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Abstract— Assistive robot manipulators aim to allow disabled
users to perform physical Daily Life Activities (DLA) safely and
effectively in environments with both unknown and dynamic
elements. Here the approach taken is to aid the user by means
of an adaptive shared control. A set of distributed collision and
proximity sensors is used to aid in limiting collisions during
direct control by the user. Artificial neural networks adapt the
use of the proximity sensors online, which limits movements
in the direction of an obstacle before a collision occurs. The
system learns by associating the different proximity sensors
to the collision sensors where collisions are detected. This
enables the user and the robot to adapt simultaneously and
in real-time, with the objective of converging on a usage of the
proximity sensors that increases performance for a given user,
robot implementation and task-set. The system was tested in a
controlled setting with a simulated 5 DOF assistive manipulator
and showed promising reductions in Mean Time (MT). It
extends earlier work by showing the approach can be applied
to full multi-link manipulators.

I. INTRODUCTION

Assistive manipulators aim to increase the level of in-
dependence of its users through aiding in physical Daily
Life Activities (DLA). One example is the commercial
Exact Dynamics iArm, see Fig. 1(a). Another is ASIBOT,
a 5 Degree Of Freedom (DOF) manipulator developed at
Universidad Carlos III de Madrid (UC3M) [1]. See Fig.
1(b). Assistive manipulators typically require operation in
close proximity to the disabled or elderly user and safety
is therefore critical. They also aim to perform tasks in real-
world unstructured environments such as a user’s home. For
a robot, autonomous or teleoperated by a potentially disabled
user, reliably performing such tasks remains a challenge. One
solution may be to enable both the user and the robot to
use their own sensing, control and planning capabilities in a
cooperative way. This is also known as shared control.

Vanacker et al. [2] presented a strategy for filtering the
commands coming from the disabled user of a wheelchair
using contextual information from sensor readings as well
as previous data from able-bodied users. A more recent
approach used plan recognition to obtain the probability of a
set of user plans, given a set of observed user commands [3].
Another approach for predicting the intent of a wheelchair
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(a) The iArm. (b) ASIBOT in the UC3M kitchen test bed.

Fig. 1. Example assistive manipulators.

user was shown in [4], where specific local models for
actions, for example moving towards a door, is used. There
is also considerable work on mobile robots that have an
adjustable degree of autonomy, for example by the user of
the robot. Here shared control is on the lower end of the
scale of potential autonomous modes. See for example [5].

For higher-DOF platforms like manipulators there is
less work available, although collaborative selection among
known objects in the environment shows promise [6]. Given
that accumulative errors around a few centimeters are likely
the maximum that can be tolerated for manipulation, it may
be beneficial to sample the state as directly as possible
with proximity sensing. Thus taking out model-related errors
and minimizing the information processing required. See
for example previous work by the authors on an adaptive
proximity-based collision-limitation behavior [7]. This is
here developed further and extended to a complete assistive
manipulator.

II. SYSTEM DESCRIPTION
A. Overview

The shared control described here uses a set of distributed
collision and proximity sensors to limit collisions during
direct control by the user. There are two principal con-
tributions. First, it can be applied on high-DOF assistive
manipulators sharing control with a user in a dynamic and
partially unstructured environment. Second, the implemented
system adapts the use of the proximity sensors online to a
given user disability and task-set through an unsupervised
Hebbian learning. This allows the robot and user to mutually
adapt to each other, giving the user continuous feedback on,
and the ability to respond to, changes in the system.

B. Proximity Sensing

Both ultrasonic and infrared proximity sensors are com-
mon in mobile robotics. The latter have also been previously



(a) For each robot link; n collision sensors (grid),
m proximity sensors (dotted lines).

(b) Example of existing
tactile sensors, from [8].

Fig. 2. Collision and proximity sensing assumed for approach.

