being alive. Currently,
when evaluating if two expressions can be performed simultaneously, the proposed approach
only focuses on the interfaces that each expression will use. If there are no coincidences, then
both expressions are performed. This could lead to a potential problem if two expressions that
try to achieve opposite communicative goals are requested at the same time. In the current
integration of this expressiveness approach, this is not a possibility, as the rest of the architecture
ensures that this cannot happen. Regardless, it would be beneficial to develop an improved
method that ensures that two expressions will only be performed simultaneously if both have
compatible communicative goals.

• The developed approach uses a predefined library of multimodal gestures to generate the robot’s
expressiveness. As it has been already mentioned in this section, this can lead to repetitive or
mechanical interactions if the size of the expression library is too small, or make it hard to
manage if it is too big. The Expression Manager addresses this approach by accepting a list of
actions and transforming it into an expression in runtime. But this solution still requires that
the module of the robot’s architecture that needs to communicate a message specifies all the
actions that have to be included in the expression. Thus, it would be interesting to endow the
Expression Manager with a method for automatically creating new expressions in runtime,
based on contextual information and the communicative goal that has to be achieved. For
example, if a user approaches the robot, the communicative goal behind the next robot’s action
could be greeting this user. This goal, along with contextual information, like the time of day,
or the name of the user (if its known), could be used to create the appropriate expression. This
would reduce the complexity of creating new interactions between the robot and a user, as
developers could focus exclusively on specifying the goal of the robot’s messages and leave the
generation of the expression itself to the discretion of the Expression Manager.

• One of the modulation strategies developed proposes the use of two control parameters to
modify the appearance of a particular expression: speed and amplitude. Each parameter can
have a limited amount of settings, and has a specific effect on each of the robot’s interfaces,
which cannot be decoupled (for example, the speed parameter will always modify the speed of
the robot’s motions and also its prosody rate, but never one or the other). In the current version
of the expressiveness architecture, the values for these two control parameters are specified
in the request for executing an expression. This means that whichever module of the robot
requests the expression has to decide which is the correct value for the control parameters (the
normal value is assigned by default), and also that these values have to be added to every request.
This issue could be solved with the implementation of a method that can retrieve information
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about the robot’s state and use it to infer the correct value that should be used for the control
parameters. The Expression Manager should still allow the applications to specify values for
these parameters (in case it is necessary for whatever reason), and only use the inferred values if
none are provided with the execution request.

• The profile-based modulation strategy allows developers to define specific configurations for
the different parameters of the robot’s interfaces, according to the state of the robot. These
profiles would include the configuration related to each possible state that the robot might
experience. The Interface Players are the ones that load the profiles, keep track of the robot’s
state, and adapt the expressiveness accordingly. This strategy has been tested for conveying
affect states (mood and emotions), and because of this, the mechanisms implemented in the
Interface Players have been designed around these particular states. For example, right know,
the Players will prioritize the expression of emotions over mood, and compute the values for
each of the interfaces’ parameters as the fusion of both affect states. This modulation strategy
needs to be expanded to consider other possible states, and the algorithm for computing the
values for the interface’s parameters should be generalized so it becomes state-independent,
this is, so it can fuse any two states that the robot might be experiencing.





CHAPTER 5 5

Liveliness in Social Robotics

5.1 Introduction

There is a motivation to be part of a group that pushes humans to forge social relationships, even
under adverse conditions [165]. According to evidence, this need to belong plays a role on shaping
emotion and cognition. For example, the status of the social bonds that a person establishes is going
to have an effect on that person’s emotional state (forging bonds has a positive effect, while situations
in which a bond is in danger have a negative effect). Also, a person devotes an important part of
cognitive resources to the creation and maintenance of these social bonds, and how he/she process
information coming from another person is going to change depending on the existence of a shared
bond. Humans create relationships with each other through social interactions. But for a person to
engage in such interactions, it is required that he/she can recognize the other participant as being
capable of establishing a mental connection [166]. Thus, for a robot to become an effective social
agent, it has to be recognized as an appropriate interaction partner by the humans in its environment.

Biophilia can be defined as the hypothetical tendency that humans have to interact and
affiliate with other life forms. First proposed by philosopher and psychologist Erich Fromm
in his book The heart of a man: Its genius for Good and Evil [19], published in 1964, the term
was popularized by Edward O. Wilson with his book Biophilia, published in 1984. In this book,
biophilia is defined as “the urge to affiliate with other forms of life”. The original work presented
by Wilson was later complemented by The Biophilia Hypothesis [167], a book that compiles the
work of 20 researchers that examined how the concept of biophilia can be applied to different contexts.

207
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Along the years, there has been a large body of evidence both in support and against the biophilia
hypothesis. In [168], Kahn presented a review of some of the works in support of the biophilia,
addressed some of the concerns arisen by this hypothesis, and also presented a discussion about
structural-developmental studies conducted by him and his colleagues. Another example is the
work of Ulrich and Lunden [169], which showed that people exposed to nature images during a
surgery experienced lower levels of anxiety after the procedure. Regarding the criticism that biophilia
attracted, Joye and De Block [170] contended the idea of integrating the feelings for life in an
evolutionary psychology framework. Another concern that is raised is the existence of biophobia (the
fear of nature). Regardless of the extent to which the biophilia hypothesis can be defended from all
the criticism that surrounds it, what seems clear, based on all the evidence, is that humans do tend to
feel affiliations towards life forms. Applied to the design of a social robot, it could be argued that,
even if these affiliations are not the driving force of human behaviour, giving the robot a liveliness
appearance could help it to create a relationship with users. This idea of a liveliness appearance will
be related to the concept of animacy.

Animacy can be defined as the state of being alive and animate [171]. While some authors argue
that animacy has to be understood as a binary concept (an entity is either animate or inanimate),
others argue that it is a continuous scale [172]. Animated beings display 4 key features [173]: (i) they
have the ability to move on their own; (ii) they can grow and reproduce; (iii) they are able to maintain
a knowledge base, perceive their surroundings, generate and display affect, learn new concepts, and
think; and (iv) they are composed of biological structures that allow reproduction and also maintain
life. Inanimate entities, on the other hand, do not share any of these features. The current robotic
technology makes impossible for a robot to exhibit the features ii and iv, as they cannot grow or
reproduce, but they are able to exhibit the other two.

Research shows that animacy is a key feature for a robot that has to be considered a social actor.
For example, Csibra et al. [174] conducted several studies to examinate the idea that humans attribute
intentions, beliefs, desires, and purposes to non-human entities (including artificial elements, like a
robot) if these entities have the ability of moving on their own. Their results show that the participants
were able to perceive the actions of the entities as being goal-directed, even without being able to
perceive the source of said actions. Besides the fact that animacy is a requirement for being consider a
social actor, there are other advantages for a robot that displays a liveliness appearance. For example,
experiments conducted by Bugaiska et al. [175] pointed towards the idea that stimuli coming from
animate sources have a higher processing priority. Bartneck et al. [23] used a variation of the Turing
Triage Test to study robots’ animacy. Their results suggest that it would seem desirable to use facial
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expressions as a way to attract attention on the robot, and also that a good solution for achieving an
animate appearance is a combination of face animations and human features that use smooth gestures.

The review conducted in this section suggests the importance of the robot being able to
transmit the idea that it has a mind of its own, with intentions and desires. The task of endowing
a robot with this feature has a cognitive dimension, involving the creation of these intentions,
desires, and beliefs, and an expressive dimension, represented by the behaviours that the robot
can perform. The latter will be the focus of this chapter. One of the solutions proposed in this
manuscript is the use of co-speech gestures (non-verbal expressions that accompany a verbal
message) for generating this liveliness appearance. Thus, besides considering the factors that make
a robot look alive, it has to be considered also the relationship that exists between speech and
gestures in human communication. In face-to-face interactions, participants often use co-speech
gestures on top of the verbal modality, while listeners have to integrate gestures and other visual
cues (for example, facial expressions or lip motions) with the speech in order to obtain the whole
meaning of the message being conveyed [176]. Several factors suggest a tight connection between
gesture and speech production [177], including the fact that both modalities communicate
congruent information, and the performance of a gesture can be tied to a specific point in the
speech, or the fact that we might still use co-speech gestures even if the listener could not see
them, or that speech fluency suffers if the speaker cannot perform said gestures. However, other
authors defend that the generation of co-speech gestures is not always tied to speech production [178].

In gesture-speech integration, although both speech and gestures share meaning and co-occur,
they can also convey separate information [179]. Co-speech gestures can be broadly categorized into
one of two classes. On one hand, there are gestures that have to follow a set of rules in order to have
meaning. They are known as emblematic gestures, also called quotable gestures. Their form and
metaphoric interpretation are defined by conventions. An example of this would be a hand gesture
where the tips of the thumb and the index finger are touching, forming a circle, while the other
fingers are extended. This gesture is generally understood as “OK”. It has to be mentioned that these
gestures do not necessarily replace the speech, but instead add more meaning to it. The second class
of gestures, known as non conventional, are those that are generated automatically during speech
and do not follow any rules. This type of gestures can be considered part of language, although
without being redundant, and do not have a standard form. They are connected to specific segments
of speech, and have to be precisely timed to coincide with them. An example of non-conventional
gesture would be mimicking breaking something with the hands while explaining how an object
broke. In [179], McNeill recognizes four categories of non-conventional gestures: point, beat, iconic
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and metaphoric. According to this work, the relationship between speech and gesture can be seen as
the integration of two contrasting semiotic systems that share a common core idea, but express it
differently.

There have been multiple theories for how speech and gestures are interconnected. Growth point
theory of co-speech gesture generation [179] proposes that speech and gestures have their origin
on the same representation, this is, an idea unit that combines verbal and non-verbal component.
The sketch model of co-speech gesture generation [180] proposes that both the speech and gestures
are generated from the same communicative intention. During the conceptualization phase, this
communicative intention is realized by generating the appropriate speech representation of said
intention, and the imagistic representation of gesture contents. The lexical retrieval hypothesis [181]
proposes that co-speech gestures are generated during speech production, specifically during the
formulating phase, where the semantic features of certain lexical items are used to generate the
gestures. Regarding the structure of each individual gesture, a standard convention separates the
motion in preparatory, stroke, and retraction stages, although some authors presented variations of
this structure [182]. The speech-gesture synchronization approach that is proposed in this chapter of
the thesis takes ideas of the sketch model and the lexical retrieval hypothesis for connecting speech
and gestures.

The conclusions that can be extracted from the research presented above is that there are multiple
factors that play a role on conveying animacy, including the external appearance, the actions that the
robot performs, and the use of non-verbal communication, among others. In this dissertation, the
problem of how to increase the animacy of a social robot is tackled through two different methods.
The first solution proposed generates random actions for each of the robot’s communicative
interfaces. Because the actions generated by this method can be run alongside the robot’s speech,
but the information contained in the verbal message is not used during the generation process,
it is important that these actions are generic, in order for them to not contradict the meaning of
the utterances. This can be seen as a drawback, which the second proposed approach tries to overcome.

The second method seeks to generate co-speech non verbal behaviours. There are two main
approaches for solving this problem. The first solution involves combining manually verbal and
non-verbal components into multimodal expressions. This has the advantage of allowing developers
to carefully design each of the different actions that will conform the expression, although it is
time consuming, and can make interactions feel repetitive, if the amount of expressions designed is
too low. The second approach relies on models that generate the expressions automatically. This
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solution simplifies the process of adding new dialogues to the robot’s repertoire, although the
expressions generated automatically can end up being more generic. Authors have tried to solve
this disadvantage by adding different constraints to the generation process that allows the system
to adapt the expressions generated to different external factors (for example, switch the style of
the expressions created based on the identity of the human speaker). In this chapter, the solution
proposed combines elements of both approaches. The problem of co-speech gesture generation has
been framed as a gesture prediction and synchronization task. The non-verbal behaviours have been
manually designed to represent different communicative intentions, while a model has been trained
to automatically select the most appropriate behaviours given the verbal information that has to be
conveyed. This allows developers to add new verbal messages without the need for designing also
the non-verbal information, and the non-verbal expressions can be carefully designed around the
communicative intentions that the robot might display.

The proposed solution defines a set of gesture labels that represent all the possible gesture types
that the robot can perform. In this case, each label represents the semantic value of the gesture that
should be performed alongside the speech. Examples of these labels include greet, question, or express
enthusiasm. A model is trained for selecting the sequence of labels that better match the transcription
of the speech. This is done by considering both the actual words, and their part of speech function,
as well as the communicative intention of each speech chunk (for example, greet the user, thank
him/her for something, ask a general question, or ask a question about the other speaker). For each
possible gesture label, a series of non-verbal behaviours have been handcrafted to represent that
particular meaning. The proposed model will predict the sequence of gesture labels that have to
accompany the speech, and then will use these labels to select the correct behaviours and synchronize
them to the speech. The resulting multimodal expression is then sent to the Expression Manager to
be executed. This allows roboticist to use in their applications handcrafted multimodal gestures,
specify a list of actions that have to be transformed into a multimodal expression in runtime, or
define only verbal messages and let the proposed approach select the most appropriate non-verbal
component. Figure 5.1 shows the software architecture described in Chapter 2. This chapter will
focus on the modules highlighted in red.

5.1.1 Objectives

This chapter is devoted to study how to increase the animacy of a social robot. Previous approaches
designed in the research group opted for tying each internal state of the robot to a set of expressions
and just draw expressions randomly at a given rate. However, this approach ignores the deliberated
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Figure 5.1: Diagram representing the software architecture described in Chapter 2. The work
developed in this chapter of the dissertation focuses on the modules of the architecture highlighted
in red.

actions that the robot might be performing at any given time. So, if one of the robot’s applications try
to convey a verbal message, and the random expression selected for enhancing the robot’s liveliness
appearance does not suit the information contained in the speech, it could be perceived as unnatural
by the users. This thesis aims at enhancing the liveliness appearance of the robot through

the integration of two methods for displaying non-verbal, non-functional expressions. This
objective has been characterized in two main goals:

1. The implementation of a method for generating unimodal actions (actions involving

a single mode of communication) for each of the communicative modalities that the

robot can use.

2. The development of a co-speech gesture prediction module for enriching the speech

of the robot with appropriate, non-verbal expressions.

Due to the complexity of these goals, a series of subgoals that can be used as milestones for
achieving the final objectives have been defined. The first milestone is related to the method for
generating unimodal actions, while the next five are related to the co-speech prediction method.
Finally, the last subgoal is related to both methods:

1. The unimodal action generation method has to be able to adapt the actions created to the
internal state of the robot.
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2. The proposed solution for enhancing the robot’s speech with non-verbal behaviours will rely
on the speech’s communicative intention for selecting the appropriate behaviours. Thus, two
models have to be developed, one for predicting intentions based on the speech, and another
for predicting the non-verbal behaviours that have to be used based on the speech and the
output of the first model.

3. The appropriate datasets for training the co-speech prediction gesture system have to
be generated. This involves creating two datasets, one for the model that predicts the
communicative intentions of the utterance, and another for the model that predicts the
non-verbal behaviours.

4. A method for synchronizing the selected non-verbal behaviours with the speech has to be
developed. Because the length of the utterances and the number of gestures required is
unknown and can change from utterance to utterance, the method needs to be able to handle
the synchronization of a list of gestures with variable length.

5. The proposed co-speech gesture prediction system will have to select the appropriate behaviours
from a library of predefined expressions. Gesture-speech synchronization has to be easily
modifiable, so it can be adapted to the available gestures.

6. The co-speech gesture prediction module has to be easy to integrate in robotic platforms with
different morphologies. In order to do this, gesture prediction has to be detached from gesture
execution.

7. The proposed methods for enhancing the robot’s animacy have to be integrated in the robot’s
software architecture, be able to work autonomously, and show a level of efficiency that allows
for fluid, natural interactions.

5.1.2 Overview of the chapter

Here, the different sections that compose this chapter are described:

• Section 5.2: In this section, a review of co-speech gesture generation approaches is conducted.
This analysis includes both works that either generate the non-verbal behaviour from scratch
and those that select gestures from a library. Similar to the analysis conducted in previous
chapters, all the works reviewed are compared based on a series of features that this dissertation
defines as relevant. The analysis is completed with a comparison between the proposed model
and the works reviewed, pointing out the similarities and differences.
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• Section 5.3: Here, both the method for generating unimodal actions and the model for
co-speech gesture prediction are presented. For the first method, its architecture is presented,
along with its integration in the HRI System presented in Chapter 2. For the second method,
this section presents the gesture prediction pipeline, the prediction correction mechanism,
and the rule-based gesture synchronization approach. The co-speech gesture prediction model
has been evaluated using mainstream machine learning metrics. This section also shows how
this model has been integrated in a robotic platform.

• Section 5.4: This section introduces the experiments conducted in order to evaluate the
proposed methods. First, an objective evaluation was conducted, which measured the time
required by each method to generate their behaviours. Second, a case of use was presented
to illustrate how both liveliness generation approaches are combined when the robot is
performing one of its tasks.

• Section 5.5: This last section contains the conclusions extracted during the design and
development of the proposed liveliness generation methods. This section includes a review of
the goals that were proposed at the beginning of the development phase, and also highlights
the most relevant contributions of the work presented in this chapter.

5.2 State of the Art

This section starts with an analysis of the effect that different non verbal communication interfaces
have over the perception of animacy. Next, the analysis focuses on the generation of co-speech
gestures, both for virtual agents and for robotic platforms. This review aims at endowing the
reader with a general idea of the different solutions that can be implemented for enhancing the
communication capabilities of an agent (either physical or virtual) with non-verbal behaviours that
complement the verbal modality, in order to highlight the unique aspects of the work presented in
this chapter.

5.2.1 Effect of non-verbal communication in the perception of animacy

There is an extensive body of work that studies how the modulation of different non-verbal interfaces
influences how users evaluate the animacy of an individual. Most of the work revolves around two
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types of actions: body motions and facial expressions. These are two of the most used communication
modes in non-verbal expressions for robots. On top of this, robots can also be equipped with other
communication modalities, like screens for displaying multimedia content (for example, images,
videos, GIFs...), or coloured LED. This study will focus on the effect that non verbal behaviours have
over the perception of animacy.

Regarding the study of how kinesics (body postures and motions) affects the perception of
animacy, most of the work evaluated focuses on motion, and how the introduction of changes that
seem deliberate in said motion can make even a basic shaped entity look animate. Santos et al. [183]
studied how a proper parametrization of motions can influence the perception of animacy. In this
work, animacy experience is described as the perception in an entity of motion patterns that would
be attributed to an intentional agent. This animacy experience can lead to ascribe mind to a given
agent. In their experiment, two different animations were used, one where one sphere moved in an
horizontal trajectory, and another where two spheres were present, one in motion and the other static.
Three variations were developed for the motion of the first sphere (the same were used in both videos).
The dimensions of movement that were parametrized in this study are: (i) directionality, which
represents the direction of the motion, as well as changes in said direction; (ii) Discontinuity, which
can be understood as the existence of pauses in the motion; and (iii) responsiveness, which represents
the reaction that the motion generates in the environment. Participants judged the motions in an
animacy scale, ranging from physical to personal. In a follow-up experiment, the authors used only
scenes that included two spheres to continue exploring the parameters that can modulate animacy.
This was done by adjusting the modulation of the parameters used in the first experiment, as well
as the motion variations. The results obtained from the studies show that the increase of animacy
experience is influenced by the time the entity spends near a second entity, and also by the degree of
interaction between said entities, although it seems that impressions of animacy are modelled by the
combination of multiple variables. Chang and Troje [184] presented three experiments to assess
animacy based on biological motion cues. The objective is to test the hypothesis that establishes
that the perception of the animacy displayed by a entity is going to be influenced by the presence or
absence of the visual invariants that signal direction and that are used to signal the presence of an
animal. The stimuli used in these experiments were derivations of point-light sequences of a human,
a cat, and a pigeon. The results of the experiments showed that, even though point-light displays
do not have a coherent form, they still can display animacy. Because of the lack of coherence, this
correlation must be related to how local motions are processed. A second conclusion extracted from
the experiments is that this perception is shown to be orientation-specific. The second experiment
showed that not being able to discriminate the direction of the motion leads to a decrease in the
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degree of animacy perceived. Tremoulet and Feldman [185] demonstrated that an individual object
can be perceived as being alive based on its motion pattern. The authors hypothesized that changes
in speed and motion direction at the same time can influence a change in the animacy perception
of the moving object. The environments were kept completely featureless to remove any possible
effect that static objects in the environment could have. Besides the changes on speed and direction,
three alignment conditions were considered: circular patch, rectangle aligned with the motion, and
rectangle aligned always with the original direction of the motion. Participants observed the motions
and categorized the objects as either alive or not. The results confirmed that animacy can be displayed
in short motion paths if the direction and speed are altered, even without any explanation for these
changes. The reason behind this can be that these variations in motion give the impression that the
entity is able to control its own motion.

In the study of the relationship between facial expressions and animacy, authors have tried to find
if any facial feature has a significantly bigger effect on animacy expression than the rest. They have also
tried to understand the biological mechanisms involved in recognizing a face as belonging to a lively
entity. Looser and Wheatley [186] studied the relation between animacy and facial expressions. Faces
generate an indiscriminate effect of attracting attention. Among the faces detected, humans have to
discriminate those that have a mind attached. In their work, the authors aimed at finding the point
in which a face starts to appear alive, how gradual is this distinction, and also finding what perceptual
information plays a bigger role in animacy attribution. Three experiments were performed, using
images from faces that ranged from a mannequin to a real person. The results of these experiments
suggest that faces need to be close to a human appearance, regarding its proportions, to be recognized
as alive and having a mind. A second conclusion is that the attribution of animacy, opposite to
realism, is not continuous, and instead seem to display categorical-perception effects. Also, the third
experiment shows that the eyes have a disproportional importance in perceiving animacy. Koldewyn
et al. [187] studied if animacy is a basic dimension of face perception, and if it is supported by a
common neural mechanism across different categories of faces. Four experiments were conducted in
this work. The first one evaluated if animacy shows adaptation that transfers between individuals,
the next two evaluated if after-effects of animacy transfer between different face categories and across
species, and the last one evaluated if animacy after-effects can be seen in inversion. In this context,
adaptation after-effects can prove that the subset of neurons that process facial features are sensitive
to a particular dimension (age, gender, etc...). The results of the experiments show reliable adaptation
after-effects in how animacy is perceived in human faces. These after-effects were significantly weaker
when the adapting stimulus was inverted. These results demonstrate a certain flexibility of animacy
perception, and that this perception can be modulated over time by experience. The results also
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show that animacy after-effects transfer across face categories (in this case, age groups), while they do
not transfer across species. Regarding the cues that could drive these adaptation after-effects, the
authors mention two types: surface-based and shape-based. Overall, the results suggest that animacy
is a perceptual dimension of a face. Balas and Tonsager [188] presented evidence that suggests that
the importance that eyes have over animacy perception is not a direct effect of eye appearance, but
instead of the combination of this appearance with other facial features. In their work, the authors
evaluated which are the facial cues that support the discrimination of animate and inanimate faces.
3D artificial faces were generated based on images of real persons. Contrast was used to manipulate
both local and global features of the face in order to study what the real role of the eye area is on
animacy perception, and also contrast chimeras (the independent manipulation of the eye region’s
polarity) in order to evaluate the importance of the eye region in face recognition. The results of the
experiments suggest that both the eye region and the appearance of the rest of the face have an effect
on animacy perception. It is important to mention that the eyebrows were not considered as part of
the eye region when creating the contrast chimeras, and thus, its effect on animacy perception is not
included in the eye area effect.

