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There is neuroscientific evidence to suggest that imitation between humans is goal-directed. Therefore, when performing
multiple tasks, we internally define an unknown optimal policy to satisfy multiple goals. This work presents a method to
transfer a complex behavior composed by a sequence of multiple tasks from a human demonstrator to a humanoid robot.
We defined a multi-objective reward function as a measurement of the goal optimality for both human and robot, which
is defined in each subtask of the global behavior. We optimize a sequential policy to generate whole-body movements
for the robot that produces a reward profile which is compared and matched with the human reward profile, producing an
imitative behavior. Furthermore, we can search in the proximity of the solution space to improve the reward profile and
innovate a new solution, which is more beneficial for the humanoid. Experiments were carried out in a real humanoid
robot.

Keywords: Learning from demonstration; humanoid robot; skill innovation; postural control

1. Introduction

When a human performs a high-level task like ‘open the
door and leave the room,’ there are a sequence of behav-
iors that takes place to optimally perform the task. Like
approaching the door in a manner that the location of the
body makes it easier to reach the knob, grasping the knob,
performing the movement that activates the mechanism of
opening the door, going backwards while holding the knob,
detecting that the door is open in a way that it can be
overpassed, and finally, going through the opened doorway.
All these behaviors are automatically selected to optimize,
in some manner, the high-level strategy of performing this
task. Figure 1 shows a detail of the high-level task of open-
ing the door.

Recent neuroscientists studies suggest that when a human
reproduces a learned task, he understands the consequences
of this behavior and try to emulate the overall goal [1]. Even
recent studies demonstrate that the main difference between
apes and humans is our capability to over-imitate, or find
newer and better solutions to accomplish optimal actions
[2,3]. In that sense, innovation is an essential feature of the
human behavior.

Minsky suggested that the way to create a machine that
imitates the human behavior is not by constructing a unified
compact theory of artificial intelligence [4]. On the contrary,
he argues that our brain contains resources that compete

∗Corresponding author. Email: mgpalaci@ing.uc3m.es

between each other to satisfy different goals at the same
moment. A similar view is shared by [5,6]. Starting from
that idea, our approach is based on computing different
reward profiles for different behaviors, which sequentially
optimizes different goals.

Robots need to be able to handle similar situations, find-
ing an optimal way to successfully complete these tasks,
while maintaining the balance and moving in a safe and
smooth manner. In recent years, researchers have taken a
significant effort to cope with this problem and Learning
from Demonstration (LfD) [7–13] has became one of the
most popular ways to create motor skills in a robot. One of
the key questions to be solved is what to imitate [7,14].

In this paper, we present a sequential method to learn
concurrent behaviors from a human demonstrator, adapt
them to the robot embodiment, and refine these behaviors
to successfully accomplish the desired task.

We collected data from several human demonstrators
performing a complex task composed by a set of sequential
behaviors. Extracting determined features of every behav-
ior, like Center of Mass (COM) position, human orientation,
hand trajectory, etc., and encoding them using Gaussian
Mixture Models (GMM), we define a multi-objective re-
ward function identified as the overall goal, which is used as
a basis of comparison between the human and the robot. The
reward is used to solve the correspondence problem, which

© 2015 Taylor & Francis and The Robotics Society of Japan
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316 M. González-Fierro et al.

Figure 1. Behavior sequence detail of the high-level task of opening a door by a simulated HOAP-3 robot. The robot starts at point 1, it
approaches to point 2 near the door in a way it can reach the knob, after grasping the door, it pulls back the door to point 3. Finally, it
releases the knob.

is defined as the action mapping between the demonstrator
and the imitator [14]. In this regard, we mapped movements
performed in a different kinematic domain and at a different
scale to a common domain, defined as the goal domain and
expressed mathematically as a reward profile, formed by a
multimodal landscape of movement features.

In a previous work, we addressed the problem of map-
ping a behavior from a group of unexperienced workers
to match and even surpass the expert behavior of an elite
individual [15]. Using that idea, we proposed a method of
imitation learning of a single behavior in a small humanoid
robot using the reward as a common space of comparison
[16] and later, we improved that idea by making a robot
imitate a single human behavior and also innovate a new
one which better fits its internal constraints and kinematic
structure [17]. Starting from there, we extend the work by
proposing in this paper a new human–robot LfD framework
where a complex sequence of behaviors, which involves
manipulation and locomotion, takes place.

We define a sequential policy for the robot that allows
to find in which behavior the robot is and computes a con-
strained whole-body movement pattern that optimizes the
reward in order to be as close as possible to the human’s
reward. Then, we refine the policy by innovating a new
solution which improves the current robot reward.

1.1. Overview of the method

Figures 2 and 3 show the complete architecture of both se-
quential imitation learning and sequential innovation learn-
ing. There are two optimizations in every architecture. A

local optimization between behavior episodes and a global
optimization of the complete behavior. Therefore, the sys-
tem not only obtain a local stable movement but it takes into
consideration the complete shape of the action movement.

