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Abstract. People spend several hours aweek doing laundry, with hanging clothes
being one of the laundry tasks to be performed. Nevertheless, deformable object
manipulation still proves to be a challenge for most robotic systems, due to the
extremely large number of internal degrees of freedom of a piece of clothing
and its chaotic nature. This work presents a step towards automated robot clothes
hanging by modelling the dynamics of the hanging task via deep convolutional
models. Two models are developed to address two different problems: determin-
ing if the garment will hang or not (classification), and estimating the future
garment location in space (regression). Both models have been trained with a
synthetic dataset formed by 15 000 examples generated though a dynamic sim-
ulation of a deformable object. Experiments show that the deep convolutional
models presented perform better than a human expert, and that future predictions
are largely influenced by time, with uncertainty influencing directly the accuracy
of the predictions.
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1 Introduction

Domestic tasks are very time-consuming. In general, every single human would
benefit from a complete automation of domestic tasks, as they are not only a
nuisance, but they can be considered a form of unpaid labor. In addition, certain
collectives, such as the elder and disabled people, could specially take advantage
of domestic task automation, due to their lack of mobility. For these collectives,
domestic tasks can become a daily struggle that may even require assistance from
other people. To automate some of these tasks, such as washing or cooking, specific
appliances have been developed that help us save time and effort. However, due
to the large number of disparate tasks to be automated, it becomes impossible to
own a specific machine for each task, as this would be both expensive and demand
an unfeasible amount of space for installation. For these reasons, robots are key in
automating domestic tasks in a viable and maintainable way.

Laundry tasks constitute one of the most prominent subsets of domestic tasks
and, at the same time, one of the hardest to automate, as they involve working with
textiles. Textile articles, such as garments, are intrinsically hard to perceive and
manipulate due to, amongst other facts, their almost infinite number of internal
degrees of freedom and possible configurations, as well as their deformable and
chaotic nature, which is extremely difficult to predict. While there is extensive
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existing literature on the typical laundry pipeline, defined as unfolding, ironing
and folding, few works exist that focus on other garment-related tasks such as bed
making, dressing assistance or hanging garments.

Hanging garments is a task performed after garments are washed, and before
the garments are unfolded and ironed, to have a perfectly dry clothing article. As
with all garment-related tasks, automation of garment hanging is difficult because
of several reasons:

– Garment manipulation requires a robotic system with proficient manipulation
skills and enough dexterity to deal with thin textile materials.

– It requires a deep understanding of deformable objects intrinsic properties and
the physics that govern their movements, which make their movements chaotic
and difficult to predict.

– The high number of internal degrees of freedom, possible poses, and occlusions
present on a garment in a real world scenario makes perceiving and modelling
garments a challenging problem.

In this paper, we aim to make a contribution towards the goal of an automated
robotic system able to do the laundry, specifically the hanging garments task. For
that purpose, we present two different deep convolutional models that are able to
predict the behavior of the garment about to be hanged, addressing two different
problems: determining if a garment dropped onto a hanger will hang or not from
a depth image of the garment just before it is released, and estimating the future
location in space of a dropped garment onto a hanger. To train these models, a
synthetic dataset has been created, including examples of both dropped garments
that hanged and garments that fell to the floor.

2 State of the Art

The typical laundry pipeline, as defined in the literature, is composed of three
different tasks: unfolding, ironing and folding. For unfolding, existing approaches
use depth images of the garment to determine the most suitable grasp sequence for
unfolding, using active random forests [3], upper layer detection via Canny Edge
detector [15] or a garment-agnostic model-less approach [4]. Once the garment is
unfolded, it has to be ironed before it can be folded and stored, so that no wrinkles
are present in the garment when the owner is about to wear it. If the wrinkles
are large and soft, pulling the edges of the garment is enough to remove them
[14]. If the wrinkles are small and marked, the robot has to iron them. While some
approaches target individual wrinkles in very controlled illumination conditions [8],
other use a human-inspired ironing method based on force control and a garment
surface analysis [5]. When all the wrinkles have been removed, the only remaining
step is to fold the garment. For folding, some approaches rely on manipulation
sequences that take the garment from a random initial state to the desired folded
state using Hidden Markov Models (HMMs) [2] while others follow a perception-
based approach use polygonal models to estimate the garment shape and folding
sequence [13].
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For every garment-related task, prediction of garment movement and state esti-
mation are key abilities, specially when involving garment manipulation. Miller et
al. [11] used parametrized shape models that are able to fit 2D views of already flat-
tened garments to find the grasp points required to apply a given folding sequence.
Cusumano-Towner et al. [2] applied an approach heavily based on manipulation.
Their approach used a series of manipulation operations to estimate the state a
garment with a Hidden Markov Model. The initial state might be unknown, but a
known state is reached through manipulation. Bersch et al. [1] used fiducial markers
stamped on a t-shirt to obtain a 3D reconstruction of the garment. Since the markers
were unique for each point, the state of the garment can easily be estimated from
them, allowing them to compute suitable grasp poses on the cloth, for later manip-
ulation with a PR2 robot. Kita el al. [6] introduced a method to estimate the state of
a garment through a 3D reconstruction of the garment from different viewpoints.
A cylindrical Z buffering algorithm is then applied to the reconstructed point cloud
and expanded to obtain a flattened representation of the garment. Though matching
with a database of garments grasped from different garment points, the actual state
of the garment can be estimated.