Finally, although the vast majority of authors have focused on the effect that motions and facial
expressions have over animacy perception, there also researchers that have focused on robot-specific
interfaces. For example, Rosenthal-von der Pütten et al. [189] presented a study where they
compared the effects of human-like and robot-specific non-verbal behaviours on how the users
perceived the robot. The robot-specific behaviour considered in the study is the use of coloured
LED in the robot’s eyes to display emotions, while the human-like expressions involved using
body motions that are coherent with the situation in the study. Four conditions were defined: (i)
the robot does not display any non-verbal behaviour; (ii) the robot displays only robot-specific
behaviours; (iii) the robot displays only human-like behaviours; and (iv) the robot displays both
human-like and robot-specific behaviours. Their results show that, regarding animacy, the addition
of either human-like or robot-specific behaviours showed a significant effect on the users’ perception.
Human-like behaviours showed a bigger effect than robot-specific behaviours. Finally, the addition
of robot-specific behaviours on top of human-like expressions did not show any significant differences.

Overall, the study conducted in this section showed that, in general, the use of non-verbal
behaviours can help to enhance the animacy of a robot. One of the strategies that can be used for this
is having the robot perform motions that seem intentional, and not caused by an external force. A
second conclusion that can be extracted from this review is the importance that facial expressions have
on animacy perception. In particular, the eyes might play an important role in shaping this perception,
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according to some authors. Third, the work of Rosenthal-von der Pütten et al. [189] showed that even
non human-like behaviours, like the use of coloured LED can help to convey a liveliness appearance.
In this dissertation, one of the methods used for enhancing the robot’s animacy focuses on generating
unimodal actions through individual communicative channels, seeking to convey the idea that
the robot is performing these behaviours intentionally, while the second method reinforces this
appearance of intentionality of the robot’s non-verbal actions by selecting those expressions that better
suit the interaction, based on the communicative goals that the robot tries to achieve at any given time.

5.2.2 Comparison of co-speech gesture prediction/generation methods

A study of the applications for automatic generation of expressiveness for communicative agents
shows that one of the applications that has attracted attention over the years is the extension of
verbal communication with appropriate non-verbal behaviours. Besides serving a communicative
purpose, the addition of these behaviours can help to endow the agent with a lively appearance
that can improve the quality of the interactions with users. Although most of the works reviewed
generate the motions automatically, a few works that couple the speech with handcrafted expressions
have been included in the analysis, in order to provide a more complete picture of possible solutions
to the co-speech gesture generation problem.

The first works reviewed focus on features that are present in the speech to select/generate the
most appropriate behaviours. This involves both features extracted from the prosody and/or the
transcript of the speech. In 2014, Chiu et al. [190] presented a machine learning-based approach to
speech-gesture mapping. This approach divides the problem in two stages: (i) mapping the input
audio features of the speech to a sequence of gesture annotations, and (ii) mapping the annotations
to the appropriate motions. Conditional Random Fields (CRF) are used to generate the sequence
of annotations, while the final motions are generated by Gaussian Process Latent Variable Models
(GPLVMs).

The system starts by finding an appropriate mapping between audio features and a series of
gesture annotations (there are only two possible labels: gesture and non-gesture, to simplify the
learning process). Each gesture label is not only related to the input data, but also to the previous
and following labels in the sequence. Once the annotations were generated, the system generates a
sequence of continuous motions based on the labels, and links the motions one to another. This is
done by learning a low-dimensional space that captures the dynamic aspects of the motions. The
system encodes a set of motion samples into their low-dimensional representations. In order to
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achieve this, the GPLVMs derive a manifold in which each point corresponds to a gesture frame.
Gesture frames are selected in this manifold, and then an interpolation algorithm uses forward
inference and backward inference functions to find the path between motions. Then, the trajectory
found is mapped back to the original dimension through GPLVMs to obtain the final animation
between gestures. One year later, Chiu et al. [191] proposed a new model for predicting co-verbal
gestures: the Deep Conditional Neural Field (DCNF). This model provides a joint learning of deep
neural networks and second order linear chain temporal contingency, where the former presents the
advantage of mapping complex relations while the latter models the temporal coordination of the
predicted sequence. The model receives a combination of content and prosody information about
the speech, and predicts the most appropriate gestures.

The proposed approach takes advantage of gestural signs that represent the function and the
form of co-verbal gestures. The dictionary of gestural signs was designed based on a theoretical
analysis of the available literature on gestures, and then reduced by filtering those motions that
showed low occurrences in motion data captured during face-to-face interactions. The DCNF
model receives the text of the speech, part-of-speech tags for each word in the text, and prosodic
features extracted from the speech. The networks in the model take this input for a given frame
and forward it through the network to obtain one of the model parameters, while the undirected
linear chain performs forward-backward belief propagation to compute the remaining parameters.
The potential for each gesture sign is the weighted sum of the three obtained parameters, and the
probability for said labels is defined as its normalized potential. In 2018, Ishi et al. [192] presented a
method for generating hand gestures for android robots based on the speech. Based on an analysis of
the relationship between occurrence of gestures and dialogue acts, the proposed method uses text,
prosody, and dialogue act classification to generate the most appropriate gestures.

The proposed gesture generation method is divided in two phases: training and generation. In
the training phase, words in the sentence are associated to concepts, which in turn are connected to
gesture functions, and then to motions. The relationship between concepts, functions, and motions
is modelled using conditional probabilities. Concepts are extracted from the words with WordNet.
Probabilities between concepts and gesture functions are speaker independent, and computed
using the full annotated dataset, while the association between functions and motions is tied to
a specific speaker. Regarding the generation phase, two methods were proposed: text-based and
prosody-based. The latter is in charge of the beat gestures, as they are usually tied to prosody peaks. In
the text-based approach, the system extracts the sequence of concepts from the speech transcription,
and then samples the gesture function based on the conditional probabilities. Based on the selected



220 chapter 5 | Liveliness in Social Robotics

function, a random gesture is extracted from the corresponding cluster. The stroke phase of the
gesture is synchronized with the keyword that triggered it. The prosody-based approach searches for
prosody peaks in samples taken from the utterance, and generates beat gestures for those peaks. Beat
gestures can be superimposed to text-based gestures. Finally, the generated gestures can be discarded
depending on the dialogue acts observed in the utterance. That same year, Hasegawa et al. [193]
proposed a framework for generating body gestures to accompany speech based on a bi-directional
Long-Short Term Memory (LSTM) neural network. The model is designed to learn the relationships
between speech and gestures with backward and forward consistencies over a long period of time.

First, the system splits the speech into smaller audio chunks with fixed length, which
are then converted to Mel Frequency Cepstrum Coefficients (MFCC) feature vectors. Next,
each vector is passed to the LSTM network, alongside the vectors for the n previous and next
audio chunks (the system uses silent audio vectors if there are less than n chunks after the
current one). The network generates a frame of 3D positions for all the joints. Discontinuities
between frames are corrected through a smoothing process that uses two different filters: a 1€
filter and a Moving Average filter. The former filters the low frequencies to eliminate small
shimmering in low speed movements, while the latter smooths larger discontinuities using an
average window over a certain range of steps. In order to train the system, a dataset was created
through a semi-structured interview that paired speech audio and motion captured data. In
2019, Kucherenko et al. [194] presented a deep learning-based framework for speech-driven
generation that incorporates representation learning. The proposed approach is divided in three
steps: (i) learning a lower dimensional representation of the motions using an encoder-decoder
architecture, (ii) training a new encoder to learn a mapping between the speech features and the lower
dimensional representation, and (iii) connecting the original decoder with the new encoder.The
baseline neural network architecture for this approach is the model proposed by Hasegawa et al. [193].

The original encoder-decoder architecture is modelled as a Denoising Autoencoder with one
hidden layer. This network architecture is divided in two elements, an encoder that maps the input
to the motion representation, and a decoder that reconstructs the original movement from that
representation, both represented with Gated Recurrent Unit (GRU) neural networks. The system is
forced to compute lower dimensional representations thanks to a bottleneck layer in the middle.
Regarding the mapping from speech characteristics to motion representation, the proposed model
replicates the architecture from the work of Hasegawa et al. [193], although in this case the output of
the network is a low-dimensional representation of the motion. Three different features were tested
as inputs to the encoder: MFCC features, spectrograms, and prosodic features. Kucherenko et al.
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[112] introduced a year later a new model for generating random beat and semantic gestures together.
The proposed model receives as inputs both the acoustic and semantic representations of the speech
and generates expressions represented as a sequence of joint angle rotations.

In the proposed approach, audio is represented using log-power mel-spectogram features in a
64-dimensional vector, while the transcription of the speech is encoded using BERT. Each frame of
both modalities is jointly encoded by a feed-forward network into a low-dimensional representation.
Then, a sliding window of past and future speech features is passed over said representation in order
to give more context. The encodings inside the window are concatenated and passed through several
fully-connected layers. In order to ensure the continuity of the generated motions, predictions are
fed back to the model. Also, the proposed system conditions the generation process on information
from previous poses using FiLM conditioning, which generalizes regular concatenation. The model
was trained without the autoregressive feature for the first epochs, so it does not converge to a static
pose. Also in 2019, Yoon et al. [195] presented a learning-based co-speech gesture generation for
humanoid robots that is trained from a dataset of TED talks. Similar to other models presented in
this section, this approach relies on a encoder-decoder architecture for generating the motions. The
system receives natural language text as inputs, and outputs frame-by-frame poses.

The speech text is encoded word by word into a sequence of one-hot vectors indicating the
index of a given word in a dictionary. Regarding the poses, only the upper body is considered
(arms, shoulders, neck, and head). These poses are converted into 10-D vectors by using Principal
Component Analysis. The encoder is modelled as a GRU network, and is able to capture the
context of the sentence while generating a lower-dimensional representation. The decoder is also
modelled as a GRU network with pre and post-linear layers and a soft attention mechanism, for
focusing in keywords in the sentence when generating the motions. The decoder takes into account
the n previous poses generated to ensure the smoothness of the movement. The output of the
encoder-decoder architecture is passed to a network that generates 3D stick figures from the 2D
original predictions. Then, the joint configurations of the stick figure are directly copied into the
robot. Speech and gestures are synchronized by dividing the speech in smaller audio chunks, and
then generating motions for each chunk, with the same duration. That same year, Pérez-Mayos et al.
[196] proposed a model that uses three different approaches for speech-gesture synchronization.
The first approach starts by identifying keywords in the text connected to gestures in the database.
Then, a motion sequence is computed by assigning emblematic gestures to the keywords and beat
gestures to content words that have no emblematic gestures attached. Finally, the TTS module
generates an event for each word that is about to be uttered, and executes the gestures attached.
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The second approach aligns beat gestures to peaks in pitch. Each gesture has a pitch graph that is
used to select the most appropriate expression given a utterance. The system requests the execution
of the gestures using the time points associated to these peaks. The last approach combines both
techniques, selecting emblematic gestures based on keywords in the speech and beat gestures based
on pitch peaks. The former type will always have priority. Thus, the system will execute beat gestures
until a emblematic gesture is requested, at which point the following beat gestures are discarded until
the execution of the emblematic gesture is completed.

The authors also proposed a method for designing and storing human gestures to be reproduced
by a humanoid robot. The gesture database in this work was designed by analysing common gestures
that speakers in TED talks perform. Using a rule-based expert system, beat gestures are connected to
the prosodic features of the speech, while emblematic gestures are related to the meaning of specific
words. All gestures were manually designed. Also in 2019, Sadoughi et al. [197] introduced a model
for generating meaningful behaviours based on the speech of a conversational agent. The model uses
a dynamic Bayesian network with the addition of a discrete variable for constraining the behaviours
based on the discourse function (for example, if it is a question) and prototypical behaviours (for
example, head nods).

The baseline dynamic Bayesian Network is composed of observation and hidden variables.
The former can be divided into speech nodes (represent the prosodic features of the speech) and
motion nodes (represent either hand or head motions). The latter encode the state configuration
between speech features and motions. The evidences fed to the speech node are used to predict the
features of the gesture. The motion variable is computed with the Viterbi algorithm. The problem of
states converging to the average position of behaviours is avoided with the Linde-Buzo-Gray vector
quantization technique. After the network generates the motion trajectories, an extra processing
step is applied in order to smooth the transitions between the key poses in the gesture. The baseline
model is extended with the addition of new observational states representing the constraints applied
to the gesture generation process. For each constraint, the model includes transition matrices that
capture characteristic patterns associated to that constraint.

While the works presented above focus on features of the speech (either extracted from the
prosody, the transcription of the speech, or both), other authors extended this information with
other contextual information. One of the most extended approaches is using information about
the other peer in the interaction (either his/her identity or his/her gestural style). For example,
Aly et al. [198] proposed a method for generating multimodal robotic behaviours based on the
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extroversion-introversion personality trait of the human speaker. The system presented is composed
of the following modules: a text to speech module, a personality trait recognition module, a natural
language generation (NLG) module, a toolkit for translating the generated text into beat gestures,
and a metaphoric gesture generator.

The transcription of the speech is sent to the personality recognizer, which performs a
psycholinguistic analysis of the text in order to obtain the personality trait of the user (introverted or
extroverted). This trait, along with the communicative goal and other parameters, is sent to the NLG
module. The generated utterance is passed to the BEAT toolkit, which generates a synchronized set
of gestures based on the contextual and linguistic information, as well as on the vocal intonation.
Discourse annotations are used by the behaviour generation module to suggest all possible gestures,
which are then filtered in order to obtain the most appropriate set of expressions. At the same
time, relevant contextual information will be used for generating relevant non-verbal expressions.
The output of the BEAT toolkit is an animation script for the verbal and non-verbal behaviour,
synchronized based on the duration of the speech. In parallel, metaphoric gestures are generated
using Coupled Hidden Markov Models (CHMM), and their amplitude and duration will be adapted
to the user’s prosodic cues. The metaphoric gestures and the animation script generated by the BEAT
toolkit are sent to the robot’s behaviour controller, which first models the gestures generated by
BEAT according to the user’s personality, and then resolves any conflicts that might arise between the
different types of gestures generated. Using information from the speaker in the gesture generation
process is an approach that has been followed by other researchers. In 2019, Ginosar et al. [199]
presented a method for speech-to-motion translation, based on the relation between the monologue
speech of a speaker and his/her conversational gestures. The system receives an audio clip of an
utterance and generates a sequence of arms and hand motions that match the speaker’s gesticulation
style. Then the model synthesizes a video of the speaker uttering the speech and performing the
gestures. To ensure the smoothness of the generated gestures, the system learns from an audio
encoding generated from the entire utterance and predicts poses for the whole sentence at once.

The convolutional network presented in [199] is composed by an audio encoder and a 1D
UNet translation architecture. First, a 2D log-mel spectrogram is extracted from the audio clip of
the utterance. Then, the spectrogram is sent to the encoder, which downsamples it to a 1D signal
through a convolutional process. Next, the 1D signal is received by the UNet translation architecture,
and mapped to a temporal stack of pose vectors via an L1 regression loss. The bottleneck layer of the
network gives the system both past and future temporal context, while the skip connections allows
for a prediction of fast motion. An adversarial discriminator is used to evaluate if the generated
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motions match the style of the speaker. The method for generating co-speech gestures proposed
by Ahuja et al. [200] in 2020 also aimed at reflecting the gestural style of different speakers, while
maintaining the content of the gesture. The style of the speaker is encoded in a 2D space, and defined
by the idiosyncrasy of each speaker and a series of contextual circumstances, like the orientation of
the body, or the posture (standing versus sitting, for example).

The proposed model receives a sequence of audio frames and the gestural style of a given speaker
and generates a sequence of 2D poses. During training, an audio encoder processes the input speech,
while the sequence of poses for the speaker is divided into style and content, and each aspect is
managed by a separate encoder. Then, the style of the pose can be either be concatenated with the
encoding of the audio or the pose content. A generator with multiple sub-generators is conditioned
on the input speech and the speaker’s pose for the decoding the output postures. Each sub-generator
learns a different mode of the gesture space, which are tied both to style embeddings and audio
content. To avoid an overly smooth generation, the poses are fed to an adversarial discriminator,
which tries to discern if the pose is real or generated. The generator is then trained to fool the
discriminator by decoding realistic poses. Both the content and style encoders, as well as all the
sub-generators and the discriminator, are modelled using Temporal Convolution Networks, while
the generator is modelled as a 1D version of U-Net. Also in 2020, Yoon et al. [113] presented a new
model for gesture generation that used a multimodal context formed by audio, text, and the identity
of the speaker. The authors also added an adversarial mechanism for training which, along with the
multimodal context, endows the system with the ability to generate human-like gestures that match
the content and rhythm of the speech.

An individual encoder is used for each of the three modalities considered. This requires adding
padding tokens to the transcription of the speech so it has the same number of time-steps than the
other modalities. Both the prosodic features and the transcription are encoded into 32-D feature
vectors, while the identity of the speaker is represented by one-hot vectors with all elements set to zero
but one, and then mapped into an 8-D style embedding space. These feature vectors are concatenated
into a single vector for each time-step, and then passed to the gesture generator (modelled as a
multilayered bi-directional GRU network), which outputs a sequence of poses for 10 upper body
joints for the next time-step. If the speech is too long, then it is split into 2-second chunks. In order to
ensure that the transition between motions is smooth, the system appends the last four motion frames
to the feature vector for the first four frames of the current motion. These are considered the seed poses.
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Besides considering the identity and the gestural style of speakers, other approaches have relied
on other external factors for selecting/generating the most appropriate non-verbal actions. For
example, in 2018, Lugrin et al. [201] presented a hybrid approach to predicting cultural-dependant,
non-verbal behaviours based on the content of the dialogue. This solution combines theory-based
techniques that use cultural theories and theoretical knowledge to build the computational model,
and data-driven techniques that rely on multimodal cultural recordings to learn the parameters for
the model.

The proposed network is divided in two parts: influencing factors (cultural background and
conversational verbal behaviour), and resulting behaviours (semantic content and communicative
function of the speech). Based on the influencing factors, a Bayesian network computes the
settings for non-verbal behaviours that have to be performed. This work focuses on upper body
gestures, and takes into account the type of expression (excluding emblem gestures for being
highly culture-specific), the posture for the arms, and the dynamic variation of the expression.
Each influencing factor affects to particular parameters of the resulting behaviours. For example,
culture will affect the dynamics of the behaviour based on cultural dimensions, while the topic
of the dialogue will affect both the gesture and posture types. In order to augment the model
using an automated learning process, the authors annotated a series of videos in a dialogue dataset
with behavioural attributes. Two datasets were created, one with aligned gestures’ dynamics and
speech acts, and another without the alignment. The former was used to learn the joint probability
distributions of poses and gesture types based on verbal behaviour and culture, while the latter was
used for learning the probabilities of gestures’ dynamics, based only on culture. A year later, Ghosh
et al. [202] proposed an end-to-end system for mapping non-verbal behaviours to the speech of the
robot, while adapting the prosodic features of the speech and controlling the engagement of the
audience. The model receives the transcription of the speech and selects the most appropriate gesture
from a library. At the same time, a TTS module generates the speech of the robot, modulated based
on visual feedback about the state of the audience. Both the speech and gesture are fed to the robot’s
controller, which performs them.

The model was trained with video fragments extracted from TED talks. For each frame of the
video, the position of the head and neck of the speaker was obtained using a Convolutional Pose
Machine. Then, the frames are modified so the positions extracted for each frame are aligned. Using
the same convolutional network, the joint coordinates for both arms are extracted, and converted
into relative distance vectors from the neck, which are then clustered. The number of clusters
represents the number of dominant gestures, plus a cluster containing residual motions. The library
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of gestures used in this work was generated using the centroid of each cluster as reference. The
proposed model for selecting gestures is based on Random Forest, and returns the name of the
gesture to perform. Regarding the production of speech, the gaze vectors for the people in the
audience are used to determine their level of attention. Depending on the variation of this level, the
pitch of the robot’s voice is either raised, in order to attract attention, or lowered, if the level is high
enough. More recently, Xiao et al. [203] presented in 2020 an autonomous system that endows
a socially-assistive robot with the ability to learn the correlation between speech and behaviours
from context-appropriate human-human interaction examples. The proposed system is able to
capture metaphoric and iconic gestures, and generates behaviours that are tied to the context of the
application in which the robot is going to be used.

The architecture is divided in four stages: data collection, data processing, text-behaviour
mapping, and robot implementation. The data collection step is required to prepare a dataset of
human co-speech behaviours that will be used to train the model. The videos used are of either a
speaker in front of an audience, or multiple speakers interacting among them, while the behaviours
are represented by sequences of poses at given time points. A filtering stage corrects any error,
converts the poses from xyz coordinates to joint angles, and filters unfeasible and unrealistic poses.

The transcription of the speech is fed as an input to the machine learning-based mapping model,
and was segmented using the punctuation signs in the sentences. The model first compares the
joint pose frames in the dataset in order to obtain the dissimilarities between a pair of behaviours.
A regression network receives pairs of sentences from the training dataset and the behaviour
dissimilarity scores as labels, and seeks to achieve a match between them. When an input text is
received, the model starts by finding the sentence from the dataset that shows the lowest dissimilarity,
and then selects the motion accompanying said sentence as the behaviour for the input text.

Among the works reviewed in this section, the method proposed by [199] introduced the use of
an adversarial discriminator for controlling that the generated expressions match the style of the
speaker. This strategy was also followed by other researchers. In 2019, Ahuja et al. [204] introduced a
model that uses a joint multimodal space combining language and pose to generate animations based
on the input sentence. The system learns the joint space through a curriculum learning approach
that prioritizes short and simple sentences over long and complicated ones.

The goal of the proposed system is to generate motions based on a written description (for
example, “a person moves laterally”). First, a sentence encoder (modelled as a LSTM network) maps
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the sentence into a latent representation, while a pose encoder (modelled as a GRU network) does
the same for the sequence of poses related to that sentence. A joint translation loss and an end-to-end
curriculum-based training ensure that the representations of language and motions are close in
the embedding space. The joint translation loss is computed as a sum of both the cross-modal
loss between the original sentence and the predicted movement, and the uni-modal translation
loss between the original and the reconstructed movements. During training, the system is first
optimized to predict two time-steps conditioned on the complete sentence, which leads to the
model learning how to predict short pose sequences. When the loss on the validation set starts to
increase, the amount of time-steps is increased until the system reaches the maximum number of
prediction time-steps. A year later, Ferstl et al. [205] proposed the use of a generative adversarial
training paradigm to solve the problem of speech-gesture mapping. The authors also proposed a
model for classifying the different phases of a gesture, which will be used to segment the generated
motions so the different phases can be judged by the discriminator.