Figure 2 shows the imitation learning process. The human
data are acquired using a MOCAP system, which in our ex-
periments is a Kinect camera. These data are used to obtain
a model of the human, which generates a joint trajectory
qi . This trajectory is used to compute the behavior selector
matrix and the human reward profile. The behavior selector
matrix indicates the probability distribution of being in a
determined behavior given a state. The human reward is
compared globally and locally with the robot reward.

The robot imitation process begins by knowing its initial
joint values qi (0). At this point, a new episode ei begins.
An episode is a transition between a pair of initial and
final states X = (ξini, ξfinal), which depends on the current
behavior bi , the generated trajectory qi , the controller PD
and the episodic reward rRep. Then a local optimization
takes place.

The robot reward rRep is compared with the human re-
ward rHep, when its difference �1 is a small number or
the maximum number of iterations have passed, the robot
satisfactorily imitates the human and the reward candidate
for this episode is saved. This process is repeated until all
episodes have been computed.

When this loop finishes it means that all episodes for all
behaviors have been computed and a candidate complete
movement is available. At this point, a global optimization
process takes place to minimize the difference between the
total robot reward rRTOT and the total human reward rHTOT,
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Advanced Robotics 317

Figure 2. Overview of the imitation system. Using a MOCAP system, the movement of the human demonstrator is obtained and a reward
profile for every behavior is computed. On the other hand, the robot starts in an initial state qi (0). A new episode ei is defined, which is
a pair of initial and final states X = (ξini, ξfinal). Then the behavior selector decides in which behavior the humanoid is. The trajectory
generator produces a stable trajectory within the pair of states. The episodic reward is optimized until the difference �1 between the
robot reward rRep and the human reward rHep is small or it reaches a number of iterations. This process is repeated until all behaviors are
completed. Then, there is a comparison between the complete reward profile of the robot rRTOT and the complete reward profile of the
human rHTOT, which is the index �2 = J . If this index is close to zero, it means that the imitation is completed.

denoted by �2. If they are similar, the process stops and
we conclude that the imitation process is not only success-
fully achieved locally but globally, taking into account the
complete movement.

Figure 3 shows the innovation learning process. It is very
similar to the imitation process but this time, instead of
comparing with the human reward, it compares with the
best reward of the imitations process. Therefore, in this case,

Figure 3. Overview of the innovation system. The process is very similar to Figure 2. The main difference appears in the trajectory
generation. The generator perturbs the imitation trajectory qIMITATION in an amount �qi , to generate a new trajectory qi which is
evaluated in terms of the episodic reward. The other difference is in the reward comparison �1 and �2. In this case, the objective is to
maximize the difference. If the robot gets a better episodic reward r ′

Rep than the reward obtained in the imitation rRepIMI, then �1 > 0

and the local optimization ends. If the robot gets a better reward r ′
RTOT than the reward obtained in the imitation rRTOTimi, then �2 > 0

and the innovation is completed.
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318 M. González-Fierro et al.

the robot is not just imitating the human but generating an
innovative behavior which is better, since the performance
can be measurement with the reward profile.

The document is ordered as follows. In Section 2, the
sequential policy search method is presented with a brief
overview of GMM and Gaussian Mixture Regression
(GMR) and the explanation of the postural primitives used
to generate the whole body motion. In Section 3, the beha-
vior acquisition and transfer is studied, then the experiments
with the real robot are defined, implemented, and discussed.
In 4, the related work is discussed. Finally, in Section 5, the
conclusions are presented.

2. Sequential policy definition

A learning process that considers the Markov property to
predict actions and states is called a Markov Decision Pro-
cess (MDP) [18].

The learning process is defined as a sequence of finite
states s ∈ S and actions a ∈ A pairs that produce an
associate reward r ∈ R. The agent, starting from a state s(t)
will compute an action a(t) to reach a future state s(t + 1),
obtaining a reward r(t), which can be defined as a set of
values or as a mathematical function, it is usually called the
reward function.

Let b ∈ B be a set of behaviors that compose the full
high-level strategy of performing a task. An example of
behavior can be approaching the door in a manner that the
location of the body allow to reach the knob, grasping the
knob, performing the movement that activate the mecha-
nism to open the door, going backwards while holding the
knob, realizing that the door is open in a way that it can be
overpassed, and finally, passing through the doorway.

The goal is to determine a policy π(a|s) in the form

π(a|s) =
∑

b

π(a|s, b)π(b|s) (1)

where π(b|s) is the selector of behavior b given a state s, and
the policy π(a|s, b) to select the action a, given a behavior
b.

We consider an episodic learning strategy to generate
a policy inside every behavior. At the beginning of the
episode, starting from a state s, we compute a parameterized
postural primitive that takes into account the whole body
movement, while maintaining the stability. The parame-
terized postural primitive can be defined in several ways,
in some works like [19], the movement is computed as
a dynamic movement primitive [20]. For more complex
trajectories that implies displacement and manipulation at
the same time, it is easier to define trajectories in the task
space [21].

