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Abstract. User simultaneous detection and tracking is an issue at the core of

Human Robot Interaction (HRI). Several methods exist and give good results,

many of them use image processing techniques on images provided by the cam-
era. The increasing presence in mobile robots of range-imaging cameras (such

as, structured light devices as Microsoft Kinects) allows us to develop image

processing on depth maps. In this article a fast and lightweight algorithm is
presented for the detection and tracking of 3D clusters thanks to classic 2D

techniques such as, edge detection and connected components applied to the

depth maps. The recognition of clusters is made using their 2D shape. An
algorithm for the compression of depth maps has been specifically developed,

allowing the distribution of the whole processing among several computers.
The algorithm is then applied to a mobile robot for chasing an object selected

by the user. The algorithm is coupled with a laser-based tracking to make

up for the narrow field of view of the range-imaging camera. The workload
created by the method is light enough to enable using it even with processors

with limited capabilities. Extensive experimental results are given for verifying

the usefulness of the proposed method.

1. INTRODUCTION

Human Robot Interaction (HRI) requires the robot to be aware of its environ-
ment. It needs to understand what lies in front of it, if users are there, and if so,
if they want to interact with him. Furthermore, recognizing the objects that were
previously seen is an important feature for obtaining a robot that learns from its
experiences. We indeed expect it to recognize places, objects and people previ-
ously seen. Such a feature is of paramount importance in social robotics, where
interaction with human users and daily objects is the keystone of the robot activity.

In this article, we aim at giving a social robot the possibility to detect and follow
objects or people. The user indicates the robot what is the object to track, then,
the robot plans its motion to stay at a given distance of this object-of-interest .
The method is mainly based on the use of depth maps, which allows its use on a
wide range of robots. For robust tracking while moving, a fallback method using a
laser scanning range finder is used. Such a skill is a very useful feature for the social
robot: making it approach to a given object or follow a given user is a frequent
need.
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The article is structured as follows: in section 2, a comprehensive review of
the existing solutions is presented. In section 3, we will define in further detail the
goals and specifications of our research. In section 4, we will present the algorithmic
details of our solution. Then, in section 5, we present the results of a comprehen-
sive series of tests that show the validity of the proposed algorithm. Finally, its
usefulness and the future directions of this work is discussed in section 6.

2. RELATED WORK

A depth map is an image that contains information about the distance of the
surfaces which can be viewed from a viewpoint. As such, it directly provides a
spatial comprehension of the observed scene. Devices that can provide depth maps
have existed for many years, for instance via stereo vision. However, their presence
on mobile robots was limited due to a relatively high price, a complex calibration,
and an additional computational workload for the robot. This might explain why
not many articles use information from a depth map.

Many techniques focus on mixing data from several devices, such as cameras,
laser scanners, etc. Among them we can underline the works of Muñoz-Salinas
([15, 16]). However, the use of multi-modal fusion is often computationally costly
and requires several expensive and bulky devices. Therefore, it is not perfectly
suitable for small mobile robot bases.

Some articles, however, also provide solutions only using a stereo camera or a
range imaging device. The release of the affordable and reliable Kinect device at the
end of the year 2011 led to its soaring use in robotics. In [22], a simple motorized
support for a Kinect device, called KATE (Kinect Active Tracking Equipment)
is presented. It has two degrees of freedom, which enables the camera device to
look at the object of interest. The latter can either be provided by face detection,
or the center of the image. The segmentation of the depth images around this
center is made by a modified version of the GrabCut method ([21]). However, the
KATE platform is not mobile, making the segmentation much easier. The patented
PrimeSense NITE middleware [2] allows detecting and tracking human shapes from
depth maps. It has been shown to work at a very high frame-rate even with average
CPUs. Although the technique employed and the source code are not available, it
is likely that motion analysis and clustering techniques are at the core. Indeed, the
human detection is activated by their motion. As such, detecting a still, motionless
audience becomes challenging. This is especially an issue in HRI, where the user
can stand still in front of the robot while speaking with him. However, the software
is aimed at playing video games on the Microsoft XBox 360 [13]. As human players
are bound to move their body to play, this context solves the detection problem.

Stereo-vision devices are also used on mobile platforms ([11], [12]). A complete
pedestrian detection system only based on stereo-vision is presented in [11]. A
polar-perspective map is built then segmented into regions of interest. The system
is compatible with classical image processing techniques, such as appearance-based
algorithms. Stereo-vision is, according to authors, a very liable solution for nav-
igation and pedestrian detection. However, their system is designed for cameras
mounted on outdoors vehicles, with ranges between 5 and 50 meters. It makes it
difficult to use for indoor robotics platforms. In [12], a Point Grey stereo cam-
era mounted on top of a mobile platform provides depth maps. Users detection is
made through edge detection with a Canny filter ([4]). The tracking is made by
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an Extended Kalman Filter. However, the process requires a complex calibration
process and restricted experimental results do not clearly state the robustness of
the method. In a related field, the glasses for people with impaired vision presented
in [14] perform obstacle detection based on segmentation using only depth images.
The developed framework works with non-constrained camera position and orien-
tation, and because it discards color data, it also works in the dark. However, its
use is limited to the detection of objects coming closer and their notifications to
the user. There is no recognition or tracking of the objects being detected.