Given an input sequence, the classifier assigns one of six phase labels to each frame of the
sequence. The classifier is modelled as a two-layer recurrent network with an additional densely
connected layer. Both recurrent layers are modelled as Long-Short Term Memory networks, with the
first one being unidirectional, and the second one being bidirectional. Three different models were
trained in the presented work, each one using a different number of phases.

The core of the proposed system is the gesture generator. It receives as inputs the pitch of the
voice and a vector of 26 MFCC features, and infers a set of 3D joint poses. The inputs are processed
by a densely connected network layer, followed by a dropout layer and batch normalization. Then
a GRU network generates the joint positions. During the adversarial training of the system, the
output of the generator is passed through four separate discriminators. The first controls that the
output of the generator follows a realistic phase structure. The second one ensures that the generated
joint poses fit the structure of a humanoid skeleton. The third one checks that the outputs of the
generator are not repetitive throughout the data batch, even if they are novel patterns. Finally, the
last one penalizes motions that are either very slow or very fast, and reduces jitter in the motions,
resulting in smoother outputs. The output of all the discriminators is used to compute an average
error. Then, a training step of objective numerical errors is performed. Also in 2020, Yu et al. [206]
proposed a speech-driven generation method that maps a representation of speech audio to a set of
appropriate gestures using a Generative Adversarial Network architecture. It has the advantage of
being able to generate multiple gesture patterns for a single speech input using random noises.
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In this approach, the model trains a pair of adversarial networks, a generator and a discriminator.
The former predicts outputs based on the knowledge learned from the training data, while the latter
labels samples as real or generated by the system. The generation network follows an encoder-decoder
architecture. The encoder receives the audio for the robot’s speech and generates a 256-dimensional
representation. The decoder receives the output of the encoder combined with 10-dimensional
random noise to add variability to the motions generated, and outputs a sequence of 3D poses
mapping with the speech audio. In order to transfer the generated motion into the robot, the 3D
position of each joint has to be transformed into the necessary joint rotation angles for the robot,
taking into account the constraints that the robotic platform might introduce. The discriminator
starts by performing the same 1D convolution of the audio clips that the encoder performs. In
parallel, either the real gesture or the output of the decoder is also encoded. Both the audio and
gesture encodings are concatenated and then fed into a one layer GRU network. Finally, the final
hidden state of the network is sent into a last Multilayer Perceptron that has to distinguish if the
gesture is real or not (if it matches the input speech audio).

5.2.3 Comparison between approaches for co-speech gesture

prediction/generation

Here, a comparison between all the works reviewed above will be conducted, based on a series of
characteristics that better represent the differences between the approaches, and that are relevant
for the application considered in this thesis: the development of lively robots for Human-Robot
Interaction. Three features have been selected for the comparison between approaches. The result
of this comparison can be observed in Table 5.1 The first two were extracted from the review
conducted in section 4.2, although their definition has been adapted to the particular characteristics
of this study. The first one is Multimodality, and in this chapter, it is understood as the different
sources of information that can be used to generate the expressions (prosodic features of the speech,
information about the other peer, contextual factors, etc...). The outputs of the models are not
considered in the analysis, as all methods reviewed in this section generate either sequences of poses
(the majority of approaches) or the name of the gesture/gestural category that has to be attached to
the speech.

The second feature, gesture design, is related to how the expressions will be modelled. This is a
key task when defining a expressiveness model for a communicative agent, both virtual and physical.
From a general point of view, two approaches can be followed: either the behaviours are designed
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beforehand and stored in a library, or the model learns to generate appropriate expressions. The
former has the advantage of allowing the developers to design expressions that perfectly convey the
intended message, combining all the available communication channels. On the other hand, relying
on a finite library of gestures constrains the actions that can be performed. Automatic generation of
behaviours based on the speech leads to systems with a bigger range of actions, although the gestures
performed can be perceived as more generic.

Finally, the last feature used in the comparison is the algorithms used to create the co-speech
gesture generation/prediction models. In co-speech gesture generation, the task of the model is
to learn the mapping between the input information and the appropriate non-verbal behaviours
that will accompany the verbal communication. The inputs to the model and the outputs that
have to be generated will play a role on how the architecture of the proposed model has to be designed.

5.2.3.1 Multimodality

Regarding the inputs to the model, a higher variability can be observed between works. Because
non-verbal behaviours are designed to complement verbal communication, the generated speech
of the agent has to be always one of the inputs to the model. Here, a distinction can be made
depending on the type of information that the system extracts from the speech. Authors like Aly
et al. [198], Yoon et al. [195], or Xiao et al. [203] based their approaches on the transcript of the
speech, while others like Hasegawa et al. [193], Kucherenko et al. [194], or Ferstl et al. [205] relied on
audio features. One of the most used features are the Mel-frequency cepstral coefficients, or MFCCs,
which represent the short-term power spectrum of the audio signal. Kucherenko et al . [194] fed the
MFCCs to their baseline system, although they also considered using alternative features. Ferstl et al.
[205] combined the MFCCs with the pitch of the audio signal. Other approaches include the use of
prosodic features, as shown by the work of Chiu et al. [190], or directly encoding the audio signal.
This last method appears in the approaches presented by Yu et al. [206] or Ahuja et al. [200]. Some
works combine both audio features and text to improve the obtained results. Chiu et al. [191] used
the prosodic features of the speech alongside the content and part-of-speech class for each word in
the text. Another example is the work of Kucherenko et al. [112], where the BERT encoding of the
speech transcription and temporal information about how the sentence is uttered is combined with
log-power mel-spectogram features extracted from the audio signal. Pérez-mayos et al. [196] decided
to use the prosody of the speech to select beat gestures, while text is used for the remaining categories.
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Reference Algorithm used Gesture design Multimodality

[190]
CRF (annotation),
GPLVM (generation)

Input labelled, poses selected
for labels and interpolated

Prosodic features

[191]
Neural networks and 2nd order
linear chain temporal contingency

Gestures describing the shape of
a motion assigned to the input

Linguistic (words and POS)
and prosodic features

[192]
Probabilities → function → motion.
Beat gestures tied to prosody peaks

Generated based on prosody (beats)
and content (other). Speaker-dependent

Text, prosody,
dialogue act information

[193] Bi-directional LSTM Poses predicted + temporal filtering Audio features (MFCC)

[194] Denoising Autoencoder
Encoder codifies the speech features,
decoder reconstructs the motions

Audio features (MFCC)

[112]
Feed-forward network plus
several fully-connected layers

Sequence of poses,
conditioned on previous poses

Text (BERT encoding, and
duration) and audio (log-power
mel-spectogram features)

[195] GRU (encoder, decoder)
Encoder codifies speech features,
decoder reconstructs the motions

Text

[196]
PoS-based: gestures tied to keywords.
Prosody-based: gestures tied to pitch peaks

Handcrafted gestures Text, prosody (pitch values)

[197]
Dynamic Bayesian Network constrained
on discourse function or target gesture

Gestures constrained by discourse
function or expression type

Prosodic features

Table 5.1: Comparison among the works presented in the state of the art review. Each approach has been evaluated based on the algorithm used,
the design of the expressions, and the multimodality considered.
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[198]
Rule-based gesture generation.
CHMM (metaphoric gestures)

Generated from the text,
based on the user’s personality

Text

[199] CNN, Adversarial discriminator Generated based on speaker style Audio (2D log-mel spectogram)

[200]
TCN (encoder & discriminators),
1D Unet (generators, 1 per style)

Sequence of 3D poses,
constrained on style selected

Audio signal and style

[113]
Generator: Bi-directional GRU,
Discriminator: multilayer GRU

Sequence of 3D poses,
constrained on user ID

Text, audio (encoded waveform),
speaker ID

[201]
Bayesian network + influencing factors.
Augmented through learning

Gesture & pose type based on speech act
and topic. Altered based on culture traits

Culture factors, topic, speech act

[202] Random Forest Generated based on clusters in design space Text

[203]
Regression network (text to expression).
Fast Dynamic Time Warping (expression diffs.)

Handcrafted. Expression-dependent
delay for synchronization

Text (GloVe word embeddings)

[204]
LSTM (speech encoder),
GRU (pose encoder, decoder)

Generated based on natural language
descriptions of motions

Text

[205]
LSTM (phase classification),
GRU (motion generation).
Four discriminators

Generated based on speech features.
Discriminators control generation
during training

Audio features (MFCC + F0)

Table 5.1: Comparison among the works presented in the state of the art review. Each approach has been evaluated based on the algorithm used,
the design of the expressions, and the multimodality considered.
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[206]
Encoder: 1D CNN + GRU,
Decoder: GRU + MLP.
Discriminator: 1D CNN + GRU + MLP

Sequence of 3D poses Audio signal

Table 5.1: Comparison among the works presented in the state of the art review. Each approach has been evaluated based on the algorithm used,
the design of the expressions, and the multimodality considered.
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Besides the use of text, audio, or both to represent the content of the speech, multiple authors
decided to constrain the gestures generated by their models according to different external factors.
For example, both Ahuja et al. [200] and Ginosar et al. [199] presented methods for generating
behaviours that represent the style of the speaker. While the model proposed by Ginosar et al. can
only be trained to convey the style of a particular speaker, Ahuja et al. used a multi-generator structure
that allows the system to receive the desired style as an input, and use it during the generation process.
The work presented by Yoon et al. [113] introduces a similar idea, where the identity of the speaker is
passed to the model in order to generate appropriate motions. Beyond the style of the expressions,
other authors have experimented with the use of discourse functions in order to create non-verbal
behaviour that better reflect the communicative intention of the speech. For example, Ishi et al. [192]
conducted an study to understand the relationship between non-verbal behaviours and dialogue acts,
and as a result used the dialogue acts identified in the speech to filter the gestures generated by their
system. Sadoughi et al. [197] included the discourse function of the speech (for example, if it is a
question) as a constraint node in their Bayesian network. In this work, the authors also presented a
model that used the gesture type instead of the discourse function. In the work presented by Ferstl et
al. [205], the authors focused on enforcing that the gestures generated presented a realistic phase
structure (the different motion phases in which they divide the gestures), using a phase classifier to
extract said structure from the generated expression and an discriminator to reject all gestures that are
not deemed realistic. Finally, Lugrin et al. [201] presented a model for generating culture-dependent
behaviours for virtual agents. While the content of the speech (topic and speech act) play a role on
selecting the posture type and gesture type, the cultural background of the speaker constrains that
selection process, and at the same time defines the dynamic aspects of the behaviour.

5.2.3.2 Gesture design

Among the authors that opted for relying on predefined expressions (this can vary from handcrafted
poses to gestures including the complete motion trajectories), several approaches can be observed. In
the works presented by Chiu et al. [190, 191], the speech is labelled with the name of the gestures
that have to accompany it. In their earlier work (2014), the choice was to either use a beat gesture
or not. Based on this, the appropriate motion poses were selected from the motion space, and
the trajectories between poses were interpolated. In their second work, the labels indicate the
shape of the gesture (head nod, rest pose, etc...). Ghosh et al. [202] presented a method that
extracted non-verbal behaviours from training videos, and then clustered them to generate the
available expressions. Their model then predicts which one of the clusters obtained should be
selected based on the speech, and a gesture is instantiated based on the position of said cluster’s
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centroid. Authors like Pérez-Mayos et al. [196] or Xiao et al. [203] handcrafted their gestures
using the tools provided by the robotic platforms used in their works (in both cases, a Nao robot).
Pérez-Mayos’s work synchronized these predefined expressions by associating their triggering to
either keywords or pitch peak patterns in the utterance. On the other hand, in Xiao’s work, a single
expression is assigned to the speech, and synchronization is achieved through the introduction of a
small delay in the speech that allows the robot to reach the required position to perform the expression.

The remaining works analysed in this section opted for an automatic generation of non-verbal
behaviours. Among these approaches, the majority of the authors have designed models that learn to
predict sequences of joint poses, either 3D or 2D, that can then be mapped directly into the agent.
Authors like Aly et al. [198] opted for using rule-based generation approaches. The work of Ishi et
al. [192] could be also considered as a rule-based system, as non-beat gestures are selected based on
the presence of specific keywords in the speech, while beat gestures are parametrized according to
the pitch of the utterance. The remaining authors designed data-driven models that learn which
pose should be generated based on the inputs received. Here, two works have to be highlighted. The
approach presented by Lugrin et al. [201] combines a data-driven approach for gesture generation
with a theory-based approach to constrain said behaviours to the cultural background of the speaker.
On the other hand, the work presented by Ahuja et al. [204] is unique among the ones reviewed, as
the gestures are not designed to accompany the text introduced to the system, but instead this text
represents a natural language description of the motion that has to be generated.

5.2.3.3 Algorithms used

Automatic generation of expressions usually relies on concepts and structures extracted from the
field of machine learning, specially with the advances that deep learning techniques have been
experiencing nowadays. Among these, a common architecture for this task is to treat the generation
of expressions as a sequence-to-sequence problem, where given an encoded input sequence, the
system decodes an appropriate output sequence. Authors like Ahuja et al. [204], Yoon et al. [195], or
Yu et al. [206] followed this approach. Recurrent Neural Networks tend to be used to model the
encoders and decoders in this systems, due to their ability to display temporal dynamic behaviour.
Some authors, like Yoon et al. [113] or Hasegawa et al. [193] used bi-directional recurrent networks
to model their generators, a Long-Short Term Memory neural network in the first case, and a Gated
Recurrent Unit network in the second. Lungrin et al. [201] and Sadoughi et al. [197] decided to
model their systems using bayesian networks, where the external constraints considered by each
author are included as nodes of the network. Regarding the training of the model, adversarial
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strategies are fairly common in the works reviewed in this section. Examples of these strategies can be
observed in the works of Ferstl et al. [205], Ginosar et al. [199], Yoon et al. [113], or Yu et al. [206].

In their work presented in 2014, Chiu et al. [190] used a combination of Conditional Random
Field for gesture annotation and Gaussian Process Latent Variable Models for generating the
appropriate motions based on said annotations. A year later, they presented a new version [191]
that combined the advantages that deep neural networks present for mapping complex relations
and second-order linear chain for modelling the temporal relationship between speech and gestures.
Aly et al. [198] proposed a combination of Coupled Hidden Markov Modules for generating
metaphorical gestures, and a rule-based generation process for the remaining categories. In the work
of Ghosh et al. [202], gesture prediction is performed using Random Forest. Ishi et al. [192] decided
to use conditional probabilities to represent the connections between speech content and gesture
functions, and between functions and motions. Pérez-Mayos et al. [196] combined a part-of-speech
based approach, where gestures were associated with keywords in the speech, while beat gestures
were generated based on the prosodic content (in particular, the pitch graph). Finally, the work
presented by Xiao et al. [203] focuses on finding the correlation between the dissimilarities between
two sentences and the dissimilarities between their associated behaviours. This correlation is then
used to find in the dataset the sentence that is the most similar to the speech that has to be enhanced
with non-verbal behaviour. The gestures associated to the selected utterance will be the ones attached
to the speech.

5.2.4 Comparison with the solution proposed in this thesis

Overall, the work presented in this thesis models the problem of co-speech gesture generation as a
prediction task, where the model has to select the most appropriate gestures from a library based on
the speech that has to be uttered, and also the robot’s communicative intention. This perspective can
be observed in the works of Chiu et al. (both in the work they presented in 2014 [190] and the one
from 2015 [191]) or Ghosh et al. [202]. The approach proposed in this thesis follows an approach
that is similar to the one presented by Chiu et al. in 2015, which combines the advantages of deep
neural networks with the temporal modelling capabilities of Conditional Random Fields in order to
predict the gestural label that has to be assigned to each word of the speech. The model presented in
this dissertation in turn uses LSTM networks to encode the sequence of words, part-of-speech label,
and communicative intentions, and then uses Conditional Random Field to predict the sequence
of gesture labels. The two main differences with the model presented in this thesis are the inputs
to the model and the approach followed for identifying the list of gestural signs. While Chiu et al.
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combine text and prosody as inputs to the model, the solution developed in this dissertation relies
exclusively on the text, although it adds the communicative goal of the sentence to the words and
their part-of-speech classification. Thus, this thesis tackles the problem as a two-step process, where
first the model determines the communicative intention of the speech (request personal information,
ask a general question, show enthusiasm, etc...), and then uses this to generate the sequence of
multimodal gestures. Regarding the gestural signs, this thesis proposes to use labels that represent the
communicative meaning that the gesture has to convey (apologize, greet, agree, emphasize, etc...),
instead on describing the shape of the gesture. Then, a rule based approach is used to synchronize the
gestures connected to those labels and the speech. This is another difference with the work of Chiu
et al., in this case, the paper presented in 2014 [190], where the gesture annotations generated by
the Conditional Random Field were used to select motions from the motion space, and then the
complete trajectory was interpolated.

Other approaches have used the discourse function as a constraint for gesture generation. For
example, Ishi et al. used dialogue acts to filter if a generated expression should be executed. Sadoughi
et al. [197] included the discourse function as a constraint in their Bayesian network, while Lugrin et
al. [201] follow a similar approach and use a speech act node to affect the selection of both gesture
type and posture. The difference between the method developed in this thesis and both approaches
is the discourse functions selected. While both Sadoughi et al. and Lugrin et al. use speech acts
exclusively related to the function of the utterance (information request, statement, answer, etc...),
the communicative intentions considered in this work, while still describing the utterance’s function,
also take into account the content of the message conveyed (for example, information requests can be
either aimed at retrieving generic information, information about the other speaker, or an opinion).
Another important distinction is that the information about the communicative intention of the
utterance is not fed to the model, but predicted by it. Regarding the selection of the appropriate
gesture from the dataset, this dissertation proposes the use of a set of rules tied to the gesture labels
for both gesture selection and synchronization. A similar approach was proposed by Ishi et al. [192],
where gesture functions were predicted for the speech, and then motions were associated to those
functions. In their approach, gesture motions from their dataset were clustered based on similarity.
Then, depending on the conditional probabilities between the predicted gesture functions and
these clusters, one of them is selected, and a random motion is extracted. In this dissertation, the
mapping is simpler, as each gesture label has an associated list of predefined multimodal behaviours,
and the proper one can be extracted based on the length of the utterance segment tagged with said
gesture label. Finally, regarding the design of the gestures, the approach proposed in this thesis
can be compared to the works of Pérez-mayos et al. [196] and Xiao et al. [203], where gestures are
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handcrafted using design tools provided by the robotic platform. The main difference is that the
approach proposed in this dissertation takes the list of expressions that have to be performed and the
utterance, and combines them into a single multimodal expression that defines the relationships
between gestures and the speech.

Finally, the model for predicting and synchronizing co-speech gestures proposed in this thesis has
been integrated in the HRI architecture of our social robot, alongside with a new Liveliness module
that generates random actions for each of the robot’s interfaces. Said actions can be modulated based
on the internal state of the robot (in the current version, only the affect states are considered). The
model presented in this chapter will work alongside the new Liveliness model, using one or the other
based on the presence of the robot’s speech.

5.3 Strategies developed for endowing social robots with a

liveliness appearance

The work presented in this chapter aims at endowing a robot with a lively appearance through the
use of behaviours that have no particular communicative goal, and instead are performed with the
sole purpose of increasing the robot’s animacy. The proposed approach to the expression of animacy
has been divided in this dissertation in two different methods: (i) the pulse-based liveliness module
uses a signal that resembles the heartbeat of a human to generate random expressions through each
communicative channel at a certain rate; and (ii) the co-speech gesture prediction method uses
a predefined library of expressions and selects the most appropriate sequence depending on the
content of the robot’s speech.

Both methods have been integrated in the robot’s software architecture and are able to work
together. During the periods of time where the robot is awake, the pulse-based liveliness module
will be continuously generating actions (modulated depending on the robot’s heartbeat, which in
turn depends on the robot’s internal state), while the co-speech prediction method will only be
used when one of the CAs in the HRI Manager sends an expression to the Expression Manager
that only contains a utterance. In order to solve any potential conflicts between these two sources
of expressions (the Liveliness module and the HRI Manger), actions generated by the pulse-based
method will have the lowest priority, as they do not transmit communicative information, and
thus are considered to be less vital during an interaction. When the Expression Manager has to
execute an expression, part of the information that is retrieved during this process is the list of
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communicative interfaces that the expression needs to use. Whenever an action coming from the
pulse-based liveliness is received, the Expression Manager checks if the required interface (the actions
generated by the Liveliness module are always unimodal) is free. If it is, then the action is performed.
Otherwise, it is discarded. The pulse-based liveliness module will be presented in Section 5.3.1.

If the expression requested by the HRI Manager involves exclusively uttering a sentence, then the
Expression Manager passes this sentence through the co-speech gesture prediction process, and then
continues with the execution process described in 4.5.3. The detailed operation of the co-speech
gesture prediction process will be described in Section 5.3.2.

Figure 5.2: Integration of the proposed liveliness approaches in the HRI System introduced in
Chapter 2. The light orange boxes represent the two liveliness modules.

5.3.1 Pulse-based liveliness

The pulse-based liveliness method, shown in Figure 5.3, creates unimodal actions for each
communicative interface based on a signal that represents the heartbeat of the robot. Whenever the
internal state of the robot variates, the module updates this signal, which in turn translates in a
modulation of the actions generated. Currently, the only internal state considered is the robot’s affect
state. During the execution of the pulse-based liveliness module, two main tasks can be identified: (i)
update the control parameters that depend on the robot’s state and that will be used during the
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Figure 5.3: Schematic of the pulse-based liveliness approach and its integration in the robot’s
architecture.

creation of the actions; and (ii) create unimodal expressions for each of the available interfaces. The
pulse-based liveliness module is divided in two main components: (i) the Signal module is in charge
of generating the signal that will be used to shape the behaviours created; and (ii) the Interface
modules receive samples extracted from the robot’s pulse, and use them to create actions for each of
the robot’s interfaces (there is an individual Interface module for each communicative channel).

5.3.1.1 Generation of the robot’s heartbeat

It has been argued in several sections of this manuscript that one strategy that helps to create
more natural interactions between the robot and the user is the proper modulation of the robot’s
expressiveness, so it can be adapted to different situations. This implies, for example, conveying a
variety of affect states with the generated behaviours. Similar to one of the modulation methods
presented in Section 4.5.4, the pulse-based liveliness module achieves this through the use of a signal,
the so-called robot’s pulse, that will define how each interface behaves. This pulse can be modified to
reflect each of the robot’s affective states. In the proposed architecture, this process is controlled by
the Signal module.

This module generates a sinusoidal signal that represents the heartbeat of the robot. The Signal
module samples the heartbeat at a fixed frequency (10 Hz) in order to obtain the values for three pulse
parameters: (i) the value of the signal at that particular point in time; and (ii) the frequency and (iii)
amplitude of the signal. Every time the signal has to be sampled, the Signal module extracts the state of
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Figure 5.4: Activity diagram that shows the process followed for generating the robot’s pulse.

the robot from the context. This state is defined by a string holding the name of the state (for example,
happy, sad, angry...). In case the robot’s state has changed since the last sampling cycle, the Signal
Module retrieves the pulse’s amplitude and frequency associated to the new state. These can have
values ranging from 0 to 100, and have been empirically determined for every possible state considered.
The robot’s pulse will always have a frequency and amplitude bigger than 0 while the robot is in
operation, ensuring that the pulse-based liveliness module will be generating behaviours continuously.
When the robot is asleep, the parameters of the signal descend to almost 0, and thus the robot does
not perform any liveliness behaviour. The steps followed by the signal module are shown in Figure 5.4.

