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Abstract

In this paper an autonomous social roboliving in a laboratory where it can interact with several items feo
included). Its goal is to learn by itself the proper behavior order to maintain itsvellbeingas high as possible.
Several experiments have been conducted to test the parfioaof the system.

The Object Q-Learning algorithm has been implemented imdhet as the learning algorithm. This algorithm is a
variation of the traditional Q-Learning since it considarseduced state space acwllateral effectsThe comparison
of the performance of both algorithms is shown in the firstt prthe experiments. Moreover, two mechanisms
intended to reduce the learning session durations have inetrded: Well-Balanced Exploration and Amplified
Reward. Their advantages are justified in the results obdain the second part of the experiments.

Finally, the behaviors learned by our robot are analyze@. fEsulting behaviors have not been pre-programmed.
In fact, they have been learned by real interaction in théweald, and are related to the motivations of the robot.
These areatural behaviors in the sense that they can be easily understoodibgrs observing the robot.
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Learning Behaviors by an Autonomous Social

Robot with Motivations

I. INTRODUCTION

It is expected that, in a near future, robots interactindivimans will be as common as computers at home. In
these situations, robots and humans will share the same. arbarefore, during the last few years, the interest in
robots integrated in our everyday environment, i.e. peakand social robots, has increased (Kubota, Nojima, Baba,
Kojima, and Fukuda 2000). Since they must interact with hugnan efficient Human-robot interaction (HRI) is
one of the main characteristics of these robots. In ordeadditate it, these robots must exhibit natural behaviors,
i.e. behaviors which can be easily understood by peopleniatdonomous manner.

An autonomous robot acts on the basis of its own decisiongaili¢a2007) in order to fulfill its goals. Thus, it
must know what action to execute in each situation. In the ¢hat this robot does not have this knowledge, it
must learn this relation between situations and actions.

Learning is a cognitive ability that provides the plastidior adapting to new situations (Gadanho 1999). Then,
this is a key element for autonomy, mainly when dealing wiighhnon-deterministic environments, like the real
world. Lorenz defined learning as the adaptive changes oivi@hand this is, in fact, the reason why it exists in
animals and humans (Lorentz 1987). Living beings react is@gy input coming from their environment. Some of
these living beings change their reactions as time goesibgndghe same input (sensorial perception), the reaction
may be totally different. They are able to learn and updagé tleactions. Learning algorithms try to imitate this
ability and to explain how and why the reactions change ovee.t

Most of the robots existing in unstructured environmentgiie to be as autonomous as possible. This autonomy
is related to the selection of actions during the roblifés The robot self-governs its behavior through the policy tha
determines the next action to be executed at each momenst.pblicy can be acquired by two different manners:

1) The policy is assigned and the robot follows this pre-glesil policy.

2) The robot learns the best policy according to certain isigs.

In the first case, the policy is defined by others and it is inepa® the robot. In these situations, the available
decisions of the robot are pre-programmed and limited. bhepto obtain an optimal policy, all situations and
possibilities should be considered in the policy. Howeireynpredictable environments, like real scenarios where
the robots and people coexist, this is a tedious task andtsog®eit cannot be tackled.

Learning does not restrict the possible decisions but ges/a flexible mechanism to adapt the robot's behavior
to new or unforeseeable events. Then, learning perfectiytiié needs of the exploration of unchartedrlds or
situations.

In this paper, an autonomous social robot without previoogwiedge isliving in a laboratory where it can

interact with several items (people included). Its goabigetarn by itself from scratch the proper behaviors in order
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to maintain itswellbeingas high as possible. Furthermore, learning must be achievadeasonable amount of
time by interacting with the real world. Consequently, Reinement Learning (RL from now on) perfectly fulfills

all the requisites previously presented. In RL, the teagignal informs about the appropriateness of the response
by means of the reward or reinforcement signal. It looks fetae-action mapping which maximizes the reward.
The reinforcement signal just informs about whether theouts correct or incorrect and how good or bad it
is. In particular, the Object Q-Learning algorithm has b@aplemented. Besides, two mechanisms intended for
speeding up the learning process have been included. $experiments have been conducted in order to test the
performance of the system.

The rest of the paper is organized as follows: next, theedlatorks which have inspired this work are presented
(Section 11); then, in Section IlI, the robotic platform isgsented and its decision making system is described.
After that, the learning algorithm (Section 1V) and how itshipeen boosted (Section V) is explained. Section VI
details the configuration of the decision making systemrduthe experiments. All the experimental results have

been included in Section VII. Finally, the results are d&smd and some conclusions are extracted in Section VIII.

Il. RELATED WORKS

Several works have shown how RL can be used for learning ceitepiask; that is, the robot is endowed with a
set of primitive actions and it learns how to organize theradhieve a complex behavior. Mahadevan and Connell
(Mahadevan and Connell 1992) applied RL in real robots wkiehe able to learn different behaviors for pushing
boxes. Maes and Brooks (Maes and Brooks 1990) develope@gged robot which learned to coordinate different
actions for each leg in order to achieve a stable gate. ManifMartinson, Stoytchev, and Arkin 2001) developed a
simulation where he achieves a behavioral coordinatiorha@sm for an anti-tank mine robot. All these behaviors
were related to low level actions for very specific tasks, Hrareward signal comes from the external world: the
guantity of meters the boxes have been moved, the distaecebot has walked forward, or whether the tank is
destroyed

Works where the learning signal comes from internal vaeapkome times referred as motivations, are less
frequent. Blumberg (Blumberg, Todd, and Maes 1996) usemdsvational variables as the reinforcement signal
for learning the behavior for each situation. These sigasdsindependently employed, so the behaviors for each
motivational variable are separately learned. This migbtlt on situations where a certain behavior is appropriate
for certain motivational variable, but rather detrimerfiad others. In contrast, Gadanho (Gadanho and Hallam
1998; Gadanho 1999; Gadanho and Hallam 2001) considersaddarmeasure cfatisfactionas the reinforcement
signal: the wellbeing, which depends on all the homeostatitables and other values. This avoids the potential
detrimental effects of Blumberg’s approach. A similar idess been considered in our system.

