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Abstract— The development of intelligent service robotic
systems is currently an active field of research in the robotics
community. For example assistive robots that can aid elderly
and disabled people in daily life activities. One emerging
requirement for this type of system is the inclusion of the
user in the decision process through physical and cognitive
collaboration. This human-in-the-loop (HIL) concept allows for
the use of the human perception and cognitive abilities in
order to safely achieve the tasks that would be too complex
to perform in a purely autonomous way. However, the overall
human-machine system is complex and may be difficult to
analyze. The user and the robot are operating in a closed
loop and both are potentially capable of adapting to the
other. The users may have a disparate set of noisy channels
available for communicating their intended commands to the
robot. The robots are typically dexterous and are expected to
operate in an unstructured environment. Metrics can help in
the analysis, development, and benchmarking of this type of
system, by quantifying performance and driving the mutual
learning and adaptation process. However, there are currently
few such metrics available. Information Theory and related
information-based concepts have been applied in disparate
fields such as communications, human factors, control theory
and cognitive processes. The work presented here attempts to
identify metrics based on these concepts for assistive human-
in-the-loop cognitive systems.

I. INTRODUCTION

Assistive robots are currently being developed to support
disabled and elderly people inside their own homes and in
other everyday environments. One example is the climbing
assistive robot ASIBOT, developed at Universidad Carlos
III de Madrid [1]. Several other assistive robot types exist,
ranging from static systems like HANDY 1 [2] to mobile
manipulators like KARES II [3].

Fig. 1 is a simplified model of the complete human-
machine system for this type of robots. As can be seen in the
figure, the model assumes that the user has some intentional
commands for the robot,h, that are actuated through a set
of input devices. The disabilities of the user are modeled as
sources of noise,z, which can be independent for each input
modality. The multimodal signals received by the cognitive
part of the machine, here denoted the enabling interface,d,
are thus noisy representations of the user’s true intention. The
goal of the enabling interface is to use these noisy signals
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Fig. 1. Simplified representation of the complete human-machine system.

and time copies thereof, together with information from the
context (e), to produce robot commands (m) that are as close
as possible to the user’s original intention. The user receives
noisy feedback about the state of the robot,x, closing the
loop. Feedback from the state of the input devices (visual
and/or proprioceptive) is omitted for clarity in Fig. 1. Both
the human and the machine are assumed to potentially be
able to perform some form of adaptation and learning.

(a) Open-loop control. (b) Closed-loop control.

(c) Sensor (S) and actuator (A) con-
stituting the controller (C).

Fig. 2. A control system as a directed acyclic graph.

One interesting approach to analyzing complex closed
loop systems like the one shown in Fig. 1 can be found in
[4]. This is based on representing a complete control system



as a directed acyclic graph of random variables, see Fig. 2,
and analyzing it using concepts from Information Theory [5].
The system includes the current stateX, with valuesx ∈ X ,
and the future stateX’. The random variable representing the
controller,C, then senses the current state (with sensorS) and
actuates to achieve the future state (with actuatorA) . This
can be represented by conditional probabilities,p(c|x) and
p(x′|x, c). These can be viewed as representing a sensor and
actuation channel, respectively. The authors were furtherable
to derive the conditions for observability, controllability, and
optimality using this method. Fig. 3 depicts our extension
of this method to the human-machine system, introduced in
[6].

(a) System att. (b) System att + 1.

Fig. 3. The human-machine system as a directed acyclic graph, shown for
two consecutive instances in time.

The controller C here includes both the user (more gener-
ally the Human,H) and the assistive robot (more generally
the Machine,M). The goal of the human-machine system in
the most general sense is then to maximize the flow of useful
information between the human and the machine over a
noisy medium. Thus, we are interested in the communication
channel existing between a sourceH and a receiverM ,
which will be denoted the “human-machine channel” in the
following discussion and which has channel capacityCHM .
The information available in the source can be represented
by the Shannon entropy of the random variable representing
the human, here denoted asS(H). The definition for entropy
used here is shown in (1).

S(X) = −
∑

x∈X

p(x) log p(x). (1)

In Information Theory terminology the stated goal is then
equivalent to transmitting this information over the human-
machine channel with a minimum of errors. Chan and
Childress [7] also applied information theory principles to
analyze the information transmission in the human-machine
system for tracking tasks. The analysis here differs in thatit
entails multimodality as well as learning, and is applied on
the directed acyclic graph representing the system.

More specifically, the goal of the human-machine system
can be defined as maximizing the flow of useful information
between the user and the assistive robot, given the user’s
physical disability. As can be seen in Fig. 3, the disability
is also here modeled as a source of noise,Z. The random
variable representing a given input device,D, will then

depend probabilistically on both the user’s true intentions,
H, and the noiseZ.