5.3.1.2 Generation of actions based on the robot’s pulse

Figure 5.5: Activity diagram that shows the process followed by the Interface modules to create
actions.

While the Signal module controls the update process of the signal parameter’s values, the
Interface modules use these values to generate the unimodal actions that will be used to enhance
the animacy of the robot. An example of how the signal parameters affect the robot’s actions can
be seen in Figure 5.6. The Interface modules are robot-specific, as they depend on the available
communication channels and the configuration parameters they need (for example, while one robot’s
arms might have a single joint in the shoulder, another robot can have arms that resemble the joint
configuration of a human arm). The Interface modules perform three tasks: (i) generate a new action,
(ii) control the frequency with which actions will be generated, and (iii) check if new values have been
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received for the control parameters. While the first two are done sequentially, the last one is done
asynchronously. The module updates the values used for generating actions whenever new ones are
received from the Signal module. These three tasks will be repeated indefinitely, as shown in Figure 5.5.

Figure 5.6: Example of the effect that the signal parameters have over the actions generated by the
pulse-based liveliness module.

In the current implementation of the pulse-based liveliness, the following Interface modules exist:

• Joint modules: motions are generated using templates that describe the general trajectory of
the limb (for example, one template can indicate a motion where the robot turns to the left
and goes back to looking forward, while a second template can define a motion where the
robot first turns left, then right, and then goes back to looking forward). During the action
generation step, the module selects randomly one of the available templates, and defines the
trajectory points based on the values of the signal parameters. While individual modules exist
for each joint, both arms are controlled by the same module, as the actions created can involve
motions of either arm or both.

• ETTS module: generates non-verbal sounds to be uttered by the robot at random intervals.
The module maintains a list of available sounds that can be used, and extracts one of them
randomly whenever an action has to be generated. Opposite to the other modalities, the
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speech-based liveliness is not affected by the sampling of the heartbeat signal, only by its
frequency.

• Eyes module: changes the direction of the gaze, selecting one of nine possible values (eight
positions placed in 45 degree intervals, and a ninth position where the eye is centred). This
selection is performed based on the values for the signal parameters. The behaviours created by
this module always include two commands, one for performing the selected gaze change, and
a second one to return the eyes to the normal position (looking forward).

• Heart module: changes both the colour and the fade frequency of the LED that the robot has
in the chest, acting as its heart. The colour is completely independent from the values extracted
from the heartbeat signal, but is instead tied to the robot’s affect state. The fade frequency, on
the other hand, is connected to the signal’s frequency.

In the software architecture presented in Chapter 2, the requests for executing gestures that
the Expression Manager receives come usually from two main sources: the HRI Manager and the
pulse-based liveliness module. While the expressions requested by the CAs seek to achieve a given
communicative goal, the actions generated by the pulse-based liveliness module do not. Due to this,
a decision was made to assign always low priority to the expressions requested by the pulse-based
liveliness module, so the expressions required to advance the interaction with the user can always be
performed in the event of a conflict between several expression requests. Listing 5.1 shows an example
of how an Interface module would use the customizable gesture template (presented in Section
4.5.4.1) to request the execution of an action. In the example presented, the parameter motion holds
the values required to configure the arm motion generated by the Interface module (the trajectories
that they have to follow, as well as the speed and acceleration). These parameters have been obtained
based on the robot’s pulse. In the request shown in Listing 5.1, the action generated requires the
motion of both arms (as shown by the value associated to the key interfaces_needed). The motion
parameters are stored in a key-value pair array inside the request.
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1 void Liveliness_arms :: send_msg ( common_msgs :: KeyValuePairArray motion ){
2

3 common_msgs :: KeyValuePair kvp_arms ;
4 interaction_msgs :: Expression arms_msg ;
5

6 double tem =ros :: Time :: now (). toNSec () * 1e -6;
7 std :: vector <string > aux;
8 aux = this ->split(boost :: lexical_cast <std :: string >( tem), ’.’);
9 this -> arms_msg .id = aux [0] + aux [1];

10

11 arms_msg .name =" customizable_gesture ";
12 arms_msg . emitter =" liveliness_arms ";
13 arms_msg . priority =0;
14

15 kvp_arms .key =" interfaces_needed ";
16 kvp_arms .value = " leftArm | rightArm ";
17 arms_msg . params . push_back ( kvp_arms );
18

19 arms_msg . params . push_back ( motion );
20

21 this -> _pub_arms . publish ( arms_msg );
22 }

Listing 5.1: Example of how an Interface module would request the execution of an action using the
customizable gesture

5.3.2 Co-speech gesture prediction module

The expressions generated by the pulse-based liveliness module are completely independent from
whatever the robot is doing, or from the communicative objectives that the robot’s applications
might want to achieve. This might lead to unnatural situations during interactions, for example
where the robot would be talking to a user in front of it, but continuously moving its body and
face away from him/her. According to participants that were invited to test the robot, this was
perceived as unnatural, and hindered the quality of interactions. This feedback pointed towards
the necessity of developing a way to integrate the display of animacy with the achievement of the
robot’s communicative goals. Consequently, a new approach for conveying a lively appearance
during speech-based interactions was proposed. This new approach focuses exclusively on verbal
communication, as this type of messages represent a big portion of the communicative actions
performed by the robot, while involving a smaller expressiveness display (as none of the other
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interfaces are used). Using this method, application developers can focus on designing interactions
between the robot and the user using exclusively verbal communication, and leaving all the other
interfaces free. The proposed approach can take advantage of this by selecting the non-verbal
expressions that better suit the verbal messages defined by the developers.

The goal of the co-speech gesture prediction module is to enhance the robot’s utterances with
the addition of non-verbal behaviours that on one hand aim at increasing the animacy of the robot,
while on the other try to convey the same communicative goal being transmitted by the voice. There
are two strategies that can be followed in order to achieve this goal. The first solution is to generate
multimodal actions from scratch based on the contents of the speech message. This approach has
the advantage of freeing developers from the need to design the non-verbal expressions manually.
But gestures generated automatically can end up being more generic and lacking the level of detail
that a handcrafted expression has. This is where the second approach comes into play: using a
predefined library of expressions and selecting the most appropriate one depending on the message
being conveyed. This solution leads to a few issues that have to be addressed:

• It is necessary to develop a model that can select the appropriate expressions given the speech
of the robot. While there are multiple solutions that can be followed to achieve this, the one
implemented in this thesis is to treat the problem as a labelling task, where the model has to
tag the transcription of the speech with a series of labels that represent which gesture/s should
be performed.

• An appropriate label set has to be defined. On one hand, having a limited number of labels
can result on a very generic interaction, where the same gestures are used continuously. On
the other hand, an excessive number of labels can make relationships between sentences and
sequences of labels hard to learn for a model.

• A mapping between the labels generated by the model and the expressions stored in the library
has to be implemented.

• Finally, the expressions selected have to be synchronized to the appropriate point of the speech.

5.3.2.1 Model for predicting communicative intentions and gesture semantic values

The co-speech prediction module proposed in this thesis works as follows. The model receives as an
input the transcription of the speech, which is first tagged with the Part-of-Speech information. Both
the words in the speech and their part-of-speech tags are passed through a first model, which in turn
predicts the communicative intention that the speech tries to achieve. The predicted intentions are
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then added to the rest of the input information and passed through a second model, which assigns to
each word in the speech a label indicating the semantic value of the gesture that should accompany it.
Finally, the module maps the predicted sequence of semantic values to a list of expressions, which are
executed by the Expression Manager following the procedure described in Section 4.5.

While a particular sentence usually only has one intention that do not change at any point of the
speech, the same is not true for the semantic values. One sentence can have more than one gesture
associated. Thus, dividing the process in two steps (first predicting the intention, then predicting
the semantic values) makes it easier for the models to learn the appropriate relationships that will
lead to more accurate predictions. The models used for these two steps have an identical structure,
differing only in their inputs and outputs. A decision was made to use an hybrid approach that
combines a bidirectional Long-Short Term Memory neural network (LSTM network, from now
on) and Conditional Random Fields (or CFR) to generate the appropriate label sequence. One of
the strengths of LSTM networks is their ability to learn dependencies between all elements in an
input sequence. In the case of the proposed model, the input sequence corresponds to the robot’s
utterance, transformed into a sequence of tokens. CRFs, on the other hand, are able to consider
dependencies between labels in the output sequence (in this case, either the sequence of labels
indicating the utterance’s intention, or the semantic value of the gesture that has to be paired with
the speech) based on features of the observations that will be paired with the labels (in this case, the
encoding of the utterance generated by the LSTM network). This combination has been used in
multiple sequence labelling problems, including Named Entity Recognition [207], Dialogue Act
tagging [208], or keyphrase extraction [209].

Figure 5.7: Architecture of the model proposed. This example corresponds to the model used for
predicting gestures.

Figure 5.7 shows the structure of the model for predicting semantic values for the gestures that
should be performed alongside the speech. Both models have been designed using AllenNLP [210].
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This is a library designed for applying deep learning methods in Natural Language Processing (NLP)
tasks. It has been built over PyTorch, a machine learning library. AllenNLP implements a series of
abstractions that help to modularize the process of building a model for NLP, simplifying the design
phase. It also allows to define high-level configuration files for training and evaluating models, and
provides methods that handle some common problems related to NLP tasks.

5.3.2.2 Pipeline of the prediction models

The inputs to the proposed models are the words in the utterance that has to be labelled, their
respective Part-of-Speech labels, and, in the case of the model used for predicting the semantic values
of the co-speech gestures, a series of intention labels that indicate the communicative goal that the
utterance tries to achieve. Once the inputs have been received, the the following steps are performed:

1. Tokenize the inputs, represent each token with an ID, and send these representations to the
model

2. Pass the IDs through an embedder layer in order to obtain dense representations in a vector
space

3. Pass the obtained representations through stacked bi-directional LSTM encoders in order to
generate a fixed size internal representation. This model uses two recurrent layers, which means
that the output of a first LSTM network is passed through a second LSTM network in order
to obtain the output. The words, Part-of-Speech tags, and intentions (if present) are encoded
separately, using their own encoders.

4. Concatenate the output of each encoder to obtain a single vector, and send it to the linear-chain
Conditional Random Field model.

5. Use the Viterbi algorithm [211] to retrieve the more probable sequence of labels (intentions or
semantic values) given the received inputs.

ELMo representations have been added to the baseline model for obtaining the dense
representations of the tokenized inputs. ELMo [212] (Embeddings from Language Models), uses a
bi-directional LSTM model that can generate word representations taking into account the context
in which they are used. While traditional word embedding models maintain an embedding matrix
where look-up searches are performed to obtain the vector representation for a word, ELMo passes
the text through the deep learning model and generates the representation in the moment.
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During training, the CRF model uses the negative log-likelihood with the correct set of labels as
the loss. The models have been trained using the Adam optimization algorithm [213], a method
for optimizing stochastic objective functions. A summary of the design parameters, empirically
determined, can be seen in Table 5.2.

Baseline model embedding size 200

Elmo embedding size 1024

Encoder input size 1224

Encoder hidden size 200

Encoder recurrent layers 2

Dropout rate 0.5

Epochs for training 100

Learning rate 0.001

Patience 25

Gradient norm 5.0

Iterator batch size 2

Table 5.2: Configuration parameters used in the design of the proposed pipeline.

5.3.2.3 Generation of the datasets used to train the models

Two different datasets have been developed for training the proposed models. The first dataset, which
was used to train the model for predicting the intention/s of a utterance, includes three elements per
entry: (i) a sentence; (ii) the list of tokens that are used to represent this utterance; and (iii) the list of
communicative intention labels that correspond to each token. The tokens, in turn, include the
word, its lemma (the root of the word), and a Part-of-Speech tag. Labels use the IOB format, which
uses prefixes to indicate if a label is the beginning (B-) of an entity (a group of identical labels), or if it
is inside (I-) an entity. In this particular case, all the tokens in the utterance belong to an entity, so the
O- prefix will not be used. The sentences used to create the dataset were extracted from the Cornell
Movie Dialogs Corpus [214]. The second dataset, which was used to train the model for predicting
co-speech gestures, is a copy of the first one, with the addition of the list of semantic value labels.
Figures 5.8 and 5.9 show examples of instances from both datasets (the same instance in both datasets).
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Figure 5.8: Example of an instance taken from the dataset developed for the intention prediction
model.

The possible communicative intentions were obtained through a manual process, where an
annotator reviewed the sentences present in the corpus used to train the model, and proposed the
communicative intention (or intentions) that he inferred from that sentence. This process was done
with the objective of finding the amount of labels that ensures that the system will not be too generic,
but does not complicate the training process.

The semantic value label list was compiled based on the existing library of gestures that the
robotic platform can use. The gestures were analysed in order to identify the communicative goal
with which they could be associated. For example, a particular gesture might be suited to accompany
a utterance that seeks to greet the user, while a second expression could combine better with a
sentence used to retrieve personal information from the other peer. Similar gestures were clustered
together, in order to reduce the amount of possible semantic value labels. Finally, a single label was
defined for each cluster.

Because the required amount of instances necessary to train the proposed models is significantly
high (2600 instances each), an automated process for creating new dataset instances was developed
using a python script. When this program is run, it starts by loading all the utterances in the corpus.
Then, the following steps are performed sequentially:
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Figure 5.9: Example of an instance taken from the dataset developed for the gesture prediction model.

1. The utterance is passed through a Part-of-Speech tagger provided by spaCy 1, a python library
for natural language processing applications.

2. The annotator is presented with the list of tokens generated, and offered the choice of correcting
any mistake.

3. The list of tokens is passed through the first model, in order to obtain a list of communicative
intentions.

4. The annotator is presented with the list of intentions predicted, and offered the choice of
correcting any mistake.

5. The list of tokens is combined with the tokens, and then passed through the second model,
which predicts the semantic values.

6. The annotator is once again presented with the list of semantic values, and offered the choice
of correcting any mistake.

1https://spacy.io/
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7. The utterance, tokens, intention labels, and semantic value labels are stored in a file.

The first instances of the dataset were handcrafted, and then used to train the models. Once a first
version of the models was obtained, the program designed above was used to add new instances to
the dataset. The models were retrained every few hundred instances, in order to improve their accuracy.

5.3.2.4 Result of the training process

The final version of the datasets contains 2600 instances. For training each model, its dataset has
been split in three partitions: training (60%), validation (20%), and testing (20%). The validation
set is used during the training process, after each epoch, to tune the model’s parameters. The test
dataset is used to evaluate the model once the training has been completed. The split of the dataset
was performed ensuring that the representation of the possible output labels was proportionally
distributed between all three subsets. This means that, for example, 60% of the instances containing a
particular semantic value label will be located in the training dataset, while the remaining 40% will be
split between the validation and testing datasets. The configuration for both models has been shown
in Section 5.3.2.2.

Figure 5.10: Results for the training of the models.

Regarding the intention prediction model, the training was conducted for 76 epochs. Three
metrics were used to evaluate the model: (i) precision, which represents the number of correct
predictions divided by the total amount of predictions for each label; (ii) recall, which represents the
ratio between the correct predictions for one class and the total amount of labels from that class; and
(iii) f1 score (or F-score), which represents the harmonic mean of the model’s precision and recall.
The best f1 score for this training was 0.98, with a validation f1 score of 0.676. Then, the trained
model was evaluated using the remaining instances of the dataset, achieving a f1 score of 0.685, a
precision of 0.687, and an overall recall of 0.683. The gesture prediction model was trained for 44
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epochs, obtaining a training f1 score of 0.98, and a validation f1 score of 0.728. Again, the model was
evaluated with the testing dataset, achieving an f1 score of 0.792, an overall precision of 0.791, and an
overall recall of 0.793. Figure 5.10 shows a summary of these results.

Overall, the results of the training show that, although the models have room for improvement,
their ability to predict the gestures that are better suited for accompanying a particular utterance is
satisfactory, given the complexity that this task has. Also, it is important to mention that, although
the model is able to predict the correct gestures 79% of the time, this does not mean that the
remaining 21% of predictions lead to unnatural interactions, as usually wrong predictions tend to
be gestures that also suit the utterance. For example, if the robot has to ask a personal question to
the user, the correct semantic value that the model should predict is a gesture that points to the
other peer, as a way to invite him/her to share that information. When the model provides a wrong
prediction, it tends to select a gesture where the robot changes its posture to convey that it is asking a
question. Although this gesture is not the optimal to use in this situation, it is also appropriate, and
thus does not hinder the interaction.

5.3.3 Operation of the co-speech gesture prediction process

This section describes the overall operation of the proposed co-speech gesture prediction module.
The module is composed by the following elements: (i) the intention and gesture prediction models
described in Section 5.3.2.2; (ii) filters used to correct any possible prediction errors in the output of
the models; and (iii) a gesture selection and synchronization module. The prediction models have
been trained beforehand in an external machine. Because the robot is not equipped with a graphics
card, both models are run in CPU.

As stated before, all communicative actions that only include a utterance are sent to the co-speech
prediction module. It is important to mention that this utterance can contain multiple sentences.
In that case, they would be processed together. This is because the gestures predicted for a specific
sentence might be different if the sentence is preceded by other sentences. For example, if the user is
asked either “Do you like movies?” or “What is the last movie you watched?”, in both cases the robot
will probably perform the same expression, as they are both questions where the robot tries to obtain
personal information about the user. But if the utterance combine both questions and asks “Do
you like movies? What is the last movie you watched?”, then the robot might perform a different
expression for the second part of the utterance, so it does not repeat the same gesture twice in a row.
It is also possible that two consecutive sentences have independent intentions. For example, if the
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robot utters “Do you like movies? I enjoy them a lot.”, the first sentence has the intention of retrieving
information about the user, while the second one has the intention of providing information about
the robot. In this case, due to the different intentions of the sentences, different gestures will be used
for each sentence.

Figure 5.11: Activity diagram representing the steps followed for obtaining a multimodal expression
from a utterance.

Figure 5.11 shows the complete process followed to obtain multimodal expressions based on the
robot’s speech. This process can be decomposed in the following tasks: (i) preprocess the utterance;
(ii) predict the communicative intentions; (iii) predict the semantic values of the gestures that have to
be performed alongside the utterance; (iv) select the appropriate gestures given the semantic values
predicted; and (v) synchronize the gestures with the speech. The last two tasks will be performed for
each semantic value predicted by the model. These tasks will be described in detail in the following
sections.

5.3.3.1 Preprocessing of the utterance

The first step in the pipeline is to process the utterance that has to be sent to the TTS in order to
remove special characters (except delimiting characters like . or ?). The delimiters are not removed
because they can convey information that might be relevant for predicting the gestures (for example,
the presence of a question mark indicates the end of a question, and thus a possible change in the
intention of the robot beyond that point). Next, contractions have to be processed in order to
separate negation adverbs or contracted verbs. For example, won’t has to be transformed into will n’t,
where’s into where ’s, and hasn’t has to be transformed into has n’t. Once the text is ready, it is passed
through the spaCy Part-of-Speech tagger. This process is shown in Figure 5.12. The sequence of
PoS tags is Verb (VERB), adverb (ADV), pronoun (PRON), verb (VERB), noun (NOUN), and
punctuation sign (PUNCT).
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Figure 5.12: Diagram representing the pre-processing stage.

5.3.3.2 Prediction of the robot’s communicative intention

The result of the first stage of the process is an array that contains individual tokens for each word in
the robot’s utterance (contractions that were divided into two different text chunks are considered
separate tokens). Each token contains the word and its lemma, as well as the Part-of-Speech label
assigned. For example, for the utterance “Don’t you like movies?”, the sentence would be split in
the following words: Do n’t you like movies ?, the lemmas would be Do not you like movie ?, and
the Part-of-Speech labels would be VERB ADV PRON VERB NOUN PUNCT. This array is sent
to the first model in order to predict the intention or intentions that the robot has. The process
followed to obtain this prediction has been described in Section 5.3.2.2. The list of possible labels, as
well as a description of their meaning is shown in Table 5.3.

Label Description

State Robot Fact The robot presents information relative to itself.

Request Personal Info A question oriented to retrieve information about the user.

Table 5.3: Labels depicting the possible communicative intentions that the robot might use.
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Label Description

Explain Generic utterance that serves for exposition purposes.

Ask Question Generic question that is not about any personal information.

State Third Party Fact

Statement that presents facts about a third party not involved
in the interaction.

State User Fact Statement that presents a fact about the user.

Voice Opinion The robot expresses an opinion that is not about the user.

Request Action

The robot asks the user to do something (it can be anything
from a polite request to a command).

Agree The robot is agreeing with the previous statement uttered by the user.

Ask For Opinion The robot asks the user to provide his/her opinion about something.

Refuse

The robot provides a negative answer to a question from the user,
or rejects the previous statement.

Emphasize

The robot provides information about which it feels strong
(it does not consider sentiment, it can be both positive or negative).

Notify Action

The robot lets the user know about a present or future action
that it will carry on.

Counter Opinion

Accompanying an Explain Intention, it aims at providing a counter
opinion to the one presented in the first part of the utterance.

Apologize

The utterance is used to show remorse (it does not need to be
an explicit apology).

Express Doubt The robot provides a fact about which it is not completely sure.

Encourage The robot aims at encouraging the user to do something.

Greet Utterance used to initiate or end an interaction.

Confront The robot is engaged in a heated argument with the user.

Show Empathy

Utterance used to acknowledge and show empathy towards the
user’s last statement.

Table 5.3: Labels depicting the possible communicative intentions that the robot might use.
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Label Description

Thank User Utterance used to show gratefulness towards the user.

Calm User The robot tries to calm the user or state a fact that calms the user.

Make Offer The robot offers to do something for the user.

Express Need Utterance used to express a need so the user can act on it.

Express Enthusiasm

The robot states a fact about which it feels strong.
Opposite to the Emphasize, it has a positive sentiment.

Offer Choice Utterance used to offer the user a choice among multiple options.

Give Evaluation The robot conveys an opinion about the user.

Table 5.3: Labels depicting the possible communicative intentions that the robot might use.

In the example presented above, the intention of the “Don’t you like movies?” is to obtain
personal information about the other peer in the interaction, so the sequence of communicative
labels predicted should be B-Request Personal Info, I-Request Personal Info, I-Request Personal Info,
I-Request Personal Info, I-Request Personal Info, I-Request Personal Info.

In an ideal situation, the distribution of the intention labels would be uniform, with clearly
defined boundaries between them. But due to potential errors in the prediction process, there can
be situations where the label assigned to a token is different from both the previous and the next
labels in the sequence. For example, while the correct label sequence for the “Don’t you like movies?”
is B-Request Personal Info, I-Request Personal Info, I-Request Personal Info, I-Request Personal Info,
I-Request Personal Info, I-Request Personal Info, prediction errors could cause this sequence to be
something like B-Request Personal Info, I-Request Personal Info, I-Request Personal Info, B-Ask For
Opinion, B-Request Personal Info, I-Request Personal Info. This example is depicted in Figure 5.13.
Errors in the prediction of intentions could propagate to the prediction of gesture semantic values,
and those could cause problems during the gesture selection and synchronization phase. In order to
reduce the effect that they have on the overall result of the process, a filter was added to the prediction
step. This filter works on two assumptions: (i) tokens with the same labels tend to be located next to
each other, (ii) there is no situation in which one label will appear only once in an utterance. The
filter performs the following steps:
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1. For each different label, the algorithm stores all the positions in the predicted labels set in which
they appear.