Barto and Singh (Barto, Singh, and Chentanez 2004; SingtipBand Chentanez 2005) introduced the concept
of intrinsically motivated agent’s actions. That is, th@szions that the agent is engaged in them for its own sake
rather than trying to solve a particular external probletmer, intrinsically motivated learning is driven by intefna

rewards rather than externally-directed goals. They camlitrinsically motivated learning and RL for construgtin
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hierarchies of reusable skills that are applied to a simgl&cgal playroom Following this line of research, Kaplan
and Oudeyer (Kaplan and Oudeyer 2007; Oudeyer, BaranesKapldn 2013) presented an intrinsic motivation
system that can shape the developmental trajectories dia.rdhe experiments presented by these authors show
how a robot is able to learn how to use sensorimotor prinstiealter its surrounding environment resulting on
complex self-organized developmental trajectories.zZgta(Starzyk 2010) also considers motivated learning but he
considers abstract motivations and abstract goals. Fonglea an abstract pain symbolizes insufficient resources
that the machine needs, and it is motivated to discover neyswa find those resources. Many researchers link
intrinsic motivations with concepts such as novelty, csitig surprise (Bolado-Gomez and Gurney 2013; Gurney,
Lepora, Shah, Koene, and Redgrave 2013), and habituatiatsq@lis, Burbridge, and McGinnity 2012), and they
use them to guide the learning process and so improve it.h&¢ works use motivations (in particular intrinsic
motivations) as a mechanism to improve learning. Howev@istated by Barto (Barto 2013yot all aspects of
motivation involve learning’ The system proposed by the authors considers motivatisngey do not guide the
learning process.

In relation to an efficient learning process, Thrun (Thru®A)Palready remarked the importance of the ex-
ploration during learning. He describes several techridoe exploration in finite, discrete domains like the one
proposed in this work. He classifies exploration in two categs: undirected, where actions are selected based
on randomness (usually this is inefficient in learning timed directed, where exploration specific knowledge
guides the exploration. In relation to the directed exglora many works have been presented. Thrun presented
the counter-based exploratiowhich follows the rule “go to the least occurred adjacenteStand it was applied
to simple, virtual worlds. More recent works use cognitivacepts to guide the exploration during learning. For
example, (Bolado-Gomez and Gurney 2013) and (Gurney, lag@rah, Koene, and Redgrave 2013) regeetition
biasto explore novel objects, which are related with surprigisgcomes. Then, the actions resulting on unpredicted
outcomes are more repeated. In the work presented in (Lbpeg, Toussaint, and Oudeyer 2012), the exploration
is driven to those areas of the state space where learnirgyga® can indeed be made. These techniques have
inspired theWell-Balanced ExploratiotiSection V-A) which is applied in this work to a real enviroant.

Other common strategy for reducing the learning time, isr#duction of the state space. Many authors have
proposed several solutions to deal with this problem. Ohgisa would be to use the generalization capabilities of
function approximators such as feedforward neural netaszadmbined with reinforcement learning although there
is no guarantee of convergence (Boyan and Moore 1995). Aoapto Sprague and Ballard, this problem can be
better described as a set of hierarchical organized godis@angoals, or a problem that requires the learning agent
to address several tasks at once (Sprague and Ballard 280@3uestrin, Koller, Parr, and Venkataraman 2003)
and (Vigorito and Barto 2010) the learning process is acatdd by structuring the environment using factored
Markov Decision Processes (FMDPs), based on the idea thainaition of a variable often depends only on a
small number of other variables. In (Li, Walsh, and Littma&@08), the authors present a review of other approaches
which propose a state abstraction, or state aggregati@rder to deal with large state spaces. Abstraction can be

thought of as a process that maps the original descriptianbblem to a much compact and easier one to work
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Fig. 1. The social robot Maggie during the experiments

with. In these approaches the states are grouped togetthayihare, for example, the same probability transition
and the reward function (Boutilier, Dearden, and Goldszrdi@D0; Givan, Dean, and Greig 2003), or the same
optimal action, or similar Q-values (McCallum 1996). Inghiork the applied method follows the idea proposed
by some of the authors in (Malfaz 2007): the states relatedifferent objects are going to be treated as if they

were independent of one another (Section IV-A).

IIl. THE ROBOTMAGGIE AND ITS DECISIONMAKING SYSTEM

The work presented in this paper has been implemented ireigarch robotic platform named Maggie (Salichs,
Barber, Khamis, Malfaz, Gorostiza, Pacheco, Rivas, CestdDelgado, and Garcia 2006). Maggie is a social and
personal robot intended to perform research on HRI and iwipgarobots autonomy (Figure 1). It is controlled by
the Automatic-Deliberative architecture (Barber and &ai2002; Barber 2000; Barber and Salichs 2001; Rivas,
Corrales, Barber, and Salichs 2007; Malfaz and Salichs R@here the elemental component is the skill. Skills
endow the robot with different sensory and motor capaciti@sl process information. These skills are coordinated
by a Decision Making System (DMS) based on drives, motivetie@motions, and self-learning.

In our approach, the autonomous robot has certain needsiy@s@and motivations. Drives range frobn no
need, to a maximum value, the saturation value. The infesgitf the motivations of the robot are modeled as a
function of its drives and some external stimuli. The gehé&tea is that, for example, we are motivated to eat
when we are hungry and also when we have food in front of uspafth we do not really need it. The motivations
compete among themselves for being the dominant one (ieehifhest motivation). The dominant motivation
determines the inner state of the robot.

In this work, the DMS and its learning process are intende@éguiring the right relationship between states and
actions. That is, to learn the best action to execute in es&te in order to maximize its wellbeing (by satisfying

its drives). In order to do it, the robot learns how to behaveider to maintain its needs (the drives) within an
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Fig. 2. Decision making system and how its elements areectltt each other.

acceptable range. For this purpose, it uses RL algorithnisatm from its bad and good experiences (section 1V).
The reward signal is related to the wellbeing of the robotsMellbeing is defined as a function of all its drives
and it measures the degree of satisfaction of its internadisieAs the values of the needs of the robot increase, its
wellbeing decreases.

In this proposed DMS, the variation of the wellbeing of thbabis used as the reward signal during the learning
process. This means that an increment in the robot’s welpisia positive reward, and a reduction means a negative
reward.

The outline of the decision making elements can be seen iar&ig. Motivations determine the internal state.
Together with the state related to the objects in the robmtigronment (i.e. the external state), both determines
the state which is used to make a decision. After an actiorlected and executed, its consequences affect to the
world where the robot is “living” and to its drives. Thus, thvellbeing is affected and used as the rating to evaluate

the performance of an action in a state. This experiencerisidered in future decision making.

IV. LEARNING

As mentioned in Section |, learning is a possible solutiondymamic environments where responses to all
different situations can not be pre-programmed or predefiAa example of dynamic environment is the changing
surroundings where our robot lives.