Willimon et al. [16] used energy minimization and graph cuts to estimate the
configuration of cloth surfaces from 2D color images, with an automatic mesh gen-
eration algorithm that provides a triangular mesh encapsulating the cloth surface
without predefined values. Li et al. [9] proposed a real-time state estimation algo-
rithm based on a cylindrical descriptor used to match a given real-world observation
with a garment pose database generated through physical simulation. This descrip-
tor obtains a binary string representation by fitting the garment 3D point cloud in a
cylinder divided into different sections, that are then used as an occupancy grid and
unrolled into a 1D binary string. Mariolis et al. [10] use two stacked deep convolu-
tional neural networks to estimate the state of a garment from a depth image of the
garment being hanged by one point. The first convolutional network determines the
garment category, which is used to select which of the convolutional networks that
have been trained on that particular category has to be used to compute the current
pose.

Although the literature has traditionally focused on the tasks in the laundry
pipeline, recent works exist that discuss other tasks, such as clothing assistance [7],
and bed making [12].

3 Dataset Generation

A Deep Convolutional Network is used to model the behavior of a free falling
garment and to predict its final location. Deep neural networks employ a large
amount of parameters that need to be trained, and therefore they require a very large
amount of data for training and validation. Ideally, the network has to be trained
with data from the same domain as the application. That is, if the model is to be
applied in a real world scenario, it should be trained with real world data. However,
training data generation in the real world is very time demanding, as for each trial
the robot has to be reset to its initial position, a garment has to be placed on its



4

end-effector, and then the robot has to drop it so that the trajectory of the free falling
garment can be recorded. Finally, the garment has to be picked up again from its
final location to be set for the next trial. In addition, tracking the exact 3D position
of the garment while falling is not trivial.

An alternative to using real world data is to train the model instead with sim-
ulated data. Since the characteristics of the simulated domain are very different
from the real world domain (no noise, no lens distortion, different illumination con-
ditions, uniform colors...), some modifications or special techniques are required
to apply a model trained in the simulated domain to the real world. One of such
techniques is domain randomization, that generates training data from a simula-
tion using random colors, textures and illumination, so that the model is able to
generalize and perform correctly independently of the domain.

In this work, simulation was used as the source of training examples to obtain
a large training dataset. A piece of cloth is simulated in a virtual environment
representing a simplified setup similar to the one in our lab, including a 1 m x 1 m
hanger and the floor. (Figure 1). To simulate the garment dynamics and interaction
with the lab environment, we use a spring-based model applied to the 3D mesh, as
included in the Blender software package1.

Fig. 1: Simulated lab setup with hanging garment and hanger.

For each of the trials, one vertex of the mesh is selected as hanging point, and
then placed at a random initial location. The initial location is sampled from a
normal distribution (with mean µinit and standard deviation σinit ). To increase the
chances of a garment being randomly hanged, the source distribution is centered
around the hanger, and close to it. The simulation of the garment dynamics is then
started so that the garment moves from its initial flat pose to the in-air hanging pose.
The garment is left hanged a sufficient amount of time to reach a static state, as it
will swing due to the inertia of this initial movement. Once the garment is static,

1 https://www.blender.org/, last accessed: 08-06-2019

https://www.blender.org/
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a depth image showing the initial pose and location is stored. Using depth images
instead of color images enables us to translate well between domains without the
need for domain randomization, as depth images from the real sensor and virtual
depth images are monochromatic and of very similar characteristics. Finally, the
garment is dropped and the position of the center of mass of the falling garment is
tracked for later analysis and to derive a ground truth binary label for classification.

As garments are dynamic systems displaying a chaotic behavior, the result of
each trial is not deterministic and depends heavily on small changes of the initial
conditions (location and pose) of the piece of cloth. For that reason, the resulting
dataset is unbalanced, including a larger amount of samples in which the cloth did
not hang.

4 Hanging Prediction

Once enough training data has been generated, it is used to train a model to predict
the behavior of the free falling garment. Two different models have been trained
and evaluated. The first one tries to estimate the location of the garment at a given
simulation time step, usually the last one in the trajectory (i.e. the final location
of the garment, either hanged or in the floor). The other one classifies the final
outcome into two different categories: hanged or floor, depending on the expected
outcome of dropping the garment. This section will describe each of them.

