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Abstract: The computational complexity of humanoid robot balance control is reduced by means of1

applying simplified kinematics and dynamics models. But these simplifications lead to introduce2

errors that are added to other inherent electro-mechanic inaccuracies of the robotic system. But3

linear control systems deal with these inaccuracies if they operate around an specific working point4

but are less precise if not. This work presents a model improvement based on the Linear Inverted5

Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the6

control error and reduce robot oscillations for multiple working points. The new model, named7

Adjusted LIPM, is used to plan the robot behavior against changes in the balance status denoted8

by the Zero Moment Point (ZMP). Thanks to the use of the information of Force-Torque sensors, an9

experimental procedure has been applied to characterize the inaccuracies and introduce them in the10

new model The experiments have consisted of balance perturbations similar to push-recovery trials,11

in which step shaped ZMP variations are produced. The results show that the response of the robot12

against balance perturbations are more precise and the mechanical oscillations are reduced without13

comprising the robot dynamics14
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1. INTRODUCTION16

In robotics, the most versatile but complex machines are humanoid robots. Their complex17

mechanical structure, high number of Degrees of Freedom (DOF) and, control requirements favor the18

seeking for simplifications that enable the deployment of multiple tasks. Human-like or humanoid19

robots are designed for working in scenarios in the same way than humans do but they have nowadays20

very serious limitations performing tasks. For instance, working in manufacturing plants in which21

heavy parts must be processed, disaster scenarios, service applications, etc. In such situations the need22

for interaction with the surrounding environment is always present. Humanoid robots, physically23

similar to human beings, must fulfill a very important requirement: the robot must be able to move24

around its environment keeping balance.25

When a humanoid robot performs tasks and walks through plain, rough or sloped terrains it has26

to be ensured that the robot will not fall over [1][2]. Even if there are obstacles placed in the robot27

environment and path re-planing is required [3][4], normal step pattern must be changed always28

maintaining stability. Furthermore, previous to walking pattern generation, robot joints constraints,29

dynamic parameters (velocities, accelerations, etc.), and joint torques [5] have to be observed in real30

time to not overload the system and make the walking task viable.31

In the case of human beings presence, unexpected disturbances can appear due to intentional or32

accidental interactions. In this situation the robot is actuated by an external force and the robot must33
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counteract it to recover its balance status and prevent a falling [6][7]. A more complex situation comes34

when the robot is carrying an object itself or collaborating with a human [8]. An unknown weight35

has to be considered and the system model is completely different, taking the object as a part of its36

body. Each one of these situations lead to the use of one particular model of the robot which takes into37

account different requirements from the surrounding environment, the mechanical distribution of the38

robot itself, etc.39

Their complex mechanical structure, high number of Degrees of Freedom (DOF) and, control40

requirements favor the seeking for simplified models that enable the deployment of multiple tasks.41

But the use of these models lead to the amplification of inherent inaccuracies of the humanoid robot42

system. The concept of ’simplified model’ implies the assumption of errors to favor other aspects such43

as computing velocity, controllability, etc. The simplest model of a humanoid robot used in balance44

control is the inverted pendulum. It represents the location and movement of the Center of Mass45

(CoM) of the robot, which pivots around a support base thanks to a rotating joint. Due to its simplicity,46

its easy to state that many inaccuracies are introduced and system features are omitted. For instance,47

the location at any time of the CoM depends on the robot posture and may not be coincident with the48

location represented by an pendulum model with an specific and fixed configuration.49

Many improvements and new models have been developed to solve some inaccuracies or to50

represent special behaviors [9][10][11][12]. This work presents one of those improvements for dealing51

with the robot inaccuracies such as material flexibility or component tolerances that are very difficult52

to be modeled. Experimentally-based, system errors have been quantified and used to improve the53

inverted pendulum model, as will be described in following sections. By means of an error scheduling54

method, the model parameters for control can be dynamically computed. The experimental platform55

used in this work is the humanoid robot TEO (Task Environment Operator) from University Carlos III of56