In each episode, we consider an action a that determines
the parameters of the postural primitive, which for instance
defines the movement plan for the complete episode. The
states are defined as the via points of the primitive and

the reward profile is computed from the reward function
rπ (s, a, b). The reward is constructed as a metrics to mea-
sure the overall goal performance and it depends on the
behavior, the initial state of the episode and the action that
takes place in this episode.

Figure 4 represents a diagram of an episode. It shows
how situations branch off to behaviors and then to actions.
Given a situation in the state space, there can be many
behaviors according to human demonstrations. Given a be-
havior, the action to change over time. We choose a branch
in the tree using a probability distribution derived from the
demonstrations.

Figure 4. Diagram explaining one episode. The robot, represented
in the lower part of the diagram, performs a transition from state s1
to s2. In the upper part of the diagram, there is a tree representing
the complete process. Given a state s1, the behavior selector π(b|s)
computes the probability of being in a behavior P(bi /s1). Then
π(a|s, b) generates an action ai j , which retrieves a reward r j . The
generated action takes the robot to a state si j . The selection of one
branch, in yellow, is determined by the most probable behavior
and by the best reward.
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Figure 5. Illustration of the learning process of grasping a door knob from a top view. (a) Training data of the task. (b) GMM of the
learned motion. (c) Reproduction of the GMR.

2.1. Encoding and generalizing demonstrations

The probability distribution space of the human demon-
strations is approximated using GMM. A time indepen-
dent model of the motion dynamics is estimated through
a set of first-order non-linear multivariate dynamical sys-
tems. [22] propose an approach to imitation learning, and
online trajectory modification, by representing movement
plans based on a set of non-linear differential equations
with well-defined attractor dynamics. We follow a frame-
work presented on [8] allowing learning non-linear
dynamics of motions and generating dynamical laws for
control.

A variable ξ is defined describing the state of the
robot. Let the set M of N-dimensional demonstrate data
points {ξi , ξ̇i }M

i=0 be instances of a global motion gover-
ned by a first-order autonomous ordinary differential
equation:

ξ̇ (t)M = f (ξ(t)M ), (2)

where ξ M ∈ Rn , and its time derivative ξ̇ M ∈ Rn are
vectors that describe the robot motion. The problem then
consists in building a stable estimate f̂ of f based on the
set of demonstrations.

To build the estimate f̂ from the set of demonstrated
data points {ξi , ξ̇i }M

i=0, we follow a statistical approach and
define f̂ through a Gaussian Mixture Model.

2.1.1. Gaussian mixture models

The GMMs define a probability distribution p(ξ i , ξ̇ i ) of the
training set of demonstrated trajectories as a mixture of the
K Gaussian multivariate distributions Nk

p(ξ i , ξ̇ i ) = 1

K

K∑
k=1

πk N k(ξ i , ξ̇ i ;μk, �k) (3)

whereπk is the prior probability;μk = {μk
ξ ;μk

ξ̇
} is the mean

value; and �k =
[

�k
ξ �k

ξ ξ̇

�k
ξ̇ ξ

�k
ξ̇

]
is the covariance matrix of a

Gaussian distribution Nk.
The probability density function of the model

N k(ξ i , ξ̇ i ;μk, �k) is then given by:

N k(ξ i , ξ̇ i ;μk, �k)

= 1√
(2π)2d |�k |e

−1
2 ([ξ i ,ξ̇ i ]−μk)T (�k )−1([ξ i ,ξ̇ i ]−μk ) (4)

By considering an adequate number of Guassians, and
adjusting their means and covariance matrix parameters,
almost any continuous density can be approximated to ar-
bitrary accuracy. The form of the Gaussian mixture distribu-
tion is governed by the parameters π k, μk, �k . The model
is initialized using the k-means clustering algorithm start-
ing from a uniform mesh and is refined iteratively through
Expectation-Maximization for finding the maximum likeli-
hood function of (3).

ln p(ξ i , ξ̇ i ) =
N∑

n=1

ln

{
K∑

k=1

πk N
(
ξ i

n, ξ̇ i
n|μk, �k

)}
(5)

Figure 5(a) illustrates the encoding of a training data-
set {ξi , ξ̇i }M

i=0 into a model of mixtures of Guassians,
Figure 5(b). In this work, we used the Binary Merging
(BM) algorithm, [23], to build the GMM. BM determines an
optimal minimum number of Gaussian functions to employ,
while satisfying the stability criteria and also keeping the
error of the estimates under a threshold. To generate a new
trajectory from the GMM, one then can sample from the
probability distribution function p(ξ i , ξ̇ i ), this process is
called GMR.