4.1 Regression

The objective of the regression model is to predict the exact location of a garment
at a given simulation time step from a depth image showing the initial location
and pose of the garment. In most of the cases, the most interesting time step from
the perspective of hanging clothes is the last one, as it will determine whether the
garment will hang or not when dropped from a given initial location. Due to the
chaotic nature of the cloth dynamics, as time steps advance the uncertainty of the
garment location increases, with the initial location being the easiest to predict, and
the final location the most difficult.

For the model, a Deep Convolutional Network is used. Figure 2 shows the
architecture of the network. The network is composed of 4 sets of convolutional
layers, and 2 fully connected layers to compute the output. Sets 1 and 3 are built
from 2 convolutional layers with 16 filters of size (3x3) and an Exponential Linear
Unit (ELU) as the activation function, followed by a max-pooling layer of size (2x2)
and stride 2. Sets 2 and 4 are composed of a single convolutional layer with 32
filters of size (3x3) and ELU as the activation function, followed by a max-pooling
layer of size (2x2) and stride 2. The fully connected layers have 300 and 3 neurons,
respectively. For the regression problem, we use ELU as activation function for the
last layer, representing the predicted 3D coordinates (X , Y and Z) of the garment
at a given time step. The total number of learnable parameters of this model is
2 100 707.
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Fig. 2: HANGnet architecture diagram

The parameters were trained by optimizing a custom loss using an Adam
stochastic optimizer. As the aim of the prediction is to hang garments, the most in-
teresting information obtained from the prediction is the value of the Z coordinate.
To emphasize in the importance of the Z coordinate, a custom loss function was
developed:

Loss = ωx∗(Xtruth−Xpred)2+ωx∗((Ytruth−Ypred)2+ωx∗(Ztruth−Zpred)2 (1)

Where X truth = (Xtruth,Ytruth, Ztruth) are the actual coordinates of the point in
the training example, Xpred = (Xpred,Ypred, Zpred) are the predicted coordinates,
and ωx , ωy and ωz are hyperparameters expressing the relative importance of each
of the coordinate components.

The performance of the network is reported in the Results section.

4.2 Classification

The classification problem is defined as predicting, from a depth image of its initial
location and pose, whether a garment will hang or fall to the floor when dropped
near a hanger.

The architecture of the Deep Convolutional Network used as model for the
classification problem is very similar to the one used for the regression problem.
Figure 3 depicts the architecture of the network. A total of 4 sets of convolutional
layers, and 2 fully connected layers to compute the output are used. Sets 1 and 3
include 2 convolutional layers with 16 filters of size (3x3) and ELU as the activation
function, followed by a max-pooling layer of size (2x2) and stride 2. Sets 2 and 4
are composed of a single convolutional layer with 32 filters of size (3x3) and ELU
as the activation function, followed by a max-pooling layer of size (2x2) and stride
2. The fully connected layers have 300 and 1 neuron, respectively. As only one class
is to be predicted, instead of a Softmax function, a Sigmoid activation function is
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applied to the output neuron to obtain the probability of the garment falling to the
floor given a certain input depth image. When the output is above 0.5, the prediction
is that the garment will fall, otherwise the prediction is that it will hang. The total
number of learnable parameters of this model is 2 099 705.
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Fig. 3: HANGnet_classify architecture diagram

The binary labels for each training sample can be obtained from the trajectory
recorded at each simulated trial, by observing the Z coordinate of the last point
of the trajectory (Zend). Based on the final location of the center of mass, and
considering a threshold Tf loor one can compute the binary label f loor as:

f loor =



1, if Zend < Tf loor

0, otherwise
(2)

The resulting labels are used as ground truth to train the classification network.
For training, a Binary Cross Entropy loss is optimized by an Adam stochastic
optimizer. This loss is weighted to account for the imbalance of the hanged/floor
classes in the synthetic dataset.

5 Results

In this section we will discuss the training process of both models (regression and
classification) as well as the results obtained with each of the models.

5.1 Regression

Setup Following the simulation procedure described in section 3, a total of 15 000
training examples were obtained. Each of these training examples is composed by a
depth image of the virtual setup at the initial time step (after the garment has reach a
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stable pose) and the trajectory of the center of mass of the garment once it has been
dropped. The initial position of the garment is sampled from a normal distribution
with µinit = (0, 0, 1.5) m andσinit = (0.01, 0.4, 0.2) m. A duration of 51 simulation
time steps has been selected as a good compromise between computational cost and
reaching a stable hanged/floor state in simulation. Before they are fed to the network
for training, the depth images are cropped at 2 m to remove the empty background
and then normalized in the 0 m to 2 m range.