The aim is that our robot learns complex behaviors undetisisa sequence of actions. Those complex behaviors

optimize the adaptation of the robot to its dynamic envirenmMoreover, since our robot is intended to interact
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with people (social robot), these complex behaviors mush In@tural response to situations where people can be
involved. This means that these behaviors are desired tolprehensible because we do not desire that people
avert HRI due to “weird” behaviors.

In this work, learning is achieved by RL algorithms which agpropriate to deal with motivational systems
(Barto 2013). The approach adopted in this work is a mods-fipproach because the system knows neither the
consequences of executing an action (the next state) naeterd that will be obtained. Initially, it just knows
the actions that can be executed with each object.

The learning process implemented in this work is based onkiyopoints:

1) A reduction of the state space

2) The Object-Q-Learning and the collateral effects

which will be explained below.
The Object-Q-Learning Algorithm was extensively detailad(Malfaz and Salichs 2009; Malfaz and Salichs
2010). In this section, the algorithm is summarized in otdeprovide enough knowledge to clearly understand the

rest of this paper.

A. The reduced state space

In this work, it is assumed that the robot lives in an envirentnwvhere it can interact with objects. The goal of
the autonomous robot is to learn what to do in every situdtiarder to survive and to maintain its needs satisfied.
In this system, the state of the agent is the combination of its inner state and its external stét® inner state
of the robot is related to its internal needs (for instanbe: tobotneedsto recharge its battery so the dominant
motivation is survival) and the external state is its statedlation to all the objects present in the environment.
In this approach, the external state considers each olgpetrately (Castro-Gonzdalez, Malfaz, and Salichs 2011).
This means that the robot, at each moment, considers thstaits in relation, for example, t@j; is independent
from its state in relation twbjs, objs, etc. so the robot learns what to do with every object by sgpaiThis
simplification reduces the number of states that must beiderel during the learning process of the robot.

Using this simplification, the robot learns what to do withegvobject for every inner state. For example, the
robot would learn what to do with the docking station whenéeds to recharge without considering its relation

to the rest of objects.

B. Object-Q Learning and Collateral Effects

The simplification made in order to reduce the state spacsiders the objects in the environment as if they
were independent. This assumption implies that the effestslting from the execution of an action, in relation to
a certain object, do not affect to the state of the robot iati@h to the rest of objects. Let us give an example: if
the robot decides to move towards the music player (an ictigeaobject in the robot’s environment), this action
will not affect to the state in relation to the rest of objedtevertheless, if the robot was previously recharging its

battery in the docking station, this action (to go to the raysayer), which is related to the object music player,
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has affected to its state in relation to the docking statMareover, if a person is nearby the robot, after it moves,
this person is not present anymore. As result, an actiorréagpping the music player) related to a particular object
(the music player) may influence its state in relation to oftems (the docking station and a person). These are
known as collateral effects.

Therefore, in order to take into account these collaterfaices, the Object Q-learning considers how the action
related to a particular object affects to the rest of the abjeUsing this viewpoint, the Q values are updated
according to Equation (1) values can be interpreted as a measure of how suitable isstugxactioru in state

S.

QObji,(S’ a) _ (1 _ a) . QObji(S’ a) + - (7‘ + - Vobji(sl)) (1)
where:
V() = s Q) + 27; AQY )

The super-indexbj; indicates that the learning process is made in relation @oothjecti; therefore,s € S; is
the state of the robot in relation to the objectd,,;, is the set of the actions related to the objeends’ € S; is
the new state in relation to the objectParameter is the reinforcement received, is the discount factor, and
is the learning rate.

Moreover,V °%i (s') is the value of the objeatin the new state’ considering the possible effects of the action
a executed with the objedton the rest of objects. For this reason, the sum of the vanatof the values of every
other object is added to the value of the objeat the new state.

These increments are calculated as follows in Equation (3).

AQﬁng: max (Q"bjm (s/,a))— max (Q"bjm (s,a)) 3)

aerb‘hn aerbjm
Each of these increments measures, for every obiggt,(# obj;), the difference between the best the robot
can do in the new state, and the best the robot could do in #hdgus state. In other words, it measures if the

value of the new state is better or worse than the value of tbeiqus state in relation to each object.

V. ENHANCING THE LEARNING PROCESS

As previously exposed, learning is achieved by the robaiugh interaction in the real world of a laboratory.
Moreover, during learning, the actions are randomly setécthis random selection is based on the theory that all
situations must be experienced an infinite number of timeshie learning algorithm to achieve convergence. This
leads to unfeasible experiments in terms of their duration.

In order to be able to carry out full learning sessions, tlhiced state space and the Object Q-Learning have
been considered. However, this is not enough for experisnenthe real world. Consequently, two additional

mechanisms have been included:
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1) Well-balanced Exploration
2) Amplified Reward
Both are intended for speeding up the learning process lmcheglthe duration of the learning sessions. Following,

they are analyzed.

A. Well-balanced Exploration

During exploration, due to the random selection of actiGosne states can remain unexplored for long periods
of time. In order to solve this problem, from time to time, $beunexplored states are enforced to be discovered.
This is a kind of directed exploration as mentioned in Sectlo

This idea is implemented in this work and it is exposed in Fégs: at some point, the robot is forced to a new
states’ which has not been visited enough in comparison with ottetest By means of this mechanism, we assure
that all states are visited a minimum number of times. Thisdgd” transition cannot be considered as an iteration

in the learning process because it is not the “natural” tesfuan action selected by the robot itself.

ai-1,li-1 applying wellbalanced_ | aini
exploration

Fig. 3. Well-balanced Exploration schematic

This idea has to be applied to the particular state spaceofubrk. Considering the ideas presented in Section
IV-A, the state of the robot is composed of internal and exdéstates. The inner state is determined by the dominant
motivation at each iteration. The motivations grow due te dhive linked to each one or to the external stimuli.
As a result of the random selection of actions during leayniihcould happen that the required external stimuli for
a particular motivation are never presented or attainedictions that satisfy a drive are always executed when its
associated motivation is not the dominant one. Moreovaredevolve at different rates. Thereupon, the motivations
associated to the slowest drives are less likely to becomédminant motivation. For all these reasons, the proper
behaviors that have to be exhibited with some “slow” motoas could not be properly learned in a reasonable
amount of time.

For promoting these “slow” motivations, evefyiterations, the least frequent dominant motivation is poted.
Promoting a motivation means that the drive linked to theivatibn is artificially saturated. This implies that the
drive value is set to its maximum value. Therefore, the prthanotivation will easily reach the dominance over
the rest of the motivations. As a consequence, the new stditeely to be related to this promoted motivation and
then the corresponding behavior will be explored and lehrne

As aforementioned, when a motivation is promoted, the ttiansfrom the previous state to the new situation
where its drive is artificially saturated is not considergdtbe learning algorithm. Otherwise, unreal effects of
actions would have been taken into account and includederetfrned policy.