A model with a user both mentally and physically healthy
will not include this noise. Assuming that input devices with
sufficient performance are available to the user, we would
then haveS(H)h ≤ CHMh. The subscripth is used to denote
physically healthy here. As stated in the channel coding
theorem [5], there exists a coding system for this situation
such that the information from the source, the user’s intended
commands, can be transmitted with an arbitrarily low error.

The interpretation of a mentally healthy, but physically
disabled user attempting to control a complex system like an
assistive robot is then that of a source rich in information,but
acting over a human-machine channel with limited channel
capacity. We are assuming this user has no limitation in
his/her ability to imagine commands, thusS(H)d = S(H)h.
The subscriptd is used to denote physically disabled here.
The difference from the physically healthy user is then
the noise added in the human-machine channel, leading to
S(H)d > CHMd.

This analysis is of little practical use however, if these
quantities cannot be measured. The purpose of this article is
to identify information-based metrics for this purpose, and
attempt to apply these metrics to representative data. It is
hoped that these metrics may help drive the development of
assistive human-in-the-loop cognitive systems, by quantify-
ing performance and potentially motivating learning.

II. METRICS

A. “Empowerment”

One of the central concerns when designing a human-
machine interface is to ensure the user feels in control of
the machine. This is among other expressed in one of the
“eight golden rules” of user interface design for computers
[8], promoting that the interface should “support internal
locus of control.” In robotics, the term “mode confusion”
is sometimes applied, referring to the undesirable situation
that occurs when the system’s true state differs from what the
user predicts based on his/her mental model of the system.
Central to both these concepts is the relationship between
what the user inputs into the system, over his/her actuators,
and what the user perceives from the system, over his/her
sensors.

Klyubin, Polani and Nehaniv [9] proposed “empower-
ment” as a task-independent driving principle for sensorimo-
tor systems: “Empowerment quantifies the agent’spotential
ability to influence the environment as measured by the
capacity to “imprint” information onto the environment and
later perceive the information via the sensors”. Formally the
measure is defined as the mutual information across a finite
number of past actuations and the current sensor value of an
agent.

To investigate this and similar measures the experimental
setting seen in Fig. 4 was constructed. Here the system may
allow for multimodal input and the user is being given an
explicit desired state,Xd. Noise can be added to the input
devices if required. This could be seen as a crude disability



simulation, and is of interest for testing this type of systems
outside of clinical conditions during the development phase.
It could also facilitate more uniform subject pools for larger
experiments, although only as an approximation to the real
disabled users. For the purpose of this experiment the metric
“empowerment” was then measured across the desired state
(the position of a virtual object on a screen), and the actual
state of the system (the position of a user-controlled virtual
object). It was assumed that the user’s intention was to follow
the desired state as closely as possible. The one-step mutual
information was used, with “empowerment” being defined
asI(Xd; X).

Fig. 4. The experimental setting considered.

B. Predictive Information

Bialek, Nemenman and Tishby [10] proposed predictive
information, in the form of the mutual information between
the past and the future, as a general measure of complexity
of a time series. The measure can be said to quantify the
total information of past experience that can be used for
predicting future events, and has among other been applied
to the behavior of mobile robots in an unknown environment,
see [11]. Here the measure was found empirically to have
a maximum for a behavior which is both explorative and
sensitive to the environment. On the basis of this result, it
was proposed that predictive information could be a prospec-
tive candidate as an objective function for the autonomous
development of behaviors. This property may be of interest
also for the system considered here, with two agents capable
of adapting to each other. The predictive information of an
agent’s actuations should at least have some relation with
how random, or explorative, the agent’s behavior is. This
may be useful information for whoever is trying to cooperate
with this agent.

In experiments on human-human collaboration an increase
in the speed and accuracy of movements with respect to
when performing a task alone has been observed. This may
perhaps be interpreted as an unconscious strategy to make
the movements easily predictable by the other part [12],
and might also be a suitable strategy for a machine agent
cooperating with a human.

It is important to note that the measure uses only the time
series of actuations performed, and does not for example

require knowledge of the true intention of an agent’s be-
havior. This knowledge can be hard to obtain outside the
experimental setting. The one-step mutual information was
used, with predictive information being defined asI(X ; X ′).

C. Quantifying Coordination

Another quantity of interest in the system shown in Fig.
4 is the amount of coordination across input modalities. A
very general definition of modality is here used, including
different DOF for the same input device. Zhai and Milgram
[13] proposed “efficiency” as a measure for the coordination
involved in movements using input devices with N rotational
or translational DOF, based on comparing the actual trajec-
tory in N-dimensional space with the shortest possible. Here
we propose calculating the mutual information across two
modalities, for example two DOF, as an alternative metric for
quantifying coordination. The one-step mutual information
was used, withI(Di; Dj) as the metric for quantifying
coordination.