The method proposed in this paper aims at correcting some of the limitations
of the articles previously presented. It focuses on hardware requirements easy to
meet and a light workload. The code is released under the LGPLv3 license and
integrated into a very common software platform, allowing other teams to improve
it further easily.

3. PROBLEM STATEMENT

The aim of our work is to provide a mobile robot a lightweight algorithm for
clusters detection and tracking. These clusters can be human users, or objects.
The only required input data is the stream of depth maps. The RGB data, i.e.
color images, also supplied by the Kinect, is discarded in this article. This ensures
the compatibility of the algorithm with devices such as PMDVision CamCubes or
Asus Xtion PRO devices, that do not supply RGB images. It should be able to be
either processed on-board or on a remote computer, but the goal is to have it done
on-line, in real time. As such, the visual tracking of the object-of-interest is made
simultaneously with the navigation of the robot.

More accurately, the tracking is made at two levels: on the first hand, at the
sensor processing level, the robot is expected to keep track of the followed cluster.
On the second hand, we want the former to physically move itself and keep close
to the latter. The whole process results in the robot coming to the tracked cluster
and following its trail if it is moving.

3.1. Hardware specifications. The target robot for this application is the social
robot MOPI (non-definitive name). It is a home-brew robot of the RoboticsLab of
University Carlos III of Madrid shaped as a mobile, car-like platform. It is most
notably equipped with a Microsoft Kinect device tiled at 45◦, and a (non tiltable)
Hokuyo laser scanning range finder. The communication is made through to a
WIFI connection.

Furthermore, we also make use of a touch screen computer. It is a TravelMate
C110 computer equipped with a touch-sensitive screen, and a CPU of modest per-
formance. It displays the Graphical User Interface, which enables the user to choose
an object-of-interest .

3.2. Software specifications. The robot MOPI works according to the AD par-
adigm, as presented in [1]. This paradigm handles skills relying on primitives.
Primitives are in direct communication with the physical devices of the robot, and
send elementary orders to them. This includes the base motors, the laser sensor,
the camera, etc. A skill is the ability of the robot to do a specific action. It relies
on the data supplied by the primitives. The actions generated by a skill can be
numerous: move the car to a given point, play games with the user, interact with
electric appliances, etc.
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Since it is an experimental platform, the robot MOPI has been used as a bridge
between the traditional implementation of AD, as seen in [20], and a new one relying
on the communication mechanisms of ROS, the Robot Operating System [17]. The
version used for this application is ROS Electric running on top of Ubuntu 10.10.
The use of ROS most notably gives the possibility to redistribute the computational
workload. We can send easily via the wire or a wireless connection raw data from
the sensors to remote computers for processing. The latter can be more powerful
than the robot embodied PCs, also lightening the computation workload of the
main computer. Then, the processed data is sent back to the robot. It also embeds
the Stage simulator [9], which gives us the possibility of making first outlines of our
algorithms, for instance the tracking one, before trying them on the real robot.

4. APPROACH: DETECTION AND TRACKING PROCESS

The whole processing pipeline is illustrated in Figure 1.

Figure 1. The flow chart of the whole sytem. It presents all the
components needed for the vision-based algorithm and does not
include the laser data fusion presented later in subsection 4.6.

It is detailed in the following order: the acquisition of depth images from the
depth sensing device is detailed in subsection 4.1. As previously said, the RGB
(color) images that can be provided by the Kinect sensor are not used. Thus, the
algorithm can also be used with single depth imaging devices, such as CamCubes.

The algorithm here developed for converting float depth images into byte images
is explained in subsection 4.2.

The compression of depth images for remote processing then comes in subsec-
tion 4.3.

Then, our tracking algorithm is articulated in three phases:

(1) Cluster detection: the clusters are found in the current depth map thanks
to 2D image processing techniques. This is presented in subsection 4.4.

(2) Cluster matching and tracking: the clusters of the current depth map
are matched to the objects found in the previous depth maps. If the user
has selected an object to track, the 3D position of this object is estimated.
More detail is given in subsection 4.5.

(3) Robot control: depending on the tracking results, the robot motion is
controlled. For instance, if the object selected by the user has been found,
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the robot will move and come closer. This is explained in subsection 4.6.
Will also be presented how the results from our algorithm and from another
one, based on the data of the laser, are mixed.