2. If all the positions in which a label appears are consecutive, then that sequence of positions is
considered a closed cluster.

3. If they are non consecutive, the algorithm tries to split that sequence of positions for that
label into subsequences of consecutive positions. Any subsequence larger than a threshold is
considered a closed cluster. Otherwise, it is classified as an open cluster

4. Every label in a position included in a closed cluster is assumed to be correctly predicted, and
these clusters are stored in a list L

5. The open clusters are sorted based on their length

6. The largest open cluster A is extracted. Its lowest and highest positions will be named Al and
Ah, respectively.

7. If none of the correctly predicted labels fall in between Al and As, that cluster is considered
closed, and the positions in A are added to L

8. The algorithm repeats the previous 2 steps for all open clusters.

9. All the clusters in L are sorted based on their lowest position (the positions inside each cluster
are already ordered).

10. For every position i in L that do not have a correct prediction, the algorithm assigns it the label
from position i − 1.

Figure 5.13 depicts the process followed for predicting the communicative intention/s of a
utterance and filter the prediction obtained to correct any possible error.
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Figure 5.13: Diagram representing the prediction of intentions.

5.3.3.3 Gesture prediction

The filter presented in the previous section solves the problem of having individual labels scattered
throughout the predicted sequence. The output of the filter is then packaged with the tokens
containing the words and the Part-of-Speech labels and sent to the model for obtaining the semantic
values for the gestures that have to be added to the speech. The prediction process is described in
Section 5.3.2.2. The possible semantic values of the gestures that can be paired with an utterance are
shown in Table 5.4.

Label Description

Other Peer

Extending the arm towards the other peer with the back of the hand facing
him/her.

Explain Gesture designed for generic situations.

Table 5.4: Labels depicting the possible semantic values that can be conveyed with the robot’s gestures.
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Label Description

Self

Reflexive gesture where the speakers points towards himself/herself with
the palm of the hand.

No Head shake to convey negation.

Question Gesture or posture adopted for asking a generic question.

No Gesture No action should be performed.

Yes Head nod to express an agreement.

Neutral Gesture that expresses doubt, usually by shrugging the shoulders.

Front Pointing gesture with an extended finger towards the other peer.

Emphatic Variation of the explain gesture with a higher intensity.

Please Posture or gesture adopted for requesting help to the other peer.

Sorry Posture or gesture to show remorse.

Calm Down Gesture used to induce calm in the other peer.

But

Change in stance that punctuates an idea opposing to what has been conveyed
in the first part of the sentence.

Third Person

Arm extended in a perpendicular direction
to the other peer, in order to make a reference about an external party.

Come On

Gesture oriented to incite the user to do something, either by himself/herself
or with the robot.

Greet A gesture used to start or finish a conversation.

Thanks A gesture used to show gratefulness.

Iterate Rhythmic beats used to punctuate the items in an enumeration.

Enthusiastic Display of strong positive affect towards the content of the utterance.

Thinking

Gesture used to represent the process of thinking about the information being
conveyed.

Table 5.4: Labels depicting the possible semantic values that can be conveyed with the robot’s gestures.
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Continuing with the previous example, the correct sequence of semantic values for the utterance
“Don’t you like movies?” should be B-Other Peer, I-Other Peer, I-Other Peer, I-Other Peer, I-Other
Peer, I-Other Peer. The output generated by the second model is also passed through the filter
described above to correct any possible prediction errors, as shown in Figure 5.14. The corrected
sequence is then sent to the next method of the pipeline: the gesture selection method.

Figure 5.14: Activity diagram representing the gesture prediction stage.

5.3.3.4 Selection of gestures based on their semantic values

Once the sequence of semantic values has been obtained, the co-speech gesture prediction module
has to select the appropriate gesture/s from the expression library. This process is described in Figure
5.16 First, the utterance is again processed to remove all special characters. In this case, this includes
also all punctuation signs. Then, the duration of the sentence is estimated. Sentences of different
durations were sent to the TTS module, and their duration was measured. Based on these durations,
a factor was computed to model the relation between the number of characters in an utterance and
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its duration. From here on, this factor will be referenced as the character/time factor. Then, the
utterance is split into chunks according to the labels predicted. Each chunk would then correspond
to a segment of the utterance that has been tagged with the same label (if the same label is assigned
to two separate parts of the utterance with other labels in between, then they would be split into
two different chunks). The starting point for each of the generated chunks would be computed as
the amount of characters that precede it. Continuing with the example set in the previous section,
the utterance “Don’t you like movies?” has been labelled with a single label: Other Peer, and thus the
utterance would be processed entirely. If instead, the sentence that the robot has to utter is “What
is your name? My name is Mini”, the communicative intentions would be to retrieve personal
information about the user with the question, and then provide personal information about the
robot with the statement. The semantic values predicted by the model would be Other Peer and
Self. This would lead to the creation of two chunks: (i) the first one corresponds to the What is your
name? question, which requires a gesture with the semantic value Other Peer; and (ii) the second one
corresponds to the My name is Mini” statement, which requires a gesture with the semantic value
Self.

Once the utterance has been split, the co-speech gesture prediction module selects and
synchronizes gestures for each chunk individually. This is performed according to a series of
handcrafted rules stored in an external file. This approach allows developers to customize the
synchronization process based on the particularities of their robotic platforms, and to use different
criteria for each possible semantic value labels. Each rule contains the following fields:

• synchronization type: Indicates which feature should be used for synchronizing speech
and gesture. If position is selected, then the gesture is tied to a specific point in the utterance
chunk. If either PoS or word are selected, then the start of the gesture will be connected to the
appearance of a specific Part-of-Speech label or word.

• synchronization value: Defines the synchronization point, based on the type defined in the
previous field. For positions, it allows to tie the start of the gesture to the beginning of the chunk,
the middle, or connecting the ends of both the chunk and the gesture. For Part-of-Speech or
words, the actual label or word can be defined.

• synchronization point: Allows to define a finer synchronization point. For example, if the
start to the gesture has to be tied to a specific Part-of-Speech but it appears more than once in
the chunk, it allows to define to which appearance should be connected.
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• offset: Allows to define an offset in characters (either positive or negative) from the point
described by the previous fields.

• mode: Defines the execution mode of the gesture. Under standard mode, the gesture is
performed only once. Under symmetric mode, the algorithm concatenates symmetric versions
of a gesture. Finally, under continuous mode, the algorithm fills the utterance chunk with as
many repetitions of the gesture as possible.

The synchronization modes have been developed to give more freedom to the developers on
how to adapt the selection and synchronization processes to the particularities of a given type of
gestures. For example, if a semantic value is connected to a static pose, or an emblematic gesture
that conveys a specific message according to a series of conventions, then it might be OK to perform
the gesture only once. On the other hand, if a semantic value is connected to a gesture where the
robot performs a repetitive motion, then it might be better that the motion extends during the
whole speech chunk. The standard mode was designed for the first situation described, while the
continuous mode covers the second situation. Finally, a third synchronization mode was designed
for situations where the robot has to perform an expression that can be decomposed in a sequence
of symmetric motions. An example of this would be a utterance that provides a list of items, and
an expression that punctuates each item in the list with an arm motion, alternating between both arms.

Developers can define multiple rules for each possible label, and the algorithm will check them
in the order in which they are stored in the rule file. If the rule being checked is met, then the
selection is performed. For example, a particular rule might require that the beginning of the gesture
is connected to the first appearance of an adverb. Thus, the rule can only be met if the speech chunk
contains at least one adverb. If this rule cannot be met, the algorithm checks the next rule. If no
rule can be followed, then the label is discarded, and no gesture is attached to that specific utterance
chunk. Usually, a reason for this failure is to have a utterance chunk that is too short, which makes
impossible to fit any gesture into it. For example, the No gesture could have one rule specifying that it
should start when the actual word “no” is uttered, while a second rule could specify that the gesture
should start at the beginning of the chunk. The selection method would then first look for the
adverb “no” in any chunk that has been tagged with the No label, and then would try to add the
gesture at the beginning of the chunk, if the word is not present. If the chunk is too short for the
gestures attached to that label, then no gesture would be selected. The rules that would be developed
for this example can be seen in Figure 5.15.
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Figure 5.15: Example of synchronization rules for a semantic value.

The selection method receives the label, the list of words in the chunk, their Part-of-Speech
value, and the starting point (in number of characters). A limited set of expressions have been
developed for each possible semantic value. Gestures were created through a crowd-sourcing
process. In this process, participants were seated in front of Mini. Then, the interviewer presented
a definition of each semantic value and asked the participants to explain how Mini could express
that particular idea. All the participants had previous experience working with Mini, and thus
were familiar with its expressiveness capabilities. Then, for each semantic value, the expressions
described by the participants were compared, in order to identify the common features. Finally, these
features were used to design the library of expressions used by the co-speech gesture prediction module.

During the selection process, the gestures corresponding to the semantic value label attached to
the speech chunk are retrieved, along with their duration. Based on the set of rules for that particular
semantic value label, the method computes the starting point of the gesture in the chunk, and
finds the time window in which the gesture has to be performed. This window is computed as the
difference between the final point of the chunk and the starting point of the gesture, and then
transformed into time by multiplying the amount of characters by the character/time factor. If the
execution mode defined by the rule is symmetric, the time window should be big enough to fit at
least one instance of each symmetric gesture. For example, if the robot has to utter a list of elements,
the algorithm could tag that utterance whith the Iterate label. The gesture attached to this label has
the robot punctuating an item of the list with an arm beat. If the rule associated to the Iterate label
uses the symmetric mode, this means that the utterance should be accompanied by gestures that
perform arm beats with alternate arms. Thus, when measuring if the gesture can be performed in the
available time window, the algorithm should check that the robot is able to perform at least a beat
with each arm. The gestures that fit in that time window are stored in a set. Finally, the selection
method draws randomly one of the gestures stored in the set, and passes it to the synchronization
method. Figure 5.16 shows the steps performed during the gesture selection process.
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Figure 5.16: Activity diagrams representing the selection phase. The diagram at the top represents
the process followed for computing the time window in which gestures can be performed, while
the diagram at the middle represents the process for selecting the gesture based on the time window
computed.

5.3.3.5 Synchronization of speech and gestures

The last part of the process is synchronizing the gesture selected with the speech chunk. This process
is shown in Figure 5.17. The synchronization algorithm has to compute the amount of gestures
that have to be performed in the time window found during the selection phase. If only one gesture
has to be performed, the start point is computed based on the rule selected. On the other hand, if
more than one gesture have to be synchronized with the utterance chunk (if the synchronization
mode defined by the rule is either symmetric or continuous), the algorithm computes the amount of
gestures that can be performed in the available time window, and the start point for each one, in
seconds. The result of the synchronization process is a list of the gestures that have to be performed,
and the starting point in seconds for each of them.

Figure 5.17: Activity diagram representing the synchronization of a gesture and a speech chunk.
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The last step performed by the co-speech gesture prediction module is to create the multimodal
gesture that will be returned to the Expression Executor to be executed. This gesture contains the
utterance and the gestures predicted by the co-speech gesture prediction module. Each gesture
includes a delay that allows to configure its starting point. For the sake of synchronization, the delay
for each gesture starts counting when the TTS receives the utterance. The Expression Executor then
configures a gesture with the utterance and the sequence of gestures, and executes it following the
procedure described in Section 4.5.3.

5.4 Evaluation of the proposed system

This section presents the evaluation conducted in order to test both the pulse-based liveliness module
and the co-speech gesture prediction module presented in Section 5.3. First, as in previous chapters
of this thesis, a series of objective metrics will detail the performance of the proposed approaches.
Next, a case of study is presented in order to show how the proposed modules work when the robot
is performing one of its tasks, and under which conditions each liveliness approach is used.

5.4.1 Objective evaluation

The first part of the evaluation will consist on an objective analysis of the proposed implementation
of both liveliness approaches. The goal is to evaluate if the module can be embedded in a robotic
platform under real conditions. This analysis will include: (i) the hardware resources used, namely
the CPU and RAM that both modules require, in order to understand if they can be run alongside
the rest of the architecture; and (ii) the time required by the co-speech gesture prediction module
to generate a multimodal expression from a utterance, decoupled into the different subprocesses
involved in the prediction and synchronization pipeline. The pulse-based liveliness module is only
included in the resource usage analysis, but not in the other two. This is due to the fact that the
behaviours generated by this module do not depend on timing for achieving their task, and instead
can be performed at any given time. Thus, they are not constrained by the temporal dimension of
human-robot interactions.
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Figure 5.18: Peak use of RAM by the pulse-based liveliness module.

5.4.1.1 Resource usage

This section presents the evaluation of the performance of the proposed liveliness approaches. As
stated in Section 5.3, the pulse-based liveliness module is divided in multiple sub-modules. One of
them manages the generation of the signal that will represent the robot’s pulse, while individual
modules receive the samples extracted from the signal and use them to generate unimodal expressions.
This leads to a total of 5 modules (signal, arms, head, neck, base). Regarding the co-speech gesture
prediction module, it has been developed as a single module. For both modules, the temporal analysis
has been conducted under two different conditions: (i) under the standby condition, the robot
stays in a standby state, without performing any expressions; and (ii) under the active condition, the
modules are in operation (generating liveliness behaviours or creating multimodal expressions from
a speech input). In both cases, the software architecture presented in Chapter 2 is running in the
robot. As a reminder, Mini has 16 GB of RAM, and an Intel i5-3550 CPU, with four cores running
at 3.3 GHz. Mini’s operating system is Ubuntu 16.04 64 bits.

Regarding the use of memory, it was observed that it is kept constant under both conditions for
all the modules involved, while small variations on CPU use where observed for the pulse-based
liveliness module. Each sub-module is consuming a 0.1% of the available RAM, as shown in Figure
5.18 The signal module consumes between 0.7 and 1.3% of the robot’s processing capacity, while the
CPU used by the remaining modules is in between 0.0% and 0.7%. The CPU use by the pulse-based
liveliness module can be seen in Figure 5.19. On the other hand, the co-speech gesture prediction
module uses around the 8% of the available RAM, and consumes most of the processing capacity of
the robot (351% of CPU, which translates in the complete use of three CPU cores and half of the
other). These results, which can be observed in Figure 5.20, show that the pulse-based liveliness
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Figure 5.19: Peak use of CPU by the pulse-based liveliness module. The results are shown as a
percentage of the processing capacity of a single CPU core.

module can be perfectly integrated in the robot’s architecture, and run alongside all the other
modules. However, the required amount of CPU is a significant constraint for the integration of
the co-speech gesture prediction module in the regular architecture of the robot, at least with the
current hardware. This was not a surprising result, as the co-speech gesture prediction module was at
a disadvantage. Deep learning models tend to have a high computational load, and in many cases are
run directly on GPUs, instead of using the CPU. Mini’s hardware is not designed with this type
of models in mind. Thus, it was expected that the co-speech gesture prediction model would have
high demand of processing capacity, A possible solution for this problem is to run this model in an
external hardware.

Figure 5.20: Peak use of resources by the co-speech gesture prediction module under two conditions
(with the module in standby, and with the module working). The results for the CPU usage are
shown as a percentage of the processing capacity of a single CPU core.
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5.4.1.2 Response time for the co-speech gesture prediction module

This section presents the response times extracted for the different subtasks that are performed by the
co-speech gesture generation module. Because this approach has been integrated in the process for
conveying communicative messages to the user, the response time for the prediction module has to
be added to the delays generated by the HRI Manager and the Expression Manager, which have
been discussed in Sections 3.6.2.2 and 4.6.1.2, and compared to the threshold that represents the
limit for an acceptable pause in an interaction. Previous chapters of this manuscript have established
that, while some researchers follow the rule known as the “Two second” rule and consider that
two seconds is the amount of time after which messages might loose their meaning, a more strict
threshold of 1 second will be enforced, to ensure a more agile interaction. In the objective evaluation
of the proposed co-speech gesture generation module, the response time will be compared to both
thresholds, using the “Two second” rule as the maximum delay that can be accepted. This will be the
only threshold considered due to the fact that the proposed approach will only be used to enhance
actions intended to convey messages to the user.

The proposed module for predicting gestures is prepared to receive utterances of different lengths,
even multiple sentences at once. In order to conduct a proper temporal analysis, the module has been
tested under three different conditions: (i) a single short sentence is passed (8-word sentence); (ii)
a medium-sized utterance composed of several sentences is passed (30-word utterance); and (iii) a
long-sized utterance with multiple sentences is passed (60-word utterance). Under all three conditions,
the prediction process has been divided in the following subtasks, which are performed sequentially:

• Pre-processing: The preparation that is required before sending the utterance to the intention
prediction model. It involves the process described in Section 5.3.3.1.

• Predict intentions: The process for extracting the communicative intention from the
utterance. It involves the prediction process described in Section 5.3.3.2.

• Filter intentions: The filtering that is performed for correcting the sequence of labels
generated by the intention prediction model.

• Predict gestures: The process for obtaining the semantic values of the gestures that have to
be combined with the utterance. It involves the prediction process described in Section 5.3.3.3.

• Filter gestures: The filtering that is performed for correcting the sequence of labels generated
by the gesture prediction model.
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• Gesture preparation: Preparation stage for the synchronization of speech and gestures. The
sequence of labels is converted into a key-value pair array, were the keys are the gestures that
have to be added to the utterance, and the values are the synchronization points (multiple
instances of one gesture can appear in different parts of an utterance).

• Gesture synchronization: Process that loads the appropriate gestures from the expression
library and computes their start point (time that has to pass from the beginning of the utterance,
in seconds).

• Sending expression: Combines the utterance and the gestures that have been selected into
a single expression request message, that will be processed by the Expression Manager as any
regular request coming from the rest of the architecture.

Figure 5.21: Duration of the different sub-processes involved in the generation of multimodal
expressions with synchronized verbal and non-verbal behaviour, when a short sentence is passed as
input. Top chart represents the complete process, while the low chart shows those process that are
too short to be appreciated in the top chart. Bars represent the average duration for each process.

For each trial, the entire process will be performed 10 times for the same utterance, and the
average duration for each of the subtasks will be obtained. The Figures 5.21, 5.22, and 5.23 show the
results extracted from the temporal analysis for a short, medium, and long utterances, respectively.
Because completing some of the described subtasks takes a time that is several orders of magnitude
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smaller than others, three charts are included in each Figure. Chart on top shows the combination of
all the processes, while the charts on the bottom show in more detail those processes that are too
short to be appreciated correctly. Additionally, Figure 5.24 shows a comparison for the full reaction
time for all three conditions. This reaction time is computed as the sum of the time required for
completing the entire process.

Figure 5.22: Duration of the different sub-processes involved in the generation of multimodal
expressions with synchronized verbal and non-verbal behaviour, when a medium-sized sentence
is passed as input. Top chart represents the complete process, while the low chart shows those process
that are too short to be appreciated in the top chart. Bars represent the average duration for each
process.

Figures 5.21, 5.22, and 5.23 show that both prediction steps are the clear bottlenecks of the
process, and that the time required to complete them is directly proportional to the amount of
tokens in the input passed to the model. This relationship is close to being linear, which allows to
estimate approximately the time required to generate the prediction given the size of the input. Also,
because the prediction of gestures involves the use of extra information (the sequence of intention
labels), is not surprising that the time required for predicting gestures is higher than for predicting
intentions (this difference increases with the size of the utterance). The other subtasks that show the
highest variation are the initial preprocessing stage, the preparation step before the synchronization
of speech and gestures, and the synchronization itself. Again, this is expected, as the longer the



270 chapter 5 | Liveliness in Social Robotics

Figure 5.23: Duration of the different sub-processes involved in the generation of multimodal
expressions with synchronized verbal and non-verbal behaviour, when a long sentence is passed
as input. Top chart represents the complete process, while the low chart shows those process that are
too short to be appreciated in the top chart. Bars represent the average duration for each process.

utterance is, the more words that have to be tagged with their Part-of-Speech labels, and the higher
amount of gestures that will have to be added. However the filtering process is not affected by the
number of labels to check, and, in fact, this time showed to be shorter for the long utterance. A
possible explanation for this is that the filtering process is more affected by the amount of possible
prediction errors present in the label sequence that by the length of the sequence itself. So, if for a
longer utterance the predictions obtained are better, then the filtering process should be completed
faster. Finally, the time required to build the expression request message remains mostly unaffected
by the amount of gestures that have to be added to the message (there are variations, but very small).

The temporal evaluation shows that, with the current hardware installed in Mini and the
co-speech prediction model running in the robot, the threshold of 1 second cannot be achieved,
while staying below 2 seconds is going to depend on multiple factors. In Section 4.6.1.2, it was
presented that the worst case scenario observed for delays in an interaction was around 1.16 seconds
(combining the reaction times for both the HRI Manager and the Expression Manager). This time
under normal conditions could be assumed to be around 1 second, as the delay for the HRI Manager
was clearly the worst situation observed for a particular CA. In any case, the lowest response time
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Figure 5.24: Comparison of the response time for utterances of different lengths.

observed for the co-speech prediction module was around 1.36 seconds, for the short utterance (8
tokens). This means that, added to the delays generated by the Expression Manager and the HRI
Manager, the total time for performing a communicative action would be around 2.3 seconds, over
the threshold defined by the “Two second” rule.

There are several solutions that could be tried in order to improve this response time. First, one
of the biggest problems is the need for dividing the pipeline into two prediction steps: intentions
and gestures. The former was included to improve the accuracy of the latter, as the intentions are
more generic and easier to predict based on the input utterance. Thus, if the amount of gesture
labels is reduced, the difficulty inherent to the gesture prediction process could be lowered enough
to make the intention prediction unnecessary. This would have the disadvantage of making the
resulting expressions more generic, and less adapted to the particularities of the input utterance. A
second possible solution would be to extract the prediction model to an external server that has more
powerful hardware, and thus can perform the prediction task faster. One last possibility would be to
improve the hardware of the robot, although this might not be an option if the robot is a commercial
platform.
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5.4.2 Case of use

The integration of the proposed liveliness architecture will be described through a case of use that
showcases how the co-speech gesture prediction module enhances the robot’s utterances with
non-verbal gestures, and how the behaviours generated by the pulse-based liveliness module are
executed alongside those coming from the HRI Manager. The proposed case of use describes the
same situation presented in the subjective experiment depicted in 4.6.3, where an user plays a quiz
game with the robot Mini. This case of use will focus on how Mini selects and performs expressions
coming from different sources. Figure 5.25 depicts the complete case of use, along with the different
sources of expressions considered.

Figure 5.25: Interaction depicted in the case of use, along with the three sources of expressions
considered (pulse-based liveliness, co-speech gesture prediction module, and emotional display
module). The diagram indicates where the expressions that the robot performs at every time step are
coming from.