III. MATERIALS AND METHODS

A. Introduction

A pilot study was performed to explore the application
of the metrics defined on representative data. The metrics
are based on mutual information, which is calculated from
probabilities. This is typically estimated from the relative
frequency of events occurring, and thus requires a large
number of samples to be accurate. However, if the metrics
are to be applied to human-in-the-loop systems there are
limitations on the amount of data available, typically tens
to hundreds of repetitions, and minutes to hours of data
recorded at tens of Hz. This contrasts the typical applications
of information-based metrics so far, for example in motivat-
ing self-organizing behavior, where simulated environments
give the possibility of an nearly unlimited amount of samples.
A one degree-of-freedom (DOF) pursuit tracking task was
chosen, with simple constant-amplitude sinusoidal move-
ments of the target. The dependent variables were thus the
trajectories of the target and the users-controlled cursor. The
first independent variable was the frequency of oscillationof
the target, with four levels: 0.05, 0.2, 0.8 and 1.6 Hz. The
second independent variable was a noise added to the user’s
input, with two levels: with and without noise.

B. Subjects

The subjects were 3 male students of Universidad Carlos
III de Madrid. None of the subjects were involved in the
project related to this study. All subjects were right-handed
and were between 25 and 27 years old with a mean of 26
years. There was 1 subject with corrected vision, and 2 had
previous experience with 3D input devices. All gave their
informed consent to participate in the study.

C. Apparatus

The pilot study was conducted on a PC workstation in
an office environment, see Fig. 5. The participants worked
on a 19 inch (482.6 mm) widescreen external liquid crystal



display monitor (Asus VW195S) with a 60 Hz refresh rate.
The input device was a 3Dconexion SpaceNavigator joystick
with 6 DOF. The sensor of this system was held in the
participants dominant hand and measured one rotational
DOF, nominally the roll angle. The remaining DOF were
not physically obstructed, but did not impact the movement
of the cursor on the display. The subjects were performing
movements in a virtual environment based on the OpenRAVE
simulator [14], updating at approximately 50 Hz.

Fig. 5. The experiment setup.

D. Stimuli

The stimuli presented on the display can be seen in Fig.
6. The stimuli included a small, light-grey disc representing
the target and a larger dark-grey disc representing the user’s
cursor. The latter was allowed to be obscured by the target
disc, but was always visible due to the larger size. For half
of the trials noise was added to the user’s input. This was
an approximate white noise, low-pass filtered with a cut-off
frequency of 5 Hz.

Fig. 6. Representation of the experiment stimuli.

E. Procedure

Each subjects session lasted approximately 40 minutes,
starting with a thorough brief of the task procedures. Each
experiment included 8 different combinations of tracking
frequencies and noise added, each repeated 2 times for non-
training trials. All subjects were first given 2 minutes for
training to get acquainted with the task and the experimental
setup (0.2 Hz and no noise added to input). The participants
then performed the 16 attempts of one minute each, with
breaks in-between as needed.

F. Data Collection and Conditioning

The data recorded was the position of the target and the
user controlled cursor for each point in time, at 120 Hz. Thus
approximately 14400 data points were available from each
subject for each experiment condition. The data was then
normalized to between 0 and 100 and generally dicretized
to 50 states. The data discretization heuristic used was to
keep the number of bins for the state less than the number
of samples divided by 3. For these operations the Matlab
toolbox of Lungarella, Pegors, Bulwinkle and Sporns [15]
was used.

IV. RESULTS AND DISCUSSION

The metrics “empowerment” and predictive information
was applied to the data gathered from the pilot study, and
the results can be seen in Fig. 7 and Fig. 8, respectively.
All subjects seem to behave in a reasonably similar manner,
suggesting that the experiment design and protocol was
sufficient for the purposes of this study. As can be seen from
the figures, there was a reduction with higher frequencies of
movement for both metrics. This makes sense qualitatively,
as the subject struggles to keep up with the faster moving
target. It is also consistent with results form the literature
that shows an increase in mean square error with frequency,
see for example [16]. Furthermore, the results show a drop
in both metrics with noise added to the user’s input. This is
also to be expected, as the increased noise will reduce the
statistical relationship between the desired and actual state as
well as across past and current user input. As the frequency
of the target increases, the difference between the condition
with noise and the one without is reduced.

It is interesting to note that predictive information provides
similar results as “empowerment”, without knowledge of
the desired trajectory. As mentioned before, this makes
the metric easier to apply in non-experimental settings, for
example in assessing performance during usage by the end-
user. For both metrics similar developments were found
for different state discretization, although the actual values
increase with number of states.