4.1. Depth image acquisition. The acquisition of the depth map is made thanks
to the software provided by the ROS architecture. A so-called node is in charge of
the communication through the USB port. The stream acquired via that port is
transformed into proper depth maps. For each pixel (x, y) in the depth map, the
pixel value at (x, y) corresponds to the distance of the closest object intersecting
the 3D ray passing by this pixel, in meters.

As such, the values of the acquired depth map are float values, with a range
depending on the device. For the Microsoft Kinect, they are typically within one
to ten meters. Furthermore, the constructed light patterns projected by the device
can be reflected for shiny surfaces for instance. The depth map then also contains
some undefined values, represented by NaN .

4.2. Remapping of float images to [0..255] values. Most image processing
technique require the input image to be in the typical RGB space. In this space,
grayscale values are represented as bytes values (while colors are tuples of bytes):

vbyte = g ∈ [0..255] for gray-scale images

However, it was seen previously that the values depth maps supplied by the
ROS node are decimal numbers representing the physical distance of the object.
We then want to convert these images to the [0.255] range, while keeping track of
the undefined NaN points.

It is important not to lose the information about these undefined points. They
indeed correspond to physical zones where we have no information. For instance,
on the picture visible in Figure 2 (a), the black polygons in the ceiling could be for
instance some reflecting surfaces or some nests in the roof, etc. In this example,
they correspond to the neon lights. They reflect the light patterns emitted by the
Kinect projector.

For each depth map, this remapping is made in several steps.

(1) Detection of the values range of the depth map: we find the minimum m
and the maximum M values of the defined pixels in the current depth map.

(2) Computation of the affine transform: we determine α, β ∈ R such as the
transform vbyte = α× vfloat + β maps the float values to the byte values:

vfloat ∈ [m..M ] 7→ vbyte ∈ [1, 255]

Note that the 0 value is discarded. It is used to represent the undefined
NaN values.

4.3. Data compression for remote image processing. Float images can come
from various origins, for instance depth maps of a RGBD camera like Kinect. It
can be desired, for CPUs with limited capabilities, to send out via the wire these
images for processing them on a remote computer.

However, ROS did not support compression for float images. We hence developed
a package for image transport providing this feature. Float images are remapped
to byte images using an affine transform, as seen in subsection 4.2. They are then
compressed using traditional image compression libraries.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. The detection flow chart.
(a): The depth map, as supplied by the range-imaging device

(Kinect), and remapped to visible colors as seen in subsection 4.2.
(b): The ”clean” depth map, after handling the NaN values. The

technique used here is directional propagation (to the left).
(c): Canny edge detection on the clean depth map
(d): Morphological erosion of the Canny edges
(e): Recombination of the opened Canny edges and the NaN val-

ues
(f): The connected components found and their matches to ob-

jects. Each one is drawn with a color corresponding to the object
it was matched to, and the index of this object is overlaid.
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4.4. Clusters detection. In this section, the method used to find the 3D clusters
in the current depth map is explained.

To be able to make use of conventional vision techniques, the float depth map is
first converted into an usual images with values in the [0..255] span, by using the
technique seen in subsection 4.2.

4.4.1. Undefined values handling. For an easier handling of the remapped depth
map, NaN values are filtered. They correspond to a failure in the depth estimation
at the given pixel. For instance, the Canny algorithm explained afterwards would
fail with an image containing NaN values, as they are seen as a regular 0 value.

Three different and concurrent ways of solving the problem have been tried:

• Average border: on each side of the depth map, the average thickness,
in pixels, of the NaN border is computed. Then the rectangular area corre-
sponding to this average border out of the depth map is cropped out. For
instance, if in average, the five first pixels at each line are undefined, the
five first pixels of all lines are removed.
• Inpainting: the technique of inpainting, presented in [3], can be used for

replacing undefined NaN values in the remapped depth. Inpainting was
primarily designed for removing watermarks or damage to an image. It
propagates the color values at the border of the damaged areas, and mixes
them. Its use makes especially sense here as the NaN values correspond to
unsuccessful depth measurements from the range-imaging device.
• Directional value propagation: Another way to fill the missing infor-

mation is to propagate the values in a direction. It basically consists in
setting the value of each undefined pixel to the one of its closest defined
neighbor to the left. For undefined pixels at the left border, we set them to
the closest defined pixel to the right. A sample is visible in Figure 2 (b).

A discussion about the advantages of each method is presented in subsection 5.5.

4.4.2. Edge detection. Now the depth images have been transformed into standard
byte images and the undefined values have been handled. We can apply without
problem ”classical” image processing algorithms. As the goal is to find clusters in
the depth map, we use a Canny filter on the remapped image [4]. The Canny filter
helps us detecting edges in a grayscale image.