2.1.2. Gaussian mixture regression

The GMM computes a joint probability density function for
the input and the output so that the probability of the output
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320 M. González-Fierro et al.

conditioned on the input is a Mixture of Gaussians. So it
is possible after training, to recover the expected output
variable ξ̂ , given the observed input ξ . Taking the condi-
tional mean estimate of p(ξ̇ |ξ), the estimate of our function
ˆ̇ξ = f̂ (ξ) can be expressed as a non-linear sum of linear
dynamical systems, given by:

ˆ̇ξ =
K∑

k=1

hk(ξ)

(
�k

ξ̇ ξ

(
�k

ξ

)−1 (
ξ − μk

ξ

)
+ μk

ξ̇

)
(6)

where

hk(ξ) = p(ξ ;μk
ξ , �

k
ξ )∑K

k=1 P(ξ ; μk
ξ , �

k
ξ )

, hk(ξ) > 0 (7)

and
∑K

k=1 hk(ξ) = 1
Figure 5(c) illustrates the GMR as a reproduction of the

learned motions. To learn the model of the trajectories,
first several demonstrations of the task are presented and
them the trajectory is encoded as a mixture of Gaussian
distributions. To reproduce the trajectories, one sample from
the probability distribution of the GMM trough the GMR
process. The GMR approximates the dynamical systems
through a non-linear weighted sum of local linear models.

2.2. Parameterized postural primitives

Based on the demonstrations encoded as GMM, we can
compute a parameterized postural primitive for each episode,
which defines a complete motion of the humanoid in the
task space. To simplify the process of generating a whole
body motion taking into account contacts and stability, we
decouple the robot in two modules or tasks, the locomotion
task and the grasping task. This means that when the robot is
performing a locomotion task, the module in charge of com-
puting the grasping task is stopped. In a similar way, when
the robot is performing a grasping operation the locomotion
module is stopped.

There is a moment when the robot is moving backwards
and at the same time is grasping the knob. At this moment,
the only active module is the locomotion one. The robot arm
is idle to decouple the robot from the door dynamics. We
assume that the door weight is small in comparison with
the robot weight and the resistive torque of the hinge is
negligible.

For the locomotion task of the humanoid, the postural
primitive can easily be computed using the cart-table model
[24]. This model is based on ZMP, a preview control scheme
to obtain the COG trajectory from a defined ZMP trajectory.
This method generates a dynamically stable gait trajectory
using the Inverted Pendulum Model to approximate the
dynamics of the humanoid.

The relationship between ZMP trajectory and COG tra-
jectory is defined by the following equations:

px = x − ẍ

g
zc (8)

py = y − ÿ

g
zc (9)

where px is the ZMP reference, x is the COG trajectory,
ẍ the COG acceleration, zc is the COG height, and g is
the gravity. In cart-table model (Figure 6), the cart mass
corresponds to the center of mass of the robot. If the cart
accelerates at a proper rate, the table can be upright for a
while. At this moment, the moment around px is equal to
zero, so the ZMP exists.

τZ M P = mg(x − px ) − mẍzc = 0 (10)

The solution of (8) and (9) produces the COM trajectory
of the whole episode for the lower part of the robot’s body.

Regarding the grasping, we can use GMR to define a
desired trajectory for the hands and add a modulation term
that improves the reward index, similarly to [9].

2.3. Sequential policy search

We define the sequential policy search problem as an opti-
mization problem where we use the reward framework as a
basis of comparison between the human and the robot. The
objective is to find a policy for the robot that, in an initial
moment, imitates the behavior of the human, by producing
a similar reward profile, and later improve the robot perfor-
mance, by auto exploring new solutions that return a better
reward. Taking that into account, we can define an imitation
index J , which is defined as the optimization problem of
minimizing the episodic difference of the human and robot
reward profile (11), and the innovation index J ′, which
is defined as the optimization problem of maximizing the
positive difference between the episodic imitation reward
profile and the new innovation profile (12). To compare

Figure 6. Cart-table model in sagittal plane.
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between reward profiles, we make use of the Kullback–
Liebler divergence, which can be stated as a directional
information transfer.

min J =
∑

b

∑
e

rh(s, a, b) log
rh(s, a, b)

rr (s, a, b)
(11)

where e ∈ E is the episode, rh is the human reward profile,
and rr is the robot reward profile.

max J ′ =
∑

b

∑
e

rr
i (s, a, b) log

rr
i (s, a, b)

rr (s, a, b)
(12)

subject to
μr

i (e) ≥ μr (e) (13)

where rr
i is the innovation reward profile of the robot, μr (e)

is the mean of the imitation reward profile in episode e, and
μr

i (e) is the mean of the innovation reward profile in episode
e. The optimization process is performed using Differential
Evolution optimizer [25].

3. Experiments

The task chosen for testing our method is to make a hu-
manoid robot approach a door, grasp the knob, and open
the door while maintaining the balance. The robot used is
the middle-size humanoid HOAP-3 of Fujitsu.

3.1. Acquiring behaviors from human demonstrations

The experimental setup consist of a Kinect camera record-
ing nine human participants opening a door 10 times each
(see Figure 7). The API of the Kinect allows to perform an
accurate tracking of the human body, which is improved
using a Kalman Filter.

The complete task is segmented into several behaviors
b ∈ B. The first behavior b1 consists on approaching the
door to a place where the knob can be reached, then grasping
the knob b2, going backwards leaving the arm passive, but
without releasing the knob b3, and finally, releasing the
knob b4.

