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Abstract-Continuous Goal Directed Actions (CGDA) is a 
robot learning framework that encodes actions as time series 
of object and environment scalar features. As the execution 
of actions is not encoded explicitly, robot joint trajectories 
are computed through Evolutionary Algorithms (EA), which 
require a large number of evaluations. The consequence is that 
evaluations are performed in a simulated environment, and the 
optimal robot trajectory computed is then transferred to the 
actual robot. This paper focuses on reducing the number of 
evaluations required for computing an optimal robot joint tra­
jectory. Particle Swarm Optimization (PSO) methods have been 
adapted to the CGDA framework to be studied and compared: 
naIve PSO, Adaptive Fuzzy Fitness Granulation PSO (AFFG­
PSO), and Fitness Inheritance PSO (FI-PSO). Experiments have 
been performed for two representative use cases within CGDA: 
the "wax" and the "painting" action. The experimental results 
of PSO methods are compared with those obtained with the 
Steady State Tournament used in the original proposal of CGDA. 
Conclusions extracted from these results depict a reduction of 
the number of required evaluations, with simultaneous tradeoff 
regarding the degree of fulfillment of the objective given by the 
optimization cost function. 

I. INTRODUCTION 

In robot imitation, robots learn actions from a set of user real 

world demonstrations. The selection of a model for the robot 

to internally represent a generalized action is a core decision, 

that greatly defines a framework's characteristics and possibil­

ities. Dilferent robot imitation frameworks have used ditlerent 

internal generalized models to represent real world actions. 

Programming by Demonstration (PbD) has used both Hidden 

Markov Models [1] and Gaussian Mixture Models [2] to 

encode actions as robot joint and Cartesian space trajectories. 

Dynamic Motion Primitives (DMP) encode actions as control 

laws that lead to Cartesian space trajectories [3]. Finally, 

Continuous Goal Directed Actions (CGDA) encodes actions 

as time series of object and environment scalar features, 

modelling the continuous changes upon the environment [4]. 
This way, in CGDA, an action is defined by the etlects that 

it produces in the environment, rather than the demonstrator 

action that made them occur during the demonstrations. One of 

the main advantages of CGDA is that actions are independent 

from robot or demonstrator kinematics, which means that their 

definition is independent from the differences between the 

structure and morphology of the demonstrator and the robot. 

Therefore, the correspondence problem, a common problem 

in PbD systems, is not present in CGDA. An action regarding 
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moving an object can be encoded using X,Y,Z coordinates of 

the object's centroid (action described by three scalar features). 

A wall painting action, however, can be represented using only 

the percentage of object or environment that has been painted 

(action described by a single scalar feature). The actual scalar 

features that are relevant for a specific action can be hand­

crafted, or may be automatically extracted using the CGDA 

demonstration and feature selection algorithm [5]. 
Since the execution of actions is not encoded explicitly 

in CGDA, robot joint trajectories are unknown. They are 

normally computed through Evolutionary Algorithms (EA), 

which require a large number of evaluations. These evaluations 

are extremely time consuming, and it becomes infeasible to 

perform them on an actual physical robotic platform. They are 

therefore performed in a simulated environment, and the final 

optimal computed robot joint trajectory is then transferred to 

the actual physical robot. The long-term goal within CGDA 

execution is to be able to perform all the evaluations directly 

on the physical robotic platform, which will be feasible when 

the number of evaluations required is sufficiently reduced. 

An overview of the CGDA framework will be given in 

section 11. Different approaches and methods that deal with 

reducing the number of required evaluations are studied in 

sections III and IV. Experiments and results will be presented 

in section V, leading to the final section of conclusions. 

11. THE CGDA FRAMEWORK 

As presented in [4], CGDA is a way to encode the effects 

of an action, when the action is demonstrated to a robot. 

The CGDA framework is used for generalizing, recognizing 

and executing actions by their etlects on the environment. A 

continuous analysis generates a trajectory in an-dimensional 

feature space, where n equals the number of tracked object 

scalar features. A simplified block diagram of CGDA frame­

work can be found on Fig. l. 

Fig. 1. Continuous Goal-Directed Actions (CGDA) framework diagram. 
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The process of generalizing consists on extracting a repre­

sentative n-dimensional feature trajectory of the task from sev­

eral repetitions. First, the demonstrated actions are discretized 

and normalized in time. Then, the generalized trajectory is 

obtained using a Radial Basis Function interpolation between 

time intervals of a fixed duration with the population of 

demonstrated actions. A generalization example can be seen 

in Fig. 2, extracted from [6]. 
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Fig. 2. Plot representing a three feature trajectory. Black lines are user action 
repetitions. The blue line is the generalization of all the repetitions. 