Madrid [13], shown in Fig.1.57

Figure 1. TEO Humanoid Robot from University Carlos III of Madrid

2. BACKGROUND58

To solve complexity, the humanoid robot is usually represented by means of simplified models59

that enable an easy way of designing controllers. These models represents kinematics and dynamics60

of the robotic system in action. Taking in account different parameters of the robot, such as the mass,61

the location of its CoM, inertia tensors, etc. many approximate models of the robot for each task62

context can be established. This work is focused in the study of simplified models applied in balance63

control and how inherent model errors can be overcame to improve robot operation. This background64



is mainly divided in the enumeration of some simplified models and how they are used in balance65

control.66

2.1. Robot Simplified models67

The simplest model for representing robot’s kinematics and dynamics is the two dimensional68

inverted pendulum with one or two DoF [14].These models represent a concentrated CoM linked69

rigidly to the ground by one rotational joint like in Fig.2 left, or including a linear joint like in Fig.270

right.71

Figure 2. Basic Inverted Pendulum Models in x-z plane. 1DoF (left) and 2DoF (right)

In the case of Fig.2 left, the movement of the CoM is defined by the following equation:72

τ = −ml2θ̈ + mgl sin θ (1)

where m is the mass of the CoM, l the pendulum longitude, τ the torque at the pivot point and73

θ is the pendulum angle. But this is a non -linear equation that makes its implementation in a robot74

controller more difficult. To overcome this problem it is assumed that θ is small enough to consider75

sin θ = θ. Then, the resulting model is one of the most famous models used in humanoid robotics. It is76

the Three Dimensional Linear Inverted Pendulum (3DLIPM) shown in Fig.3 and proposed by Kajita77

[15].78

Figure 3. 3DLIPM Model [14]

Then, equation (1) becomes (for 2D case in plane x-z):79

τ = −ml2θ̈ + mglθ (2)



with the z-coordinate movement constrained to an horizontal plane,80

z = zc (3)

The main advantage of 3DLIPM is the linear equations that are very easy to program in a computer.81

They are mainly used for walking pattern generation and balance control. The application of this82

equation for balance control is possible whether ground reaction (vertical force) and torques in the83

robot’s ankle joint, which correspond with the point O of the model, can be measured. It has been84

achieved by the use of Force/Torque (F/T) sensors at foot level, such as JR3 sensors assembled in robot85

TEO feet (Fig.4).86

Figure 4. TEO’s ankle joints with JR3 F/T sensor

But 3DLIPM doesn’t provide information about body accelerations and inertias, that are very87

useful information for a biped robot during a dynamic walking task. This issue was solved with the88

development of the cart-table simplified model (Fig. 5). In this case, the information need by the model89

is provided by Inertial Measurement Units (IMUs) which sense velocities and accelerations of the robot90

body.91

Figure 5. Cart-table simplified model

Cart-table and 3DLIPM are the most used simplified models in balance control. Nevertheless,92

other researchers lead their works towards multi-link models, where they use a precise knowledge93

about dynamics of each robot link [16][17].94



2.2. Zero Moment Point and balance95

The study of humanoid robots balance has been supported by the simplified models described96

before. Many tools have been developed to describe the kinematic and dynamic behavior of a97

humanoid when it performs tasks. Taking in account that one of the main goals of a humanoid robot is98

to achieve stable walking behaviors, these tools have been widely studied in this field.99

The development of a humanoid balance control architecture is mainly related to the study of100

two specific reference points. The first one is the Center of Mass used to model humanoid body as101

described in the previous subsection. But CoM doesn’t provide useful information about the body102

balance status. Zero Moment Point (ZMP) introduced by Vukobratovic in [18] is the first and the main103

tool developed for describing body’s static equilibrium. The ZMP is a point in the robot support base,104

usually the ground, where the resulting torque caused by any kind of force acting over the robot’s105

body is equal to zero. Fig. 6 illustrates the ZMP location P and Eq. (6) defines it mathematically.106

Figure 6. ZMP

Px = −∑ x · Fz

∑ Fz
(4)

In Eq. (6), for the coordinate x, the sum of the torques produced by the mass of each link of the107

body due to gravity is divided by the sum of reaction forces. If the value of ZMP coordinate lays inside108

the support polygon of the robot, the balance of the robot can be guarantied. But when the ZMP is in109

the edge of the support area, the humanoid body can loose balance and fall down.110