It requires two thresholds, a low and a high one. Two edges maps are obtained
by passing first a Sobel operator on the grayscale image, then thresholding with the
two thresholds. A Sobel operator is a linear filter based on a simple 3 × 3 kernel,
and it approximates the gradient operator on the grayscale image.

The high threshold edge map contains broken, discontinuous edges, but they
are likely to belong to the real contours of the objects. On the other hand, the
low threshold edge map contains continuous edges, but with many edges that are
not useful. The two maps are combined to create an ”optimal” edge map: If a
chain of the low threshold map enables to connect two pixels of the high threshold
map otherwise disconnected, this chain is added to the final edge map. All the
isolated chains of the low threshold map are then removed. A sample is visible in
Figure 2 (c).

The two parameters of the Canny filter are defined for values of the RGB space,
and their meaning depend of the values of α, β. Hence, they are not consistent
between frames. This is why instead of setting the thresholds, we set as constants
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the values of α× low threshold, α× high threshold between frames. Parameter β
is not taken into account as it is a constant offset factor, it is neutralized by the
gradient simulated by the Sobel operator.

4.4.3. Morphological erosion. We have explained in subsubsection 4.4.1 how un-
defined NaN values have been handled. However, it still can weaken local contrasts.
To compensate this effect, we apply a morphological transformation that thickens
the edges. This can close some edges that had been left opened by the Canny filter.

This result is obtained by passing a morphological erosion filter on the image.
The erosion filter replaces each value in the image with the maximum of the values
of the surrounding pixels. We use here a 3× 3 pixels kernel. It could close gaps in
the border that are up to 4 pixels wide. A sample is visible in Figure 2 (d).

Then, as we do not want to include the undefined NaN values in the objects,
we need to restore the undefined values erased in the step of handling of unde-
fined values. They are restored by: first, computing the minimum of the original
remapped and the eroded edge map, second, thresholding this minimum with a
binary threshold at value 0. A sample is visible in Figure 2 (e).

4.4.4. Fast connected component detection. First, we define connected components
for depth maps: two pixels of a depth map belong to the same connected component
if there is a chain from one to the other, such as there is no depth gap between two
consecutive elements of the chain.

At this step of the processing pipeline, an edge map has been computed that
also includes the undefined NaN values returned by the range-imaging device. A
3D object visible in the current depth map corresponds to a cluster without dis-
continuity in the inside, and with a discontinuity at the border with the neighbor
pixels. It should then correspond to a connected component in our edge map.

In a previous work ([18]), the authors presented a lightweight and fast algorithm
for connected components fetching in a monochrome image, such as our edge map.
It is based on an efficient representation in memory of the connectivity between
components thanks to a disjoint-sets forest. The disjoint-sets data structure was
first presented in [8] in 1964. In [19], this algorithm was benchmarked against two
popular ones for components labelling, flood-fill and Chang’s [5]. It turned out to
be 30% faster on the image collection used in the article. A sample is visible in
Figure 2 (f).

The method also returns the bounding boxes of the components. We recall here
that the bounding box of a set of 2D points is the smallest rectangle that fits all
the points within its surface.

4.4.5. Cluster filtering. Some filters can be applied for removing some of the
non-relevant clusters found in the current depth map. The actual version of the
algorithm discards the too small clusters. This is obtained by checking if the size
of the corresponding connected component is under a given threshold.

4.5. Cluster matching and tracking. In the previous section, the detection of
the different clusters in the current depth map was explained. However, our aim
is to give temporal coherency to this cluster information: we want to match these
clusters to objects detected in previous images. For instance, if the robot is following
a person, we want to spot what is the cluster corresponding to this person in the
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current image. Having this temporal coherency for objects gives the possibility of
a meaningful chasing motion for the robot.

Let us define the concept of object in the scope of our detector: an object, is a set
of connected components of the successive depth maps, each of which corresponds
to the same physical entity. There is, at most, one connected component in each
depth map corresponding to a given object. However, it might be that some frames
do not contain any connected component corresponding to a given object, i.e., the
object might be occluded or not successfully recognized.

For the clarity of the concept, an example issued from real data is presented in
Figure 3. It shows the recognition state of an object labeled 3. This object has been
recognized five times in the previous depth maps. For each frame, we have stored
the connected component and the bounding box representing it. On the other hand,
the object has not been recognized in the depth maps number 9, 10, 11, 14, 15.

Figure 3. A example to clarify the concept of an object repre-
sentation. The data is real and comes from the tracking sequence
of a given user. The object connected component is the filled area
and the bounding box is marked as a rectangle.

In order to maintain the computation time as low as possible, the recognition is
made in two steps.

(1) A first rough matching using only the bounding boxes of the components
gives us a first estimation of which clusters correspond to which objects.
This is explained immediately after.