The generalized trajectory can be used as a tool to compare 

the action it represents with another action. The goal of the 

recognition step is to obtain a metric of the discrepancy 

between these actions. 

Recognition is performed using an intermediate result of 

the Dynamic Time Warping (DTW) algorithm. The DTW 

algorithm is usually used to optimally align two temporal 

sequences [7]. This is done by evaluating all pairs of points 

between the sequences. A cost matrix is obtained between 

the sequences using a norm such as L2. The path in the 

matrix with the lowest cost is the alignment that minimizes 

the discrepancy between the two sequences. 

In CGDA, this cost of alignment is the used DTW interme­

diate result. It describes the discrepancy between two actions 

if only a single feature was taken into account. The total 

recognized discrepancy between two actions is the sum of the 

costs of each individual feature. 

C. 

CGDA is considered as both a way to encode actions to 

be recognized, and to be executed by robots. However, since 

CGDA does not encode joint motor parameters, conventional 

methods can not be used for execution. Due to this fact, several 

strategies have been studied by the authors based on Evolu­

tionary Algorithms (EA), where the recognition discrepancy 

was used as the fitness. 

The currently most successful strategy is the Incrementally 

Evolved Trajectories (lET) [6] strategy. The idea behind lET 

is to perform an individual evolution over each of the time 

intervals of the feature trajectory. Then, the fitness of the 

new point is the fitness of evaluating the execution of the 

previous points (already evolved) and the new one (the one 

that is being evolved). The main advantage of using this 

method is that it reduces the search space of the problem by a 

coefficient of T, where T is the number of time intervals. This 

directly translates to an important reduction in the number of 

evaluations and therefore a speed-up of the system, which is 

one of the main concerns when working with EA. 

In the following sections, different methods that aim to 

reduce the number of evaluations needed for EA will be 

discussed. 

Ill. REDUCING THE NUMBER OF EVALUATIONS IN EA 

Reducing the number of evaluations is a challenge not only 

present in CGDA. It is an intrinsic problem related to working 

with Evolutionary Algorithms (EA). This kind of algorithms 

shines in situations where the problem to optimize is very com­

plex or not well defined. EA require performing a large number 

of iterations and evaluations, which has become possible with 

the emerge of more and more powerful computers. However, 

the problem of reducing the number of evaluations is still 

present in time sensitive scenarios, and in real world applica­

tions where performing hundreds or thousands of evaluations 

becomes unfeasible. Different approaches have been proposed 

for the reduction of the number of evaluations required for 

EA to converge. These approaches can be divided in three 

different groups [8]: 

Problem Approximation: These methods try to replace 

the original definition of the problem for a simplified 

version of the same problem. 

Functional Approximation: Here the cost function is 

approximated with a mathematical function that is sim­

pler to solve. An example is [9], where the objective of 

the authors was to increase the speed of a Differential 

evolution (DE) algorithm. With this in mind, a second 

order function approximation of the cost function was 

used, simplifying the problem function, and reducing the 

number of evaluations required. 

Evolutionary Approximation: In this case the EA is the 

one which is simplified in order to reduce the number of 

evaluations. There are two kinds of methods that can be 

included in this group: Fitness Inheritance (FI) [10] and 

Fitness Approximation (FA) [8]. 

In FI, for a proportion of random particles in each itera­

tion, the fitness value is calculated using an approximate 

fitness formula. This way, the number of evaluations 

needed is reduced by that proportion. FI is used in [ l l] for 

the optimization of chemotherapy dose schedules. This 

is a critical scenario where time is a key factor. Due to 

the complexity of the model (multiple drugs, schedules, 

effects ... ), and the large number of evaluations, this is 

usually a computation ally expensive problem. 
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On the other hand, in FA, fitness clusters are generated 

in the cost function. Then, new particles placed in the 

cluster take the fitness value of the cluster, without a need 

of evaluation. FA is used in [12] for bot evolution in 

the computer game Unreal Tournament 2004™. The goal 

here is to reduce the number of evaluations. The reason is 

because each evaluation requires simulation at playtime, 

so it is very costly. Fitness Fuzzy Approximation is used 

in [13], for reducing the number of evaluations required 

for optimizing a start-up phase of a combined cycle power 

plant. 

I V. PARTICLE SWARM OPTIMIZATION IN CGDA 

In the original proposal of the CGDA framework, a Steady 

State Tournament (SST) method was used for the execution 

of actions. In this paper, the implementation of the most 

promising state of the art Particle Swarm Optimization (PSO) 

methods for reducing the number of evaluations is presented 

and studied within the CGDA framework. 