Fig. 7. ”Empowerment” with varying target frequency and noise added to
user input.



Fig. 8. Predictive information with varying target frequency, as well as
with/without noise added to the user input.

To explore the utility of predictive information in online
applications, two subjects were asked to perform a simple
two-minute session after having completed the original pilot
study. The target was moving at 0.8 Hz and no noise was
added to the user’s input. For this test only, the mapping of
the deflections of the joystick to the movements of the cursor
on the display was altered. Where before pitch movements
were consistent with both direction and magnitude of the
movement of the cursor, the new mapping involved negative
yaw and a non-linear magnitude relationship. This caused
the device to became more sensitive with higher deflections.
The subjects were not informed of the exact mapping before
performing the test, only that the mapping had changed from
the previous study. The resulting trajectories can be seen in
Fig. 9. The subject numbers do not necessarily correspond
to that in the original pilot study.

As can be seen from the trajectories, subject 1 was able
to achieve reasonable tracking after about 40 seconds, while
subject 2 took less than 15 seconds. For the analysis of this
data the time was binned at approximately 10 Hz. The pre-
dictive information was then calculated over 60 overlapping
periods of 120 bins each, corresponding to about 12 seconds
of data per period. The state was here discretized to 25 bins.
As can be seen from the results in Fig. 10, the development
of the metric confirms the qualitative observation from the
trajectories made above. After discovering the approximate
mapping, each subject’s performance converges to more or
less the same level. Applied in this fashion the metric shows
promise as a candidate for motivating online adaptation to the
user, with values available on the order of tens of seconds.

The coordination across DOF was also investigated. For
this analysis, data from a previous study on applying Fitts’
law [17] to combined rotational and translational movements
was used. In this study subjects were asked to perform
movements that had both a 1 DOF rotational and a 1 DOF
translational magnitude and accuracy requirement, see Stoe-
len and Akin [18] for details. Each condition had a different
magnitude and accuracy requirement. The magnitudes ranged
from 4.8 to 12.7 cm for translations and 50 to 130 degrees for

(a) Subject 1.

(b) Subject 2.

Fig. 9. Trajectories of target (dotted cyan line) and user controlled cursor
(solid red line) when adapting to a new mapping from the inputdevice to
the cursor movements on the display.

Fig. 10. Predictive information (calculated over 12 secondperiods) after
a change in the mapping from the input device to the cursor movements on
the display.

rotations. The resulting 12 attempts for 1 out of 16 conditions
can be seen in Fig. 11, for three different subjects.

From the trajectories it can be seen that subject 1 and 2
performed the task in a relatively parallel fashion, timingthe
translational and rotational movement to start and finish at
approximately the same time. Subject 3 on the other hand,
did not begin the rotational movement until the translational
movement was more or less completed. This subject was the
only one among the 12 subjects used that did not perform the
task in paralell. It can also be seen that subject 1 performed
the task in a more coordinated fashion than subject 2, with



the trajectories varying little across attempts. The trajectories
shown are representative of the performance of the subjects
on the remaining 15 conditions.

(a) Subject 1.

(b) Subject 2.

(c) Subject 3.

Fig. 11. Example trajectories for 12 attempts on a given discrete task with
combined rotational and translational movement magnitudeand accuracy
requirements. Data from [18].

For each subject 192 sample trajectories were used, with
the magnitude of rotations and translations normalized based
on the requirements on magnitude for each task. The data
was discretized to 8 states. The corresponding mutual infor-
mation across rotational angle and translational positionwas
1.11, 0.56 and 0.34, respectively, for subject 1, 2 and 3. This

is an interesting result, as not only does the metric quantify
a difference in coordination for subjects that performed the
task in parallel and in a serial fashion, but it is also twice
as large for the more coordinated subject 1, as compared to
subject 2. Although the application here was on two DOF
from the same input device, it is not unlikely that the metric
could be used in a similar fashion for multimodal interfaces.
For example to quantify the ability of a user to effectively
coordinate two input devices to achieve a given goal.

V. FUTURE WORK

The study performed for this article was very limited
in its scope, both in terms of the number of subjects and
in the simplicity of the task performed. The future work
will therefore include more extensive controlled experiments,
where these weaknesses can be adressed. These experiments
should include a larger pool of subjects, should address the
stationarity of the data collected and include comparisons
with existing metrics for the tasks performed. In addition it
would be beneficial to begin to explore the application of
the metrics to more realistic situations. This could include
attempting to quantify the performance of users with real
disabilities, coordination of disparate input modalities, and
exploring the use in a system with mutual adaptation by the
human and the machine agent.
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