(2) Ambiguities are solved using an analytic distance with strong discrimination
properties, the Hausdorff distance. This is explained in subsubsection 4.5.2.

The definitive matching is the one obtained at the end of this second phase.

4.5.1. Rough estimator: bounding boxes correspondences. Let us represent a given
connected component C of the current depth map. We want to have a fast estima-
tion of what object is the most likely to be matched with C.

Let us now consider a given appearance at frame i in the past of an object O in
the recognition history, that we call Oi. We compare the bounding box bbiO of this
appearance with the bounding box bbC of C.
Definition of the bounding box distance. Let us define a bounding box distance
dbbox such as ∀X,Y bounding box, dbbox(X,X) = 0, and the more similar X and
Y , the smaller dbbox(X,Y ).

Let us write bbX = {TLX , BRX} , bbY = {TLY , BRY } where TL refers to the
top-left corner of the bounding box, and BR refers to the bottom-right corner.
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Then, we define dbbox as defined in Equation 1. This corresponds to the sum of the
distance between corresponding corners of both bounding boxes.

(1) dbbox(X,Y ) = d (TLX , TLY ) + d (BRX , BRY )

A distance function between 2D points, however, needs to be chosen. Three
usual choices are possible, as written in Equation 2.

(2)


dL1(a, b) =| a.x− b.x | + | a.y − b.y |
dL2

(a, b) =
√

(a.x− b.x)2 + (a.y − b.y)2

dL∞(a, b) = max(| a.x− b.x |, | a.y − b.y |)

Keeping in mind the speed of execution, the L1 norm is here chosen. The
(Euclidean) L2 norm indeed needs expensive square root computations.
Application to the tracking. The result of dbbox(bbiO, bbC) gives us an idea of the
similarity of Oi, i.e. the appearance of the object O at frame i in the past, and
C, i.e. the current connected component of the depth map. The smaller the value,
the more likely it is that C is an appearance of the object O in the current frame.
In addition, to take into account the age of this appearance of O, we weight the
obtained dbbox(bbiO, bbC) by the age (in seconds) of the depth map where Oi belongs.

However, this estimation only takes in consideration the position of the objects in
the frame, and not their shape. For our given connected component C, we compare
it to all the appearances of all objects and store all the obtained marks in a list.
We then sort this list by similarity, that is with the lowest dbbox distances firsts.
Then, we use the precise estimator presented in the next section iteratively on each
element of this sorted list. This gives us the final distance dfinal of C with each
object that appeared the previous frames. 1

4.5.2. Precise estimator: modified Hausdorff distance. Using the rough matching
with bounding boxes, matching ambiguities can occur. For instance, two connected
components, similar in size and close to the last apparition of a given object, could
both correspond to the same object then generate an ambiguous matching. For
solving such ambiguities, we need a mathematical tool for properly comparing the
shapes of components.
Modified Hausdorff Distance. In [6], a comparison is made between the different
ways of computing a distance between two sets of points. According to these
findings, we use the distance d22, defined as in Equation 3.

∀A,B ∈ R2N, d22(A,B) = max (d6(A,B), d6(B,A))

with


d6(A,B) =

1

| A |
∑
a∈A

d(a,B)

d(a,B) = min
b∈B
‖a− b‖

(3)

1 We can thus avoid the computing of dfinal for the majority of the object appearances. If, for

a given object appearance, its dbbox is superior to the smallest dfinal computed at that time, we
can stop comparing all the following appearances in the list. They will indeed inevitably obtain

a higher dfinal distance than this match.
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For a given connected component C, d22(C,C) = 0, and given two connected
components A and B, the lower the result returned by d22(A,B), the more similar
they are.
d22 requires the choice of a norm for estimating the distance between two points.

Accurate component comparator. The Hausdorff distance helps solving ambiguities.
For each frame, all the components are first scaled to a given size, say 32×32 pixels.

Then, the different candidates for the same object are compared using d22 dis-
tance. In a similar way to how we weighted dbbox, d22 is weighted by the age of the
object appearance. The final distance is then given by:

dfinal(O
i, C) = dbbox(bbiO, bbC) + d22(Oi, C)

The best object candidate for the recognition of C is the one getting the lowest
dfinal. It is considered as a positive match if it gets a mark inferior to a given
threshold. This mark is empirically determined and can be set through the graphical
user interface . Its default value is 0.8.

4.5.3. Object tracking: selection of the object-of-interest. At this step, the con-
nected components of the current depth map are matched to the objects already
found. However, the tracking needs to know what object we aim at tracking. In
other words, the user needs a way to select the object-of-interest . We will present
in subsection 5.2 a Graphical User Interface we have developed.

The 3D pose of the object-of-interest is obtained thanks to the 3D reprojec-
tion of the barycenter of all points of the object-of-interest . The cluster matcher
periodically republishes this 3D pose of the tracked object-of-interest .