The idea of PSO was first introduced by Kennedy [14]. The 

idea behind PSO was to create an optimization method based 

on social interactions, rather than individual behaviors. In this 

method, a particle population is placed in the search space of 

some function, and each individual particle is evaluated. Then, 

for every iteration, each particle moves to a ditlerent position, 

and then, is evaluated again. The movement of each particle is 

a function of combining the particle movement, and the best 

particle personal position, with the position of one or more 

members of the swarm [15]. 

The idea of AFFG was initially proposed in [16]. This 

method is part of the Fitness Approximation (FA) group. It is 

based on the idea of clustering the different individuals of the 

EA in granules. In this method, these granules correspond to 

Gaussian distributions. If a new individual is similar enough to 

an already known granule, it is assigned with the fitness of that 

granule and not evaluated. If this does not happen, the fitness 

of the new individual is normally evaluated, and a new granule 

is created. The experiments in [17], in certain problems, show 

that the number of evaluations was reduced by almost the 

90%, while reaching statistically similar performance in terms 

of fitness optimization. The integration of AFFG with PSO 

(AFFG-PSO) is not part of previous literature, but is an 

original contribution of this paper. 

C. 

Fitness Inheritance (FI) was initially proposed in [10] as 

a solution to the high computational cost of evaluating each 

individual of a population. The idea was to propose a method 

where a portion of the population is normally evaluated, while 

the fitness of the rest of the population is obtained as an 

approximation of their parent's fitness. 

In [18], the authors run a study about the feasibility and per­

formance of FI in a real world scenario. In these experiments 

they concluded that FI strategies only had good performance 

when evaluated in convex functions, while not being able to 

reach the optimal solution in non-convex ones. 

Later, in [19] the authors study the implementation of FI 

in a PSO algorithm (FI-PSO). However, the results here were 

quite ditlerent than the obtained in [18]. The FI-PSO algorithm 

was able to reach the optimal solution even in non-convex 

functions. In [20] they also proposed ditlerent modifications of 

the FI-PSO algorithm proposed in [19]. Here, a method based 

on the flight formula of PSO was the one which performed 

best. 

V. EXPERIMENTS AND RESULTS 

Four ditlerent methods have been used for the experiments 

of this paper: Steady State Tournament (SST) [21] (used in 

the original proposal of CGDA), naive PSO [14], a proposal 

of a modified version of PSO with Adaptive Fuzzy Fitness 

Granulation [17] (AFFG-PSO), and the Fitness Inheritance 

PSO (FI-PSO) algorithm as proposed in [20]. The algorithms 

have been adapted to the CGDA architecture, implemented 

and open-sourced1• 

From previous works with SST, a large number of evalu­

ations was expected for convergence of the algorithms. Ex­

periments were performed in a simulated environment using 

OpenRAVE [22]. The robotic platform used for the simulation 

was TE02, the humanoid robot from the Robotics Lab of 

Universidad Carlos III de Madrid [23]. For both experiments, 3 

of the 6 joints of the right arm were used, maintaining all other 

joints (including torso, legs and head) static. The experiments 

consisted on the executions of the "wax" (also known as 

"clean") and the "paint" actions using the lET strategy as 

proposed in [6]. 

The goal of the "wax" action is the movement of the object's 

centroid following a circumference of 30 cm of diameter for 

one revolution. The three scalar features tracked by the CGDA 

system in this action are the Cartesian's coordinates (X,Y,Z) 
of the object's centroid. While this setting of the "wax" action 

makes it equivalent to solving the inverse kinematics, its 

purpose is to demonstrate how the CGDA framework returns 

results within the expected ranges, despite it is agnostic with 

respect to the nature of the given scalar features. 

For all methods, the population of individuals (collections 

of 3 joint parameters) was set to 50. The termination condition 

for the system to converge was set to 3 consecutive generations 

without improvement of the found solution. Joint parameters 

movements were restricted between -15 and 100 degrees. For 

SST, the individual mutation probability was set to 60%. The 

PSO inertia weight was 1.2, and the maximum particle velocity 

was 5. The inheritance proportion of FI-PSO was set to 55%. 

The results of the experiments for the "wax" action are 

represented in Table I. The results presented are the average 

of running the "wax" action 50 times. 

https:llgithub.com/roboticslab-uc3m/xgnitive 
2Model available at https:llgithub.com/roboticslab-uc3m/teo-main 
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TABLE I 
EXPERIMENTAL RESULTS FOR THE "WAX" ACTION 

Method Evaluations Fitness (DTW discrepancy) 
SST 9679 274 
PSO 8470 213 

AFFG-PSO 5314 434 
FI-PSO 3432 362 

In Fig. 3, the cumulative number of evaluations needed at 

each time interval (set at I s) is represented. In Fig. 4 the 

generated trajectory for each of the methods is plotted and 

compared with the generalized one. 