Fig. 3. Collision sensors (black squares) and proximity sensors imple-
mented on the virtual ASIBOT manipulator. Simulated field of view shown
for each proximity sensor: Medium-range Sharp GP2D120 and short-range
Vishay TCND5000 as green and purple square pyramids, respectively.

used in full-body proximity sensing on robot manipulators
[9], and for grasping [10]. In general m infrared proximity
sensors and n discrete collision sensors are here assumed
for each link of the robot manipulator, see Fig. 2(a). Any
type of proximity sensor can be used however, even a mix of
different types for redundancy. The final implementation had
68 proximity sensors in total. See Fig. 3. 18 were simulated
as Vishay TCND5000 (maximum distance 50 mm). These
were all distributed over the end-effector. The remaining
sensors were simulated as Sharp GP2D120 (maximum dis-
tance 400 mm). All proximity sensors had a simulated 10 ◦

field of view, represented in the simulation by a square 6 by
6 array of point distance measurements. The lowest of the
36 point distance measurements was used at any time. The
voltage output of each proximity sensor, pj , was simulated
based on the distance measured, proxj , and the calibration
specifications of the different sensor types. See Fig. 4. That
is, the signal used by the neural network varied inversely to
the distance measured (in the nominal range of the sensor).

C. Collision Sensing

There is currently a large research effort focused on
developing tactile sensing for robots. See for example Fig.

(a) Sharp GP2D120. (b) Vishay TCND5000.

Fig. 4. Plots of simulated voltage output for proximity sensors used (pj ).
Gray line is output assumed, red triangles are calibration data points.

Fig. 5. Artificial neural network with discounted Hebbian learning for m
proximity sensors (dashed grey arrows are synapses), pj , and fixed weights
for n collision sensors (solid black arrows are synapses), ci.

2(b). For the simple collision sensing used here, the assumed
minimum spatial resolution of the tactile sensing was 20 mm,
which is well within the capability of the current state of the
art [11]. See Fig. 3. A discrete value was used to represent
the existence of a collision for each collision sensor. The
total number of individually distinguishable collision sensors
simulated for the manipulator was 229.

D. Adaptation of Proximity Sensor Usage

The addition of a collision-limitation behavior can poten-
tially affect negatively both the performance and satisfaction
of the user. It would therefore be beneficial for the system
to apply the minimum required amount of assistance for a
user’s abilities and disabilities, while maximizing the overall
performance. An adaptation of the use of the proximity
sensing to each user may help achieve this goal, which
should preferably be performed online to make sure the
user can keep up with, and respond to, the changes in the
system. Virtual proximity sensors with a known location and
pose are defined a priori (d̂k in Fig. 2(a)). Learning is then
used to relate the actual proximity sensors to these virtual
sensors. A Hebbian learning approach was chosen, inspired
by the Distributed Adaptive Control (DAC) paradigm for
autonomous robots [12]. See Fig. 5. Each collision sensor is
hardwired (weight initialized offline) to one virtual sensor,
and they were therefore here assumed to be collocated. The
activation of each of the neurons representing the virtual
sensors, ok, was made to vary linearly with the input to the
respective neuron, according to Equation (1).

ok =
n∑
i=1

wk,ici +
m∑
j=1

wk,jpj . (1)

The proximity sensors have full connectivity to the layer
representing the virtual sensors, and the weights (wk,j)
are updated using the discounted Hebbian learning rule in
Equation (2). Learning occurs whenever there is input from
a given collision and proximity sensor, while “forgetting”
(the discounting over time) occurs at all times. The relative
strength of these two processes are controlled with the learn-
ing rate η and discount rate ε, respectively. The parameter γ
can be used to control the rate of change of the weights in
general. The corresponding fixed weights and the parameters
η and ε are tuned to avoid learning with only proximity input.
See Fig. 6 for an example of the learned neural network
weights for one link.



(a) Neural network weights. (b) Corresponding visualization for v67.

Fig. 6. Example neural network weights for final link (participant 5 in
experiment). Visualization of weights for one virtual proximity sensor shown
(v67). Transparency of square pyramid representing the field of view of a
given physical proximity sensor is made to vary with the corresponding
weight connecting it to v67. High transparency indicates low weight.