4.6. Robot motion and user tracking.

4.6.1. Multi-sensor fusion. As all range-imaging devices, the Kinect is limited by
a field of view. Horizontally, it can see objects that belong to an angular domain of
57 degrees, and of 43 vertically. Neither can it detect objects at a distance inferior
to 1.2 meters according to the Kinect datasheet. Furthermore, for higher distances,
the further the object, the lower the precision. On the other hand, the robot is also
equipped with a Hokuyo laser scanning range finder, which can only detect objects
on a horizontal plane, but with a field of view of 240 degrees. However, its range is
limited to approximately four meters. Both fields of view are compared in Figure 4.

The poor visibility of the Kinect device results in objects moving laterally getting
easily out of its view spectrum, and hence getting lost by the tracking algorithm,
while they remain visible for the Hokuyo laser. On the other hand, distant object
are out of range for the latter.

Thus, to enable a robust tracking even with challenging trajectories, including
curves with hairpin turns, we chose to combine two different tracking algorithms:
the vision-based method presented before and another one based on the laser data
only. The latter consists in a simple 2D cluster-tracking algorithm. A cluster
is defined by a continuous set of points where each point is separated from its
neighbors by a distance inferior to a given threshold, say 35 cm. The tracking is
initialized thanks to a 3D seed point supplied to the tracker.

These two tracking algorithms run simultaneously on the robot. They publish
periodically their status, and the 3D pose of the object-of-interest obtained by
the tracking (as defined previously). On top of them, a dialog node decides what
algorithm has priority, and reinitialize the other thanks to the 3D pose it returns.
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Figure 4. Field of view of both sensors mounted on the robot:
the Kinect depth camera and the Hokuyo range finder.

When it performs successfully, the vision-based algorithm presented in this paper
always has priority on the laser-based one. As such, if the tracked object is located
in the view frustum of the Kinect device, the former is used before the latter. The
latter enables the tracking to go on successfully outside of the view frustum, and
recovering from eventual failures of the vision-based tracking algorithm.

4.6.2. Goal navigation. The dialog node republishes the resulting 3D pose of
the tracking algorithm that has priority. This is used as a goal for the motion
planning system, that is the point to reach by the robot. This goal is moved after
each iteration of the tracking algorithms. This corresponds to each acquisition of
a depth map by the range-imaging device.

The motion control is made through a Dynamic Window Approach, as presented
in [7].

The admissible velocities, that is, the ones where the robot is then able to stop
without collision, are determined with the local costmap. This local costmap is
obtained via the fusion of the laser scanning range finder and the reprojected Kinect
point cloud.

When the robot is close enough to the goal, the robot keeps steady till the goal
moves again. An example is visible in Figure 5.
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(a)

(b)

Figure 5. Motion planning towards the goal at a given time.
(a): The detection status at a given time. The tracked object is

the shape with a 0 index on the left of the bottom-right image.
(b): Visualization of the plan of the robot. The white spots cor-

respond to the laser scan. The light gray squares represent the
local costmap, and the dark ones to its inflated version (inflation
by a radius corresponding to the one of the robot). The robot is
indicated by its white footprint and its frame axes. The goal is
the sphere with the tilted axes on top of the image. The direc-
tion indicated by the arrow corresponds to the orientation of the
Kinect within the robot. The dotted curved line corresponds to
the planned trajectory until the goal.
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5. EXPERIMENTAL RESULTS

The method explained before has been implemented into the robot MOPI. The
experiments have been made in several phases. First subsection 5.1 the performance
of the depth map compression is evaluated. Then, the GUI developed to select the
object-of-interest in subsection 5.2 is presented. The times needed for the algorithm
to run in several hardware platforms in subsection 5.3 is presented and discussed.
After that, how the workload can be distributed between several computers is
explained in subsection 5.4. In subsection 5.5, a discussion about the advantages
and limitations of both inpainting methods seen in subsubsection 4.4.1 is hold. And
finally, in subsection 5.6, the accuracy of the whole tracking algorithm is measured.
The success rate of the process is measured, while the user goes across a marked
path with obstacles and occlusions.

5.1. Depth image compression performance. In subsection 4.3, the compres-
sion of depth maps for processing on a remote computer was explained. Some
experimental results for the compression of depth maps are visible in Figure 6.
They have been obtained during one of the experimental runs, when chasing the
user.

The bandwidth required by the Kinect depth map topic typically drops from
9-10 MB/s to less than 300 kB/s. As seen on Figure 6, the ratio of the losslessy
compressed image to the original one is under 10%, that is the image size is reduced
more than ten times. The lossy algorithm requires the storage of the pixel indices
with NaN value. As such, even if the image itself is smaller than with the lossless
algorithm, the amount of data to transmit is most of the time bigger.