The computation of the ZMP depends on the posture of the robot and the location of the CoM111

of each limb. Due to that, ZMP calculation gains the advantage of representing the robot body as a112

simplified model for two main reason. The first one is the simplicity of the equations used for ZMP113

computation. The second reason is the possibility of using F/T sensors to measure all the forces and114

torques need for ZMP computation. The model applied in this work is the 3DLIPM modified to match115

with the TEO robot structure, as can be observed in Fig. 7.116



Figure 7. LIPM with F/T sensor

When a biped robot is supporting its body on one foot, the robot ankle is considered the pivot117

point connected to the robot’s CoM by means of a massless leg. The simplest model only considers118

the gravitational force exerted to the mechanism and the pendulum motion is represented by Eq. (2).119

According to [19], the ZMP equation in the sagittal plane obtained from the LIPM when the robot is120

standing on one foot:121

xZMP = −
τy + hFx

mg
(5)

where τy is the torque at the pivot point around y axis, Fx is the measured force in the x direction122

and h is the distance from the ground to the location of the sensor (generally the sole height). But when123

the robot stands in double support -both feet lie on the ground-, ZMP obtained from each foot is used124

to compute the global ZMP [14]:125

xZMPDS = −
xR

ZMP · FR
z + xL

ZMP · FL
z

FR
z + FL

z
(6)

where upper index R represents the right foot and L the left one. Even when the robot is in double126

support-phase and two pivot points at the ankle joints exist, the inverted pendulum can be used. If127

the movement is in the sagittal plane, the robot behaves as a single inverted pendulum because both128

ankles have the same movement along the x axis.129

2.3. Balance control130

One of the main skills defining the human being is the capacity of walking upright. In the same131

manner, this is one of the main features that a humanoid robot must to achieve. The key question132

relays on the balance of the upright posture to avoid falls, during a walking task or standing still. The133

use of the simplified models of the body and tools such as ZMP enables the deployment of stabilizers134

to maintain equilibrium.135

Before performing a walking task, the humanoid robot must to keep an upright stable posture.136

In this situation, the robot must deal with unexpected disturbances as the first premise to develop137

a balance control architecture. So, achieving this upright stable posture is the first stage to develop138

an stabilizer. One of the main techniques to start the development of a balance control architecture139

is based on push-recovery experiments, like shown in Fig. 8. The robot must deal with unexpected140

disturbances represented as forces applied to it. If unexpected disturbances appear and depending141

on the intensity level of the disturbance, different control strategies can be set [20]: ankle, hip and142

step strategy. For low intensity disturbances, the body can be considered as a nearly single stiff143

pendulum, where balance adjustments are mainly made in the ankle joints of the robot [12]. The hip144

strategy is applied when the external disturbance increases and the ankle strategy is not enough to145

keep balance. When acting this strategy, the robot can move its hip independently or in combination146

with the ankle strategy. Then, the robot model has to be modified, considering a double inverted147



pendulum [20][21]. The double inverted pendulum consists of a upper link and a lower link, which148

involves that each single pendulum has an influence on the other one. Step strategy is only used when149

postural corrections become insufficient and the base of support must be adjusted. Taking this in150

account, the very beginning phase to develop an stabilizer is to deploy the control system for each151

strategy, starting from the ankle one.152

Figure 8. Push-recovery experiment with TEO robot

Balance control with the ankle strategy concept is applicable both to standing in upright posture153

and, as well, to walking tasks. In both situations, the robot is modeled as an inverted pendulum. The154

disturbance is a force applied to the CoM of the model. This force can lead the ZMP to be out of the155

support polygon and the robot would loose balance. Then, the robot must counteract this disturbance156

applying a torque in the ankle joints, trying to maintain ZMP inside the support area. This kind of157

control is called ZMP control by ankle torque [22][23] and it is represented by the control architecture158

depicted in Fig. 9.159

Figure 9. Basic ZMP position controller

The balance control architecture presented PID controller?? (ver KAYNOV) Model160

Controller??161

But traditional PID Control relies on the proper the proper selection of values to be used for the162

Proportional (P), Integral (I), and Derivative (D) constants for a linearized working point [24]. If the163

process is non linear, the control designer must then continuously evaluate it and tune the constants.164