The selected states for the task are position and orienta-
tion of the COM, ξcom = {xcom, ycom, θcom} and the posi-
tion of the grasping hand, ξhand = {xhand, yhand, zhand}. All
states are measured with respect to the Kinect position.

Let it be noted that the identification, and therefore, the
segmentation, of a behavior depends on the perspective of
the observer [4,6]. We divided the task of opening a door
into four behaviors; however, another observer could define
a different set of behaviors or it can be done techniques like
in [26–28].

For each human demonstration, a temporal state trajec-
tory ξ = [ξcom, ξhand] is obtained using the Kinect API.
After a filtering, the trajectory is automatically classified
into the four behaviors. For b1, approaching the door, ξcom
approaches to the door, whose position with respect to the
Kinect reference system is known. In b2, grasping the knob,
ξhand goes up until it touches the knob, whose position
with respect to the Kinect reference system is also known.
b3 starts when the hand grasps the knob and ξcom moves
backwards. Finally, in b4, the hand release the knob and
ξhand goes down to a rest position.

Let it be noted that the demonstrations performed by
all subjects are in some sense artificial. In order to make
the automatic behavior segmentation easier, the subjects
are told to perform each behavior separately, i.e. they first
approach the door, then move his hand to grasp the knob,
then pull the door, and finally, release the knob. A human
opening a door in a real environment would perform several
of these behaviors at the same time, smoothly and elegantly.

3.2. Learning the behavior selector from human demon-
strations

By observing the human demonstrations, we can construct
the behavior selector π(b|s) in (1), by obtaining the proba-
bility of being in a determined behavior given a combination
of states.

Figure 8 represents the mean and standard deviation of
all human demonstrations segmented by behaviors.

In order to compute the behavior selector matrix of
Figure 9, we first divide each state length into z substates,
where the length is li = si max − si min and the step is
�si = l1/z. Therefore, each state is composed of a number
of substates [sia, sib, sic, . . . , siz]. Next, for each human
demonstration in each behavior, we do a mapping from
trajectories to substates, obtaining the probability matrix
of Figure 9.

Figure 7. Snapshots of one human demonstrator performing the task of opening the door using the Kinect camera. Each snapshot
corresponds to a different behavior. (a) Behavior b1: approaching the door, (b) Behavior b2: grasping the knob, (c) Behavior b3: pulling
back the door, and (d) Behavior b4: releasing the knob.
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Figure 8. Mean and standard deviation of the human demonstrated states.

In order to compute the probability of being in behavior
bi given a combination of states ŝ = {s1,a, s2,b, . . . , sn,z, },
where n is the number of states and a, b, . . . , z corresponds
to an arbitrary substate inside a state:

P(bi |ŝ) = P(bi |s1,a).P(bi |s2,b) . . . P(bi |sn,z) (14)

Finally, the selector of behavior can be stated as:

π(b|s) = bi with bi = argmaxi (P(bi |ŝ)) i from 1 to m
(15)

where m is the total number of behaviors.
Once the behavior selector matrix is obtained, it can be

used to predict the current robot behavior, given a com-
bination of states. In the case of the robot, we applied a
scale factor ρ to obtain the length l ′i = li/ρ and the step
�s′

i = l ′1/z.

3.3. Definition of reward profile

The reward function rπ (s, a, b) varies depending on what
behavior is being performed. Let define di as the quadratic
difference of the actual state ξi and ξ∗

i , defined as the GMR
of the human demonstrations (6) in the case of the human
and an adapted trajectory for the robot based on the GMR
human trajectory.

di = (ξi − ξ∗
i )T W (ξi − ξ∗

i ) (16)

with W a weight matrix.

We also define the reward i as a Cauchy distribution in
the form

ri = 1

ε + di
(17)

with a small ε.
Let be defined the reward for each behavior.

rπ (s, a, b1) = 1

2

∑
e

rcom + rdoor (18)

rπ (s, a, b2) = 1

2

∑
e

rhand + rknob (19)

rπ (s, a, b3) = 1

2

∑
e

rcom + r̂α (20)

rπ (s, a, b4) = 1

2

∑
e

rhand + rantiknob (21)

and
r̂α = α

αmax
(22)

where rhand and rcom represent the reward when the hand
and COM trajectory of robot and human are close to the
trajectory defined by the GMR of the human demonstra-
tions. Both terms represent a direct imitative behavior. The
closer the actual trajectory is to the desired trajectory, the
higher the reward. The term rdoor is the reward obtained
for locating in a point near the door where the knob can be
reached, the closer the point the higher the reward. rknob
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Figure 9. Behavior selector matrix. The columns represent the behaviors and the rows represent the substates in a state. For each substate,
the color represents the probability of being in a behavior.

is the reward obtained by the difference between the hand
and the knob position, the closer the hand to the knob, the
higher the reward. The term r̂α represents the reward given
for the achievement of the high-level task, which is to open
the door. Finally, rantiknob is a reward that penalizes to have
the hand close to the knob and follows a sigmoid function
that starts on zero and finishes on 1. αmax is the maximum
angle that the door opens and α is the actual door angle
computed as:

α = 1

2
(αx + αy) (23)

and

αx = arccos
xhand

l
(24)

αy = arcsin
yhand

l
(25)

where lis the door length.
The robot can find a way to obtain a better total reward

than the human if it is able to improve rdoor, rknob, r̂α , and

rantiknob. Those terms represent the possibility of innovation.
Please note that all rπ (s, a, b) functions have to be normal-
ized so its integration sums to 1 in order to be used with the
Kulback–Leibler distance in (11) and (12). In Figure 10, the
resulting rewards are plotted.