With a lossless algorithm, the compression generates an average relative error
under 1% for values in a range of [1..10], which correspond to typical values of
the Kinect depth map. The results in Figure 6 show an average error on that run
under 0.5% for the lossless algorithm. The lossy algorithm generates two successive
approximations for the depth map: first the remapping to [0..255] values, then the
information loss generated by the libjpeg compression algorithm. As such, its
error rate is higher.

The compression times presented in Figure 6 were obtained with an AMD Athlon
64 X2 Dual Core Processor 5200+. With the embodied computer of the robot, the
compression of a 1-channel 320× 240 image requires around 15 ms. This enables a
30Hz broadcasting (then needing a 30% CPU more or less).

Some images of input, output, error values are visible in Figure 7.

5.2. Selection of the object-of-interest thanks to a GUI. A GUI interface
was developed for the touch screen. It enables the user to select the object-of-
interest by clicking on it. A sample is visible in Figure 8.

5.3. Time costs for clusters detection and tracking. The tracking algorithm
has been tried in several hardware architectures. It was first used on the on-board
computer of the MOPI robot, which is an embedded computer with a CPU with
limited capabilities (Intel Atom CPU Z530 @ 1.60Ghz ). In a second configuration,
everything was processed on the touch-screen, which is eight years old (Intel Pen-
tium M @ 1000Mhz). And finally, a desktop PC with a full-power processor was
used (AMD Athlon 64 X2 Dual Core Processor 5200+ ).
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Figure 6. Compression ratio, average error per pixel and com-
pression time for both lossless (libpng, compression factor of 6)
and lossy (libjpeg, JPEG quality of 85) compressions. All the
curves are here plotted against time during a typical tracking phase
in an indoor environment.

The time needed for running the algorithm is shown in Figure 9. The on-board
computer needs around 50 milliseconds for a performing a cycle of the algorithm.
As such, it can run up to to 20 Hz. However, it represents a workload for the CPU
with limited capabilities. The use of a remote computer for processing solves this
issue.

It would also be possible to run the algorithm in the touch screen, reducing the
number of devices to two. However, it is preferable having a smooth GUI running
at high frequency to a choppy display that might cause trouble to the user when
selecting the object-of-interest of her choice. This would also reduce the battery
autonomy of the touch screen.

5.4. Workload distribution among several computers. It is possible to make
use of the communication strengths of ROS: several computers can share the same
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(a)

(b) (c)

Figure 7. Error visualization for data compression. No visible
difference is appreciable for the human eye between the original
image and the ones after compression and decompression.
Each pixel corresponds to the error per pixel, in percents of the
original value at that pixel. A black pixel corresponds to zero error,
a white one to the scale indicated in caption. The average error
(over the whole frame) is 0.11% for PNG compression, vs 0.65%
for JPG. The maximum error, reached at one pixel, is 0.41% and
18.81% respectively.
(a): The original depth map without compression, as supplied by

the Kinect device.
(b): Visualization of the compression loss per pixel for the lossy

compression. A white pixel is a relative error of 18% to the original
value.
(c): Visualization of the compression loss per pixel for the lossless

compression. A white pixel is a relative error of 1.8% to the original
value. Note the scale makes errors thirty times (30×) more visible
than the other image using lossy compression.
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Figure 8. A sample picture of a user selecting the object-of-
interest . It is indicated by the shape with a white border. The
other objects are drawn with a different color.

data and the different subtasks can be distributed between them, without affecting
the result.

As such, it is possible to send via a wireless connection the raw depth maps to
a remote computer. It will run the algorithm presented previously and return the
3D pose of the object if found.

The whole architecture for processing is then structured as presented in Fig-
ure 10. The task demanding much CPU is the detection of the clusters. It has been
moved to a remote computer with a faster processor. The results of the processing
are sent back to the robot embedded computer.

5.5. Comparison of the different methods for the undefined values han-
dling. Experimental results for methods presented in subsubsection 4.4.1 are pre-
sented in Figure 11.

• The average border removal presents the advantage of being extremely fast
while removing most of the undefined values located near the images bor-
ders. However, it does not solve in any way the undefined zones in the
middle of the depth maps, which can lead to objects cut in two.
• In the inpainting algorithm, the output colors in the undefined zones are

obtained by propagation of the values from all along the damaged area
perimeter. As such, the damaged area turns out to be a soft blending from
these values. It especially smooths the strong contrasts that might occur
from one side of the damaged area to the other.
• On the other hand, in the directional value propagation, the same value

is propagated. Hence, the strong edges are maintained. Furthermore, it is
computationally less expensive than normal inpainting.

These reasons justify the choice of the directional value propagation in the final
algorithm.
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Figure 9. Time needs for running the algorithm on different hard-
ware platforms. The time allocated for each step is also indicated.

