
“Give me the Red Can”: Assistive Robot Task Creation through Multi-Modal

Interaction

Juan G. Victores, Santiago Morante, Alberto Jardón and Carlos Balaguer

All of the authors are members of the Robotics Lab research group within the Department of

Systems Engineering and Automation, Universidad Carlos III de Madrid (UC3M).

jcgvicto@ing.uc3m.es

Abstract

In this paper we illustrate our work focusing on

bringing advanced robotics closer to everyday

domestic users. It will be demonstrated that

inexperienced users can be capable of programming

the ASIBOT assistive robot platform to perform a

specific desired task in a household environment. The

process is guided through the robot's Web browsable

interface Task Creator Wizard. The robot's open

architecture has been developed to enable flexible

multi-modal interaction, such as the used touch

buttons, voice commands, and Wii Remote™ controller

for intuitive robotic movement. The Wizard has been

designed to provide enhanced accessibility while

taking aesthetic beauty into account, to avoid

distraction caused by boredom of the user. The whole

concept and implementation has been released as part

of the ASIBOT Open Source Code Repository,

available online for download and documentation at:

 http://roboticslab.sourceforge.net/asibot

1. Introduction

Modern technologies are progressively being

incorporated into our everyday lives. We find ourselves

surrounded by elements that are composed by

advanced embedded electronics: mobile phones,

ebooks, netbooks. Inexperienced people and even

young children are able to interact with touch screens

or buttons, navigating through tabs, menus, and icons

[1]. This fact provides the raison d'être of end-user

developments (EUD) [2]. With all the possibilities for

efficiency and improvement of EUD, some researchers

have already begun to see the potential of web

applications [3]. In addition to the provided arguments,

web interfaces add powerful benefits, such as

ubiquitous availability, and public access (if desired).

Figure 1. A developer explaining how to use the

ASIBOT multi-modal interfaces

All of these advances are also progressively being

incorporated in the field of robotics (perhaps at a

slower pace). Robotics and automation are fields first

developed for industrial environments, with non-

friendly engineer-only interfaces. However, recent

works such as Baxter [4] are now taking into account

the user-oriented point of view to facilitate industrial

manipulator programming.

From this steady state of production plants, robotics

and automation technology can now be found in retail

stores, and ultimately, in our home environment. In its

broadest scope, this includes everything from

motorized shutters and vacuums to less common

advanced robotic manipulators [5]. Current worldwide

research focuses on how to introduce dynamic and

mobile elements to carry out “housekeeping” and daily

chores that require complex manipulation and

advanced reasoning skills. These technologies will

begin to make our life easier only with the development

of human-robot interfaces that provide comfort and

satisfaction to the user [6]. In this paper, the authors

propose the merger of robotics with technology that

everyday users can be familiar with, such as web

browsing, voice command control, and video-game

controllers, and present proof of concept Open Source

implementations and documentation with experimental

results.

These developments have taken place using the

ASIBOT assistive robot platform (Fig. 1), which is

currently located in our ASIBOT assistive living

kitchen test environment. The robot and the assistive

living environment have been developed by the

Robotics Lab research group at UC3M and have been

presented by the authors in recent publications [7].

The following is a review of some of the robot's most

important features and characteristics.

 Full on-board robot control and

communications with no need for an external

control cabinet.

 Unlimited workspace through 24V climbing

connectors.

 Light-weight symmetrical structure for

climbing.

 Tool exchange system for grippers, utensils,

sponge, etc.

 Portable and friendly interfaces adapted to

different levels of user capabilities and

preferences.

 Open architecture for flexible component

integration.

The first four cited features are hardware

characteristics that allow the robot to overcome many

of the robotics issues inherent to the fact that it is a 5

degree-of-freedom manipulator arm (non-redundant for

most tasks). The last two features have been exploited

by the authors in order to extend the reach of their

developments to the hands of everyday home domestic

users.

