
2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

Reducing the Number of Evaluations Required for CGDA Execution
through Particle Swarm Optimization Methods

Raul Fernandez-Fernandez, David Estevez, Juan G. Victores and Carlos Balaguer

Abstract-Continuous Goal Directed Actions (CGDA) is a
robot learning framework that encodes actions as time series
of object and environment scalar features. As the execution
of actions is not encoded explicitly, robot joint trajectories
are computed through Evolutionary Algorithms (EA), which
require a large number of evaluations. The consequence is that
evaluations are performed in a simulated environment, and the
optimal robot trajectory computed is then transferred to the
actual robot. This paper focuses on reducing the number of
evaluations required for computing an optimal robot joint tra­
jectory. Particle Swarm Optimization (PSO) methods have been
adapted to the CGDA framework to be studied and compared:
naIve PSO, Adaptive Fuzzy Fitness Granulation PSO (AFFG­
PSO), and Fitness Inheritance PSO (FI-PSO). Experiments have
been performed for two representative use cases within CGDA:
the "wax" and the "painting" action. The experimental results
of PSO methods are compared with those obtained with the
Steady State Tournament used in the original proposal of CGDA.
Conclusions extracted from these results depict a reduction of
the number of required evaluations, with simultaneous tradeoff
regarding the degree of fulfillment of the objective given by the
optimization cost function.

I. INTRODUCTION

In robot imitation, robots learn actions from a set of user real

world demonstrations. The selection of a model for the robot

to internally represent a generalized action is a core decision,

that greatly defines a framework's characteristics and possibil­

ities. Dilferent robot imitation frameworks have used ditlerent

internal generalized models to represent real world actions.

Programming by Demonstration (PbD) has used both Hidden

Markov Models [1] and Gaussian Mixture Models [2] to

encode actions as robot joint and Cartesian space trajectories.

Dynamic Motion Primitives (DMP) encode actions as control

laws that lead to Cartesian space trajectories [3]. Finally,

Continuous Goal Directed Actions (CGDA) encodes actions

as time series of object and environment scalar features,

modelling the continuous changes upon the environment [4].
This way, in CGDA, an action is defined by the etlects that

it produces in the environment, rather than the demonstrator

action that made them occur during the demonstrations. One of

the main advantages of CGDA is that actions are independent

from robot or demonstrator kinematics, which means that their

definition is independent from the differences between the

structure and morphology of the demonstrator and the robot.

Therefore, the correspondence problem, a common problem

in PbD systems, is not present in CGDA. An action regarding

All of the authors are members of the Robotics Lab research group within
the Department of Systems Engineering and Automation, Universidad Carlos
III de Madrid (UC3M). rauferna@ing.uc3m.es

978-1-5090-6234-8/17/$31.00 ©2017 IEEE

moving an object can be encoded using X,Y,Z coordinates of

the object's centroid (action described by three scalar features).

A wall painting action, however, can be represented using only

the percentage of object or environment that has been painted

(action described by a single scalar feature). The actual scalar

features that are relevant for a specific action can be hand­

crafted, or may be automatically extracted using the CGDA

demonstration and feature selection algorithm [5].
Since the execution of actions is not encoded explicitly

in CGDA, robot joint trajectories are unknown. They are

normally computed through Evolutionary Algorithms (EA),

which require a large number of evaluations. These evaluations

are extremely time consuming, and it becomes infeasible to

perform them on an actual physical robotic platform. They are

therefore performed in a simulated environment, and the final

optimal computed robot joint trajectory is then transferred to

the actual physical robot. The long-term goal within CGDA

execution is to be able to perform all the evaluations directly

on the physical robotic platform, which will be feasible when

the number of evaluations required is sufficiently reduced.

An overview of the CGDA framework will be given in

section 11. Different approaches and methods that deal with

reducing the number of required evaluations are studied in

sections III and IV. Experiments and results will be presented

in section V, leading to the final section of conclusions.

11. THE CGDA FRAMEWORK

As presented in [4], CGDA is a way to encode the effects

of an action, when the action is demonstrated to a robot.

The CGDA framework is used for generalizing, recognizing

and executing actions by their etlects on the environment. A

continuous analysis generates a trajectory in an-dimensional

feature space, where n equals the number of tracked object

scalar features. A simplified block diagram of CGDA frame­

work can be found on Fig. l.

Fig. 1. Continuous Goal-Directed Actions (CGDA) framework diagram.

978-1-5090-6234-8/17/$31.00 ©2017 IEEE 284

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

The process of generalizing consists on extracting a repre­

sentative n-dimensional feature trajectory of the task from sev­

eral repetitions. First, the demonstrated actions are discretized

and normalized in time. Then, the generalized trajectory is

obtained using a Radial Basis Function interpolation between

time intervals of a fixed duration with the population of

demonstrated actions. A generalization example can be seen

in Fig. 2, extracted from [6].

650 700 750
X [mm] 800 850

Repetitions
Generalized

10
5
0

} -5
,-10

E
E

N

150 100 50 �"\
-50�\� -100

Fig. 2. Plot representing a three feature trajectory. Black lines are user action
repetitions. The blue line is the generalization of all the repetitions.

The generalized trajectory can be used as a tool to compare

the action it represents with another action. The goal of the

recognition step is to obtain a metric of the discrepancy

between these actions.