3.3.1. Discussion on the reward profile

As [2] suggested, both children and chimpanzees try to
emulate the goal of the action when imitating a behavior.
Furthermore, some recent studies suggested that the main
difference between humans and chimpanzees is the abil-
ity of over-imitation [3]. Our proposal of using a reward
profile to solve the correspondence problem in order to
transfer a complex behavior from a human to a humanoid
is based on these previous neuroscience works and previ-
ous experiments performed in a real humanoid standing up
from a chair [17]. However, we are not sure of what is
the internal objective function that the brain is optimizing
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Figure 10. Reward profiles of the complete action of opening a
door. The blue line represents the reward profile for the human
demonstrator. Black boxes represent the means of the reward for
the imitative behavior. The red crosses represent the means of
the reward profile for the innovative behavior. The dotted vertical
lines represents the changes between behaviors. The vertical axis
represents the reward value and the horizontal axis represents the
states in which is divided each behavior.As it can be appreciated in
the figure, the imitative behavior produces rewards similar to the
human’s and the innovative behavior produces rewards slightly
higher.

when performing a complex task sequence. We proposed
a compound reward function that takes into account the
position. Position in terms of closeness to the door, position
in terms of distance from the hand to the door knob, position
in terms of COM trajectory. However, the human brain may
use also velocity, acceleration, jerk, or even other factors we
are not taking into account.

Although at first sight, the proposed model of imitation
and innovation may seem task dependent it is not. The
generality comes from the definition of the reward profile.
In fact, any behavior can be modeled, from simple ones as in
[17] to complex behaviors. The preference in the selection
of a predefined reward function over a learned function like
in inverse reinforcement learning [29,30] does not affect the
general idea of comparing the behavior of a human and a
robot in a common domain, which is the reward domain.

Moreover, it can be noted from Figure 10 that the inno-
vative process does not improve the performance radically.
The importance of the innovative behavior is not in the
improvement quantity. It lies in the fact that the reward
profile represents the behavior goal and, at the same time,
a metrics to measure its performance. Therefore, since it is
a behavior metrics, we can generate different movements,
not only imitating the human but innovating a new behav-
ior, which is better than the behavior demonstrated by the
human.

As it can be seen from Equations (18)–(21), the reward
functions always have an imitative component and an

innovative component. We made a mathematical frame-
work where the two main components of learning are present,
one is learning from others and the other is learning by self-
exploration. The human behavior might be not optimal for
specific tasks; however, it is undeniable that a human being
is able to adapt to a huge range of situations and behave
elegantly and efficiently. That is why we used LfD as a
starting point, furthermore, it has some advantages such as
the simplification of communicating a complex behavior
through demonstrations, the absence of the need to have
complex mathematical models of the dynamical system to
learn an optimal behavior, and the fact that it does not
require an expert teacher to perform the demonstrations,
which simplifies the information gathering process [31].

3.4. Trajectory generation and optimization

Given a behavior and a state, a candidate state space tra-
jectory ξi = [ξcom, ξhand] is computed as a cubic spline. A
generalized cubic spline is defined as a piecewise polyno-
mial fitted to a set of via points.

(t0, ξ
∗
0 ), (t1, ξ

∗
1 )...(tk, ξ

∗
k ) (26)

where ξ∗
i ∈ R

N is the joint via points at time ti ∈ R.
Given these via points, there is a cubic trajectory that

passes through these points and satisfy a smooth criteria.

ξi (t) = ai (t − ti )
3 + bi (t − ti )

2 + ci (t − ti ) + di (27)

where ai , bi , ci , di are the polynomial coefficients
optimized. The complete joint trajectory q(t) ∈ R

N is a
concatenation of (27) over the time intervals.

q(t) =

⎧⎪⎨
⎪⎩

ξ0(t) if t0 ≤ t < t1
...

ξk(t) if tk−1 ≤ t < tk

(28)

Once the candidate trajectory is generated and the be-
havior that the robot should use is known using (15), the
associated reward is computed using (17). The optimization
process is performed using Differential Evolution algorithm
[25] with (11) and (12) as cost functions.

From the candidate state space trajectory, both locomo-
tion and grasping pattern are obtained using the parameter-
ized postural primitives.

For the locomotion pattern, ξcom is used to calculate
the ZMP reference, which is the input of the cart-table
algorithm [24]. For each episode, ξcom is in fact a spline
that connects two states, that in the case of the locomotion
pattern, corresponds to one step. The location of this step is
the ZMP reference. Therefore, the original trajectory ξcom
is not the one followed by the robot COM. The real COM
trajectory is generated by cart-table algorithm, and later, a
kinematic inversion is used to compute the joint trajectory.