The whole process is schematized in Algorithm 1.
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Algorithm 1 Well-balanced Exploration: promoting motivations
Require: iter < total number of iterations

Require: f < frequency to promote the least frequent dominant motiwnatio
1: while robot is learningdo

2: if iter mod f =0 then

3: m < least frequent dominant motivation

4: d < drive associated to m

5: d is saturated > promoting motivation
6: Set flag to ignore this iteration at learning

7: end if

8: iter = iter + 1

9: end while

Promoting motivations forces to explore all the possiblenmal states (dominant motivation) an acceptable
number of times, so the exploration of dominant motivatismdalanced. Thus, the experiment length can be

drastically reduced as it will be shown in Section VII-B2.

anr promoting least frequent ar
dominant motivation

Fig. 4. Well-balanced Exploration applied to the internaite

In this work, Well-balanced Exploration has been appliedsidering just unusual internal states (Figure 4).

External states are explored enough and this techniquedtaseen applied to them.

B. Amplified Reward

In order to identify as fast as possible the actions thasfsathe robot’s needs, the Amplified Reward has been
implemented. Living beings have been taken as the souraespiration. Focusing on human beings, when a person
is hungry and eats, the benefit is really great. However,isf plerson is really thirsty and also hungry, eating does
not provide the same level of benefit, but a smaller one. Tinefite coming from satisfying the most urgent need
is always the greatest one. This is the idea behind the ArgliReward mechanism.

In the interest of fostering this idea, positive rewards aneplified when the reward comes from correcting
the drive corresponding to the dominant motivation. By nseahback-propagation and the collateral effects, this
amplified reward is transferred to the rest of the actionslired, even when several objects are concerned. Therefore,
all the actions required to satisfy a drive will be propanadly amplified and the behavior related to its motivation

will be learned faster.
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Considering the previous ideas, the amplification is applhen the variation of wellbeing (the reward) is
positive, and this benefit is due to the reduction of the dcmenected to the dominant motivation (the most urgent

need). Mathematically, it is expressed as Equation (4).

If AgDgm <0 & 74 >0thenr < rq - f, 4)

where A, Dy, is the variation of the drive related to the dominant motoatafter executing action; parameter
r, means the reward obtained when actiohas finished (this is the wellbeing variation); ané the reward used
by the learning algorithm. Finallyf, is the amplification factor which determines the amount ojraentation
applied to the reward. Then, after actiarhas been executed, the obtained rewards amplified if it positively

affects the dominant motivation.

V1. DECISION MAKING SYSTEM EXPERIMENTAL SETUP

The aim of the presented DMS is to achieve an autonomous rehich learns to make right decisions. Once
the learning process has finished, the most appropriatéahaat each moment will be selected by the decision
making module. Choosing the right action depends on theevaftthe motivations, on previous experiences, and
on the relationship with the environment. All these elemdmve been modeled in order to be processed by the
implemented DMS.

All the parameters considered in this implementation sheapecific robot’s “personality”. That is, the DMS
setup defines the robot’s behavior during its lifespan. @ranthese parameters, new “personalities” or behaviors
are exhibited by the robot. The parameters which are pregdeantthe next sections have been defined at design

time by the authors.

A. The robot’s inner world: what drives and motivations?

This section details all the inner variables and parameaiéthe DMS. As mentioned, the robot’s needs, the
drives, are represented as an internal value. The choiogt aliwt drives (and consequently motivations too) must
be implemented were made at design time considering thtyatild functionality of the robot. The number of drives
and motivations should be flexible and correlated to thestaskperform (Bryson and Tanguy 2009; Kowalczuk
and Czubenko 2011).

All things considered, following, the selected drives andtisations (each motivation is connected to a drive)

are listed:

« Energy: this drive is necessary for survival and it refers to the gnetependence. It is linked to the battery
by following its level. Its associated motivation arvival.
« Boredom: it is defined as the need of fun or entertainment. This drivelmsatisfied when Maggie is having

fun and this is achieved when it dances. It is related to thévaimn of fun.
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« Loneliness: this is the lack of social interaction and, then, the needashganion. Thesocial motivation is
related to this drive. As presented before, Maggie is a soolaot so one of its main goals is to establish
relationships with people. This attitude is enforced by thmotivation.

« Calm: this is the need of peace and its associated motivatiarelex. The relax motivation searches for

noiseless conditions.

Drives represent the deviation from the ideal state. Théslidtate corresponds to the value zero for all drives
(no needs).

In addition, it could happen that none motivation can be iciared as the dominant one. This situation is also
contemplated in the proposed system and, consequentlyntst convenient behavior for this situation will be
learned and studied too. This situation is referrech@se or non-motivation.

Just like human beings can become thirsty when they see vilaéemotivations are influenced by some objects
when they are present in the environment. These are calkedxtlrnal stimuli and they will be detailed in the

next section.

B. The external world: sensing and acting

The world is perceived by the robot in terms of objects andstages related to these objects (the external state).
In this work, the world where Maggie is living in is limited the laboratory and the following objects: a music
player, the music in the lab, the docking station for supgy&nergy, and the people living around the robot. Also
the states related to all these items have to be defined anwath&tions between states are detected by several
skills running in Maggie.

Moreover, the robot interacts with its environment throdhé actions that can be performed with the objects.
The robot has a repertory of actions and it has to learn whexxéoute each of them.

In Figure 5, the states related to each object, the actionktlee transitions from one state to another are shown.
If an action does not appear at one state, it means that itotdrenexecuted from that state; e.g., Maggie cannot
play musicif it is far from the player; or it canndhteract with a person if it is alone.

Following, the available items, the states related to thamd, their actions are introduced.

1) Music player: Maggie is able to operate a music player located in the lalticf®a Castro-Gonzalez, and
Salichs 2009). In order to operate the music player, thetrbhs to be located at a certain distance and facing the
appliance. Therefore, in relation to the position of theatplthere are two statestiear, when the robot is close
enough to operate the player, afad, if the robot is in a position where it is not able to operate ghayer.

