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Abstract: In this paper, we present a study on coverage missions carried out by UAV formations
in 3D environments. These missions are designed to be applied in tracking and search and rescue
missions, especially in the case of accidents. In this manner, the presented method focuses on the
path planning stage, the objective of which is to compute a convenient trajectory to completely cover
a certain area in a determined environment. The methodology followed uses a Gaussian mixture to
approximate a probability of containment distribution along with the Fast Marching Square (FM2) as
path planner. The Gaussians permit to define a zigzag trajectory that optimizes the path. Next, a first
2D geometric path perpendicular to the Voronoi diagram of the Gaussian distribution is calculated,
obtained by skeletonization. To this path, the height above the ground is added plus the desired flight
height to make it 3D. Finally, the FM2 method for formations is applied to make the path smooth and
safe enough to be followed by UAVs. The simulation experiments show that the proposed method
achieves good results for the zigzag path in terms of smoothness, safety and distance to cover the
desired area through the formation of UAVs.

Keywords: UAV; formations; fast marching method; Gaussian mixtures; search and rescue

1. Introduction

Target search and thus the covering of a big area goes back years in history. This
task has been mainly focused on carrying out rescue operations and tracking of subjects
missions. There exist four types of searching problems, regarding their application field:
maritime, combat, urban and wilderness [1].

Searching tasks gained value in the maritime field since the Second World War due
to the efforts made by the US Army to detect enemy submarines [2]. Currently, interest
in this area has been highlighted by diverse civilian applications such as monitoring and
exploration of varied environments and largely by unfortunate events such as rescuing in
disaster scenarios, for instance, the unsuccessful search for Malaysian Flight 370 (MH370)
disappearing in the ocean in midflight in March 2014 after takeoff from Kuala Lumpur and
on its way to Beijing and carrying 239 passengers. The search operations involved a total of
40 ships and aircraft covering an area of over 4.6 million square kilometers in the waters
of the Indian Ocean. However, efforts were eventually stood down without finding any
conclusive evidences [3].

These tasks have attracted the attention of researchers in many fields dealing with prob-
lems in different areas, namely computer vision [4,5], wireless sensor network design [6–8],
ask assignment formula [9,10] and Optimal Path Planning Computing for Self-Driving
Vehicles to Facilitate Search [11,12]. In this work, we address the latter and present an
algorithm able to provide search vehicles with appropriate routes to follow and explore
target areas.

There are two main factors hindering the development process of search missions,
mainly related to field applications at sea [13]:
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• Definition of the target area. Due to uncertainty given by adverse weather conditions
and unclear or unknown lead locations, these being remaining debris from a disaster
event as well as last known position of the objective, for instance. Furthermore, in the
case of open ocean search missions, the complex drift dynamics of the surface and
the inaccuracy of its predictive models considerably increase the error margin in the
estimation of these targets whereabouts.

• Search path design. Although the target region is well defined, the design of the search
path problem is not known to have an optimal solution. The goal here is to calculate
the path of the search agent over the entire target area to maximize the probability of
target detection at a given time.

When determining a target area, the first factor to determine is containment capability.
This metric is defined as the probability of finding the object the agent is looking for in
each given region of the search area. In this way, the region is initially discretized into
cells, which are then transformed into a probability map by assigning these partitions
a probability value related to the aforementioned probability of containing the object of
interest. The resulting map will represent the likely location of the object you are looking
for, taking possible ocean and wind currents (or other uncertainties) that may change its
original location into account. It can also be considered as the motion of solid particles
through a moving fluid, which can then be studied using Lagrangian particle tracking
algorithms (also known as Euler–Lagrangian methods). Examples of these probability
plots are shown in Figure 1 containing regions of lower and higher exponential probability
differentiated by color codes.

Figure 1. Malaysian Airlines MH370 location probability map.