2. Software Infrastructure: Open System

Architecture

Through the use of the YARP robotics platform [8]

for publisher/subscriber communications, we provide

an open architecture that enables flexible multi-modal

interaction. In our previous developments we had

identified this platform as lightweight enough for our

embedded system, and appreciated its multi-lingual and

multi-platform support combined with easiness of use

for the large range of our developer profiles [9]. Our

current implementation also benefits from its

RFModule (resource location and watchdog thread)

and RateThread (best-resolution-per-platform

periodical threads) classes, multiple carriers (including

MJPEG and new custom HTTP carrier), streaming and

strict-write-with-acknowledgment ports (each with

callback function mapping mechanisms), and the

YARP plugin mechanism which allows classes to be

used as local libraries or as executables that are

remotely accessible through a same class API.

Two collections of libraries that are implemented as

YARP devices and can therefore be used through the

plugin mechanism have been developed: rlPlugins and

rlPlugins2. The rlPlugins library is a small library

intended for PC that contains RaveBot (Fig. 2), a

simulator class that creates an instance of the

OpenRAVE core libraries [10] (qtcoin viewer and

ODE physics included). RaveBot implements

position, velocity, and encoder interfaces, and

additionally publishes the stream of images and

measurements from every camera and sensor it finds in

the environment and robot description XMLs.

Figure 2. RaveBot's default configuration loads

the ASIBOT assistive kitchen model

The rlPlugins2 library is intended to be cross-

compiled using a gnueabi tool-chain [11] for its use

within the robot. It contains CanBot, a low-level robot

controller class that manages the ASIBOT's internal

CAN communications bus for position and velocity

control with the appropriate shared resource locks and

releases. CanBot implements and exposes the same

interfaces as RaveBot, so CanBot and RaveBot

are identical to external viewers except for port

naming. Both rlPlugins and rlPlugins2 additionally

provide the CartesianBot plugin, which provides the

geometrical closed-form solution of the ASIBOT

forward and inverse kinematics. Switching to our

generic solver based on recursive methods (KdlBot

class) can be seamlessly achieved by changing the

configuration file or passing it as an argument at

instantiation. For either of the two, the

OrderThreeTraj class is used to generate

trajectories with null initial and final velocities when

moving point-to-point in differential kinematic mode.

In velocity-controlled streaming mode, the

OrderOneTraj trajectory generator class is used, in

order to assure a constant Cartesian space velocity.

This flexibility is provided through polymorphism:

the OrderThreeTraj and OrderOneTraj objects

are allocated on the dynamic memory heap, passing

their reference to the Traj trajectory class base

pointer that is used by the control thread to provide

updated references to the low-level controllers. These

objects are deleted from the dynamic memory once

they are not in use.

The default configuration involves two

cartesianServer module instances. Each one instances

a CartesianBot as a library, setting thread rates

and port name prefixes as set in the configuration files.

One cartesianServer module is set to use the RaveBot

as a library and show the simulation on a 2D or 3D

screen, and the other instance is set to use the CanBot

as a library and run on the real robot. These ASIBOT

modules can be accessed through any of the following

three different methods.

 All of the ASIBOT module ports may be

interfaced using the module specific

commands of the ASIBOT online

documentation through the use of the YARP

port class and inherited classes.

 All of the ASIBOT module ports may be

interfaced through a series of other

mechanisms such as telnet, web browsers, raw

sockets, or ROS [12] as documented in the

YARP online documentation (“YARP without

YARP” and “YARP with ROS”

documentation sections).

 We also provide a minimalistic library for

communicating remotely with cartesianServer

instances, called the CartesianClient library,

which has been implemented in native C++,

Python, and Java (tested on MATLAB and

Simulink too) languages.

3. Components for Task Creation and

Multi-Modal Interaction

The ASIBOT Open Source Code Repository is a

compendium of C++ and Python programs (named

modules), libraries, and examples that can connect to

each other to create applications that may be useful for

users. One of the main objectives of the ASIBOT

research and software development of the past years

has been to provide integrated modes of Human-Robot

Interaction (HRI) through devices with which users can

already be previously acquainted with, therefore

allowing them to immediately start discovering how to

control the ASIBOT robot platform through the

interface device instead of using time learning how to

control the interface device. Fig. 3 depicts this multi-

modal interaction concept.

Figure 3. The ASIBOT modules provide multi-

modal interfaces for HRI

The ASIBOT modules are intended to a run within

the Wireless Local Area Network (WLAN) of the

robot, but the user is free to expose the configurable

interface sockets for external assistants to collaborate,

remotely interacting with the modules from a distant

location. The ASIBOT system’s open architecture

allows the control interfaces and devices to be used

simultaneously, and all are managed coherently.