Initially, Mini is placed over a table, and starts in a standby state where the robot conveys the
appearance of being asleep. In this state, both the amplitude and the frequency of the signal used for
generating the robot’s liveliness behaviours are close to 0, so the robot does not perform any action
while being asleep. When the user enters the room and strokes Mini’s shoulder, the robot wakes up.
This triggers a change in Mini’s internal state, and thus in the control parameters for the pulse-based
liveliness. In this case, because Mini is not in any particular affect state, the amplitude is set to 50%,
while the frequency is set to 100%. During the change of state from sleeping to awake, Mini performs
a wake up expression, which has the robot raise both arms and throw the head backwards, yawn
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while opening the eyes, and then utter "I was having such a good sleep". While this expression is being
performed, the pulse-based liveliness starts generating behaviours for all the robot’s communicative
interfaces. But because the wake up gesture is using both arms, the voice, head, and eyes, all the
behaviours generated by the liveliness for these interfaces will be discarded, as they have low priority.

Figure 5.26: Process followed by the co-speech gesture prediction module follows for creating a
multimodal expression for greeting the user. The image on the right shows Mini in the process of
performing one of the selected expressions.

Next, the robot introduces itself, sending the utterance “Hello, nice to meet you. My name is
Mini, and I’m a social robot”. Because the expression request contains only a verbal message, with no
non-verbal actions attached, the Expression Manager sends this utterance to the co-speech gesture
prediction module (see Figure 5.26). The module predicted two different communicative intentions:
while the first sentence has the goal of greeting the user, the second one is used to present personal
information about the robot. Thus, the output of the intention prediction model is a sequence
with two labels: Greet and State Robot Fact. Based on these intentions, the gesture prediction model
predicts three different semantic values: Greet is attached to the sentence “Hello, nice to meet you.”,
Self is attached to the substring “My name is Mini,”, and finally, Explain is attached to the substring
“and I’m a social robot”. The current version of the synchronization rules state that the gestures for
all possible semantic values have to be synchronized with the beginning of the corresponding speech
chunk. Finally, the verbal message and the gestures selected by the co-speech gesture prediction
module are performed.

After introducing itself, the robot asks the user to select what he wants to do. This is done by
uttering the request “Please, select one of the options shown in the menu”, while showing a menu in the
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Figure 5.27: Process followed by the co-speech gesture prediction module follows for creating a
multimodal expression for asking the user to select an activity. The image on the right shows Mini in
the process of performing the selected expression.

tablet. Again, because the message of the robot is conveyed exclusively through verbal means (the
menu displayed in the tablet is not considered part of the message conveyed), the utterance is sent
to the co-speech prediction module (see Figure 5.27). In this case, the communicative intention
is Request Action. Based on how the request is built (asking politely), the semantic value predicted
for this sentence is Please, and once again is synchronized at the beginning of the utterance. While
the user is evaluating which option to select, the pulse-based liveliness module keeps generating
behaviours. In this case, because the robot is just waiting, these behaviours are going to be performed,
so Mini will keep moving and changing its gaze while the user meditates his choice.

Figure 5.28: Process followed by the co-speech gesture prediction module follows for creating a
multimodal expression for showing enthusiasm after the user selected the quiz game. The image on
the right shows Mini in the process of performing one of the selected expressions.
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Once the quiz game has been selected, the robot celebrates this decision with the utterance
“Great! I love that game!. This utterance is passed to the co-speech gesture prediction module (see
Figure 5.28), which recognizes that the intention is to show enthusiasm, and thus the semantic
value of the gesture that should accompany the speech has to be Enthusiastic. The model selects the
appropriate gesture, and synchronizes it with the beginning of the speech.

Mini then moves on to explaining the game’s rules to the user. During this while process, the
communicative intention of the robot is Explain, which coincides with the semantic value of the
gestures that have to be used. Mini tells the user that he will be asked a series of questions about
History, and for each question he will be presented with four options.

Figure 5.29: Process followed by the co-speech gesture prediction module follows for creating a
multimodal expression for asking the first question of the quiz game. The image on the right shows
Mini in the process of performing the selected expression.

After all the explanations have been completed, Mini asks the first question: “When did the
attack on Pearl Harbour took place?”. Again, the question is also passed through the co-speech
gesture prediction module (see Figure 5.29). Among the three communicative intentions included
in Table 5.3 that could imply the use of a question, the one that fits this particular situation is Ask
Question, as the goal is not to retrieve personal information or an opinion from the user. The model
then ascertains that the proper semantic value of the gesture that has to accompany this utterance
is Question, an expression where the robot takes a stance that tries to invite the user to provide an
answer. Once again, after the question is uttered, Mini has to wait for the user to provide an answer.
While waiting, the behaviours generated by the pulse-based liveliness are once again executed, as
the robot is not performing any other expression. When the user provides the right answer to the
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first question (1941), this stimulus triggers a change in Mini’s affect state, making the happiness
emotion to spike. As a reaction, the Emotion reaction module described in Section 4.5.5 requests
the execution of the most appropriate expression for reacting to the stimulus that triggered the
emotion. In this case, this expression congratulates the user for making the correct answer, with both
verbal and non-verbal actions. Because this gesture is already multimodal, it is performed directly,
without being sent to the co-speech gesture prediction module. After this congratulation has been
uttered, Mini delivers some information about the correct answer, once again with the intention of
explaining something, and thus the Explain semantic value is attached to these utterances. The rest
of the questions in the game are performed in the same manner described here.

Figure 5.30: Process followed by the co-speech gesture prediction module follows for creating a
multimodal expression for ending the interaction. The image on the right shows Mini in the process
of performing the selected expression.

Once the game has been completed, Mini says to the user “I had a lot of fun playing with
you”. The lack of an exclamation mark at the end of the sentence leads the model to infer that the
communicative intention is to convey information about the robot, instead of showing enthusiasm
(see Figure 5.30). Based on this intention and the utterance itself, the gesture prediction model labels
the sentence with two gesture labels: Self and Other Peer, and synchronizes the appropriate gestures.
With the one tied to the label Self, Mini tries to convey the idea of pointing at itself. Due to Mini’s
lack of elbows, this had to be expressed by lowering the head and the gaze so the robot seems to be
looking at itself. With the gesture tied to the Other Peer label, Mini points at the user. The first
expression is connected to the beginning of the utterance, while the other is tied to the beginning of
the chunk with you. Finally, Mini uses a predefined expression to say goodbye to the user, and goes
back to the standby state, completing the interaction.
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5.5 Conclusions

Endowing a robot with a liveliness appearance is one of the factors that can lead to a human
considering it a viable interaction partner, and easing the creation of bonds between them. This
is essential for a social robot that will be integrated in a human environment. There are several
methods that can be used to convey this liveliness appearance through the performance of non-verbal
expressions. Examples of this are displaying motions that are not caused by an external force (for
example, an user pushing the robot), suggesting the existence of a conscience behind the movement,
or displaying human-like facial expressions. But when these non-verbal expressions have to be
performed alongside speech, it is not enough that they are able to convey a liveliness appearance, but
it is also important that they match the communicative goal of the verbal message. This chapter has
presented two different methods for generating behaviours oriented to endow a social robot with a
lively appearance.

5.5.1 Contributions and achievements

This chapter has aimed at developing strategies for enhancing the animacy of a social robot through
the use of non-verbal behaviours. This led to the two main contributions presented in this chapter.
First, a method for generating unimodal actions for a social robot has been proposed. This method
represents the state of the robot as a sinusoidal signal with variable frequency and amplitude. This
signal was designed with the idea of mimicking a heartbeat. The amplitude and frequency of the
signal can be altered based on the internal state of the robot. In the current version of the pulse-based
liveliness module, the affect state of the robot is considered to alter the values of the signal, along with
an extra state where the robot simulates being asleep, and thus the generation of behaviours have to
be stopped. At a certain rate, the pulse-based liveliness module samples the signal, and generates the
appropriate behaviours. This is done by selecting randomly one of the available templates for each
interface, and parametrize it using the sample taken from the signal.

The second contribution is the development of a co-speech gesture prediction method that can
be used to enhance messages that only include verbal information. The proposed pipeline frames
this task as a labelling problem, where the model has to generate an appropriate sequence of labels
given the input information. The process has been divided into two steps: (i) using the words in the
utterance and their Part-of-Speech tags to predict a sequence of labels indicating the communicative
intention/s of the utterance; and (ii) combine this communicative intention/s with the inputs in
step 1 to predict a sequence of labels indicating the semantic value of the gesture/s that should
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accompany the speech. Each step is performed by a separate model, both designed as a combination
of Long-Short Term Memory networks for encoding the inputs (one network for each type of input:
words, Part-of-Speech tags, and intention labels) and a Conditional Random Field for obtaining the
final sequence of output labels. A filter is added after each model to correct any possible prediction
error that can affect the next steps in the process.

The last contribution that has been presented in this chapter is the development of a method for
synchronizing verbal and non-verbal messages based on a set of rules. Developers can assign individual
rules to each possible semantic value label, in order to define individual synchronization strategies for
each type of gesture in the system. For example, an expression where the robot says no by shaking the
head can be attached to the apparition of the actual word no in the utterance, while gestures used to
greet the user could be attached directly to the beginning of the speech chunk. Each rule allows to
define which feature should be used for the synchronization process (a position in the chunk, or the
appearance of a given word or Part-of-Speech label), a particular value for this feature (if it has to be
synchronized with the beginning, middle, or end of the chunk, or the actual word or Part-of-Speech
label that has to appear), and other information required for the synchronization process (if the
gesture has to be performed only once or if the entire chunk should be filled with as many gestures
as possible, if an offset should be introduced...). Multiple rules can be defined for each possible
semantic value, and the system will try to evaluate them in the order in which they are defined.
Based on this rules and on a mapping that connects the semantic values predicted by the model
with the expressions stored in the library, this synchronization method computes the starting point
in seconds for each non-verbal behaviour, from the moment the verbal message is started to be uttered.

Both the pulse-based liveliness module and the co-speech gesture prediction module have
been evaluated with objective tests, and a case of use has been presented to demonstrate how both
methods are integrated in the HRI architecture of our robotic platforms. The results obtained for the
pulse-based method show that the performance of this approach allows for a successful integration in
our robotic platforms. However, while the proposed gesture prediction model has proven to be able to
select the correct type of gestures in the majority of situations, and achieved a proper synchronization
of the verbal and non-verbal modalities, the module showed that it might require more processing
power than the one provided by our robots, in case we want to avoid excessive delays in the interaction.
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5.5.2 Achievement of the proposed goals

The main objective of endowing the robot with a liveliness appearance was divided into two main
objectives: (i) implementing a method for generating unimodal actions to be conveyed through
each of the robot’s communicative channels; and (ii) the development of a co-speech prediction
method for enhancing the communication capabilities of the robot with the addition of non-verbal
behaviours that match the robot’s verbal message. Both objectives have been achieved successfully
with the development of the pulse-based liveliness and the co-speech gesture prediction methods.
These objectives have been divided in a series of subgoals:

• The first subgoal stated that the actions created by the pulse-based liveliness module have to
be adapted to the internal state of the robot. This objective was successfully accomplished
with the integration of the signal representing the robot’s pulse. The actions created by the
Interface modules are configured using samples extracted from this signal. The robot’s pulse
is defined by two parameters: the amplitude of the sinusoid and the pulse’s frequency. At a
certain rate, the Signal module checks the internal state of the robot, and alters the values for
both parameters, if required. Thus, by altering the shape of the signal, the appearance of the
actions generated by the Interface modules will also be altered. The effect that the robot’s state
will have depends on the type of action (for example, in motions, the final position in the
trajectory is altered, making the movement longer or shorter).

• The second subgoal requested that the non-verbal expressions that have to be used to enhance
the verbal message are selected based on the intention of the utterance, so the expressions help
to achieve the communicative goal stated by the verbal message. This was achieved by dividing
the prediction process into two different steps: (i) the first model receives the utterance and
predicts a sequence of labels that state the communicative intentions of the different parts of
the utterance; and (ii) the second model receives the combination of utterance and the output
from the first model and predicts a sequence of semantic values for the gestures that have to be
added to the verbal message. Both models have the same internal structure, a combination of
LSTM encoders and CRF for predicting the labels. The difference is that the second model
adds an extra encoder for the intention labels.

• The third subgoal required the creation of proper datasets for training the models requested in
the second objective. First, a dataset was created for training the gesture prediction model, in
order to test if the performance was satisfactory. The utterances for this dataset were extracted
from the Cornell Movie Dialogs Corpus, and then labelled manually with both the intention
labels and the semantic values for the gestures. Once the gesture prediction model was trained
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with this dataset, and the performance was evaluated, the intention prediction model was
developed, and the second dataset was created by just removing the information about the
semantic values from the instances of the first dataset.

• The fourth subgoal involved the development of a synchronization method able to pair
the utterance with non-verbal expressions based on the semantic values predicted by the
machine learning pipeline. This objective was successfully implemented with a combination of
a mapping that establishes the relationship between the semantic values predicted by the model
and the expressions in the library, and a rule-based synchronization method. Another requisite
was that the system should be able to manage an undetermined amount of expressions. In
order to do this, the utterance is split in multiple speech chunks, based on the semantic values.
Then, the synchronization process is performed for each chunk individually. This allows to
synchronize as many expressions as required.

• The previous objective was extended with the fifth subgoal, which stated that the gestures added
to the verbal message should be loaded from a gesture library, and that the synchronization
process should be easy to adjust, so it can be adapted to the expressions available. The first part
of the goal was achieved with the implementation of a mapping between the semantic values
and the gestures in the library. A configuration file contains a dictionary where developers
can specify a list of expressions that correspond to each possible semantic value. The length
of the expressions has to be also specified, so the synchronization method can evaluate if a
particular gesture will fit in a speech chunk. The second part of the objective was achieved with
the implementation of the synchronization rules. These rules are easy to craft, and multiple
rules can be defined for each semantic value, which gives developers a more precise control
over the behaviour of the synchronization method.

• The sixth subgoal required that the prediction and execution of expressions should be detached
in the co-speech gesture prediction model. This would help to integrate the proposed method in
robotic platforms with different output interfaces. This goal can also be marked as completed.
The proposed method establishes a clear division between the prediction of gestures, the
synchronization of the verbal and non-verbal messages, and the generation of the final
expression that has to be executed. A machine learning-based pipeline receives the next utterance
of the robot, and predicts the semantic value of the gesture/s that should be added. This is
then passed to the synchronization method, which is in charge of selecting the proper gestures
from the library and returning the starting point (in seconds) for each gesture. Both processes
are mostly platform-independent (they do require an expressiveness architecture that uses
predefined expressions, and that allows to add a delay to the start of a gesture). The last step is
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the only one that is completely platform-dependent, as the utterance and the gestures selected
have to be formatted in a request that can be processed and executed by the expressiveness
architecture.

• The last subgoal stated that the proposed liveliness methods should be integrated in the
robot. This implies that their performance allows for a fluid and natural interaction. Based
on the results of the objective tests presented in Section 5.4.1, this objective has been partially
completed. While the pulse-based liveliness method was successfully installed in the robotic
platforms used in this dissertation, the co-speech gesture prediction module required an
excessive amount of resources, and introduced a delay in communication that could lead
to unnatural interactions if the utterance that is passed to the method is too large.

5.5.3 Limitations of the system and future lines of work

During the development and evaluation of the proposed methods for enhancing the animacy of a
social robot, several weak points and potential future lines of work were identified, in order to improve
the performance of both the pulse-based liveliness and co-speech gesture prediction methods:

• The pulse-based liveliness method uses a sinusoidal signal to represent the pulse of the robot.
This signal can be adapted to the internal state of the robot, which in turn results in a change
on how the different unimodal actions are generated. While this approach allowed to change
the non-verbal behaviours so they tried to represent the robot’s state, it presents one main
limitation: it only changes how an action is parametrized, but it has no effect over which type
of action is performed. For example, while happiness can increase the amplitude of the robot’s
motions, and sadness can cause the opposite effect, the type of motion is the same under both
states (moving the arms back and forth, for example). Future works should try to extend the
effect that the robot’s internal state has over the generation of behaviours. A possible solution
would be to develop different action templates for each possible state, and pass the state of the
robot alongside the sample extracted from the pulse signal to the Interface modules.

• While it is important that the behaviours performed by the robot are adapted to its internal
state, this is not the only factor that could play a role on how the unimodal actions created by
the pulse-based liveliness method are generated. Other circumstantial factors could be taken
into account to improve the robot’s appearance. For example, the behaviours generated could
be different if the robot is interacting with a user, or it is alone. This way, if the robot is in the
middle of an interaction, the motions generated could be oriented to follow the other peer, or
show the appearance of being paying attention. In order to extend the proposed Liveliness
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module with this feature, three steps would have to be conducted: (i) identify the context
factors that should have an effect over the robot’s behaviours; (ii) identify how each new factor
should affect each of the robot’s communicative interfaces; and (iii) modify the Signal and the
Interface modules so they take into account these factors.

• The objective evaluation of the proposed co-speech gesture prediction method showed that
the required amount of resources to run the model was too high for the robotic platforms in
which the model was tested. Also, the delay introduced in the interactions by the prediction
and synchronization of non-verbal expressions was slightly too high when a short utterance
was being processed, and this delay grows with the length of the sentence. Thus, and alternative
solution for running the proposed model should be found. Two possibilities have been
identified so far, although other options could be considered. The first possible solution would
be increasing the robot’s processing power with hardware designed with machine learning in
mind. The second solution would be to extract the machine learning pipeline from the robot
and run it into an external machine that is prepared for this type of approaches. The robot
would then communicate with this machine, sending the robot’s utterance and receiving the
predicted sequence of semantic values.

• In order to synchronize the verbal and non-verbal modalities, one of the things that the
synchronization model needs to know is the length of the speech. This is important for
computing the starting point for the non-verbal expressions, and also for identifying if a
particular gesture can be performed in the time it takes to utter the verbal message. The current
version of the system measures the length of the utterance in base to the number of characters
in the text that will be sent to the TTS. Sentences with different lengths were sent to the TTS,
their duration was measured by hand, and a relation between the number of characters and
the length of the utterance was obtained. While this approach has proven to work acceptably
well, it is still an approximation, as it does not take into account other factors that will change
the time required for uttering a sentence. For example, the speech patterns used for a question
could be different to those used for a statement, and thus the estimated relation between the
number of characters and the length in seconds might be also different. Also, the expressiveness
architecture used in our robots allows developers to specify the prosody rate for a particular
utterance, which is also not contemplated in the proposed synchronization method. Thus, a
new approach should be developed for obtaining the length of an utterance. Because one can
not rely on the TTS providing this information, the new method should still aim at computing
this length theoretically.
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• When the synchronization method has to load expressions from the library to pair them with
the verbal message, the algorithm checks the mapping specified in the configuration file, which
indicates not only which gestures correspond to each semantic value, but also their duration
(in seconds). Based on the length of a particular utterance chunk, and the semantic values with
which it has been labelled, the synchronization method extracts all the gestures that could be
performed in the time required to utter that particular chunk, and then selects one of them
randomly. This could lead to situations where no gestures can be selected for a given chunk, or
where the length of the chunk is much larger than the duration of any gesture, which could
lead to the robot remaining still for too long. While the idea is to have gestures with different
lengths for each possible semantic value, and the synchronization rules allow to mitigate the
second problem by performing the same gesture multiple times to fill the entire duration of the
chunk, the system could benefit from the implementation of a method that can modify the
non-verbal expressions to alter their length. The idea is to allow the synchronization method
to extend or shorten the duration of an expression in order to adapt it to the length of the
utterance chunk. This is not a trivial process, as the modification of the expression’s duration
should be performed in a way that maintains the integrity of the message being transmitted by
the expression.

• In the current version of the system, a limited amount of gestures have been developed for each
possible semantic value. While this was enough for testing the performance of the proposed
approach, more expressions should be included in order to increase the variability of the robot’s
expressiveness, to avoid an excessive repetition of gestures. Thus, the library of expressions
should be extended with more examples for each possible semantic value.





CHAPTER 6 6

Conclusion

Robots are starting to become a part of our daily lives. While the advances on robotic technology
are starting to make robots more cost effective than human workers [1], demographic changes
predicted for the near future are creating problems that could be solved with the integration of
robots in different sectors of our society. However, in the case of the services sector, it is necessary
that these robots are able to interact with humans in a way that abides by the social rules enforced in
the domains in which the robot will be inserted, and meet the expectations that the humans in said
domains have for human-human interactions. This dissertation was born from the need to endow
social robots with these capabilities.

6.1 Contributions and achievements

The main goal of this dissertation was to endow a social robot with the necessary communicative
abilities in order to provide an interaction that feels satisfactory to a human user. With this objective
in mind, this dissertation has made contributions to three main topics: (i) dialogue management, (ii)
expressiveness management, (iii) and animacy display.

Dialogue management is one of the key problems in the field of Social Robotics. Creating
frameworks that allow robots to imitate the way that humans communicate between them is essential
for developing robots that can be integrated in real environments and replace human workers in
areas that involve contact with users. Along the years there has been an extensive body of research in
this area. The development of artificial intelligence and deep learning has brought a big impulse
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forward in the creation of systems that can interact like a real human, although a big part of the work
developed focuses on speech-based interactions. Multimodal communication is essential for robotic
platforms, and should be the direction in which the research on dialogue management for robots
tends to.

Chapter 3 of this manuscript has presented the proposed approach to dialogue modelling and
management for social robots. The work conducted in this area has led to two main contributions.
First, a dialogue model has been proposed for representing one-to-one interactions between a
robot and a human. Under this model, interactions are divided in basic units called Communicative
Acts, or CAs. These CAs have been defined based on two dimensions of the dialogue: (i) which
speaker is holding the initiative in the interaction; and (ii) what is the communicative goal of the
speaker with the initiative. Although speakers can have a large amount of possible communicative
goals (e.g. make a request, ask a question, greet the other peer...), this dissertation considers that
all of these goals are variations of one of two final goals: give or retrieve information. Thus, the
basic CAs (or BCAs) have been designed to complete one of these two communicative objectives.
Because these CAs are highly parametrizable, developers can adapt them to achieve more specific
objectives. The control over dialogues is this divided in two levels, where the robot’s applications
create the flow of the interaction as a combination of CAs based on task-related information,
while the HRI Manager controls interaction-specific aspects of the dialogue. Finally, CAs can be
combined into more complex structures, called Complex Communicative Acts (also known as CCAs).
In turn, these CCAs can be also combined in an hierarchical manner with either BCAs or other CCAs.

The second main contribution that Chapter 3 presented was the development of the HRI
Manager, the software architecture required for implementing human-robot interactions using the
CAs. On top of providing the methods required for loading, configuring and executing the CAs, it
also provides a series of functionalities that are required in the majority of interactions. While the
CAs implement a series of mechanisms for error handling during communication, the HRI Manager
provides a priority-based conflict management mechanism for controlling when to start, pause, or
cancel dialogues.