As the samples were obtained randomly, not every single sample results in the
garment being hanged. In fact, the ratio of garments hanged/not hanged is near 1:3,
making the dataset imbalanced. In order to deal with the imbalance in the dataset,
stratification was used to make the training/validation/test splits, so that each of
the three sets has the same proportion of examples of each of the two classes. The
stratified split was the following: 20% of the samples (3000) were used for testing
and, from the 80% remaining, 20% (2400) were used for validation and 80% (9600)
for training.

For training the regression model, an Adam stochastic optimizer was used, with
a learning rate of 0.0001. The custom loss introduced in section 4.1 (Eq. 1) was
used, with weights ωx = 0.033, ωy = 0.033 and ωz = 0.33. The model was trained
for 10 epochs, with a batch size of 32.

Results To study the effect of the time on the uncertainty of the prediction and,
therefore, on the accuracy of the model, the network was trained to predict the
location at different time steps. Figure 4 shows the increase of the Mean Squared
Error (MSE) as time advances.
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Fig. 4: Mean Squared Error (MSE) and Validation MSE with respect to the time
step.

In terms of coordinates, MSE was computed for each of the 3D components of
the prediction (X, Y and Z). Figure 5 shows the MSE of each of the component,
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as well as the variation in error for each of them. It can be observed that the error
increases from a few millimeters to several centimeters, and it is more dramatic
in the case of the Z coordinate, which was an expected result, as the fact that the
garment can remain randomly hanged or not hanged affects to the expected location
in the Z axis.
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Fig. 5: Mean Squared Error (MSE) of each of the 3 coordinates (X, Y, Z) with
respect to the time step.

5.2 Classification

Setup For the classification model, the same dataset as the one described in section
5.1 was used, and the same stratification techniques were use to deal with the
imbalance of the dataset when performing the training/validation/test splits. As the
output of the classificationmodel is a single binary value representing the prediction
of the network (0 if the garmentwith hang, or 0 if the garmentwill fall), the trajectory
previously recorded in the dataset needs to be processed to obtain a binary label.
For that purpose, eq. 2 was used, with a threshold value Tf loor = 0.81 m.

For training the classification model, an Adam stochastic optimizer was used,
with a learning rate of 0.0001. In addition, L2 regularizationwas added to themodel,
with a regularization strength of 0.01 to improve the generalization capabilities of
the network.

Humanbaseline To evaluate the relevance of the results achieved, a humanbaseline
was obtained by labelling a subset of 200 elements from the training set by hand,
based only on the input data. In other words, a depth image was presented to
a human expert for him to predict whether it will hang or fall. To improve the
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human perception of depth in the input depth image, the 8-bit greyscale image was
transformed using a GIST stern2 colormap for display.

Results After training, several metrics were computed based on the 3000 element
test set, as reported in table 1. A subset of 200 elements were randomly selected
and used to compute a human baseline and compare it with the performance of
the classification model. Table 2 shows the results of this analysis. Although the
model has a lower recall for the hanged class than the human expert, it improves
the performance of the human in all remaining metrics considered.

Table 1: Classification model, 3000 elements
Class Precision Recall F1-score # elements
Hanged 0.51 0.32 0.39 819
Floor 0.78 0.88 0.83 2181

Table 2: Classification model vs Human baseline, 200 elements
Class Precision Recall F1-score # elements
Hanged 0.60 0.39 0.47 54
Floor 0.80 0.90 0.85 146
Hanged 0.38 0.56 0.45 54
Floor 0.80 0.66 0.72 146

In addition, confusion matrices were computed to compare the performance of
the model and the human expert in terms of false positives / false negatives. As
shown in Figure 6, the classification model outperforms the human expert when
predicting garments that fell to the floor, while having a similar performance when
predicting garments that remained hanged.

6 Conclusions

In this work we propose two different deep convolutional models to predict the
behavior of a piece of clothing when dropped onto a hanger. One of models is able
to predict whether the garment will hang or fall, and the other estimates the future
location of the garment after it is dropped. A synthetic dataset composed of 15 000

2 https://www.ncl.ucar.edu/Document/Graphics/ColorTables/MPL_
gist_stern.shtml, last accessed: 08-06-2019

https://www.ncl.ucar.edu/Document/Graphics/ColorTables/MPL_gist_stern.shtml
https://www.ncl.ucar.edu/Document/Graphics/ColorTables/MPL_gist_stern.shtml
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Fig. 6: Confusion matrices for the classification model and human baseline.

examples obtained via deformable object simulation is used to train both models.
Experiments performed with the regression model demonstrate an influence of
time in the accuracy of the predictions, as uncertainty in the position estimation
increases with time. The classification model performance was compared to the
baseline performance of a human expert, obtaining a slightly better performance.

Our future work will focus on the integration of both models (regression and
classification) to increase the individual accuracy of each of them, as well as in the
implementation of these models on one or several robotic platforms to obtain real
world data and action, and further validate the idea behind this work.
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