∆wk,j =
γ

m
(ηokpj − εwk,j). (2)

E. The Proximity Ratio

Algorithm 1 shows the scheme used for calculating the
maximum proximity ratio for each link. Each virtual sensor
“reading” ~dk is given the magnitude of the inverse of
the respective output of the neural network ok. Then the
“reading” that has the largest ratio of the projection of the
commanded velocity and its own magnitude is used at each
instant. This ratio is here named the proximity ratio rk. The
constant ξvel is chosen to be small to avoid computational
issues if ok is zero. The proximity ratio can then be used
to limit velocities based on the virtual sensor “reading”
where a collision will likely occur, and where collisions
have occurred in the past (learned by the neural network).
A non-zero αproj means velocities in other directions are
also slowed down. The translational velocity of each virtual
sensor, ~vk, is deduced from the user’s commanded velocity
for the end-effector and the current kinematic pose of the
robot. This is further described in section II-F.

Algorithm 1 Maximum proximity ratio for a link, based
on the translational velocities of the virtual sensors, ~vk,
the outputs of the link-specific neural network, ok, and the
direction of the respective virtual sensors, d̂k.

for k = 1 to q do
~dk = 1

ok+ξvel
d̂k

projk = ~vk · d̂k
rk = αproj+βprojprojk

‖~dk‖
end for
rmax = max

k
(rk)

F. Full-Body Collision-Limitation

Fig. 7 shows the schema for the collision-limitation be-
havior for a complete multi-link manipulator. The received
velocities of the end-effector, ~vee, are here represented in the

robot base frame (b superscript). Using an iterative solver for
the inverse Jacobian, the corresponding joint velocities for
all joints are calculated. Then each link is treated separately.
Using the known kinematic structure of the robot and the
current joint angles, the translational velocities of each sensor
for each link is calculated. These are then used together with
the output of the link-specific neural network to produce
the maximum proximity ratio for that link, as described
in section II-E. The learning is thus spread over multiple
instances of neural networks, each running independently.
Finally, the original commanded end-effector velocities are
limited based on the maximum proximity ratio for the com-
plete manipulator. The output velocity, ~vee,out, is the user-
commanded velocity ~vee divided by this ratio. The behavior
will only activate if the ratio exceeds one. This enables the
limitation of velocity based on the learned virtual sensor
usage of the complete manipulator. Audio feedback was used
to help the user assess when the collision-limitation behavior
was acting. This consisted of simple tones being played with
breaks in between. The frequency of the alternation was
proportional to the current maximum proximity ratio, see
Fig. 7. The frequency of the tones was used to identify the
link, from low frequency at the base to high frequency at the
end-effector.

III. EXPERIMENT METHOD

A. Participants

8 able-bodied participants were used, all graduate and
under-graduate students at UC3M. There were 3 female and
5 male, all right-handed. 4 had previous experience with
3D input devices and 3 had previous experience controlling
robots. The mean age was 23.7, with a range from 19 to 40.
Each participant was paid e10 for participation.

B. Simulated Disability

As in previous work by the same authors [7], a noise
was added to the user input, according to Equation (3).
This was Gaussian noise, low-pass filtered at 2 Hz and
generated independently for each Cartesian component of
the noise vector (~z = [zx, zz, zpitch, zyaw]T ). The magnitude
of the translational velocities caused by the noise increased
proportional to the magnitude of the translational velocities
commanded by the user, with some noise existing also
when the user did not indicate movement (non-zero αnoise).
Similarly for the rotational velocities. See Fig. 8(b) for
example trajectories.

~vee = ~vinput + ~vnoise,

where :

~v = [~vtrans, ~vrot]T = [vx, vz, vpitch, vyaw]T ,
and :
~vnoise,trans = ~ztrans(αnoise + βnoise||~vinput,trans||),
~vnoise,rot = ~zrot(αnoise + βnoise||~vinput,rot||),
zx, zz, zpitch, zyaw ∼ N (0, σ2).

(3)



Fig. 7. The full-body collision limitation schema. The current joint angles are used in calculating the Jacobian, but are here omitted for clarity. The b
superscript is used to denote the robot base frame. Grey color indicates external modules.