5.6. Tracking accuracy on a complicated path. The multi-sensor fusion has
been presented in subsection 4.6. It gives a high priority to the presented vision-
based algorithm, and uses a laser-based fallback tracking to enable a successful
tracking along a complicated path.

We measured the performance of the tracking system on a complicated path,
here an unstructured lab environment. The path followed by the user is visible in
Figure 12. The length of the whole path that the robot has to follow, from its start
position to the finish circle, is around 33 meters. It includes straight lines, hairpin
turns, and narrow passages.

A user initializes the tracking on him thanks to the GUI presented in subsec-
tion 5.2, then follows the path without giving more orders to the robot, until reach-
ing the finish line. A run is declared as successful if the robot follows the user
along the whole path, does not collide with any obstacle, and reaches the finish
line. The experience is repeated for twenty runs.
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Figure 10. The flow chart of the whole sytem when distributed
between several computers. It also includes the laser data fusion
presented in subsection 4.6.

The results are presented in Table 1. Some screenshots of the GUI, obtained
during a tracking sequence, are visible in Figure 13 and Figure 14. 2 90 % of the
runs have finished successfully, in an average time under two minutes. The cases
of failure are most often due to a wrong match of the user’s shape from one frame
to the another. For instance, during one of the failed runs, the robot incorrectly
recognized a passive observer as the tracked user, and started tracking him. A
standard deviation of more than ten seconds can be noticed. The time needed to
go along the whole path depends indeed on the speed of the user, which may vary
from one run to another.

This high success rate experimentally validates the robustness and usability of
the developed tracking system.

Number of runs 20
Success rate 90 %
Average time for successful runs 114 s
Standard deviation of average time 12.8 s

Table 1. The result of the tracking runs along the complicated path.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a lightweight algorithm aimed at detecting
and tracking 2D clusters using depth maps. This was applied to a mobile robot
for the chase of a selected object-of-interest . A robust tracking system was built,

2 The full output of the algorithm, is visible in an on-line video here. It lasts about two hours.

https://www.youtube.com/watch?v=9xclN8ncYSY


20 ARNAUD RAMEY, MARÍA MALFAZ, AND MIGUEL A. SALICHS

(a)

(b) (c) (d)

Figure 11. The different methods for undefined NaN values han-
dling. The difference between methods is especially visible on the
neon lamp, on the right of the user’s head.
(a): The original image.
(b): NaN reduction thanks to average border removal. The image
is identical except it is slightly more narrow. This is due to the
removal of the right undefined border. Note the NaN values inside
this border are not removed.
(c): NaN removal thanks to inpainting.
(d): NaN removal thanks to left-value propagation.

using a laser fallback when the selected object-of-interest remains out of the narrow
field-of-view of the range-imaging camera.

In a near future, more extended measurement and user experiments is carried
out. We especially want to measure the object-of-interest pose measurement error.
This could be obtained by precisely measuring the position of the user thanks to
a camera viewing from above, and matching it against the pose computed by the
algorithm.

Furthermore, the RGB information given by the Kinect device was discarded
here. We aim at experimenting some of the methods presented in the articles of the
introduction and measure the improvement obtained by coupling both methods.
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Figure 12. The path followed by the user to test the tracking
accuracy. The gray boxes correspond to cardboard boxes aimed at
making the path planning harder and preventing the robot from
cutting the curves.
The robot intends to maintain the chasing distance as close as
possible to the goal distance. When the robot enters the circle
without losing the track of the user, the test is marked as successful.
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Figure 13. Map generated by a SLAM algorithm (GMapping
[10]) overlaid with the paths generated during a run.
The light gray area corresponds to the free space of the map and
the black edges its occupied space. The irregular line is the path
of the user, as detected by the algorithm.
The smooth line ending into the rectangular shape corresponds to
the path of the robot, as determined by its odometry.
The remaining symbols are identical to the ones used in Fig-
ure 5 (b).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14. Different frames of the GUI during a tracking se-
quence on the test path. The numbers stand for the objects names.
The object-of-interest has a white stroke.
(a): GUI just before the user initialization, and (b), just after.

The selected user then is marked with a white stroke (cluster 968).
(c): Shortly after initialization, the robot has come next to the

user (cluster 968), who already started walking along the path.
(d): The user starts walking in a transverse direction to the robot

motion, which triggers a fast on-place rotation.
(e): Another user (cluster 1424) crosses the path of the robot.

The tracking is not affected.
(f): In the narrow passage between the tables (cluster 1510) and

the wall.
(g): The vision-based tracking loses track of the user (cluster 1493)
after a sharp turn. The tracking goes on thanks to the laser-based
tracking.
(h): After the sharp S-turns at the end, the final door is visible

(cluster 2008).
(i): Approaching the final door (cluster 2532).
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