While having the tools for managing interactions in a way that feels natural to the user is a
cornerstone in the development of a social robot, it also requires that the actions selected by the
dialogue management approach are modelled as expressions that seem human-like. This involves the
use of multiple communication modes (speech, motions, gaze, etc...), which have to be appropriately
coordinated between them. Researchers have faced this problem using a variety of techniques, which
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go from handcrafting each action individually to using machine learning models to generate the
expressions.

Chapter 4 focused on the design and development of an expressiveness architecture for a social
robot. Here, three main contributions can be highlighted. The first contribution has been the
proposal of a model for describing multimodal expressions for a social robot as state machine-like
structures. This solution allows to consider all the robot’s output communication channels at the
same time during the design of gestures, instead of focusing on each interface individually and then
combining all the modalities. The proposed approach allows to connect the execution of actions to
specific moments in time (e.g. 3 seconds after the execution of the gesture starts), or to the conclusion
of previous actions (e.g. raise the left arm when the right one has finished its motion). Under the
proposed expressiveness architecture, expressions are based on FlexBE, a framework for developing
behaviours for robots. This allows gestures to be created using a graphic interface. Also, in order to
increase the flexibility of the system, a template was developed for creating multimodal expressions
from a list of individual actions.

The second contribution related to the expressiveness of a social robot has been the development
of the Expression Manager, the module in charge of controlling the robot’s expressiveness. Its tasks
involve managing requests for executing gestures and schedule them (Expression Scheduler), and
loading them from the expression library and ensuring that their execution is completed satisfactory
(Expression Executor). The Expression Manager also provides serves as an interface between the
software architecture and the robot’s actuator control modules (e.g. the ETTS, the drivers for the
motors...) through the Interface Players. The last contribution of the work that has been presented
in Chapter 4 is the addition of three of mechanisms for adapting the expressiveness to the robot’s
internal state: (i) allowing developers to replace individual actions inside a predefined multimodal
expression (e.g. change the utterance of a greeting gesture); (ii) using two control parameters (speed
and amplitude) to change the overall appearance of an expression; and (iii) using modulation profiles
to specify the effect that each possible internal state has over the different communication interfaces
(e.g. happiness raises the pitch of the voice, sadness lowers the amplitude of the motions).

There is a conclusion that can be extracted from the work developed in Chapter 4. According
to research [114], human communication can be divided in two components: symbolic and
spontaneous. While the former has the objective of conveying messages, the later involves the display
of emotional and motivational states. From this, it can be deduced that an expressiveness approach for
robotics cannot be devised exclusively with a functional mentality (the only goal of the architecture
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cannot be conveying communicative messages with a defined goal). Instead, is important to merge
both dimensions of communication, so the robot is able to include its own internal state in the
messages being conveyed to achieve communicative goals. The proposed approach was designed to
manage both aspects of communication, in order to be able to convey complex multimodal messages
while abiding by the rules that control interactions between humans (particularly, the temporal
constrains involved in all dialogues), while at the same time providing the tools required to transform
these multimodal expressions so they are able to convey the internal state of the robot while still
being able to complete their communicative goal.

The last topic discussed in this dissertation is the importance that displaying a liveliness
appearance has for a social robot, in order to be recognized as a suitable interaction partner by
humans. While conveying this appearance is a complex task that involves aspects like the external
design of the robot, or its cognitive abilities (the capacity for learning new behaviours, for example),
research reviewed in this chapter has shown that an appropriate use and combination of verbal and
non-verbal expressions can help to enhance the robot’s animacy. Two different situations have been
identified: (i) the robot performs expressions that have no communicative purpose (do not try to
convey any particular message) to enhance its animacy; and (ii) the expressions performed by the
robot try to enhance its animacy while trying to complete a particular communicative goal. While the
former could be connected to the spontaneous dimension of communication identified by Buck and
VanLear [114], the latter combines both dimensions (symbolic and spontaneous).

This thesis has focused on how non-verbal behaviours can be used to increase the robot’s
animacy. The work conducted led to two different approaches. The first method focuses on creating
liveliness behaviours for social robots based on a sinusoidal signal that represents the robot’s
heartbeat. The internal state of the robot is used to adapt this signal, which is then sampled at given
intervals. The samples extracted from the signal are then used by a series of modules to generate
unimodal actions. For each communicative interface, a series of templates depicting different
possible actions (e.g. different types of arm motions, or different gaze patterns) have been designed.
When an action has to be created, each Interface module in the pulse-based liveliness method
selects one of this templates and then parametrizes it based on the signal. The second approach
seeks to enhance the communicative abilities of the robot by selecting the non-verbal behaviours
that have to accompany the speech of the robot, based on the content of the utterances and the
communicative intentions of the verbal component. This task was solved as a labelling problem,
where a deep learning model assigns labels to each word in the utterance indicating the semantic
value of the gesture that should be selected. The proposed model first predicts the communicative
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intention/s of the utterance based on the words and the Part-of-Speech labels assigned to each
word in the utterance. Then, the sequence of intention labels is combined with the words and
Part-of-Speech labels and used to predict the list of semantic values for the gestures. Both the
intention and gesture prediction are done using a model that combines an LSTM-based encoder
and Conditional Random Field for predicting the sequence of labels. The last contribution in
this area is the development of a synchronization method that receives the utterance and the
predicted sequence of semantic values, selects the most appropriate expressions from the gesture
library, connects them to the appropriate points of the utterance, and creates a single multimodal
expression that contains both the verbal and non-verbal components. This method relies on a set of
rules that are handcrafted by the developers for each possible semantic value. Each rule defines the
type and value of the utterance’s feature that should be used to find the point where the gesture
should be connected (the appearance of a given word, Part-of-Speech label, or a predetermined
point in the chunk), as well as other extra information required for completing the process (e.g.
if a utterance chunk should be filled with as many gestures as possible, or use an single gesture).
For each semantic value, developers can create multiple rules that the system will evaluate sequentially.

The work that has been presented in Chapter 5 led to several conclusions. In the first place,
endowing a robot with a liveliness appearance through the use of non-verbal expressions is not a task
that can be conducted independently, instead is deeply connected to the robot’s expressiveness. Any
method that tries to convey animacy with the performance of specific expressions should take into
account the communicative goals that the robot might have at any given moment, so these behaviours
do not hinder the interactions conducted between the robot and the users. Second, although some
researchers defend that animacy is one of the dimensions that expressions have, it is not clear that
the same behaviours can be used under every circumstance to display animacy. On the contrary, it
seems beneficial to adapt these gestures to different factors, both related to the internal state of
the robot and the context of the interactions, so the behaviour of the robot is perceived as natural.
Lastly, while non-functional behaviours for conveying animacy might not be subject to temporal
restrictions (they can be performed at random moments in time, and with a variable frequency),
when they are performed simultaneously with functional behaviours, then they need to abide by the
same temporal rules that control any interaction. This means that the selection/generation of the
non-functional expressions has to be done at a speed that allows for a natural interaction, and that a
proper synchronization between the functional and non-functional behaviours has to be achieved.

All the modules presented above have been tested through both objective and subjective
evaluations to ensure that they meet the requirements that human-robot interactions impose on
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the robot (time required to convey information to the user, the ability to overcome unexpected
situations that arise during the dialogue, etc...). Also, because the proposed architecture has to be
integrated in robotic platforms, the amount of resources that each module requires to work is also a
key metric to validate the work performed. Thus, the objective evaluation was conducted for all the
modules presented above, measuring the use of RAM and CPU, and also the response time. The
results show that the HRI Manager, the Expression Manager, and the pulse-based liveliness approach
are all able to operate at a speed that fulfils the requirements for human communication, and with a
performance that allows both methods to be integrated in a robotic platform with limited resources.
However, although the proposed co-speech gesture prediction method is able to successfully select
the most appropriate non-verbal behaviours given an utterance, it requires an excessive amount of
resources, and could introduce excessively high delays in the communication process if the utterances
are too large.

Regarding the subjective evaluation, cases of use were presented for both liveliness methods
and the HRI Manager. For the Expression Manager, the evaluation focused on the modulation
strategies proposed, through two video-based experiments. The first one evaluated the effect that the
parameter-based modulation has over how users perceive the robot, while the second experiment
studied the effect that the display of affect states has over the users’ perception, using the profile-based
modulation approach. The case of use presented for the HRI Manager showed that the robot
was able to conduct interactions with patients in a daycare centre using the CAs to build these
interactions. The majority of interactions were conducted without issues, and in those where errors
arise, the mechanisms integrated in the CAs were able to handle these situations successfully. The
case of use showcases some key situations observed during the trials, and that can be used as an
example of the capabilities of the proposed approach to dialogue management. Regarding the
liveliness methods, the case of use describes a common application of the robotic platform used
in this thesis (a quiz game where the robot asks multiple choice questions to the user), and uses
this example to demonstrate how the proposed liveliness approaches are integrated in the robot’s
software architecture. Finally, the experiments conducted with the Expression Manager showed
that a correct modulation of the robot’s expressiveness might improve the perception that users
have of the robot’s capabilities. While the parameter-based modulation succeeded in improving the
participants’ opinions, the results of the experiment conducted using the profile-based modulation
were not that positive. Further tests should be conducted to have a clearer understanding of the
reasons behind these bad results.
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Overall, the evaluations conducted showed that the proposed Human-Robot Interaction
architecture can be effectively integrated in a robotic platform, and allow a social robot to interact
with humans in a way that feels natural. Thus, the main goal of this dissertation is completed.

6.2 Achievement of the proposed main goals

In Chapter 1 of this dissertation, the main objective of endowing a robot with a series of
communicative abilities that allow it to maintain interactions that feel natural to the user was
decomposed in a series of subgoals that could be used to measure the degree of success obtained with
the work developed. While the objectives presented in Sections 3.1.1, 4.1.3, and 5.1.1 were tied to the
three parts in which this thesis can be divided, the subgoals presented in Section 1.3 were designed
from a more general point of view. In this section, the degree of each subgoal will be analysed in
depth:

1. The first subgoal required that the proposed Human-Robot Interaction architecture developed
had to be simple to use. The idea is that interactions should be easy to create, in order to simplify
the addition of new applications. This goal was tackled through the implementation of two
modules: the HRI Manager and the Expression Manager. With the CA-based approach to
dialogue management, developers can create interactions by combining and parametrizing
basic interaction units. The configuration of these units is done by filling a standardized request
that will be sent to the HRI Manager core. The use of an standard message reduces the learning
curve for new developers, and also the time required for creating interactions. Also, the HRI
Manager takes care of a series of tasks that are common to all interactions, once again reducing
the workload of the developers. The proposed approach to expressiveness management, on the
other hand, tries to simplify the process of creating expressions by allowing developers to use a
graphic interface to create multimodal expressions by dragging blocks and connecting them to
each other. Also, the Expression Manager allows developers to ignore completely the library of
multimodal expressions and instead provide a list of actions that will be transformed into a
gesture. This eliminates the need to create expressions for every communicative action that the
robot has to perform, which could be time wasting if the expressions are not very complex.
For example, the most common type of action requested is having the robot utter a sentence,
and allowing developers to pass the utterance to the Expression Manager instead of creating a
specific expression is significantly faster.
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2. The second subgoal aimed at obtaining a modular system, where each part can be easily
detached from each other, and replaced or updated. This goal was achieved with the creation
of the HRI System, described in Chapter 2. This architecture divides the abilities required to
create interactions between the robot and the users into four main elements: (i) the Perception
Manager performs all the tasks involved with obtaining information from the robot’s sensors;
(ii) the Expression Manager controls all the expressive capabilities of the robot; (iii) the HRI
Manager controls the interactions using the information provided by the Perception Manager
and requesting the execution of communicative actions to the Expression Manager; and
(iv) the liveliness module creates expressions that can enhance the animacy of the robot. All
the modules are connected using ROS, a framework for robotic applications that provide
standard communication channels between modules. With this, every element in the software
architecture acts as a black box for the rest of modules. Thus, adding or replacing parts of the
architecture only requires that the inputs and outputs of the new module match the ones
expected by the rest of the architecture. On top of this, the modules presented in this thesis
has also been developed as a combination of blocks (for example, the Expression Manger is
divided in the Expression Scheduler, the Expression Executor, and the Interface Players).

3. The third subobjective required that the proposed architecture should be easy to integrate in
multiple robotic platforms and be application independent. Due to the fact that the proposed
HRI System was developed using ROS, a requirement for integrating this system in new
platforms is that they use this framework. However, this is not an important drawback, as ROS
is a popular solution amongst roboticists. Independence from the robot’s applications was
achieved with the division of the control over interactions in two levels, where the applications
hold all the knowledge that is task-specific, while the HRI System focuses in those aspects
that are dialogue-independent. The CAs can be adapted and parametrized to be used in
any application (as far as we know), and also be combined to create the dialogue structures
required for achieving any specific communicative goal. Thus, in order to adapt the proposed
architecture to a new platform involves three main steps (granted that the condition of that
platform’s architecture being designed in ROS is met). First, the HRI Manager core expects
that the input information coming from the robot’s sensors is formatted in a specific way,
imposed by the Perception Manager. Thus, an extra layer would have to be added to the HRI
Manager core to convert the inputs provided by the new software architecture to the format
that the CAs require. Second, the Interface Players are the only elements in the HRI System
that communicate with the robot’s output interfaces. When integrating the system in a new
platform, the Players have to be adapted (or new ones have to be developed) in order for them
to create commands that the robot’s output modules can understand. The last change involves
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modifications not to the proposed HRI System, but to the applications of the new platform.
They should be adapted so they use the CAs for creating interactions. While the two first
modifications are not very complex, the last one depends on how the applications are designed.
This leads me to consider this goal to be achieved.

4. The fourth subgoal required that the proposed system had to be flexible and adaptable to
different users and the particularities on an interaction, in order to make communication as
natural as possible. This feature was added through both the HRI Manager and the Expression
Manager. CAs are highly parametrizable in order to achieve different communicative objectives,
and can be combined to create more complex structures. In the expressiveness management
architecture, three methods were implemented to modify the appearance of the robot’s
expressions in runtime, in order to adapt them to different aspects of the interaction and
the state of the robot. Also, one of this methods allow to replace actions in a predetermined
expression in order to adapt it to a new situation. Finally, developers can use keywords when
developing the verbal messages that the robot will convey. These keywords are then replaced
by the ETTS Player with information extracted from the context of the interaction (e.g. the
name of the user, the location where the interaction is taking place, the moment of the day...).
With this, this goal can be considered as successfully completed.

5. The fifth subgoal was related to the evaluation of the proposed system. It required that this
evaluation was conducted among a population not restricted to users that belong to the
field of application of the robotic platform used in the evaluation (older adults). While the
case of use presented in Chapter 3 depicted a series of tests that were conducted with older
adults at a day care centre, the experiments presented in Chapter 4 were conducted with
participants of different backgrounds. Although these experiments had the goal of evaluating
the propsoed modulation approaches, the appearance of the robot under all the conditions
in both experiments is the product not only of the modulation strategies, but also of the
result of modelling interactions as a combination of CAs in the HRI Manager and the
expressiveness generated by the Expression Manager. Thus, while the differences between
conditions are attributed to the modulation strategies, the ratings that the participants gave
to the robot’s warmth, competence, and discomfort represent the performance of the entire
software architecture. Due to this, this goal was considered to be completed.

6. The sixth subgoal focused on the reaction time of the proposed system. With the HRI System,
the robot should be able to abide by the temporal constraints that are involved in human
communication. In Chapter 3 it was determined that a reasonable threshold for the time
required to convey information to the user could be set around 1 second. Chapter 4 extended
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this explanation with a study of the reaction time that humans display when reacting to certain
stimuli in the environment. In order to ensure that all the proposed modules are able to
perform under the thresholds considered, an objective evaluation was conducted to measure
their reaction times. The results show that both the HRI Manager and the Expression Manager
can complete their tasks at a speed that ensures that the threshold for a natural interaction
can be achieved without putting too much pressure on the parts of the architecture that are
outside the scope of this thesis (for example, the time the applications require to advance the
dialogue). However, the evaluation of the co-speech gesture prediction method showed that
the delay introduced by this module can be excessive depending on the length of the robot’s
utterances. Thus, this objective can be considered as partially achieved.

7. The final subgoal stated that the architecture had to be integrated and running in a robotic
platform. This means that the hardware resources will be limited, and have to be shared
between all the modules in the software architecture. Thus, the proposed architecture not
only has to abide by the temporal constraints of human communication, but has to do so
without hoarding an excessive amount of resources. Due to the importance of ensuring this, the
objective evaluations conducted in Chapters 3.1.1, 4.1.3, and 5.1.1 included also an evaluation
of the RAM and processing power used by each module. Similar to the results observed for the
reaction times, the only module that showed an excessive usage of resources was the co-speech
gesture prediction method. This was not surprising, as the robotic platforms used in this thesis
lack hardware oriented to running deep learning model (e.g. a graphics card). Nevertheless,
this leads me to consider this goal as being only partially achieved.

6.3 Final remarks

Robots that can live and cooperate with humans is one of the aspects that a lot of people imagine
when they think about what the future of society involves, as shown by a large amount of
movies, books, videogames, etc... The development of the work that has been presented in this
dissertation has been an exciting challenge that has given me the opportunity of getting involved
on one of the key tasks that separate us from that future: giving robots the ability to interact as humans.

Among the research topics present in this dissertation, dialogue management is the one that
attracts more attention nowadays. With the proliferation of smartphones and home assistants,
the way in which we interact with technology has shifted in recent years towards more natural
ways of communication. While a big portion of the work conducted in this area has focused on
giving people the ability to use natural language to control their electronic devices, there is also a
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high interest on integrating multimodal sources of communication in this process, specially when
we talk about robotics. One of the lessons that I have learned during my work in this area is that
giving robots advanced communicative skills can enhance how users perceive them, but at the same
time can complicate the process of increasing the range of tasks that robots can perform. With the
work presented in Chapter 3, the key concept that I had in mind from the first moment was the
importance of finding a way to balance the naturalness of the robot’s communicative skills with the
scalability of the set of tasks that the robot can complete. This is what has driven me to focus on
developing a system that is highly modular and parametrizable, so it allows developers to design
their applications as they might see fit. This can be seen not only on the work developed on dialogue
management, but also on the expressiveness architecture developed.

To the best of my knowledge, the majority of works related to animacy in robotics are studies
that evaluate how different actions and environmental conditions affect to an entity’s animacy,
while a minority of works have tried to integrate in a robot methods for generating behaviours with
the only goal of increasing the robot’s animacy. Due to the importance that displaying a liveliness
appearance seems to have for social robots, it is crucial to use all the knowledge that years of studies
on animacy and robotics have into implementing appropriate strategies that can be integrated
in robotic platforms. I hope that Chapter 5 of this dissertation has contributed to this area in a
significant manner.

Overall, this thesis was born with the idea of setting the foundations for endowing a robot
with all the required abilities for conducting interactions with users in a natural way. While the
final architecture has proven to be capable to manage human-robot interactions appropriately, the
feedback that we have received from users that have tested our robots has convinced me that our
system still has room for improvement, something that I am looking forward to.





APPENDIX A A

Theoretical base of the co-speech

gesture prediction method

This appendix introduces the theoretical foundations of the algorithms used during the development
of the co-speech gesture prediction method: Long-Short Term Memory neural networks and
Conditional Random Fields

A.1 Long Short-Term Memory Neural Networks

Recurrent Neural Networks (from now on RNN) are a type of neural networks that have been
endowed with feedback connections in order to learn patterns that are sequential or vary through time
[215]. They are derivations of feed-forward neural networks with the ability to use internal memory
to process input sequences with variable length. The typical structure of a RNN includes an input
layer, one or more hidden layers, and an output layer. The difference with traditional feed-forward
networks is on how the hidden states in the network are connected. In these hidden layers, the outputs
in previous steps are introduced as inputs for the current time point. Thus, the hidden state of the
network for a given timestamp can be expressed as:

ht = f(Wh ∗ ht−1, Wx ∗ xt) (A.1)

Where ht is the output of the hidden layer at the current time point, f is the fixed function that
has trainable weights, ht−1 is the output of the hidden layer at the previous time point, xt is the input
to the network at the current time point, and Wh and Wx are the weights associated to the previous
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state and the current input. Fields of application where this type of nets are used include examples
like language generation, machine translation, speech or handwriting recognition, image recognition,
etc... Among these applications, the one that it is of interest for this thesis is sequence prediction,
in particular sequence-to-sequence problems, where an input sequence of steps are mapped into a
different output sequence.

A key development in the appearance of RNN is the work proposed by Rumelhart et al. [216],
where the back-propagation learning method was introduced. Under this approach, the weights of
the connections between units in the networks are adjusted continuously to minimize the output
error (the difference between the expected and the real output). Thanks to this adjustment, the
hidden layers of the network will be able to represent different features of the task domain, while
regularities in the task are represented by the connections between the units in the hidden layers.
While weights in feed-forward networks can ben different for each node, in RNN they are shared by
every node in each of the network’s layers.

One of the taxonomies used for classifying RNNs has to do with the inputs and outputs of the
network, and in particular, their size:

• One-to-Many: A single input is mapped into a sequence of outputs. For example, a system
that receives an image as an input and generates a text description as an output.

• Many-to-One: A sequence is used as input to the network and mapped into a single output.
An example of this is a sentiment classifier that receives a sentence as an input and assigns it a
label indicating the sentiment (positive or negative)

• Many-to-Many: In this type of RNN, a sequence of inputs is mapped into a sequence of
outputs. Inside this category, two different situations can be observed depending on if the
inputs and outputs are synchronized. If they are, outputs are generated for each step in which
an input is introduced in the network. If they are not, then there is a delay between the first
step in which an input is sent to the network and the first where an output is obtained. This
delay allows the network to take into account the entire (or part) of the input sequence for
every element in the output sequence.

The back-propagation learning method used for training RNNs, which is commonly known as
backpropagation-through-time (BPTT) presents two main problems that can appear when training
a model: (i) vanishing gradient and (ii) exploding gradient. In this context, the gradient is the relation
between the change rates of the model’s error and the change in weight. In the first problem, a very



A.1 Long Short-TermMemoryNeural Networks 299

small gradient value can cause that the model stops learning, or at least takes a long time to do it. In
the second situation, the training assigns an excessive importance to a particular weight, causing
the gradient to increase continuously, tending to infinity. This can lead to the model crashing. Due
to these problems, RNN are not able to learn long-term dependencies. Different techniques have
been proposed throughout the years to counteract this two problems, like identity initialization
or gradient clipping, among others. One of the methodologies proposed is the use of a particular
implementation of RNNs: Long Short-Term Memory Networks.

Long Short-Term Memory neural networks (LSTM networks from now on) are a particular
variation of RNN that is equipped with a series of units, known as LSTM units, that allow gradients
to flow unchanged through the network, partially solving the vanishing gradient problem. The
original idea for this type of networks was proposed by Hochreiter and Schmidhuber [217]. In this
work, the central element of the network is the memory cell. The core of the unit is a central linear
unit that has a fixed self-connection (this is known as the constant error carrousel, or CEC), which
allows for constant error flow, and then is extended with input and output multiplicative units, also
known as gates, which provide inputs to the memory cell. Overall, the CEC will store error signals
that will not be changed, the input gate is used to decide if the information stored in the CEC has to
be kept or overwritten, and the output gate is used to decide if other cells should be able to access the
information stored in the CEC or not. According to [217], both gate types are not always necessary.
Memory cells are grouped into blocks that share the same input and output gate, which makes it
easier to store information.