This served as a crude estimation for the loss of control
caused by a physical impairment, and allowed for a homo-
geneous set of able-bodied participants. While real end-user
participants are needed to validate the clinical credibility of
any assistive technology [14], the use of simulated disabil-
ities can help drive the early development. For example a
random component being added to an able-bodied user’s
computer mouse movements [15]. Other exploratory works
in shared control have also used simulated disabilities, for
example the inability to move in a given direction [3]. A
velocity-dependent noise was here used, as it amplifies an
effect already seen in the speed-accuracy trade-off of many
human movements. That is, faster movements require greater
forces in the muscles, which again may introduce more ner-
vous system noise [16]. An increase in the signal-dependent
neuromotor noise has been related to stroke-related motor
deficiencies [17], and children with dystonia (movement
disorder that causes involuntary muscle contractions) [18].

C. Simulated Environment and Tasks

The simulated environment used in the experiment can
be seen in Fig. 8. The experiment was performed in the
OpenRAVE virtual environment [13], running at approx.
50 Hz. The ASIBOT robot was simulated to be attached
to the right-hand side of the user’s wheelchair. A view
from behind the simulated user was given, to simulate the
approximate size of the field of view that the participant
would have sitting in the wheelchair. Implementing the
system first in simulation provided a flexible and easily
controllable environment for including human trials actively
in the development process [7]. The tasks performed involved
moving the end-effector of the robot from an initial resting
position to a pre-grasp position around one of 5 simulated
cans in the virtual environment. See Fig. 8(a). For a given
trial the target can was red, while the remaining were blue.
A trial was automatically judged as completed when the two
fingers of the robot end-effector was positioned around the
thickest part of the can, stopped or with a small remaining

velocity magnitude. The participants controlled the Cartesian
x, z, pitch and yaw velocities of the robot end-effector,
in the end-effector local frame. The arm was reset to the
initial position if any part of the robot collided with the
environment, the physical model of the user, or any of the
target cans. The participant would then loose the time spent
up until the collision, as the timer kept running. For all
trials the participants were instructed to attempt to achieve
the lowest mean times possible, while keeping in mind that
collisions were costly in terms of time.

(a) Example translational trajecto-
ries. Partic. 6, shared control.

(b) Participant performing experiment
(with 3D effects activated).

Fig. 8. The experiment setup.

D. Physical Setup

The physical experiment setup can be seen in Fig. 8(b).
The input device was a SpaceNavigator 6 DOF joystick. The
simulation of the robot in the environment was displayed in
3D on a 40 inch (approx. 102 cm) display (Samsung 3D
TV, UE40D8000). The participants used active 3D glasses.
This gave some perception of the depth of the scene. On
a smaller display closer to the participant the end-effector
camera view was shown. See Fig. 12. The physical size of
the camera image was comparable to a commercial tablet
computer. A colored timer was also shown.

E. Procedure

The testing was performed over 2 days for each par-
ticipant, with multiple sessions each day. The total time
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(a) Average MT
over participants.

(b) Individual MT for each
participant.

(c) Average MT
learning curves.

Fig. 9. The Mean Time (MT) with and without (benchmark condition) the
shared control. Based on the two non-training sessions for each condition.

committed each day was about one hour per participant.
Each session consisted of 3 repetitions of each of the 5
tasks (5 target locations), for 15 trials in total. The first day
the participants were introduced to the experimental setup
and was given 3 sessions for training. This was followed
by 2 sessions for establishing a benchmark. The shared
control was not used. The second day the participants were
introduced to the shared control, and were first given a
maximum of 2 training sessions with the adaptive shared
control activated. That is, each participant was told to attempt
to achieve a comfortable level of assistance, and could decide
when the training should be ended. Then the adaptation
was disabled, and each participant was given 2 sessions to
establish the performance with the shared control, using the
previously learned neural network weights.