There might be scenarios in which the search area does not consist of a single compact
area but a set of nonconnected regions. In these cases, the probability map could be treated
as a mixture model. A common example of these probability models is given by the
Gaussian mixture model [14], which allows to gather all possible observations under a
group of normal distributions of different parameters, as shown in Figure 2.
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Figure 2. Data fitted to a Gaussian Mixture model.

Once the search area is well defined, the trajectory to conveniently reach its full breadth
must be designed. This task is widely known as coverage. Researchers in the literature
distinguish two different approaches, namely [15]: lawnmower algorithms and control of
the agents through optimization processes.

In a lawnmower strategy, search agents will sweep the target area by going back and
forth following a specific pattern. These patterns are conveniently designed to find the
target in shorter time. Figure 3 shows different patterns proposed by authors working on
the matter. What makes this strategy interesting is that, just on the basis of these primitive
patterns and adding some custom design criteria, good results can be obtained for a low
computational cost.

Figure 3. Different search patterns for search and rescue [16].
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Researchers in [17] use this approach to study and improve the calculation method
of the aforementioned probability of containment measure, as well as the probability of
detection and thus the probability of success values. This probability of detection is mainly
related to the efficiency of the path designed and available sensors to cover the full search
area and therefore detect the targets. Then, the probability of coverage success would
depend on these other factors.

One could look at this path planning task as an optimization problem. Then, the goal
would be to compute this search trajectory by minimizing a certain performance metric that
may be related to, for instance: fuel consumption, travel times, path length or, as in the well-
known salesman problem, visiting all target areas (if more than one exists) just once while
following the shortest path. This issue is commonly addressed through swarm optimization
algorithms, as its aim is to provide ’best locations’ within a search space using swarms [18–
20]. Particle Swarm Optimization is notably highlighted in the literature from this whole
family of algorithms [21,22]. For its part, authors in [23] study the problem of dynamically
covering a given region through a designed closed-loop control strategy. Their goal was to
provide, for each target point of the domain, a certain amount of effective coverage.

Finally, once the coverage problem has been formulated, it seems interesting to un-
derline that most of these tasks are usually carried out not just by a single search vehicle
but by a swarm, following a specific formation or not [24]. Multirobot (or multivehicle)
systems have certain advantages over single-robot missions. Several tasks can be executed
in parallel, provide a wider sensing range and the whole system can be more robust to
failures of one of the vehicles [20,25–29]. Regarding this topic, our group has worked on the
robot formations planning problem (both in 2D and 3D) using the Fast Marching Square
(FM2) algorithm [30,31].

In this work, we are going to study the coverage and robot formation problems,
introducing probability maps and implementing the FM2 algorithm, in two closely re-
lated situations. The first aimed at search missions in mountain areas using Unmanned
Autonomous Vehicle (UAV) formations and the latter focusing on maritime search tasks
carried out by an Unmanned Autonomous System (UAS).

The main contributions of this paper are: (1) a simple approach lawnmower strategy
is presented to face the coverage path planning problem for search and rescue tasks carried
out by UAVs in different 3D environments; (2) the coverage method is based on the use
of Gaussian Mixture to approximate the probability of containment distribution, Voronoi
Diagrams to skeletonize the Gaussian Mixture, geometric generation of the lawnmower
zigzag coverage path and Fast Marching Square to obtain smooth, optimal in terms of
distance cost and collision free trajectories; (3) the method is extended to UAV team
formations and the strategy is usable for different swarm configurations and numbers of
team vehicle members; (4) the search environments aimed at this work may present diverse
shapes and may be composed of a single compact target zone or a series of disjoint areas;
(5) the target zones may constitute uneven ground terrain levels and the flight height at
which the coverage mission is planned can be chosen at will and is relative to this varying
ground level.

The rest of the paper is organized as follows. Section 2 describes the Eikonal Equation
and the Fast Marching Method. Section 3 introduces the Coverage Path Planning carried
out by a single UAV and also presents the UAVs formation approach. Section 4 shows the
results from two cases of application. Finally, in Section 5, the main conclusions of the work
are presented.