3.1. Touch Buttons

The ASIBOT webInterface module provides a Web

browsable interface which is intended for display on

devices that support tactile interaction.

The interface is composed by nine functional tabs

(Fig. 4, top). A persistent Connection Manager for

establishing and terminating communications with the

real robot and with the simulator is set to be rendered

at the bottom left corner of the browser window. The

client side scripts of the webInterface served pages

have been optimized to minimize the amount of client-

server interactions that take place.

Figure 4. The ASIBOT modules provide touch

buttons for HRI

Additionally, through the use of the Asynchronous

JavaScript and XML (AJAX) interrelated web

development techniques [13], the full page are only

loaded when the user changes from one tab to another.

Each tab's web content is dynamically changed from

within the browser whenever it is required by the user's

actions. This bandwidth consumption optimization

provides a drastic improvement in performance and

allows the user to benefit from page loading time

reduction.

3.2. Wii Remote controller integration

A Wii Remote Plus controller interface module has

been developed as part of the ASIBOT open

architecture components for multi-modal interaction
1
.

Upon initializing the wiimoteServer module and

connections, the user can move the robot in what we

call the Wii space: the robot tip aligns with the Wii-

Remote controller pitch (Fig. 5.1), and the robot's base

roll is controlled with the controller roll (Fig. 5.2).

A and B buttons control forward and backward

translation functionalities respectively, while

maintaining both buttons pressed allows Wii space

reorientation. This behavior implies the use of a hybrid

position/velocity control scheme which is achieved

through the use of a floating virtual target point. First,

the orientation information is added to the virtual target

point. Then, the forward, fixed, or backward

translational command component determines the

distance between the robot end-effector and the virtual

point (positive, null, or negative). The virtual point is

sent as a robot target to the cartesianServer modules

1 Low-resolution video link: http://youtu.be/S6SKFVUwL9A

through the velocity-controlled streaming mode

mechanism which has been explained in Section 2.

Figure 5. The Wii Remote orientation is tracked with a

fixed linear velocity

3.3. Automatic Speech Recognition

ASIBOT's speech recognition has been integrated

into the Web browsable interface as a selectable tab.

The page served (Fig. 6) contains an automatic speech

recognition input field for recording and saving

commands which can later be assigned to different

tasks.

Figure 6. The ASIBOT modules provide speech

recognition for HRI

The input field makes use of the x-webkit-speech

attribute, which links the field to the Google Inc.

implementation of the HTML5 Speech Input API

(currently a W3C Editor's Draft [14]). The x-webkit-

speech input field attribute is currently recognized by

the Google Chrome and Google Chrome for Android

web browsers. The Google Inc. implementation of the

x-webkit-speech attribute uses Google's service cloud

to perform the actual speech recognition, which returns

a plain text string that the ASIBOT webInterface

module stores in the User Program Repository.

4. A Walk through the Task Creator

The ASIBOT Web browsable Task Creator Wizard

has been developed to guide the user through the task

creation process from within the ASIBOT Web

browsable interface. An ASIBOT task is composed by

one or several custom or predefined programs that the

user may invoke through the use of one or more of the

open architecture's multi-modal interfaces. The Task

Creator Wizard is initialized from within the Web

browsable interface Home page (Fig. 7, background:

Initialize Task Creator). It is set to display useful user

guide information in the form of prompts and alerts.

The use of the Wizard is, however, not mandatory. The

user may instead choose to browse through the tabs

manually to develop ASIBOT tasks.

Figure 7. The Task Creator Wizard displays useful user

guide information

First, once activated, the Wizard automatically

redirects the user to the Joint space movement tab (Fig.

8). The tab is invoked so that a progress bar is

displayed on the bottom right corner of the page. It

indicates how advanced the user is in the task creation

process, and allows the user to jump to each next step

throughout the entire creative process.

Figure 8. A progress bar guides the user throughout the

whole creative process

As has been previously mentioned in Section 3.1,

the user can establish connections with the real and

simulated robot using the persistent Connection

Manager situated at the bottom left of the interface.