Moreover, related to the operational state of the musicegylagther two states have to be distinguished to avoid
sending the same command twice to the playear-onand near-off When the robot is close to the player and
it is already turned on, the state ear-on but, when the robot is also close and the player is off, tlhdesis
near-oft

The possible actions with the itemusic playerare:

« Go to player: Maggie approaches the music player.
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Fig. 5. States, actions and transitions related to the itefrthe robot's environment: a music player, the dockingiatatthe music, and a
person. Round sides rectangles represent the statesdrédatach object, the arrows are the transitions, and thdslaiighe arrows are the
actions which may cause the transition if no errors occuacBlarrows correspond to transitions triggered by actiowswed with the object.
Red dashed arrows mean transitions activated by actiomsotlier objects. And purple dotted arrows are dedicatedaftsiions due to actions

executed by other agents

« Play music: music is played because it turns the player omvithis off.
« Stop music: music is stopped when it is being played becawesenusic player is turned off.

« Idle: it represents the possibility to remain next to theyptafor a while.

2) Music: The robot’s environment is the lab, antusiccan be playing there. Then, the robot canlistening
or not, to music

About themusig there is just one possible action:

« Dance: the robot moves its body with the music. This actiat fan be executed when Maggielistening

to music.

3) Docking station: The docking statioris the source of energy. If the robotpdugged the battery is charging,
so its level increases. Otherwise, the robotipluggedand the battery level decreases.

The attainable actions with the docking station are:

« Charge: Maggie approaches the docking station, plugs intnd stays there until the battery is full. At the

end of this action the robot is stiiluggedand the battery is recharged.

« Remain: it keeps plugged for a while.

4) Person: The robot Maggie is intended to interact with people. Hempemple are considered as “objects” of
the environment. Regarding interaction, a person has tddse @nough to touch, speak or being recognized. For
that reason there are two states in relation to a pef@sentand absent

The personitem offers an available action:
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« Interact: this action is related to the possible interactioth a person. During this action, the robot perceives
the effects of the people’s action over the robot’s wellgeivhen a user interacts with the robot. These effects
are evaluated through oral and tactile interfaces: the caeroffend or say compliments to the robot, or he
can “stroke” or “hit” the robot.

The system provides identification for different users. m,hdifferent users are treated as different objects of type

person Therefore, the robot learns what to do with each user inudgmstly.

Some of the presented objects affect the motivations, thahéy are considered as external stimuli. Table | lists
all the external stimuli included in this work. Since the oblikes dancing when music is being played, the robot
perceives it and the motivation to hafien increases. If Maggie perceives the docking station, thevatiin of
survival is augmented. Lastly, due to the fact that Maggie is a vesnfily robot and loves people, the presence

of a person close to it strengths &scial motivation.

TABLE |
ALL EXTERNAL STIMULI USED IN THIS WORK

Motivation External stimuli State related to ext.stim.

fun music listening
survival docking station plugged
social any person close

C. The consequences of the robot's actions

Once an action is selected and executed, it may disturb thet io two manners: first, an action provokes a
change in the world (e.ghargeaction results on the robot is plugged to the charger) andnsgdthe action causes
effects over the drives (e.g. after tishargeaction the need o&nergyis reduced). In order to apply the effects
over the drives, the action has to successfully end: if aorerccurs during its execution, this situation is notified
and its effects over the drives are not applied. The chanifestiag the external state are monitored by specialized
skills.

As highlighted in the previous paragraph, effects of théoast can influence the drives of the robot positively
or negatively. A positive effect reduces the value of a rigbdtive (this likely implies an increase in the robot’s
wellbeing). Actually, when the drive is set to zero (the idealue), it is said that the action satisfies the drive.
Some actions can also “damage” some drives of the robotasirg their values (so the robot’s wellbeing probably
drops).

As shown in table Il, when the music player is switched of§ thivecalmis satisfied; then, a quiet environment
is achieved. The need dfin is satiated when the robot dances, so the dbwesdomis set to zero. Since HRI

involves a user, the result of this actions is not always tiraes Depending on how this user behaves, the action
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interactis positive or negative. A positive interaction is relatedat stroke or a compliment and satisfies Hoeial
drive. In contrast, a negative interaction provokes anemant of ten units in theocial drive. This happens when

the robot is damaged because of a hit or an insult.

TABLE Il
EFFECTS OF ACTIONS

Action Object Drive Effect
stop music player calm setto 0
dance music boredom setto O
positive interaction person social setto 0
negative interaction person social +10

The effects of the actions over the drives are not given tolMS, but they are applied to the drives whose
value changes. In addition, the changes in the world caugebebactions, i.e. transitions in the external state, are

not predefined. All in all, this means that this is a modeé&fapproach.

VIl. EXPERIMENTAL RESULTS

In this section, several experiments prove the performaidke presented system. First, the use of the Object-
Q-Learning algorithm is justified and its benefits are expgof®llowing, the advantages of the modifications of the
learning algorithm are shown by means of some experimemallys how the robot behaves in all circumstances
is analyzed.

During the experiments, the robot has learned the propeavi@hin different situations. Learning has been
achieved by real robot-environment interaction in the lalgre 6). As explained in Section lll, each action will
be evaluated according to its effect over the robot’s wélipe

The fact that previous knowledge is not given in advance ¢ortthot implies that all the Q-values have the same

initial value. In these experiments this is setlto

A. Object-Q-Learning vs. Q-Learning

At this point, the use of the Object Q-Learning is justifiednc® the world is perceived in terms of objects
and the robot’s states in relation to these objects (SedWed), an agent using the traditional Q-Learning will
learn the actions that satisfy the robot's needs in relatiojust one object. However, it does not learn the related
actions affecting other objects that are necessary. By sefithe Object Q-Learning and the collateral effects, the
consequences of an action over all objects in the world ansidered.

The different results obtained by Object Q-Learning andéa+hing can be seen in Figure 7. Both plots present

the results obtained after learning the behavior when ttmeimint motivation idun. That is, what the robot has to
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Fig. 6. The laboratory where the experiments have been ctediu

do to satisfy the need of entertainment. Figure 7(a) showsdbults obtained using Q-Learning. In Figure 7(b),

the @ values plotted have been learned by means of the Object @ibgaalgorithm.
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(a) Learned values for the motivation &fin using Q-Learning(b) Learned values for the motivation déin using Object Q-

algorithm Learning algorithm

Dominant Motivation: fun

Q(play, player is near and off)
Q(idle, player is near and off)
Q(go to player, player is far) Q(charge, robot is unplugged)
Q(stop, player is near and on) Q(interact, Alvaro is present)
Qlidle, player is near-on) Q(interact, Perico is present)

Q(dance, music islistening)
Q(remain, robot is plugged)

Fig. 7. Comparison between traditional Q-Learning and €ibf@-Learning when several objects are required for perifagnthe behavior

related to the motivation afun
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As expected, both methods learn that the best action to exésdancebecause it satisfies the need fah.
However, in order to achieve this action, other objects arpiired: first, if the robot decides to dance, the music
has to be on; and for turning the music on, the robot has todseanough to thmusic player This relationships
among several objects and the states in relation to thesetebfannot be learned by Q-Learning (Figure 7(a)
shows how the rest of the actions have very low values).