Instead using PID controllers, Model-Based Controllers are able to learn how a process responds to165

changes, and in turn, they can automatically make the tuning adjustments that would traditionally be166

manual.167



3. PROBLEM STATEMENT168

However, there are many errors that the balance control system must deal with. Simplified model169

control approaches always introduce errors. Pendulum mathematical model is not linear, but ZMP170

equations are obtained from a linear pendulum. When the angle of the pendulum is small enough, it is171

assumed that sin θ = θ, which introduces an error to the system. The mass of the Center of Gravity172

(CoG) is also an approximated value of the whole robot mass, even its location can change. Joining all173

this assumptions, errors in the system become remarkable.174

Also, there can be measurement deviations in the Force-Torque (F/T) sensors due to calibration175

errors, or in analogue to digital data conversions. Other systematic errors as the flexibility of the176

structure (due to the height of the robot), loosenesses between mechanical parts (as transmissions or177

unions of pieces), and small irregularities in the ground are usually not considered. All of these errors178

lead to increase the control effort and makes the control tuning task more difficult.179

The aim of this work is to improve the ZMP control system described before, proposing an180

Adjusted LIPM (ALIPM). This model will include the errors depicted in Fig.10 and more. The181

procedure to model this error is based on push-recovery experiments in which the ZMP is computed182

thanks to the measures provided by F/T sensors. Then, the real ZMP is compared with the planned183

ZMP, obtaining the error. Finally, the error is introduced in the model as a fictitious force that modifies184

the inverted pendulum model behavior.185

Classical
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Sensors
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Figure 10. Error compensation diagram

From the control point of view, the real humanoid mechanism is slightly flexible [22]. Usually the186

flexibility is close related to the robot height and, although robot designers try make stiff structures, it is187

impossible to eliminate it. Because of this compliance, the humanoid robot exhibits the characteristics188

of a lightly damped structure. For example, in a static case when the ankle joint is under position189

control, a pushing external force can easily excite an oscillation. This oscillation exists even when the190

position error in every joint is zero. As well, there are other error sources that have influence in the191

correlation of the robot with model (Fig.10). But it is very difficult to identify and define these errors192

mathematically.193

The existence of those error have high influence on the ZMP computation and, for that, on the194

balance control system. Fig. 11 illustrates how robotic system inaccuracies and other error sources195

affects to the location of the ZMP. In this example, u denotes the model angle expected caused by196

the commanded joint torque. The expected ZMP would be represented by xexp. If we consider only197

the error introduced by the robot flexibility, the ZMP location would be the one represented by xerr.198

Nevertheless, the real ZMP computed using the forces and torques measured is xF/T199



Figure 11. Single inverted pendulum model [22]

Then, the problem is the mismatch between the ZMP expected or planned and the real ZMP200

measured with the F/T sensors. In order to reduce this gap, this work propose a model improvement201

closer to the real robot behavior. Furthermore, ZMP control architecture for keeping balance can be as202

well improved.203

4. METHODS AND EXPERIMENTAL PROCEDURE204

To achieve it, the error has been modeled using the information of the F/T sensors installed205

in the ankles of the robot. All the effects caused by any disturbance are reflected in the forces and206

torques measured by the sensors. In this way, it is necessary to separate the information related to the207

inaccuracies and the other related to the expected behavior. Some assumptions need to be made before208

performing this procedure. The first one is the necessity of establishing the inverted pendulum model209

parameters: CoM location and mass. They come from the robot design but they are not complete210

accurate because differences between CAD designs and real implementation. The correction of this211

parameters using the real robot is not possible, so it is assumed the use of the theoretical values.212

The second assumption is related to the planning of balance control task. Taking into account the213

established model, ZMP location can be planned. That is, ZMP location can be pre-planed to remain214

always inside the support polygon. It is desirable that balance plan will be close to reality in order to215

reduce the effort of the control system. This means that lower gains will be need to adjust the control216

system.217

The method used to develop the new improved model is the following. Based on open-loop218

system push-recovery set of experiments, the measurements of the F/T sensors are captured and219

processed. Then, with this information, ZMP real xF/T is computed and compared with ZMP expected220

xexp. The difference between them is modeled and one equation describing this error is obtained. The221

modeled error is included in the original model as a fictitious force that corrects the difference found.222