2. The Fast Marching Method

The Fast Marching method was proposed by J.A. Sethian in 1996 [32]. This method lead
to an extremely fast scheme to solve the eikonal equation in Cartesian grids. The eikonal
equation models the propagation of an isometric wave front. Rays of light, traveling
through different materials, follow the least time-consuming path, according to Fermat’s
principle [33]. This is an interest concept in robotics due to the fact that, if we know how
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light rays propagate through space, we can calculate the trajectory between two points of a
map. This trajectory can be obtained with the Fast Marching method (FMM).

If we consider the target point of a trajectory as the source of a light wave front,
and the Fast Marching method can be computed over the free cells of a map, the arrival
time of the wave front to each point of the map is calculated. Furthermore, taking the set
of all cells that represent the free space and the time of arrival to those cells into account,
a Lyapunov surface in which all level curves are isochronous can be created, and the
Lyapunov trajectories are orthogonal to said curves. This means that it is not possible for
the method to show local minima. An example of this surface can be seen in Figure 4.

Figure 4. Funnel potential obtained when using the time of arrival as the third axis.

The propagation of the light wave front is given by the eikonal Equation (1). Sethian [32]
proposed a first order approximation to this equation and called it FMM. The eikonal equa-
tion defines the time of arrival of the propagating wavefront, T(x), to every point x,
in which the wave front propagation speed depends on the point F(x), according to:

|∇T(X)|F(x) = 1, x ⊂ RN (1)

The Fast Marching method consists of solving the Equation (1) and calculate sequen-
tially T(x) for every cell of the map starting from the wave source point where T(xo) = 0.
After using FMM, gradient descent can be used from any distance map point to obtain a
path to the wave source as a target point. The main advantage of this approach is that the
resulting paths are time optimal. An example of a path generated using FMM and another
calculated using FM2 is shown in Figure 5.

(a) (b)

Figure 5. Comparison between a path generated with (a) FMM and another generated with (b) FM2.
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The Fast Marching Square Method

As it can be seen in Figure 6a, although optimal in distance, the trajectory is neither
safe in terms of possible collision with obstacles nor feasible in terms of the sharpness of
the turns the trajectory requires. These series of disadvantages lead to study the use of the
Fast Marching Square method (FM2) [36] as a path planner, since it gives a solution to these
two disadvantages. It consists of applying FMM two times as shown in Figure 5b.

Let us consider a map in which obstacles take the value 1 and free cells take the value
0. FMM can be applied to these map considering all obstacles as wave sources. An example
of this method is shown in Figure 6.

Figure 6. Application of the FM2 method. From left to right: the original map, the speed map in
which the maximum value is saturated, the time of arrival map as a result of the wave expansion and
the resulting path in the initial map.

This map can be explained in many ways. It can be interpreted as a potential field of
the original map, as cells move away from obstacles, the Ti value gets higher, like in the
case of the distances map. Furthermore, it can be seen as a velocity map: the Ti value can
be interpreted proportional to the maximum speed achievable for the robot in each point,
which leads to permitting lower speeds when the point is close to an obstacle, and higher
speeds when it is away from them. In fact, a robot which speed in each point is given by Ti
will never collide with obstacles, since Ti → 0 as it gets closer to an obstacle. Further into
this work, this first potential is referred to as potential W.

The second time the FMM is applied (obtaining potential D), the velocity at which the
wave front advances can be different in each point of the map. Furthermore, this velocity
is proportional to the distance to the closest obstacle, which means that the wave front
advances faster when it is away from obstacles. This produces important differences in the
trajectory obtained, as it can be seen in Figure 4. The final trajectory is obtained through
gradient descent methods, as for the original FMM.

The FM2 method has some properties that make it really useful to plan trajectories.
The most important advantages are:

• No local minima.
• Complete.
• Smooth trajectories.
• Fast response with O(n) complexity [37].