On the other hand, the robot using the Object Q-Learningrilgo perfectly learns the correct relation among
actions (even with different objects) in order to exposeptaper behavior whefun is the dominant motivation. In
Figure 7(b) the most appropriate sequence of actions canttected considering the highest values. As previously
said,danceis the most valuable action and it corresponds with the lagbelue. Before this action can be executed,
the play musicaction is required (it is the second highest value due todllateral effects). Finally, the last required
action isgo to player which is in charge of moving the robot close enough torhesic player Once there, the
robot is able tgplay musicand, then, talance The go to playeraction is the forth value and the last positive one.

The state-action pairs with negative Q values are not deifal the behavior exhibited whennis the dominant
motivation. This means that those actions linked to a negdd value §top musicand chargeactions) drive the

robot away from its objective (satiate the need of fun).

—— o

tttttttt

(a) Learned values for theelax motivation using Q-Learnindb) Learned values for theelax motivation using Object Q-
algorithm Learning algorithm

Dominant Motivation: relax
Q(play, player is near and off)

Q(idle, player is near and off)
Q(go to player, player is far) Q(charge, robot is unplugged)
Q(stop, player is near and on) Q(interact, Alvaro is present)
Q(idle, player is near-on) Q(interact, Perico is present)

Q(dance, music is listening)
Q(remain, robot is plugged)

Fig. 8. Comparison between traditional Q-Learning and €bfg-Learning when just one object is involved in the behaviated to the
motivation ofrelax

Therefore, it has been proved that Object Q-Learning perédretter in relation to the collateral effects. However,
when there is just one object involved in a behavior, botbtlgms are able to learn the proper skills to be activated.
This is the case of the behavior related to thkax motivation where just thenusic playeris involved. Figure 8
displays the&? values learned wherelax is the dominant motivation. Figure 8(a) represents(ghealues determined

by Q-Learning. In contrast, Figure 8(b) represents thelt®siotained by the Object Q-Learning algorithm. Now,
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in both cases, the learned values result in the proper bahawhich is formed by actions performed with the same
object. The most important actions in orderredax, sorted by value, arestop musigcidle with music onandgo

to player. All of them are related to thenusic playeritem and, therefore, both algorithms perfectly identifertin

B. Validation of the improvements in the learning process

The benefits obtained by the mechanisms in charge of boolstarging process (Section V) are exposed here.
Both, the Amplified Reward and the Well-balanced Explomatiare analyzed comparing the results obtained with
and without them in similar experiments.

1) Amplified Reward:In order to clearly demonstrate the advantages of using thmplified Reward, this
experiment has been focused in one dominant motivatiorfutheotivation. In this case, a seven hundred iterations
learning session has been performed. Two versions of theitggalgorithm are concurrently running: a) an Object
Q-Learning algorithm with Amplified Reward (Figure 9(a)), an Object Q-Learning without Amplified Reward
(Figure 9(b)). The amplification factor has been set tgf 3i Equation 4).

Looking at Figure 9, at first glance, both plots seem simii@spite the fact that the amplified one (Figure 9(a))
has higher values, the policy seems to be equal. Howevausiiog on thegoing to the playermaction, the policy
learned is not equal. This action is required in order tosatihe need of entertainment. In Figure 9(a), the
value associated to this action is the forth highest pasitalue. In contrast, in Figure 9(b), thiy value is negative
and other actions not related to the motivationfurfi are over its value. Using the Amplified Reward the learned
values are higher and, therefore, the back-propagationgadtl successive needed actions is stronger and it reaches
farther actions faster.

Probably, longer experiments will end with a positive vabfehe go to the playeraction. However, by means

of Amplified Reward this is achieved in a shorter period ofdim

keration

(a) Learning with the Amplified Reward (b) Learning without the Amplified Reward

Dominant Motivation: fun
Q(play, player is near and off)

Q(idle, player Is near and off)
Q(go to player, player is far) Q(charge, robot is unplugged)
Q(stop, player is near and on) Qlinteract, Alvaro is present)
Q(idle, player is near-on) Q(interact, Perico is present)

Q(dance, music Is listening)
Q(remain, robot is plugged)

Fig. 9. Effects of Amplified Reward on the learning procesemwithe dominant motivation i&in
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2) Well-balanced ExplorationAs expressed in Section V-A, an exhausted exploration ofialhtions in order
to correctly learn the proper behaviors is needed. Nextiuatsdin where exploration is poorly achieved is shown.
Figure 10(a) presents a four hundred iteration learningieesvhere the Well-balanced Exploration has not been
considered. It corresponds to thevalues related to the dominant motivaticeiax, which associated drivecélm)
is the slowest one.

The remarkable issue extracted from Figure 10(a) is the pargpds where non of the values are updated. These
are the iterations ranges frotmto 160 and from250 to 390 which correspond to around one hour and a half
periods. These long lasting periods with stability of valukiring a learning session means that this motivation is
not explored in these periods. In other wordsax does not frequently become the dominant motivation. These
circumstances lead to a set of state-action pairs that drenough explored and therefore their values will not be

properly learned in an acceptable amount of time.

(a) Evolution of Q values related to the motivation refax when (b) Evolution of Q values related to the motivation refax when

Well-balanced is not applied Well-balanced is applied

Dominant Motivation: relax

Q(play, player is near and off)
Q(idle, player is near and off)
Q(go to player, player is far)
Q(stop, player is near and on)
Q(idle, player is near-on)

Q(dance, music is listening)
Q(remain, robot is plugged)
Q(charge, robot is unplugged)
Q(interact, Alvaro is present)
Qinteract, Perico is present)

Fig. 10. Application of Well-balance

The effects of the Well-balanced Exploration whetex is the dominant motivation can be observed in Figure

10(b). In these experiments, evdryiterations the least frequent dominant motivation is pr@ddi.e. in Algorithm

1, f is set tol5). During the whole learning session, there is a frequenttgdf any state-action pair related to

the relax motivation. There are not more of those long periods of uinééstability in a particular motivation.