An example of the behavior 3 computation -going
backwards- is presented in Figure 11. The first step is the
computation of the GMM given an adaptation of the human
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demonstrations, which is shown in Figure 11(a). The adap-
tation ratio is calculated heuristically. From the GMM, the
learned state trajectory ξ∗

com is computed as it is showed in
Figure 11(b). The current state trajectory ξcom, which is the
desired trajectory used to calculate the ZMP reference, is
presented in Figure 11(c). The imitation trajectory is drew
in black and the innovation trajectory is drew in red. The
black squares in the imitation trajectory and the red crosses
in the innovation trajectory are the episodes which, in the
case of the locomotion, correspond to one step.

The imitation trajectory is closer the demonstrated tra-
jectory, since the objective function is a minimization of
the difference between the demonstrated reward and the
current reward. The innovation trajectory is away from the
demonstrated trajectory, because in this case, the objective
function is the maximization of the reward.

The grasping pattern is much more easy to implement in
the robot. The desired trajectory ξhand corresponds to the
robot end effector. The joint trajectory is computed using
the humanoid Jacobian.

The humanoid initially detects the three-dimensional po-
sition of the knob using the stereo cameras integrated in the
robot. The knob is located using a simple color filter. Since
the initial position of the robot and the door position is
known, we compute the optimization process and generate
the desired state space trajectories. This process is computed
offline since the genetic algorithm consumes substantial
computing resources. Once the desired trajectory is known,
both locomotion and grasping trajectories are computed
for the robot. The door angle is estimated by knowing the
location of the robot with respect to the door hinge.

Some snapshots of the implementation with the real robot
are shown in Figure 12.

3.4.1. Limitations and considerations

Regarding the implementation of our method in the hu-
manoid robot, some considerations and limitations have
to be taken into account. The first difference between the
human and the robot performance is the smoothness of the
walking pattern. In the case of the human, the COM barely
swings when going backwards and the GMR output of the

COM is almost a straight line. However, in the robot, the
swing is much greater. This produces undesirable effects.
The swing may produce a crash of the robot body with the
door. Furthermore, it produces a back and forth movement
of the door while the robot is moving backwards. To solve
this problem, we simplify the computation by allowing the
robot to decouple itself from the momentum of the door by
relaxing the arm stiffness and having compliance along the
plane of the door, meaning the hand can passively move
along the plane of the door. For instance, when defining the
behaviors, we select b3 to be the moment when the robot
is opening the door with the movement of its body, turning
off the arm motors. For simplicity, we do not consider for
the robot the case when the human is moving backward and
pulling the door at the same time.

4. Related work

There are many studies conducted in the area of Learn-
ing from Demonstration using GMM and GMR to encode
kinesthetic trajectories and generalize them to perform a
robot movement [8–10,32] or based on Hidden Markov
Models (HMM) to encode the human demonstrations so
they can be transferred to the robot [11–13]. In our work,
instead of learning the robot movement, we learn a reward
function, which is the basis of comparison between the
human and the robot.

Our work takes some ideas from [9] where a humanoid
robot use LfD to initially learn a pick and place task. Later,
if an obstacle interrupts the movement, a new movement is
computed using reinforcement learning to avoid the obsta-
cle. This gave us the idea of not only using the reward profile
as the space of imitation but as a metrics of the behavior’s
performance. Therefore, improving the imitation reward
by searching in the neighborhood of the reward space, the
robot can obtain a better reward which by innovating new
behaviors which are not those learned from imitation.

The authors in [33] address the problem of what to imi-
tate in a similar way to our proposal. They defined several
possibilities of task space methods to imitate, what they
called task space pool. Next, they define several criteria,
like an attention criterion or an effort criterion, to choose
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Figure 11. Illustration of the behavior 3 generation: going backwards while opening the door. The door is represented in the initial position
as a horizontal black line. (a) GMM of the movement. (b) GMR of the learned motion. (c) Computation of the imitative behavior points
(in black) and innovative behavior points (in red). The squares and crosses correspond to each episode.
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Figure 12. Snapshots of the humanoid robot performing the task of opening a door from different views.

the optimal task space to imitate. In our case, instead of
defining a pool of criteria, we learn a probabilistic behavior
selector matrix from human demonstrations. It defines the
probability of being in a behavior given a set of states.
Another interesting approach is presented in [34], where
instead of the usual learning from demonstration approach,
the robot learns from failed demonstrations.

There are many works related to policy learning like
[35–37]. In [19], a policy search method is used to optimally
select between several solutions of the same task, initially
learned from demonstrations. Our work starts from a similar
idea, but instead of selecting solutions of the same task, we
select between sub-behaviors of a complex task and try to
find an optimal policy that produces a similar reward to that
of the human.