IV. RESULTS AND DISCUSSION

The overall results, expressed in Mean Time (MT), can
be seen in Fig. 9. There was a statistically significant
improvement in average MT over participants of 32.5% with
the shared control. A paired t-test was used, with t(7) = 3.96,
p = 0.005. This is comparable to previous work [7]. Fig.
9(b) shows the equivalent comparison for each participant.
While all participants had a reduction in the MT metric,
there were large individual differences in the amount of
reduction, ranging from 5.3% for participant 7 to 59.9% for
participant 5. It is interesting that both the fastest (participant
6) and the slowest (participant 3) for both conditions had
improvements of over 30%, given the very different abilities
of the two participants. That is, in under 20 minutes each
participant was able to “negotiate” a level of assistance that
at least did not inhibit the performance, and for most cases
seems to have improved the performance. See Fig. 10 for
examples of the development of the neural network weights
for the final link. A system with a static level of assistance
could easily become another obstacle to overcome for the
user. A corresponding visualization of the final usage of the
proximity sensors is given in Fig. 11. While participant 3
primarily received assistance when close to obstacles on the
left, participants 5 and 6 had a more symmetric usage of
the proximity sensors. The latter two participants also used
the in-hand sensors, which are useful for slowing the robot
down in the last moments of the tasks. An example of the
effect of the shared control on the end-effector velocities can
be seen in Fig. 12. Significant assistance is provided as the

participant is approaching the target can, by the limitation of
the commanded x and z velocities from 12 seconds onwards.
It can also be seen that the system allows the user to freely
perform gross movements when there is sufficient space (first
4 seconds here).

Fig. 10. Examples of the development of the neural network weights for the
final link. Mean weights for each proximity sensor of final link, normalized
with maximum over 3 participants: a) 3, b) 5 and c) 6.

Given the within-subject experiment design and steep
learning curve on the tasks performed, extensive practice was
needed before measuring performance. Fig. 9(c) shows that
the MT improved considerably during the first 2 sessions for
each condition and stabilized reasonably well for the last 2
sessions (in which performance was measured). Furthermore,
to avoid excessive fatigue in the participants the experiment
was spread over 2 days. There is extensive evidence of the
enhancing effect of sleep on motor sequence learning in
sequential finger tapping tasks. On tasks more similar to the
one used here, like pursuit tracking, there is less evidence of
a significant effect [19]. Future experiments should attempt
to minimize this risk by performing training, benchmarking
and shared control on separate days, with counterbalancing.

V. CONCLUSIONS AND FUTURE WORK

An adaptive collision-limitation behavior for assistive ma-
nipulators was developed. The approach has several inter-
esting features with respect to previous work in shared
control. It can be applied to high-DOF manipulator platforms
operating in environments where a set of sufficiently accurate
environment models and sensor to end-effector mappings are
difficult to obtain. In addition, the adaptation is performed

(a) Participant 3. (b) Participant 5. (c) Participant 6.

Fig. 11. Visualizations of the learned proximity sensor usage for the final
link. Transparency of square pyramid representing the field of view of a
given sensor is made to vary with the mean neural network weights for
sensor. High transparency indicates low usage, and vice versa.



Fig. 12. One attempt by participant 1 on task 3 with shared control. Cartesian x, z, pitch and yaw components of velocities (in end-effector frame)
shown, with time in seconds on the x-axis. A discrepancy between the input (~vuser) and the output (~vrobot) velocities of the shared control means
assistance is provided. Actual robot poses along trajectory shown, but the camera angle is altered for visualization. End-effector camera view shown in
inserts. Description of phases: 0-4 seconds: highly coordinated gross movement, 4-8 seconds: adjustment of pitch during forward movement, 8-12 seconds:
mainly yaw adjustments, 12-16 seconds: the final approach to the target.

online using an unsupervised Hebbian learning by associat-
ing a distributed set of proximity sensors with experienced
collisions. A controlled experiment with realistic simulations
of the tasks, sensors and the 5 DOF ASIBOT manipulator
showed promising results for 8 able-bodied participants with
simulated disabilities. Future work should aim to improve the
experimental paradigm used, and explore the application on
a larger set of tasks and to usage over a longer time-frame.
How well the learned neural network weights can generalize
to different tasks should also be investigated.
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“Benefits of Sleep in Motor Learning - Prospects and Limitations”,
Journal of Human Kinetics, vol. 20, pp. 23-35, 2008.