3. Problem Statement
3.1. Coverage Path Planning of the Leader of the UAVs Formation

As it has been previously mentioned, the method presented in this paper for Coverage
Path Planning (CPP) aims to be applied to UAV formations. In this way, the strategy is
first defined for the leader of the UAV formation team. The technique used belongs to the
aforementioned lawnmower family of coverage planning algorithms, sufficiently optimized
to be both efficient and easy to implement.
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The 3D environment where the path planning for covering with a UAVs formation is
carried out is the terrain height near Mount Washington as a function of x–y position (In
this case, Mount Washington is the highest peak in the northeastern United States.)

The US Geological Survey provides terrain elevation data as a function of x–y position
on the grid. To estimate the height of an arbitrary point, the objective function interpolates
the height from nearby grid points.

The 3D grid map has a dimension of 550 × 550 × 40 cells, where each cell of the map
is equivalent to 15 × 15 × 15 m. It is not necessary to consider the sizes of the UAVs, since
it is assumed tobe smaller than the size of a cell. In Figures 12 and 13, the grid map has a
dimension of 750 × 750 × 40 cells to have a denser coverage.

The procedure is detailed below.
This method is based in the Gaussian Mixture approximation of the probability of

containment density function that defines the searching area, which is assumed to be
already characterized. The method is composed by the following steps:

1. Find the Gaussian Mixture that approximates the probability function given. In this
manner, the domain is simplified to a series of Gaussian distributions, and it is possible
to apply the upcoming steps to the Gaussians. Figures 7a and 12a shows a search
region given by three Gaussians.

2. Identify the minimum level of probability to find the area to be covered. This zone
can be compact or composed by different unconnected zones, as shown in Figure 12a.

3. Using the Voronoi method, the medial axis of the zones is calculated. The medial axis
may be a curve or can be made up of unconnected sections. For isolated Gaussians,
the medial axis is the main axis of the Gaussian. For nonisolated Gaussians, the medial
axis is a curve composed by the points that are at the same distance to the borders of
the probability threshold.

4. The next step is to find the points that divide the medial axis into segments of the
same length.

5. The line segments perpendicular to the medial axis that pass through these points are
calculated. The segments end where the chosen probability threshold is reached.

6. The ends of these segments are joined alternately to obtain a complete zigzag path.
This is done optimally so that the overall length is minimized. Figure 7b shows a 2D
zigzag path composed by segments obtained this way.

7. Heights are added so that the path becomes a three-dimensional path. Figure 8a
shows a 3D path obtained by adding the desired height above the ground to the
previous path. It is important to notice that the ground terrain level may be irregular.

8. As it is not smooth enough, a three-dimensional tube is calculated through image
processing techniques, dilating the path as shown in Figure 8b.

9. The first Fast Marching potential W is calculated inside the tube so that the path tends
to go through the middle of the tube smoothly.

10. On this first potential W, the second potential D is calculated from the end point. This
process finishes when the expansion wave reaches the start point. A slice at a certain
height of this D expansion is shown in Figure 9a.

11. On this potential D, the 3D geodesic path is calculated, from the initial point to the
goal point using the gradient descend method. Figure 9b shows the final smooth path
obtained with this process.

12. Final smooth path over the terrain surface is shown in Figure 10, whereas Fig-
ure 11 shows a lateral view of this terrain surface (in black), ideal path (in magenta)
and smooth path obtained with FM2 (in blue).
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(a) (b)

Figure 7. (a) Search region given by three Gaussians, and (b) 2D path composed by segments.

(a) (b)

Figure 8. (a) 3D path obtained by adding the desired height above the ground, and (b) tube around
the previous path.

(a) (b)

Figure 9. (a) FM2 second potential expansion at a certain level (25), and (b) smooth 3D path obtained
by computing the geodesic in the D expansion.
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Figure 10. Final smooth path obtained with FM2.