The problem of skill transfer and whole body motion
transfer has been an interesting area of research in recent
years. Some studies addressed the problem manipulating the
angular momentum of the COM [35,38], using graphs and
Markov chains [39], imitation of movement using neural
networks [40] or bayesian networks [26], sequencing multi-
contact postures [41], or encoding and organizing learned
skills [42].

The framework called incremental learning uses a few
demonstrations to perform a task which is incrementally
improved with the aid of verbal or non-verbal guidance. In
[43], a human guides a robot to sequentially construct mem-
ory models of the desired task. This incremental learning
method, inspired on the behavior of social animals, allows
to combine different competences to create complex tasks.
Some approaches like [44] are based on constructing a task
graph that leads to more general behaviors. Kulic et al.
[39,45] generates whole-body motion using factorial HMM

that encodes and clusters a set of incrementally learned
movement primitives that can be combined to generate dif-
ferent behaviors.

Our work has points in common with [46] in the sense that
they propose a reinforcement learning algorithm for robot
manipulation that simultaneously optimizes the shape of
the movement and the sequential subgoals between motion
primitives. In contrast, we define a set of behaviors, each
of them has a different goal and so a reward profile that
represent that goal.

Our approach shares many similarities with inverse rein-
forcement learning (IRL) [29,30,47,48] and inverse optimal
control (IOC) [49–51]. IRL is initially presented in [29,30]
as the problem of extracting a reward function given an
optimal behavior. The reward is extracted as a linear com-
bination of basis features of the behavior. It can be obtained
using support vector machines [29], methods based on max-
imum entropy [47] or active learning [48]. Similarly, IOC
aims to determine the optimization criterion that produced a
demonstrated dynamic process. It was successfully applied
to locomotion [50], pedestrian detection [49], and manipu-
lation [51]. In contrast with the commented approaches that
attempt to explain the observations with rewards functions
defined for the complete behavior, our method relies on
context-dependent goal-oriented reward functions that are
selected depending on which task the robot is executing.

One of the co-authors of this paper also co-authored
[52,53] that use a similar approach. In their work, a surgical
robot learns several tasks demonstrated by a surgeon, who
selects a set of critical points that the robot’s end effector has
to touch. They proposed a LfD and skill innovation method
based on the reward. One of the main differences with the
work proposed in this paper is the way they select the basis
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reward functions and how they relate to each other. Instead
of defining a fixed reward function for each task or goal, the
robot is provided with a set of candidate reward functions.
The optimal combination of these basis functions and in
which proportion they are relevant to different parts of the
task are learned by demonstrations. In our work, a fixed
reward function is defined for each part of the behavior. The
use of a specific reward function is decided by a selector
matrix, learned from the human, that predicts the current
state of the robot behavior and allow to apply the associated
reward function.

This work is an improvement of previous papers
[16,17]. In [16], we proposed to imitate a simple behavior
like standing up from a chair using human demonstrations.
The comparison is made in the reward domain which is a
measurement of the goodness of the behavior goal. Later,
in [17], we extended this work by not only imitating but
innovating new behaviors using a Markov Transition Matrix
to encode the reward variability and represent the behavior
strategy when performing an action.

5. Discussion and conclusions

The presented work addresses one of the biggest questions
of LfD, what to imitate [7]. As some studies reveal [1], the
human brain understands the final goal of the action and
reproduces it by optimizing some kind of metrics, allowing
to successfully and elegantly reach the goal. Our proposal is
to define this metrics as a reward profile which can be used
as a basis of comparison between the human demonstrator
and the robot. But an important feature of us humans is
the ability to innovate new behaviors [2,3]. Therefore, we
propose a reward base optimization process where the robot
explores the neighbor solution space to come up with new
behaviors which produce a better reward. Our framework
allows a robot to create complex sequential behaviors taking
into account the whole body movement.

We define a sequential multi-objective reward function
for every sub-behavior of the complete task. The optimiza-
tion problem consist on generating a policy for the robot to
obtain an episodic reward similar to the human’s, achieving
an imitative behavior. Refining this policy, we can gen-
erate new solutions which improves the reward profile to
achieve an innovative behavior, more relevant to the robot
circumstances. The result is a framework to generate whole-
body motions for the robot which can be generalized to any
movement that can be learned from demonstrations.

We carried out experiments in a real humanoid robot
performing the task of opening a door to test our method.

5.1. Key contribution

The main contribution of this work is the solution to the
correspondence problem between a human and a robot in
a common space, which represents a metrics to achieve

the task goal, the reward space, and its application in a
complex behavior formed by a sequence of actions. The
reward space is formed by different components, depending
on the objective of the action in every moment. This agrees
with the theory of Minsky that proposes that our brain
manages different resources that compete between each
other to fulfill different goals [4].

5.2. Future work

In future works, we will investigate the adequacy and per-
formance of different reward functions, which involves dif-
ferent movement features. They can be also learned by
means of techniques such as inverse reinforcement learning
[29]. We will also apply a Markov theory to the human
demonstrations to obtain a Reward Transition Matrix that
encode the variability of each behavior to make predictions
as we did in a previous work [17].
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