Once the connections are established, the user can

move the selected robots in the Joint space using the

correspondent tab buttons.

Additionally, the user can press the capture button

(the record icon situated at the center-right of the same

Fig. 8) to open a prompt for saving the end-effector

point with a custom name. The end-effector point

position and orientation information that is stored is

computed on the user capture button click event, which

may occur even if the robot is in movement. This

behavior has also been implemented in the Cartesian

space movement tab (Fig. 9), which is the next step the

user is guided through.

Figure 9. Points may be captured even when the robot

is in movement

The capture button of either of these two tabs,

namely the Joint space movement tab and the Cartesian

Space movement tab, may additionally be used to

capture points when the robot is moved by using the

Wii Remote Plus controller interface (see Section 3.2).

On the completion of this point capturing phase of the

Task Creation process, the user is guided by the

Wizard to the Program tab (see Fig. 10). Here, the user

can create, edit, save and delete ASIBOT modules

directly from within the Web browsable interface.

Figure 10. The ASIBOT Web browsable interface

Program Tab

The ASIBOT Web browsable interface Program tab

plays the role of an Integrated Development

Environment (IDE) for developing ASIBOT user

Python modules. The left side panel allows the user to

create, explore and delete ASIBOT user Python

modules. When the user decides to create a new

module, the IDE engine returns a new file with a

fragment of default source code. This source code is

extracted from a template.py file which is set to load

the basic resources for programming the ASIBOT

(libraries, initialization routine calls). Additionally,

some hint lines of code are added for connecting to a

remote instance of the cartesianServer module,

performing a robot homing movement, waiting, and

closing the module cleanly. The complete template.py

file contents can be seen in Listing 1.

The Program tab additionally provides a set of

buttons with the captured point names, situated on the

top part of its right side panel. Clicking on this type of

button inserts two lines of code into the central

program text area:

 A Point definition. The definition of the point

that was captured and given the name that the

button indicates.

 A Cartesian space movement command. The

robot is commanded from its current position

to an absolute position following a straight

line trajectory with null initial and final

velocities (a movl function call).

Listing 1. The template.py file contents is copied upon

creating modules

An ASIBOT Python point is defined as a native

Python list of five doubles that indicate the following:

x[m], y[m], z[m], rot(y')[degrees], rot(z'')[degrees] of

the end-effector in absolute base coordinates. The first

rotation, rot(z), is given by the atan2 function of y

and x. This equation completes the Euler ZYZ notation

that can be used to define the robot end-effector

orientation with respect to its base. Prohibiting the

explicit request for the first rotation on the z axis helps

preventing the request for movements to a great

number of points that are unreachable for the ASIBOT,

as ASIBOT points may be manually modified or

created from scratch, as plain text and the robot is a 5

degree-of-freedom manipulator arm that cannot reach

all of the positions and orientations of Cartesian space.

The movl member function calls may also be

modified and transformed into movj function calls.

Movements due to movj function calls are, generally

speaking, faster but less precise (trajectory-wise) than

those issued by movl commands. This is because

movl commands involve the computation of a straight

linear trajectory, whereas movj commands involve

trajectory interpolation at single joint level. This

nomenclature is commonly found in the context of

industrial robots, and the authors have particularly been

from AsibotPy import *

#######################################

home=[0,0,1.4,0,0]

#######################################

simCart = CartesianClient()

simCart.open('/ravebot')

use '/canbot' for real

#######################################

print 'hello, robot!'

simCart.movl(home) # defaults to 20 s

simCart.wait() # wait for movement

#######################################

print 'done!'

simCart.close()

inspired by the RAPID, an ABB proprietary

programming language [15].

Once the user has finished programming, she or he

will be prompted to save the program with a custom

name by pressing the save button. The Wizard then

guides the user to the Speech tab (see Section 3.3). In

the Speech tab, the user records and saves words that

will be assigned to programs in the Task Creator final

step, the Assigner tab (seen in Fig. 11). The Assigner

tab is composed by program, recorded word, and icon

selectors to generate ASIBOT task files, which are

minimalistic scripts that associate these three elements.