Figure 11. Terrain surface (in black), ideal path (in magenta), and smoothed path obtained with FM2

(in blue).

(a) (b)

Figure 12. (a) FM2 second potential expansion at a certain level (25), and (b) smooth 3D path
obtained by computing the geodesic in the D expansion for a denser coverage and with more
resolution (750 × 750 cells).

3.2. UAVs Formation Algorithm

The previous subsection shows how to find out the path for a UAV that will constitute
the path of the leader of the formation. Now, it is necessary to explain how, from this
path, the trajectories for every UAV in the formation are calculated, taking the possible
irregularities of the terrain and the obstacles present in the environment into account.

Suppose a triangular formation, with a leading UAV and two followers. The other
possible formations would be treated in a similar way. The formation consists of a first
pure geometric triangular shape (magenta triangle in Figure 14) that is deformed according
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to the needs to avoid the obstacles that appear on the route and the path itself by using
the gray levels. This second deformed triangle is the one that UAVs must follow (magenta
triangle in Figure 14).

This second deformed triangle is calculated using the remaining vehicles as obstacles.
Using the gray level potential present in the Fast Marching method as shown in Figure 15,
each UAV sees the rest of the UAV’s as obstacles in the environment. This effect provides
additional repulsion force, preventing them from colliding with the other UAVs.

Thus, the stages for planning the trajectory for a whole UAV team flying in formation
are detailed hereinafter. The different steps to obtain the trajectory of the leader are:

1. We start with a binary map Wo of zeros (black area represents the obstacles) and ones
(white area represents the zone without obstacles) as shown in Figure 14a.

2. The Fast Marching method is applied to this binary map Wo, taking obstacles as wave
origin points. In this way, a gray map W is obtained, in which the grayscale level
represents the distance to the nearest obstacle. You can also do this step using the
Voromoi Transform, although the performance is not that good due to its discrete
nature. This map can be considered as the map of relative speeds of expansion of the
wave and also of the leader. (grey potential in Figure 14b,c).

3. On this first potential W, a wave is launched from the destination point, again using
the Fast Marching method, to the origin point. This gives us the second funnel-shaped
potential D (color potential in Figure 14d).

4. The gradient descent method is applied to D second potential to find the minimum
time path. The generated path is the trajectory that the leader must follow.

The distance between the lines of the zigzag can be changed to have a denser coverage
of the zone as shown in Figures 12 and 13 and with more resolution (750 × 750 cells).

As for this work, the trajectory corresponding to the leader is computed following
the steps described in Section 3.1. Then, when the path of the leader has been generated,
the paths of the followers are calculated iteratively. In each cycle of time t and for each
UAV, referred to as UAVi, a partial goal and a partial path are calculated that will continue
until the next cycle. The iterations t are calculated in the following way:

1. Each UAVi is associated with a binary map Wt0,i which acts as obstacle map, with the
leader and the other followers considered as obstacles. Figure 14a represents the
binary map Wt0,i with the obstacles and the others UAV’s of the formation in black
(value 0) and the allowed parts are white (value 1).

2. For each UAVi, a new first grayscale potential Wt
i is generated from the binary map

Wt0,i in each cycle t by using FMM the first time, using all black points as starting
points and obtaining the first potential of wave expansion velocities. Figure 14b shows
the grayscale map Wt

i of the right follower obtained from the corresponding binary
map Wt

0,i with two blurred black dots representing the leader and the left follower.
In Figure 14c, is shown the grayscale map Wt

i corresponding to the leader obtained
from the initial binary map Wt

0,i, with two blurred black spots representing the two
followers.