C. Learned Motivational Behaviors

In this section, the learned behaviors are analyzed. Theraations between the robot and the environment,

where experiments are accomplished, take a consideraldardrof time. The learning phase has been established
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around700 iterations (an iteration corresponds to the execution oaetion by the robot). This represents more
than seven hours that have been split in a two day experimdtet. this learning phase, the robot has acquired
the policy of behavior which will be studied.

During the learning, the robot has learned how to act acogrth its state (internal and external) in order to
improve its wellbeing. Through learning, stable chains cicans have been formed and they can be considered
motivational behaviors which have not been previously mogned. In this section, the learned behaviors are
independently presented motivation by motivation. Moepthe reaction of the robot when there is not a dominant
motivation is also analyzed in the last part.

1) Survival motivation. How do | get my batteries recharge@®jure 11 displays the learn&g values related
to all the objects in the robot’s world when survival is therdpant motivation. This means that the need of energy
is high. The best action, this is the action with the high@stalue, ischargewhich is responsible for the totally
recharging of the batteries. Consequently, the energyinejis obtained. For that reason, after this action has

finished, theenergydrive is satiated. Then, this action is the most likely to keoaited.

Q(action, external state) Value

Q(play, player is near and off) 2.60409
Q(idle, player is near and off) 0.709885
Q(go to player, player is far) 41.8524
Q(stop, player is near and on) 6.64912
Q(idle, player is near-on) 2.72383 X —
Q(dance, music is listening) 1.55256 \\/ Charge
Q(remain, robot is plugged) -0.909364
Q(charge, robot is unplugged) 71.712

Q(interact, Alvaro is present) 7.39612

Q(interact, Perico is present) 3.03879

Fig. 11. Learned Q-values and the most probably behavionwtevival is the dominant motivation

The go to playeraction is very high too because the next best action ictta@geaction. Thechargeaction is
executed when the robot is unplugged and far from the dockiatgon. This situation results after the execution of
the go to playeraction. In additionyemainjust can be executed once the robot is plugged and this hapitsr
the robot has recharged its batteriebgrgeaction). Consequently, as observed in Figure 11, the lda@healue
for this action is not good.

2) Fun motivation. Let's enjoy!This motivation has already been extensively studied irti@2d/11-A where
details can be read. Summarizing, when is the dominant motivation, the robot approachesrtiusic player it
turns it on, and dances. This behavior is extracted froméhened Q values and it is shown in Figure 12.

3) Relax motivation. | need calmNow, the robot demands a quiet atmosphere, so the dominaitation is
relax.

Firstly, it must be emphasized that, if Maggie needs calneisabse the music has being playing for some time.
In other words, when the music is off, Maggie does not neectkaxr Consequently, th€ values related to the

actions executed when theusic playeris switched off do not change, so they remain at their initalle of 1.
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Q(action, external state) Value ﬁ
Q(play, player is near and off)  45.7102 \O to player
Q(idle, player is near and off) 19.6265
Q(go to player, player is far) 5.56074
Q(stop, player is near and on) -13.971 play ﬁ
Q(idle, player is near-on) -1.25264

Q(dance, music is listening) 76.6126
Q(remain, robot is plugged) -13.5084
Q(charge, robot is unplugged) -20.0261

Q(interact, Alvaro is present) 0.94

20

Q(interact, Perico is present) 0.577867

Fig. 12. Learned Q-values and the most probably behavionitne is the dominant motivation

This means that they have not been executed ever when thenaoimotivation igelax because it is not possible.
After music is playing for a while, the robd¢elsthe need of a peaceful environment. Then, it learns thatst ha
to stopmusic. In consequence, this is the high@stalue. As it happens whefiun is the dominant motivation, the
robot must approach thusic playerto operate it. In this case, this is necessargttipmusic. Accordinglygo to
player action is the next best action. Once the robot is in the priyiof the music player(and the music is on),
it can stopmusic or executédle action. Sincestopis the best actionidle value is very high as well. The reason
is that when this action ends, the robot caap music which is the highegp value.
In short, it is easy to describe the optimum behavior thatrti®t will exhibit whenrelax is the dominant

motivation: if it is far from the music player, it will go towes it and then it will stop music (Figure 13).

Q(action, external state) Value
Q(play, player is near and off) 1
Q(idle, player is near and off) 1

Q(go to player, player is far) 30.0611
Q(stop, player is near and on)  68.9576

Q(idle, player is near-on) 36.5741
Q(dance, music is listening) -0.261925
Q(remain, robot is plugged) -1.3169

Q(charge, robot is unplugged) -26.973
Q(interact, Alvaro is present) 4.97244
Q(interact, Perico is present) 0.626864

Fig. 13. Learned Q-values and the most probably behavionwHex is the dominant motivation

4) Social motivation. Do you want to be my friend®s presented in Section VI-A, theocialmotivation is related
to the need of positive HRI. Therefore, when thgcial motivation is the dominant one, the robot is encouraged
to interact with the two usersAlvaro and Perico, who alternatively approach Maggie one by oRerico always
interacts with positive actions: he strokes the robot ordys €ompliments to Maggie. This results on the satisfaction
of the social drive, which is set to @lvaro generally acts in a positive way too. However, sporadicaiéy hits
or offends Maggie. The consequences of the negative irienacincrease some drives (Castro-Gonzalez, Malfaz,

and Salichs 2013).

Interactions withAlvaro and Perico have a great positive average effect over this motivatidrenl these actions
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are the most suitable skills to be executed: this is the rehscause the highe&t values among all actions, when
the dominant motivation isocial correspond tanteract-with-Alvaroand interact-with-Perico(see the highest Q

values in Figure 14).

Q(action, external state) Value

Q(play, player is near and off) ~ 12.3761
idle, player is near and off)  20.5052 H
Qidle, play ) idle

Q(stop, player is near and on) ~ 7.81103 _>
Q(idle, player is near-on) 13.6498 remain
Q(dance, music is listening) 8.35407

Q(remain, robot is plugged) 25.9918

Q(charge, robot is unplugged) 9.24678

Q(interact, Alvaro is present) ~ 42.9065

Q(interact, Perico is present) 47.824

Q(go to player, player is far) -2.95896

interact

Fig. 14. Learned Q-values and the most probably behavionwbeal is the dominant motivation

Users can approach Maggie at any time. From a social poinewf, this exogenous action (approaching Maggie)
influences the robot’s state and so the availability of eledogs actions; e.g. when a user is with the robot, it can
interact with the user. However, it has been observed thatsusnost of the times, do not approach enough the
robot when it is exhibiting dively action likedancingor going to player In contrast, they approach Maggie when
it is doing other mordethargic actions. In particular, thedethargic actions aradle andremain This is reflected
on the @ values of these two actions (Figure 14): tfevalues associated to these actions are the next highest
actions after the twanteract actions. This means, that when the robot needs to interattlere is no people
around it, it will behave in a passive way by meansdd¢ andremainactions. It seems like users are reluctant to
approximate Maggie as long as it is moving.