Fig. 3. "Wax" experiment: Cumulative number of evaluations at each time 
interval (set at Is). 

The results from these experiments show how FI-PSO is the 

method that is capable of reducing the number of evaluations 

the most. Compared to the results obtained with the original 

SST approach, the number of evaluations is reduced by a 65%, 

while the error is increased by a 25%. 

The objective of the "paint" action is to have the robot to 

paint a wall. The only scalar feature tracked in this case is the 

percentage of the wall painted. Fig. 7 depicts an example of 

this action execution. 

For all methods, the population of individuals (collections of 

3 joint parameters) was set to 10. The termination conditions 

for the evolution process was to reach a zero error in the 

obtained trajectory, or to experience 10 followed generations 

without any improvement in the fitness value. This number 

of generations for the termination condition was increased 

with respect to the "wax" action, due to the expected faster 

convergence of the "paint" action. Joint parameters movements 

were restricted between -15 and 100 degrees. For SST, the 

individual mutation probability was set to 60%. The PSO 

inertia weight was 1.2, and the maximum particle velocity 

was 5. The inheritance proportion of FI-PSO was set to 55%. 

Fig. 4. Obtained trajectories for the "wax" action studied in this paper. The 
green line corresponds to the generalized trajectory. The methods used for 
each case are the following: A)SST, B)PSO, C)AFFG-PSO and D)FI-PSO. 
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The results obtained in the experiments are the ones rep­

resented in Table 11. The results presented are the average of 

running the "paint" action 100 times. 

TABLE II 
EXPERIMENTAL RESULTS FOR THE "PAINT" ACTION 

Method Evaluations Wall Painted (%) 
SST 539 94.4 
PSO 583 91.44 

AFFG-PSO 537 89.75 
FI-PSO 441 87.88 

In Fig. 5, the cumulative number of evaluations needed at 

each time interval (set at 1 s) is represented. Fig. 6 depicts a 

comparison between the feature trajectories obtained for each 

of the methods and the generalized one. 

Fig. 5. "Paint'" experiment: Cumulative number of evaluations at each time 
interval (set at Is). 

In this experiment, FI-PSO again required the least number 

of evaluations for the execution of the task. This method 

needed 17% less evaluations than in the case of using SST, 

with a tradeoff of an average of 7% less painted wall. 

VI. CONCLUSIONS 

The results obtained during the experiments show that FI­

PSO was the method that was able to reduce the most the 

number of evaluations for both of the actions, at the cost of 

introducing an error in the action performance. In the case of 

the "wax" action, this method was able to reduce by 65% the 

evaluations needed for the system, with a 24% error increment. 

In the "paint" scenario, a 17% reduction in the number of 

evaluations was achieved, with a tradeoff of a 7% less painted 

wall. 

In the case of AFFG-PSO, however, the results did not 

meet the expectations arisen from the related literature. In 

both experiments scenarios, the results were worse compared 

with the ones obtained with FI-PSO. In the authors' opinion, 

the reason of this worse performance was due to the high 
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Fig. 6. Obtained trajectories for the "paint" action studied in this paper. The 
straight line corresponds to the generalized trajectory. The methods used for 
each case are the following: SST, PSO, AFFG-PSO and FI-PSO. 
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Fig. 7. Execution of the "paint" action using Particle Swarm Optimization 
methods, performed by the humanoid robot TEO in the CGDA framework. 

dependence between its performance and the correct tuning of 

the internal parameters of the method, Some research should 

be done in this direction, since there is a lack of literature 

regarding the correct tuning of the AFFG methods, In this 

case, this is aggrieved by the fact that in lET, each time interval 

represents a different evolutionary problem, although the cost 

function remains the same, 

As a general conclusion extracted from this paper, the 

overall performance of both of these methods (AFFG-PSO and 

FI-PSO) is determined by the perfonnance of the original PSO 

method, This is clearly shown in the experiments performed 

in this paper, comparing the results obtained with the two 

actions proposed, In the "wax" action, the performance of 

the three PSO methods with respect to the SST approach 

were better than in the "paint" action, However, it can be 

said that the modified PSO methods studied in this paper both 

achieve an important reduction of the number of evaluations 

for both actions, A new range of possibilities are now open, 

and choosing one or another of the methods will depend on 

the particular circumstances of the problem, and the needed 

tradeoff between error and number of evaluations, 
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