3. The subgoals Pt (xg,i, yg,i, zg,i) for each follower are calculated based on the leader’s
position of the previous FM2 leader trajectory. These partial targets indicate the next
desired goal for each follower and form the deformable geometric triangle as shown
in Figure 13 (magenta triangle). Obstacles in the environment (including other drones)
are taken into account when calculating this position. For this purpose, the grayscale
level of each subtarget goal is calculated from Wt

i , which conveniently changes the
triangle distances (edges and vertices). This approach introduces a repulsive force
against obstacles and the other UAVs in the environment. More details can be seen
in [38].
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Figure 13. Final smooth path obtained with FM2 for a denser coverage and with more resolution
(750 × 750 cells).

Figure 14. UAVs formation algorithm: (a) leader and followers with its partial goals; (b) deformable
geometrical triangle (in blue) and real positions triangle (in magenta) of UAV formation; (c) modifica-
tion of the partial goals of the followers according to the leader position in a curved trajectory; (d)
modification of partial goals according to the obstacles of the environment.
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(a) (b)

(c) (d)

Figure 15. UAVs formation approach: (a) UAVs formation following their corresponding paths; (b)
first grayscale potential map W of the right follower taking the leader and the left follower as blurred
obstacles; (c) first grayscale potential map W of the leader taking the followers as obstacles; (d) second
potential map D of the leader taking the followers as obstacles.

Figure 16 shows the trajectories of the followers in a) XY view and b) the trajectories
followed by the UAVs, whereas Figure 17 shows the trajectories of leader and followers
over the terrain surface.
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(a) (b)

Figure 16. Trajectoriesof the followers in (a) XY view and (b) the trajectories followed by the UAVs.

In the previous CPP example presented for a mountainous area, the Gaussians were
disjoint and the medial axis coincides with the main axis of the ellipse, but when the
Gaussian mixture is not composed of disjoint distributions, the medial axis is not a series of
straight segments. For example, Figure 17 shows the probability function of the search zone
of the accident of the Malaysia Airlines Flight MH370 with the three paths of the UAV’s
formation. In this case, the medial axis is a curved line.

Figure 17. Trajectories of leader and the followers above the terrain.

4. Results

As can be seen in the figures above, the paths of each member of the formation are
smooth, and the trajectories are safe to be followed by real UAVs. The difference is that
the trajectories calculated with FMM have sudden changes of direction and collide with
the obstacles while the trajectories obtained with FM2 are smooth and move away from
the obstacles. With the word smooth, we mean that the continuous solution has all the
derivatives, that is, it is of class C∞. In our case, we have a discrete solution that depends on
the size of the grid, and when it tends to zero, the discrete solution tends to the continuous
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C∞ solution. The practical meaning is that this type of trajectory can be easily followed by
a UAV.

In Figure 18, it can be seen that the method also works to make a covering in other
probability spots such as the accident of the Malaysia Airlines Flight MH370. In Figure 12,
the height relative to the ground of the leader is shown, which follows the desired values.
Those of the followers are similar, as can be seen in Figure 19. The simulation results show
that the formation is able to adapt its shape to avoid obstacles while respecting flight level
constraints.

Likewise, Figures 17 and 20 shows that the distances among the three members of
the formation are correct, because the geometric triangle is deformable but has a range of
action so that they do not become too close. As can be seen, the distance minimum among
the UAVs formation members is bigger than 50 cells.

As the gray level potential of the first step of the calculation of FM2 represents the
relative velocity between 0 and 1, we have the recommended relative velocity for each
member of the formation in each point, as shown in Figure 21. If this relative velocity is
multiplied by the maximum velocity of the UAVs measured in cells per iteration, the real
velocity of the three UAVs in cells/iterations is obtained as shown in Figure 22.

The method can be applied to other formations and scenarios. As an example, Figure 23
represents the approach for the case of a leader ship followed by four mini-submarines in a
pyramid formation.

Figure 18. Probability function of the search zone of the accident of the Malaysia Airlines Flight
MH370 with the three paths of the UAV’s formation.