5) There is not a dominant motivation. I'm fine&n interesting result can be observed when there is no darhina
motivation. This means that there is not any particular nébed must be satisfied. Consequently, this situation
corresponds to @leasantstate. But, how does Maggie behave in this case? What doesthén there is not

specific needs? The results are shown in Table lll.

TABLE Il
LEARNED Q-VALUES WHEN THERE IS NOT A DOMINANT MOTIVATION

Q(action, external state) Value

Q(play, player is near and off) 8.97197
Q(idle, player is near and off) 1.03933
Q(go to player, player isfar)  6.74179
Q(stop, player is near and on) 1.60373

Q(idle, player is near-on) -2.39112
Q(dance, music is listening) 11.31
Q(remain, robot is plugged) -4.46195

Q(charge, robot is unplugged)  12.9346

Q(interact, Alvaro is present) 1.62473

Q(interact, Perico is present) 1.8989
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The values for all actions related to the satisfaction ofrteed of fun are relatively high. This is becaleedom
is usually one of the highest drives due to its fast incre@ben, every time these actions are executed the robot
will likely receive positive reward. However, the most valile action is thehargeaction. This produces a pattern
of behavior where either the robot charges its battery ouritg the music player on and dances, even if it is
plugged. This can be interpreted as the robot satisfies tw@ eeeds even if they are not urgent. It is like if
the robot foresees the most likely future needs and it getdyrin advance. These needs do not depend on other
external elements and can be satisfied by the robot itself.

The rest of the actions are either slightly positive or niegafthey are all around zero), but there are not really

low or high values. This means that none of these actionsalaycial role in the absence of dominant motivation.

VIII. DISCUSSION AND CONCLUSIONS

The goal of our autonomous robot is to learn what to do in egdnation in order to survive and to maintain
its needs satisfied. The presented work proposes a methath vehdows the robot with the capability to learn
the proper behaviors autonomously, without any supemjgigst by robot-environment interaction. The robot has
learned the correct behaviors to deal with each motivatiodifferent situations. That is, Maggie has learned when
to execute the actions that lead to satiate the most urgemnt. iy means of the Well-balanced Exploration and
the Amplified Reward mechanisms, the learning time has bagnifisantly reduced. In addition, the robot using
Q-Learning learns the direct action to deal with each mttwvaand the preceding actions, all of them linked to
the same object. However, this is not enough to behave in lrmgmvironments where objects may be related.
Object Q-Learning provides a mechanism to acquire the reduinowledge in order to exhibit behaviors that
satisfy motivations involving several independent ol§eantd their states. Then, the proper action with each object
at each particular state will be carried out.

Since social robots move and interact with humans shariagsétime areas, one of the main requirements for
social robotics is a natural behavior. That is, behavioréegdly understandable and accepted by people, like those
exhibited by animals. Consequently, from a HRI point of vig¢lae behaviors displayed by a social robot, like
Maggie, should be considered as animal-like. This will hielpmprove the interaction when robot ligsing with
people. People would feel comfortable when they easily tstded what the robot is doing and why. In contrast,
people could reject anachinethat is doingweird things that they do not understand. This can be observed on
domestic animals: humans feel comfortable having pets mteh@mong other reasons, because it is easy to assess
if your cat wants to be stroked, or it is hungry; when the ows@es not understand what the cat is doing, he/she is
worried and unpleasant. Therefore, it is important thabtstbehaviors are comprehended byvitsrid-mates The
experiments and all parameters have been set consideringjttiation. Therefore, when the robot is autonomously
deciding its own behaviors based on the learned policy, bsewer is able to understand what the robot is doing.
Besides the robot provides a really life-like appearancielvhenefits the assessment of the robot and consequently
the HRI, making the person to feel mocemfortable

When the robot exploits the learned policy, complex behavere shown by series of simpler actions. For
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example, when the robot is motivated to have fun, it appresi¢he music player, turns it on, and then dances. In
contrast, when the dominant motivation is relax, the rolppraaches the music player and switch it off. In relation

to the social motivation, if the robot is alone, it decidesgémain where it is until a person approaches and then
they interact. Other behaviors look more elemental becpiséene single action is involved: when the battery are
depleted the robot needs to survive so it gets its energyecktily plugging to the docking station and remaining

there. However, the mechanism under the hood is the sam@eandently of the complexity of the consequent

behaviors.

Behaviors are elicited due to the combination of the dontimastivation and the situation in the robot’s world.

In a situation where there is not a dominant motivation, thesans that there is not an urgent need so the robot is
at a pleasant state. Learning has also been carried outse tteses, so the robot has also learned how to behave
when it iscomfortable In general, most of the resultagt values in this situation heavily fluctuate, so there is not
a clear behavior. However, two state-action pairs are cietble and have relative high stalflevalues associated,
what gives the idea that both actions will be likely selectBdese state-action pairs are: thlay action when it is
close to theplayer and the music is off, and théanceaction when theanusicis being listened. This implies that
when dominant motivation does not exist, the robot will ljkeirn the music player on and dance. Why is so? Both
actions are related to the behavior exhibited whemis the dominant motivation. Since this motivation is onelaf t
fastest one and due to the fact that it does not depend omekegents, these actions almost always get a positive
reward. Moreover, these two actions are relative short e t{specially theplay action which takes around few
seconds), and then the increment on drives is minimum. Torerethe potential decrement in the robot’s wellbeing
is minimum. From other perspective, as just sdith is one of the fastest motivation and, during learning, it was
frequently the dominant motivation, i.e. the robot freqyemeeds to have fun. This reaction (dance when the
dominant motivation does not exist) can be understood aschamésm preventing from the most probable future
need of entertainment.

Observing the robot’s behavior when it follows the learnetiqy and there is not a dominant motivation (this
is most of the time) gives the impression of a “dance-ahalitiot. Recalling the experiments carried on by Olds
and Milner in 1950s (Olds and Milner 1954), rats rapidly breezaddictive to electrical self-stimulation into certain
areas of their brains. This leaded to the discovery of thiedaleasure centers. The behavior exhibited by the robot
seems similar to how these rats acted: it is like thabbt's pleasure centéris being stimulated while dancing, so

Maggie becomes addicted to dancing. This is an animal-lé&deabior that has emerged.
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