Figure 11. The ASIBOT Web browsable interface

Assigner Tab

The Task Creator Wizard leads the user to the

ASIBOT Web browsable interface Launcher tab once

the assignment has been performed (see Fig. 4). The

Launcher parses the task files and presents the selected

icons zoomed as touch buttons on screen, awaiting for

user tactile interaction or voice commands to execute

the tasks that the user has developed through the use of

the multi-modal interfaces, with or without the use of

the interface's Task Creator Wizard.

5. Experiments

Our experiments were performed, on the technical

side, using 300 ms kinematic control cycles, due not to

the kinematic calculation times (our kinematic position

inversion mean duration is 33 µs), but to not saturate

the robot's internal communication CAN bus. The

simulator's cartesianServer module was set to directly

feed the velocities computed from the trajectory

generation described in Section 2 (pure uncompensated

feed-forward), as the behavior of the simulated motors

is that of a perfect integrator. For the real robot, we

added a 0.1 gain on the position error, a classical

robotics control approach [16].

On the end-user side, and in order to perform a

complete system assessment, we conducted two

different tests: one for people that were previously

inexperienced with robotics, and one for robotics-

related people who were familiar with ASIBOT. The

reason for this double-test was to include the not-so-

common opinion of developers or technology-skilled

users to the common analysis of inexperienced people.

The comments and suggestions of technology-skilled

users can be useful to assure an easy teaching process,

as at a certain point they could actually become the

people in charge of training disabled people in

handling high-tech adapted devices.

In the first test, the ten healthy inexperienced users

were invited to the ASIBOT assistive living kitchen

environment and attended a five-day course of two

hour sessions. At the end of the course, they were

asked to use the developed system for Task Creation

through Multi-modal Interaction to perform one simple

task: grabbing a red can, a task which we already knew

that the robot was capable of achieving, as we had

previously performed it by ourselves (Fig. 12).

Figure 12. The ASIBOT “Give me the Red Can” task

goal achievement

To evaluate the users' experiences, we performed

spoken interviews, allowing the users to express their

sensations, their pros and cons about the comfortability

and easiness-of-use of the applications. The following

is a review on the aspects of the implementation and

experiments.

 All of the users confirmed they found the use

of the proposed multi-modal interfaces (touch

buttons, voice commands, Wii Remote

controller) very interesting.

 We found devices to fit each of the user's

needs so they could all be able to use the Web

browsable interface for comfortably

interacting with the robot.

 Each of the users was capable of generating

several voice patterns that could be

recognized by the automatic speech

recognition system.

 At the end of the five-day course, every user

had achieved in making the robot grab her or

his own red can successfully. Our experience

with industrial robot courses indicates that

achieving similar tasks with conventional

controllers usually takes two weeks if

similarly distributed in two hour sessions
2
.

 Two users evaluated the use of the Wii

Remote controller as an interface device

negatively. The main drawback they

emphasized on was having to sustain the

implemented ``dead man'' buttons while

moving the controller to the desired

orientation.

In the second test, we asked ten robotics-related

people to perform the same task and, in order to

measure their satisfaction with the software, we

provided them with SUS tests (System Usability Scale).

The range of ages of the participants was between 25-

35 years old. As a summary of the results:

 The average punctuation was 70.5 ± 9.5 over

100 (where 100 is the best score).

 The best results were obtained in the item: I

think that I would like to use this system

frequently, with an average of 4 ± 0.6 over 5

(where 5 is the best score).

 On the other hand, the worst results were

obtained in: I think that I would need the

support of a technical person to be able to use

this system, with an average of 2.6 ± 0.8 over

5 (where 5 is the worst score).

In general, the results were positive and additional

feedback was received on how automating the naming

mechanism for points, programs, and tasks would be

useful, as typing can become tedious and time

consuming using certain Web browsing devices.

6. Conclusions

The ASIBOT Open Source Code Repository has

gained credibility through the demonstration of how its

2 Sample 32 hour course: http://tinyurl.com/roboticTraining2012

modules provide flexible Multi-Modal Human-Robot

Interaction, and easiness of creating custom user tasks

through the use of the developed Web browsable

interface's Task Creator Wizard. As researchers, and as

implementers, we consider these developments have

proved useful in our strive to bring advanced robotics

closer to everyday domestic users.