Once the new model has been obtained, the new planned ZMP behavior is close to the ZMP measured.223

4.1. Study of the system response224

To introduce into TEO simplified model all the errors mentioned before, the procedure225

summarized in Fig. 12 has been followed.226



Figure 12. Experimental procedure diagram

The first stage is to fix the inverted pendulum parameters with the characteristics of the humanoid227

robot TEO. The robot weight is 62.6kg and the longitude from the ground to the CoM is 0.8927m (the228

pendulum length). Then, the expected movement of the robot actuated by a pushing force has been229

experimented. This behavior is similar to the study of the response of a system with an step signal230

input. To illustrate the method only the results from the saggital plane (x-z) of the robot is presented231

because the experimental methodology for the frontal plane (y-z) is the same and similar results has232

been obtained. In this way, the experimental setup is represented by Fig. 13. The robot is in a flat233

ground environment with both feet on the ground (double support). Therefore, the support area234

includes the robot footprints and the common tangents between them.235

𝜽

𝒍

𝝉 𝑥

𝑧

𝒎𝒈

Figure 13. Experimental setup of TEO robot

After performing a set of trials, the results are shown in Fig. 14. This figure represents the ZMP236

measured (the oscillating signals) and the expected ZMP (the step form signals). Each pair of ZMP237

signal (oscillating-step) correspond to a specific push force applied to the robot. If we examine each238

pair, some conclusions can be extracted. Bigger disturbances imply further location of the ZMP from239

its origin, making the robot more unstable because ZMP is closer to the support polygon edge. It240

means that the model angle is bigger and the errors have more influence, mainly robot flexibility and241



mechanical tolerances. For this reason, the steady state error is as well higher. Furthermore, the system242

have a higher initial oscillating response, which is not desirable when ZMP is located near the edge of243

the support polygon.244

Figure 14. Step response experiments

This dataset is the base for developing an improved ZMP control without the necessity of low245

level position or torque controller parameters tunning. The objective of next steps is to obtain a transfer246

function modeling the ZMP behavior. The resulting transfer function, that models ZMP deviations,247

will be added to the classic LIPM with two main responsibilities: the elimination of steady state error248

and the reduction of transient oscillation and overshooting.249

4.2. Adjusted linear inverted pendulum model250

To accomplish the ZMP control requirements, this work proposes an improvement model derived251

from the classic LIPM. The objective is to modify the initial model adding a system that represents the252

errors of the real robot obtained from experimentation. Then, balance parameters measured will have253

less deviation from planed and the control parameters can be reduced. Fig. 15 represents the complete254

model in which a spring ka and a damper Ba have been added to the initial inverted pendulum model.255

These mechanical model try to compensate the steady state response (ka) and the transient response to256

limit oscillations (Ba).257

𝜽

𝝉
𝑥

𝑧 𝒌𝒔

𝒍

𝑩

𝑥(𝑡)

𝒎𝒈𝒌𝒖

Figure 15. Proposed compensated inverted pendulum model

Then, the equation of motion of the model shown in Fig. 15 is given by:258



τ = −ml
d2

dt2 x(t)− Bal
d
dt

x(t)− kalx(t) + mgx(t) (7)

where x(t) is the CoM movement, m is the pendulum mass located at the CoM, l its longitude,259

ka the spring constant and Ba the damper constant. The displacement of the CoM is small enough to260

assume sinθ = θ. Then, equation (7) becomes:261

τ = −ml2θ̈(t)− Balθ̇(t)− kalθ(t) + mglθ(t) (8)

Torque can be also obtained from the ZMP measurement as:262

τy = −xFT · mg (9)

where xFT is the measured ZMP from the sensors. Combining both equations we obtain:263

− ml2θ̈(t)− Balθ̇(t)− kalθ(t) + mglθ(t) = −xFT(t)mg (10)

Finally, the transfer function obtained from equation (10) is:264

Θ(S)
X(S)