Drones 2023, 7, 84 15 of 19

Figure 19. Trajectories of the followers above the terrain. Terrain surface (in black), ideal path (in
magenta), and smoothed path obtained with FM2 (in blue).

Figure 20. Internal distances among the three members of the formation.

Figure 21. Recommended velocity, between 0 and 1, of the three UAVs using gray level potential.
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Figure 22. Real velocity of the three UAVs in cells/iterations.

(a) (b)

Figure 23. Other possible formations and other scenarios: a ship followed by four mini-submarines
in a pyramid formation

5. Conclusions

In this work, we present a new technique to solve the probabilistic Coverage Path
Planning (CPP) problem for search and rescue by a formation of UAVs based on Gaussian
Mixture to approximate the probability distribution, Voronoi Diagram for the skeletoniza-
tion of the Gaussian mixture, geometric generation of a zigzag path and finally the Fast
Marching Square method (FM2) a feasible path free from obstacles for the UAV’s formation
that maintains a flight level with respect to the ground. The generated path is optimal not
only in terms of distance cost but also in terms of safety and smoothness and, therefore,
feasible for the UAV.

One of the advantages of the FM2 Method is its flexibility, because by conveniently
modifying the first potential (first step of FM2), it is possible to obtain the desired path
properties and trajectories that can be easily followed by UAVs.

Our approach has proved successful. The tests carried out show good results, even on
uneven terrain, always achieving a feasible path with minimum cost. This result shows
that our method generates paths that conserve energy or fuel and, furthermore, trajectories
that are safe and compatible with UAV kinematics.

In further research, other formations, in different scenarios and in real situations can
be studied.
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15. Mathew, G.; Mezić, I. Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Phys. Nonlinear Phenom.

2011, 240, 432–442.
16. Guoxiang, L.; Maofeng, L. Sargis: A gis-based decision-making support system for maritime search and rescue. In Proceedings of

the 2010 International Conference on E-Business and E-Government, Guangzhou, China, 7–9 May 2010; pp. 1571–1574.
17. Agbissoh, O.D.; Li, B.; Ai, B.; Gao, S.; Xu, J.; Chen, X.; Lv, G. A decision-making algorithm for maritime search and rescue plan.

Sustainability 2019, 11, 2084.
18. Parker, L.E. Decision making as optimization in multi-robot teams. In Proceedings of the International Conference on Distributed

Computing and Internet Technology, Bhubaneswar, India, 2–4 February 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 35–49.

19. Senanayake, M.; Senthooran, I.; Barca, J.C.; Chung, H.; Kamruzzaman, J.; Murshed, M. Search and tracking algorithms for swarms
of robots: A survey. Robot. Auton. Syst. 2016, 75, 422–434.

20. Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft
Comput. 2021, 107, 107376.

21. Pugh, J.; Martinoli, A. Inspiring and modeling multi-robot search with particle swarm optimization. In Proceedings of the 2007
IEEE Swarm Intelligence Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 332–339.

22. Wang, Y.; Bai, P.; Liang, X.; Wang, W.; Zhang, J.; Fu, Q. Reconnaissance Mission Conducted by UAV Swarms Based on Distributed
PSO Path Planning Algorithms. IEEE Access 2019, 7, 105086–105099.

23. Hussein, I.I.; Stipanovic, D.M. Effective Coverage Control for Mobile Sensor Networks With Guaranteed Collision Avoidance.
IEEE Trans. Control. Syst. Technol. 2007, 15, 642–657.

24. Arkin, R.C.; Arkin, R.C. Behavior-Based Robotics; MIT Press: Cambridge, MA, USA, 1998.



Drones 2023, 7, 84 18 of 19

25. Oubbati, O.S.; Lakas, A.; Lorenz, P.; Atiquzzaman, M.; Jamalipour, A. Leveraging Communicating UAVs for Emergency Vehicle
Guidance in Urban Areas. IEEE Trans. Emerg. Top. Comput. 2019, 9, 1070–1082.
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