The feedback received from the users has helped us

understand how to focus our current and future

research efforts, providing continuously improved

software revisions and devices for improved user

accessibility. In the line of the hardware developments,

we have opened a line of research for developing a user

accessible device that may be used as a substitute of the

Wii Remote controller. This device, of which we

already have a working prototype circuit, will be wrist

or head wearable. This links this part of our

developments more closely to the ASIBOT SULTAN

[17] concept and to aiding disabled and elderly people,

which has been the ASIBOT's main objective since its

origin.

7. Acknowledgment

The research leading to these results has received

funding from the COMANDER project CCG10-

UC3M/DPI-5350 granted by the Comunidad de Madrid

and UC3M and the ARCADIA project DPI2010-

21047-C02-01 granted by CICYT.

8. References

[1] A. Holzinger, “Finger instead of mouse: Touch screens as

a means of enhancing universal access”, in Universal Access

Theoretical Perspectives, Practice, and Experience, ser.

Lecture Notes in Computer Science, N. Carbonell and C.

Stephanidis, Eds. Springer Berlin / Heidelberg, 2003, vol.

2615, pp. 387–397.

[2] M. M. Burnett and C. Scaffidi, “End-user development”,

in Encyclopedia of Human-Computer Interaction, M.

Soegaard and R. F. Dam, Eds. Aarhus, Denmark: The

Interaction Design Foundation, 2011.

[3] J. Rode, M. Rosson, and M. Qui nones, “End user

development of web applications”, End User Development,

pp. 161–182, 2006.

[4] E. Guizzo and E. Ackerman, “The rise of the robot

worker”, Spectrum, IEEE, vol. 49, no. 10, pp. 34–41, 2012.

[5] L. Iocchi, J. Ruiz-del Solar, and T. van der Zant,

“Domestic service robots in the real world”, Journal of

Intelligent & Robotic Systems, vol. 66, pp. 183–186, 2012.

[6] M. Kim, K. Oh, J. Choi, J. Jung, and Y. Kim, “User-

centered hri: Hri research methodology for designers”, in

Mixed Reality and Human-Robot Interaction, ser. Intelligent

Systems, Control and Automation: Science and Engineering,

X. Wang, Ed. Springer Netherlands, 2011, vol. 1010, pp. 13–

33.

[7] A. Jardón, J. Victores, S. Martínez, A. Giménez, and C.

Balaguer, “Personal autonomy rehabilitation in home

environments by a portable assistive robot”, IEEE

Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, 2011.

[8] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-

lived robot genes”, Robotics and Autonomous Systems, vol.

56, no. 1, pp. 29–45, 2008.

[9] J. Victores, “Software engineering techniques applied to

assistive robotics: guidelines & tools”, Master’s thesis,

Universidad Carlos III de Madrid, Dpto. Ing. Sistemas y

Automatica, October 2010.

[10] R. Diankov, “Automated construction of robotic

manipulation programs”, Ph.D. dissertation, Carnegie Mellon

University, Robotics Institute, August 2010.

[11] G. Sally, “Creating a linux distribution from scratch”, in

Pro Linux Embedded Systems. Apress, 2010, pp. 107–141.

12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J.

Leibs, E. Berger, R. Wheeler, and A. Ng, “Ros: an open-

source robot operating system”, in ICRA Workshop on Open

Source Software, 2009.

[13] J. Garrett et al., “Ajax: A new approach to web

applications”, Adaptive path, vol. 18, 2005.

[14] S. Sampath and B. Bringert, “Speech input api

specification,” W3C Editor’s Draft 18 October 2010.

Available: http://www.w3.org/2005/Incubator/htmlspeech/

2010/10/google-api-draft.html

[15] ABB, “Rapid reference manual system data types and

routines on-line”, 2005, issue: For BaseWare OS 3.1, Article:

3HAC 0966-13.

[16] B. Siciliano, L. Sciavicco, and L. Villani, Robotics:

modelling, planning and control. Springer Verlag, 2009.

[17] C. Balaguer, A. Jardón, C. Monje, F. Bonsignorio, M.

Stoelen, S. Martínez, and J. Victores, “Sultan: Simultaneous

user learning and task execution, and its application in

assistive robotics”, in Workshop on New and Emerging

Technologies in Assistive Robotics IROS, 2011.