=
K

S2 + αS + β
(11)

where K = g/l2, α = Ba/ml, and β = (Ka − g)/l. In the steady state, when time goes to infinity,265

the DC gain of the system is represented by Eq. (12), that only depends on the Ka parameter. This one266

is in charge of eliminate the static error.267

Ks =
K
β

(12)

4.3. Steady state ZMP error characterization268

The next step is to characterize the deviation of the ZMP. Even though ankle position control269

succeed the ZMP measurement presents deviations.From trials dataset depicted in Fig. 14, the deviation270

of the ZMP can be determined. Fig. 16 represents the deviation of the ZMPF/T from the ZMPexp.271

Figure 16. Experimental ZMPexp − ZMPF/T deviation



The deviation in each test point is used to fit it to a second order polynomial equation (13). This272

equation represents the real ZMP xF/T measured by the ankle sensors:273

xF/T = a · x2
exp + b · xexp + c (13)

where a = 0.834, b = 1.024 and c = −0.0004.274

This equation represents the steady state error of the open-loop system for each working point.275

Equation (13) and Equation (12) are the base for planing the evolution of the joint angle and, therefore,276

ZMP location. Once the static error has been minimized the transient response is optimized to reduce277

the level of oscillations.278

4.4. ZMP transient response characterization279

Linear inverted pendulum is inherently unstable. It is necessary to develop a controller to stabilize280

it against any kind of disturbance. Meanwhile the step response of the inverted pendulum goes to281

infinite, higher order systems have stable behaviors. Fig.17 shows the comparison of the LIPM vs.282

ALIPM transfer functions response to a simulated step input. This behavior also means that the283

dynamic parameters can be adjusted to higher values in the ALIPM case, having more margin to be284

configured.285

Figure 17. Angular step response LIPM-ALIPM

The behavior of the humanoid robot system has been demonstrated as a under damped system.286

Selecting appropriate gain and dynamic parameters it is possible manipulate the overall response of287

the system, reducing the over shooting and oscillation of the system. ZMP oscillations have higher288

values when its location is further from the origin and, as well, when the input angle have a high289

variation. This relation between ZMP and ankle angle allows the reduction of the oscillation level by290

means of angle planning. In (11), dynamic parameters can be configured, for example, to limit the over291

shooting level. Figure 18 shows the signal obtained from the simulation of a disturbance causing a292

ZMP variation of 9cm. The dynamic parameters were designed to obtain an over damped response293

(ξ = 0.8, ωn = 0.4376)294



Figure 18. Step response ALIPM

Then, selecting the proper parameters it is possible to modulate the dynamics of the robot and295

reduce undesired oscillation levels on the robot.296

4.5. ZMP control297

Classical control architectures, such as the one shown in Fig.9, are based the linearisation of298

the controller around a working point. It means that the controller is has almost no error in this299

working point and it has more error as the control target is further than this point. In this work, a300

non-linear solution is proposed, based on the Gain Scheduled Matching. The main goal is to select301

dynamically the most appropriate parameters for each working point of the controller. In control302

theory, a gain-scheduled controller is a system control architecture in which its gains are automatically303

adjusted as a function of time, operating condition, or plant parameters [16]. Gain scheduling is a304

common strategy for controlling systems in which its dynamics change with such variables. Typically,305

gain-scheduled controllers are fixed single loop or multiloop control structures that use lookup tables306

to specify gain values as a function of the scheduling variables. For tuning purposes, it is convenient to307

replace lookup tables with parametric gain surfaces, such as fuzzy surfaces [25][26]. A parametric gain308

surface is a basis function expansion in which its coefficients are tunable. For applications where gains309

vary smoothly with the scheduling variables, this approach lets tune a few coefficients rather than310

many individual lookup-table entries, drastically reducing the number of parameters. This approach311

also provides explicit formulas for the gains, and ensures smooth transitions between operating points.312

Figure 19. TEO ZMP controller



The control architecture is presented in Fig.19, similar to the human-inspired control architecture313

presented in [27]. In this case, there is a preprocessing module for control parameters planning.314

Depending on the input u the appropriate values for K and Ba can be selected. Then, these parameters315

are used for computing the values of the coefficients of the ALIMP’ state space model. Finally, the316