In current implementations of LSTM units. they are modelled as the combination of a central cell
and three different gates: (i) the forget gate is used to decide which elements of the information stored
in the cell should be forgotten, (ii) the input gate controls which new information extracted from
the current input is stored in the cell, and (iii) the output gate controls what parts of the memory
should be output. All these gates are implemented as a combination of a sigmoid neural net layer and
a multiplication operator. The inner working of an LSTM unit is as follows. First, the cell decides
which information should be forgotten by generating a set of scale factors in between 0 and 1 for each
element in the cell state. This is represented by Equation A.2:

ft = σ(Wf ∗ [ht−1, xt] + bf ) (A.2)

Where ft is the vector of scaling factors, Wf and bf are the set of weights that control the forget
process, ht−1 is the previous hidden state, and xt is the current input. Next, the cell decides which new
information should be stored in the cell. Two steps have to be completed: (i) selecting the elements
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that will be overwritten and (ii) generate candidate values for these elements. This is represented in
equations A.3 and A.4 respectively:

it = σ(Wi ∗ [ht−1, xt] + bi) (A.3)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc) (A.4)

In these equations, Wi, Wc, bi, and bc are the weights controlling the input selection and candidate
generation processes, respectively. The final internal state of the cell will then be obtained through
Equation A.5:

Ct = ft ∗ Ct−1 + it ∗ C̃t (A.5)

Where Ct−1 is the previous internal state of the cell. The final step in the process is obtaining
the output of the cell and the hidden state. First, the output gate selects the elements of the cell state
that have to be output, and then the cell state is passed through a tanh function to keep the values
between 1 and −1, and multiplied by the vector generated by the output gate. This process is shown
in Equations A.6 and A.7:

ot = σ(Wo ∗ [ht−1, xt] + bo) (A.6)

ht = ot ∗ tanh(Ct) (A.7)

While the process described is the one followed by the basic implementations of LSTMs, there
are other variations that introduce new connections to the cells or that combine some of the gates
presented above (for example, instead of removing information and adding new one through two
independent processes, connect them in a way where information is only forgotten if something
new has to be stored in its place). A commonly used variation is the Gated Recurrent Unit neural
network, or GRU, presented by Cho et al. [218]. This approach combines the forget and input gates
into a single one, and also merges the cell state with the hidden state.

While there are different methods that can be used to train a LSTM network, one of the most
common ones is the algorithm known as Backpropagation Through Time [219]. This method starts
by initializing the weights that control the three gates to the cell (input, output, and forget). Then,
the input at a certain time point and both the previous hidden state and cell state are passed to the
LSTM cell that is being trained. According to the equations presented above, the cell calculates both
the output and the current cell state. After, using the derivative chain rule, the gradient is computed
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through backpropagation through time. These gradients are computed with respect to the three
gates, the current and previous cell state and also the weights for each gate. Finally, using these
gradients, the weights associated to each of the gates are updated in order to reduce the error observed
(the difference between the expected output and the one predicted by the network). Because the
method considers all the timesteps in the input sequence during the computation process. it can be
very slow. Thus, optimized versions of the algorithm were proposed to correct this problem.

A.2 Conditional Random Fields

Conditional Random Fields [220], or CRFs, are probabilistic models designed for segmenting and
labelling a sequence of data. Traditionally, the approaches that have been widely used to solve this
task are hidden Markov models and stochastic grammars. While this type of models have to assign
a joint probability to the paired observation and label sequences, conditional models define the
probability of a possible label sequence given an observation. This has the advantage of eliminating
the need for modelling all possible observation sequences, and also can take into account arbitrary,
non-independent features extracted from the observation sequence without having to account for
their distribution. But some conditional models, like Maximum entropy Markov models still have a
weakness that has to be addressed: the label bias problem. This has to do with transitions leaving
a given state of the model only competing against the rest of transitions leaving that same state,
instead of competing against all possible transitions in the model. CRFs provide the advantages of
conditional models, and at the same time also solves the label bias problem.

CRFs fall under the category of discriminative classifiers, which, opposite to the generative models,
represent the decision boundaries between the different classes considered. They are also modelled
as undirected graphical models. In graphical models, a complex distribution over multiple variables
is represented as the product of local functions that depend on smaller subsets of variables [221].
Undirected models, in particular, are families of probability distributions that each factorize based
on a certain set of factors. The graph that will be used to model predictions depends on the task at
hand. When the model has to predict a data point (one of the labels in the sequence), it also takes
into account the previous label in the output sequence. This is done through the definition of what
is called Feature Functions. These elements represent different characteristics extracted from the
output label sequence (for example, in applications involving text processing, these could be words,
or characters, or even the text layout). They are defined as:
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f(X, i, yi−1, yi) (A.8)

Where X is the set of inputs, i is the position in the dataset for which a prediction has to be
obtained, yi−1 is the prediction obtained for the previous data point, and yi is the label assigned
to the current data point, Each feature function is based on the current observation and the label
assigned to the previous observation. The conditional field is modelled as the normalized product of
the feature function. This function has a set of weights that have to be learned by the model. In order
to do this, they are estimated using the Maximum Likelihood Estimation (a method used to estimate
the parameters in a probability distribution by maximizing a likelihood function that makes the
observed data the most probable. Then, the parameters are optimized using Gradient Descent until
the weights of the feature functions converge.

One of the fields of application where CRFs are more popular is the area of Natural Language
Processing. This includes tasks like Part-of-Speech tagging (assigning to each word in a sentence its
part of speech category: noun, verb, adverb, etc...) or Named Entity Recognition (identifying names
referring to different entities, like persons, organizations, or locations). CRFs are used also in other
tasks, like object recognition or image segmentation.



APPENDIX B B

Detailed description of the software

developed in this dissertation

This appendix details all the attributes and methods of the classes described in Figures 3.7 and 4.3.

B.1 Classes in the HRI Manager software architecture

B.1.1 CA Base thread class

Figure B.1: Detailed view of the CAThreadBase class.
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B.1.2 HRI Manager class

Figure B.2: Detailed view of the HRIManager class.
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B.1.3 Immediate CA class

Figure B.3: Detailed view of the ImmediateCA class.

B.1.4 Continuous CA class

Figure B.4: Detailed view of the ContinuousCA class.
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B.1.5 Communicative Act class

Figure B.5: Detailed view of the CommunicativeAct class.

B.1.6 Base State class

Figure B.6: Detailed view of the BaseState class.

B.1.7 State Send Data class

Figure B.7: Detailed view of the StateSendData class.
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B.1.8 Robot Gives Information class

Figure B.8: Detailed view of the RobotGivesInformation class.

B.1.9 Robot Asks For Information class

Figure B.9: Detailed view of the RobotAsksForInformation class.

B.1.10 User Gives Information class

Figure B.10: Detailed view of the UserGivesInformation class.
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B.1.11 User Asks For Information class

Figure B.11: Detailed view of the UserAsksForInformation class.

B.1.12 Question With Confirmation class

Figure B.12: Detailed view of the QuestionWithConfirmation class.

B.1.13 RightWrongQuestion class

Figure B.13: Detailed view of the Right Wrong Question class.
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B.1.14 Communication Warning class

Figure B.14: Detailed view of the CommunicationWarning class.

B.1.15 Switching Mode Question class

Figure B.15: Detailed view of the SwitchingModeQuestion class.

B.1.16 Manage Multimedia Content class

Figure B.16: Detailed view of the ManageMultimediaContent class.
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B.2 Classes in the Expression Manager software architecture

B.2.1 Expression Scheduler class

Figure B.17: Detailed view of the ExpressionScheduler class.
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B.2.2 Expression Executor class

Figure B.18: Detailed view of the ExpressionExecutor class.

B.2.3 Gesture SM class

Figure B.19: Detailed view of the GestureSM class.
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B.2.4 Behaviour Template class

Figure B.20: Detailed view of the BehaviourTemplate class.

B.2.5 Speak class

Figure B.21: Detailed view of the Speak class.

B.2.6 alz_angrySM class

Figure B.22: Detailed view of the alz_angrySM class.
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B.2.7 Joint Player class

Figure B.23: Detailed view of the JointPlayer class.
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B.2.8 Etts Player class

Figure B.24: Detailed view of the EttsPlayer class.
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B.2.9 Touch Screen Player class

Figure B.25: Detailed view of the TouchScreenPlayer class.
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B.2.10 LED Player class

Figure B.26: Detailed view of the LedPlayer class.
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B.2.11 Eye Player class

Class used to model the HRI Manager core

Figure B.27: Detailed view of the EyePlayer class.





APPENDIX C C

Description of all the states

developed for building multimodal

expressions

This appendix describes in detail all the states that have been developed for building multimodal
expressions in the expressiveness architecture described in Chapter 4. The inputs and outputs to each
state (in the form of FlexBE userdata) are also presented. All the states share a common parameter:

• behaviour_name (string): The name of the expression where the states will be integrated. It
will be used to create the communication channels used by the Expression Executor to control
the execution of the gesture.

C.1 Action Control

This state controls when a specific Interface Player completes the goal that is currently being executed.
The state checks the value of boolean variables that indicate if a Player is in use or not. If for a given
Player, the value is True, that means that is currently executing an action. If it is False, that means that
no action is being executed. The state waits for the value of the variable for the specified interface/s to
change from True to False.

The following parameters can be configured:
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• interface (string): interface of the robot that has to be monitored (eyes, etts, left arm...).

• clear (bool): parameter used for cleaning possible messages in the ROS topic. By default it
should be set to False.

This state does not use specific userdata.

C.2 Color LED

This state is used to control the LED of the robot. Currently, it allows to control either the cheeks or
the heart. The following parameters can be configured:

• leds (string): The name of the LED being controlled (‘heart’, ‘cheeks’).

• color (string): The colour of the LED, in hexadecimal value (0xRRGGBB).

• min_intensity and max_intensity (int, optional): Control the bright limits. Both are
specified in percentage, this is, with a value between 0 and 100.

• fade (bool, optional): Boolean used to activate a fading effect.

• fade_velocity (int, optional): Controls the speed of the fading. Range: 0-100. Requires that
the parameter fade is set to True.

The Color LED state uses the following userdata:

• configuration_data (dict): python dictionary that allows to modify the predefined values of
the state’s parameters. The keys in the dict are the name of the states that have to be modified,
and the module is a serialized python dictionary (a dictionary converted to a string) containing
the new configuration for the state. This parameter is shared between all states that require it,
so it only needs to be defined once in the Expression.

• banned_interfaces (string): contains a string with the interfaces that cannot be used,
separated by a delimiting character (Example: “etts|rightArm|cheeks”).

• amplitude (string): used to scale the gesture’s amplitude. In this case, this parameter modifies
the maximum intensity. Seven possible values: high increase, medium increase, low increase,
normal, low decrease, medium decrease, high decrease.
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• speed (string): used to scale the gesture in time. In this case, this parameter modifies the
fade_velocity. Seven possible values: high increase, medium increase, low increase, normal, low
decrease, medium decrease, high decrease.

• id (dictionary): Identifier for the goal sent to the players that communicate with the robot’s
output interfaces. This userdata is for internal use only, and cannot be used by the developers.

C.3 Display Touch Screen

This state allows to display information through a touch screen (text, images, menus, or different
combinations of all of them). The following parameters can be configured:

• tablet_type (string): Used to configure the type of the multimedia content that is going to
be displayed (‘image’, ‘gif’).

• tablet_url (string): The path to the image or GIF being displayed. All images and GIFs have
to be stored in the tablet.

• menu_type (string): Configures the type of content inside the buttons of a menu (‘icon’ for
images, ‘text’ for text). If only one value is set, it applies to all the buttons. For configuring
each button separately, there has to be one value per button, with the following format:
“value1|value2|value3|...”.

• menu_value (string): Value for each button. If the content being displayed in the buttons
are images, the value has to be the path to the image. The format for the values is:
“path_to_image1|text|text|path_to_image2|...”.

• tablet_text (string): Text that is going to be displayed.

• tablet_duration (float, required only if the content displayed is a video or an audio):

The amount of time the multimedia content has to be shown for.

• tablet_init_time (float, optional): Used to indicate if a multimedia content has to start at a
specific point. If not specified, the content will be reproduced from the beginning. For example,
it can be used to specify that a video has to start from the 2 minutes mark.

• tablet_template (string, optional): The robot’s touch screen allows to use predefined
templates to display content in the screen. This parameter is the name of the template that has
to be used.
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For multimedia content, only the values for tablet_type and tablet_url have to be set. For menus,
only the values for menu_type and menu_value have to be set. The touch screen package allows also
to display both multimedia content and a menu at the same time. In that case, the four parameters
are required. The template can be selected automatically based on the number of buttons and, if
menu_type is text, the number of characters per button. For more than one instance of each type
of data (reproducing two videos or showing two images at the same time, for example), one of the
predefined templates has to be specified.

The state uses the following userdata:

• configuration_data (dict): python dictionary that allows to modify the predefined values of
the state’s parameters. The keys in the dict are the name of the states that have to be modified,
and the module is a serialized python dictionary (a dictionary converted to a string) containing
the new configuration for the state. This parameter is shared between all states that require it,
so it only needs to be defined once in the Expression.

• banned_interfaces (string): contains a string with the interfaces that cannot be used,
separated by a delimiting character (Example: “etts|rightArm|cheeks”).

• id (dictionary): Identifier for the goal sent to the players that communicate with the robot’s
output interfaces. This userdata is for internal use only, and cannot be used by the developers.

C.4 Express Eyes

This state allows to send commands to the screens that serve as eyes for our robots. The following
parameters can be configured:

• expression (int): The expression that the eyes have to convey (sadness, happiness, suspicion,
drowsiness...).

• orientation (int, optional): Modifies in which direction the robot is looking. There are nine
possible directions (eight of them placed in 45 deg intervals and a ninth one where the gaze is
kept forward)

• blink_frequency (int, optional): Modifies the frequency used for blinking (the period between
blinks in milliseconds)

• pupil_shape (int, optional): Changes the shape of the pupil. A predefined set of shapes can be
used. This functionality is only implemented in Gero, and is not available on Mini
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• pupil_size (int, optional): Changes the size of the pupil. It can take values from 0 to 100. This
functionality is only implemented in Gero, and is not available on Mini

• blink_speed (int, optional): Changes the blinking speed (how long does it take to close and
open the eyes once). It can take values from 1 to 95 (if the value is set to 0, the current blink
speed is kept). This functionality is only implemented in Gero, and is not available on Mini.

• eyes_desviation (int, optional): the desviation of the eyes, which can produce from strabismus
to crossed eyes. It can take values from 0 to 100. This functionality is only implemented in
Gero, and is not available on Mini.

• lid_colour, sclera_colour, and iris_colour (int, optional): changes the colour of the lids, the
sclera and the iris. A predefined pallet of colours can be used. This functionality is only
implemented in Gero, and is not available on Mini.

The state uses the following userdata:

• configuration_data (dict): python dictionary that allows to modify the predefined values of
the state’s parameters. The keys in the dict are the name of the states that have to be modified,
and the module is a serialized python dictionary (a dictionary converted to a string) containing
the new configuration for the state. This parameter is shared between all states that require it,
so it only needs to be defined once in the Expression.

• banned_interfaces (string): contains a string with the interfaces that cannot be used,
separated by a delimiting character (Example: “etts|rightArm|cheeks”).

• speed (string): used to scale the gesture in time. In this case, this parameter modifies the
blinking frequency. Seven possible values: high increase, medium increase, low increase, normal,
low decrease, medium decrease, high decrease.

• id (dictionary): Identifier for the goal sent to the players that communicate with the robot’s
output interfaces. This userdata is for internal use only, and cannot be used by the developers.

C.5 For Loop

This state allows to implement a for loop inside a gesture. It receives the number of iterations and
checks if the iteration limit has been reached every time the state machine executes this state. Every
time the state is executed, the number of iterations is increased by one. The following parameters can
be configured:
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• iterations (int): The number of iterations that the loop has to perform.

The state uses the following userdata:

• iterations (int): contains the number of iterations already performed. This userdata is only
for internal use only, and cannot be used by the developers. It has to be set to 0 when defining
the userdata used by the gesture.

C.6 If Loop

Allows to implement an if loop in a gesture. This state checks if a condition is met for a specific
parameter and selects a different outcome depending on the result of this operation. Currently, it
only allows two different outcomes: either the condition is met, or it is not. The following parameters
can be configured:

• param (string): The name of the parameter whose value the state is going to check in order
to see if the condition is met. This parameter has to be stored in the ROS parameter server.

• condition (undefined type): The condition that has to be validated. If the value stored in
param matches the value defined for this parameter, then the condition is met.

This state does not use any userdata.

C.7 Move Joint

This state allows to control the robot’s motors. The following parameters can be configured:

• joint_name (string): Name of the motor receiving the command (for Mini: leftArm,
rightArm, head, neck, base. Gero shares the same motors, except for the base motor).

• value (float): position for the motor (in radians). A full trajectory can be specified as a string
like this: “0.2|0.7|0.3|1.5|0.0”. The player will send each of the positions in order, once the
previous one has been reached.

• relative_mvt (bool, optional): If true, the motor will add the position defined in the value
parameter to the current position of the motor in order to find the final position (if the motor
is in 1 and the value is 0.5, the motor will move to the position 1.5). If false (default value),
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the position stored in value will be treated as a absolute position (in the previous example, the
motor would move to the position 0.5).

• velocity (float, optional): Configures the speed of the motor (Not all robots have speed
control implemented).

• acceleration (float, optional): Configures the acceleration of the motor (Not all robots have
acceleration control implemented).

The state uses the following userdata:

• configuration_data (dict): python dictionary that allows to modify the predefined values of
the state’s parameters. The keys in the dict are the name of the states that have to be modified,
and the module is a serialized python dictionary (a dictionary converted to a string) containing
the new configuration for the state. This parameter is shared between all states that require it,
so it only needs to be defined once in the Expression.

• banned_interfaces (string): contains a string with the interfaces that cannot be used,
separated by a delimiting character (Example: “etts|rightArm|cheeks”).

• amplitude (string): used to scale the gesture’s amplitude. In this case, this parameter modifies
the final position. Seven possible values: high increase, medium increase, low increase, normal,
low decrease, medium decrease, high decrease.

• speed (string): used to scale the gesture in time. In this case, this parameter modifies the speed
and acceleration. Seven possible values: high increase, medium increase, low increase, normal,
low decrease, medium decrease, high decrease.

• id (dictionary): Identifier for the goal sent to the players that communicate with the robot’s
output interfaces. This userdata is for internal use only, and cannot be used by the developers.

C.8 Reset Interfaces

This state is used to reset all the robot’s interfaces to their default state (for example, the head has
to be looking forward, and the arms have to be at the sides of the body). This state is used in the
template from which all the expressions inherit. It receives one parameter:

• interfaces_list (string): contains a string with the interfaces that have to be reset, separated
by a delimiting character (Example: “etts|rightArm|cheeks”).
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This state does not use any userdata.

C.9 Return Result

This state is used to return the result of the gesture’s execution to the rest of the modules of the
robot’s software architecture. This state is not used by the developers of expressions, and is instead
integrated in the template from which all the expressions inherit. It receives the following parameters:

• expression_id (string): the ID of the expression where the state is used.

• result (string): string that indicates the result of the expression’s execution.

This state does not use any userdata.

C.10 Select Random Gesture

This state receives a list of possible gestures and selects one randomly. It receives one parameter:

• gestures (string): string containing all the gestures among which the state has to choose one.
The format is the following: “gesture_1|gesture_2|gesture_3|...”

The state uses the following userdata:

• next_gesture (string): contains the name of the gesture selected by the state. This userdata
is for internal use only, and cannot be used by the developers.

C.11 Execute Random Gesture

This state loads and executes a gesture received through userdata. In order to use this state, the gesture
needs to contain also at least one instance of the state Select Random Gesture, which has to be executed
before this one (it could be replaced by an equivalent state that picks a gesture and stores it in the
userdata next_gesture). It does not receive any parameter (besides those common to all states). The
state uses the following userdata:

• next_gesture (string): contains the name of the gesture that is going to be executed. This
userdata is for internal use only, and cannot be used by the developers.
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C.12 Skill Start

This state starts one of the skills of the robot (for example, a face tracking skill) and sends a goal to that
skill. In order to be used in expressions, the skill has to follow a particular template. The following
parameters can be configured:

• skill_name (string): Contains the name of the skill that has to be activated. The name has to
have the same format used in the communication channels of the skill.

• msg_type (string): The name of the ActionLib message used to send goals to the skill. It is
usually located in the action folder inside the ROS package containing the skill.

• values (dictionary): A python dictionary containing all the required information to configure
the goal sent to the skill.

This state does not use any userdata.

C.13 Skill Stop

Deactivates an active skill. In order to be used in expressions, the skill has to follow the skill template
(see documentation). The following parameters can be configured:

• skill_name (string): Contains the name of the skill that has to be deactivated. The name has
to have the same format used in the communication channels of the skill.

This state does not use any userdata.

C.14 Speak

This state sends commands to the TTS player in order to request that the robot utters one or more
sentences. The following parameters can be configured:

• text (string): The sentence the robot has to say. There are specific items that can be used to
modulate the sentence, depending on the TTS used (for example, the
pause item can be used to add a pause to the utterance).



328
apéndice C | Description of all the states developed for building multimodal

expressions

• language (string, optional): Changes the language of the TTS. It should match the language
used in the sentence, but this is not required.

• pitch (int, optional): Raises or lowers the pitch. The value represents a percentage increase
or decrease over the current pitch. It can take values from -5 to 10. Not all robots allow to
modulate the pitch.

• speed (float, optional): Changes the rate of articulation (the speed of the voice). It can take
values from 0.65 to 0.85. Not all robots allow rate of articulation modification.

• primitive (int, optional): Selects the TTS that will be used. Each one offers different features.

• emotion (int, optional): Modifies the emotion used for the sentence. The emotion can be
selected from a limited set of options.

• volume (int, optional): Modifies the volume of the voice. It can take values from 0 to 100.

• priority (string, optional): The priority for the sentence. It defines what the TTS does if it
receives a new utterance while there is another one being said (for example, queue the new one
or cancel the current utterance and process the next one).

The state uses the following userdata:

• configuration_data (dict): python dictionary that allows to modify the predefined values of
the state’s parameters. The keys in the dict are the name of the states that have to be modified,
and the module is a serialized python dictionary (a dictionary converted to a string) containing
the new configuration for the state. This parameter is shared between all states that require it,
so it only needs to be defined once in the Expression.

• banned_interfaces (string): contains a string with the interfaces that cannot be used,
separated by a delimiting character (Example: “etts|rightArm|cheeks”).

• amplitude (string): used to scale the gesture’s amplitude. In this case, this parameter modifies
the volume of the voice. Seven possible values: high increase, medium increase, low increase,
normal, low decrease, medium decrease, high decrease.

• id (dictionary): Identifier for the goal sent to the players that communicate with the robot’s
output interfaces. This userdata is for internal use only, and cannot be used by the developers.
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