ALIMP module outputs the ankle angle to be commanded to the robot.317

4.6. Experimental validation318

To check the feasibility of the proposed system, it was tested experimentally performing a set319

of trials for capturing the response of the control system against a variation on the ZMP target. The320

ALIPM state space model was customized with the parameters for each ZMP target, following the321

step pattern. Then, the output of the model was the customized angle commands following the322

ZMP planning. Table 1 shows numeric result of ZMP location, comparing the values obtained from323

the classical approach and the ALIPM approach. It can be observed that the static error is reduced324

in each working point. Even in the most critical ZMP location (ZMP = 10cm), the error has been325

reduced in more than 80% between the obtained ZMP measurements using the classical LIPM and the326

compensated model proposed in this paper.327

Table 1. ZMP comparison using Classical and Proposed LIMP

ZMPFT [m]
Classical % Proposed %

ZMPREF [m] model error model error
0.00 5 · 10−5 0.0 2 · 10−7 0.0
0.01 0.0092 8.2 0.0100 0.0
0.02 0.0211 6.0 0.0201 0.5
0.03 0.0306 2.2 0.0310 3.3
0.04 0.0419 4.8 0.0412 3.0
0.05 0.0547 9.4 0.0512 2.4
0.06 0.0641 6.8 0.0620 3.3
0.07 0.0756 8.0 0.0714 2.0
0.08 0.0841 5.2 0.0816 2.0
0.09 0.0902 9.5 0.0989 0.2
0.10 0.1116 11.6 0.1020 2.0

Data from Table 1 has been depicted in Fig.20. It can be observed that the error in the328

classical system is higher when the ZMP location is further from the initial zero position (blue329

line). Furthermore, the ALIPM curve is more adjusted to the desired linear response (red line).330

Figure 20. ZMP comparison using Classical and Proposed LIMP



About the dynamic response of the system, 21 depicts the results from all the trials performed.331

Comparing this figure with Fig.14, it is easy to observe that the level and the duration of oscillations332

has been reduced. Although, the over shooting has similar levels in some experiments, the state of the333

robot is stabilized in general earlier than the classical architecture.334

Figure 21. ZMP step responses comparative.



5. CONCLUSIONS AND FUTURE WORKS335

Humanoid balance control is based on the knowledge of certain equilibrium indicators. These336

parameters are materialized in mathematical models that represent simplifications of the humanoid337

body behavior. The less simplified is the model, the more accurate is the control performance but then338

computational complexity is higher. Classical simplified models, such as the LIPM, have a high level339

of simplification. It can model the walking behavior and balance but, as well, introduce approximation340

errors. On the other hand, the robot mechanics and electronics have inherent inaccuracies that are341

added to those from the model. This work has presented one method to modify the humanoid robot342

model to reduce these inaccuracies and to improve the balance control system. The experimental343

procedure, founded in push-recovery trials, has been used to determine the steady state error and344

the dynamic response of the system. This procedure can be applied to any kind of humanoid robot345

because is independent of the system and it is able to characterize any kind of inaccuracy.346

The resulting model, name here as ALIPM, is the base to implement a model-based balance347

controller. Linear balance controllers based on the use of these simplified models need a very precise348

and complex tunning to find the optimal control parameters. Furthermore, these kind of controllers349

are designed to operate around a working point with a minimum error. Nevertheless, the balance350

architecture proposed, using the ALIPM, has been conceived to operate in multiple working points,351

minimizing the error in each one. The ALIPM is a template that must be fulfilled with the proper352

parameters for each specific working point, which is related to the balance status of the robot (ZMP).353

These parameters define two things: the evolution of the ZMP between two consecutive postures and354

the level of error in each ZMP. In the first case, it has been achieved a smoother trajectory between355

postures reducing undesired oscillations, especially in critical ZMP locations. In the second case, the356

error between desired ZMP location and the measured ZMP has been reduced. These results are357

shown in Table 1.358

Currently, the described work deals with the humanoid robot modeling in a laboratory359

environment with flat surfaces. The next step is to extend the procedure to models applied to other360

robot behaviors, such as walking in uneven surfaces. Moreover, new improvements are need to361

evaluate the influence of the upper body movement or the behavior of the control system when362

carrying objects.363
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