Recognition is performed using an intermediate result of

the Dynamic Time Warping (DTW) algorithm. The DTW

algorithm is usually used to optimally align two temporal

sequences [7]. This is done by evaluating all pairs of points

between the sequences. A cost matrix is obtained between

the sequences using a norm such as L2. The path in the

matrix with the lowest cost is the alignment that minimizes

the discrepancy between the two sequences.

In CGDA, this cost of alignment is the used DTW interme­

diate result. It describes the discrepancy between two actions

if only a single feature was taken into account. The total

recognized discrepancy between two actions is the sum of the

costs of each individual feature.

C.

CGDA is considered as both a way to encode actions to

be recognized, and to be executed by robots. However, since

CGDA does not encode joint motor parameters, conventional

methods can not be used for execution. Due to this fact, several

strategies have been studied by the authors based on Evolu­

tionary Algorithms (EA), where the recognition discrepancy

was used as the fitness.

The currently most successful strategy is the Incrementally

Evolved Trajectories (lET) [6] strategy. The idea behind lET

is to perform an individual evolution over each of the time

intervals of the feature trajectory. Then, the fitness of the

new point is the fitness of evaluating the execution of the

previous points (already evolved) and the new one (the one

that is being evolved). The main advantage of using this

method is that it reduces the search space of the problem by a

coefficient of T, where T is the number of time intervals. This

directly translates to an important reduction in the number of

evaluations and therefore a speed-up of the system, which is

one of the main concerns when working with EA.

In the following sections, different methods that aim to

reduce the number of evaluations needed for EA will be

discussed.

Ill. REDUCING THE NUMBER OF EVALUATIONS IN EA

Reducing the number of evaluations is a challenge not only

present in CGDA. It is an intrinsic problem related to working

with Evolutionary Algorithms (EA). This kind of algorithms

shines in situations where the problem to optimize is very com­

plex or not well defined. EA require performing a large number

of iterations and evaluations, which has become possible with

the emerge of more and more powerful computers. However,

the problem of reducing the number of evaluations is still

present in time sensitive scenarios, and in real world applica­

tions where performing hundreds or thousands of evaluations

becomes unfeasible. Different approaches have been proposed

for the reduction of the number of evaluations required for

EA to converge. These approaches can be divided in three

different groups [8]:

Problem Approximation: These methods try to replace

the original definition of the problem for a simplified

version of the same problem.

Functional Approximation: Here the cost function is

approximated with a mathematical function that is sim­

pler to solve. An example is [9], where the objective of

the authors was to increase the speed of a Differential

evolution (DE) algorithm. With this in mind, a second

order function approximation of the cost function was

used, simplifying the problem function, and reducing the

number of evaluations required.

Evolutionary Approximation: In this case the EA is the

one which is simplified in order to reduce the number of

evaluations. There are two kinds of methods that can be

included in this group: Fitness Inheritance (FI) [10] and

Fitness Approximation (FA) [8].

In FI, for a proportion of random particles in each itera­

tion, the fitness value is calculated using an approximate

fitness formula. This way, the number of evaluations

needed is reduced by that proportion. FI is used in [l l] for

the optimization of chemotherapy dose schedules. This

is a critical scenario where time is a key factor. Due to

the complexity of the model (multiple drugs, schedules,

effects ...), and the large number of evaluations, this is

usually a computation ally expensive problem.

285

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

On the other hand, in FA, fitness clusters are generated

in the cost function. Then, new particles placed in the

cluster take the fitness value of the cluster, without a need

of evaluation. FA is used in [12] for bot evolution in

the computer game Unreal Tournament 2004™. The goal

here is to reduce the number of evaluations. The reason is

because each evaluation requires simulation at playtime,

so it is very costly. Fitness Fuzzy Approximation is used

in [13], for reducing the number of evaluations required

for optimizing a start-up phase of a combined cycle power

plant.

I V. PARTICLE SWARM OPTIMIZATION IN CGDA

In the original proposal of the CGDA framework, a Steady

State Tournament (SST) method was used for the execution

of actions. In this paper, the implementation of the most

promising state of the art Particle Swarm Optimization (PSO)

methods for reducing the number of evaluations is presented

and studied within the CGDA framework.

The idea of PSO was first introduced by Kennedy [14]. The

idea behind PSO was to create an optimization method based

on social interactions, rather than individual behaviors. In this

method, a particle population is placed in the search space of

some function, and each individual particle is evaluated. Then,

for every iteration, each particle moves to a ditlerent position,

and then, is evaluated again. The movement of each particle is

a function of combining the particle movement, and the best

particle personal position, with the position of one or more

members of the swarm [15].

The idea of AFFG was initially proposed in [16]. This

method is part of the Fitness Approximation (FA) group. It is

based on the idea of clustering the different individuals of the

EA in granules. In this method, these granules correspond to

Gaussian distributions. If a new individual is similar enough to

an already known granule, it is assigned with the fitness of that

granule and not evaluated. If this does not happen, the fitness

of the new individual is normally evaluated, and a new granule

is created. The experiments in [17], in certain problems, show

that the number of evaluations was reduced by almost the

90%, while reaching statistically similar performance in terms

of fitness optimization. The integration of AFFG with PSO

(AFFG-PSO) is not part of previous literature, but is an

original contribution of this paper.

C.

Fitness Inheritance (FI) was initially proposed in [10] as

a solution to the high computational cost of evaluating each

individual of a population. The idea was to propose a method

where a portion of the population is normally evaluated, while

the fitness of the rest of the population is obtained as an

approximation of their parent's fitness.

In [18], the authors run a study about the feasibility and per­

formance of FI in a real world scenario. In these experiments

they concluded that FI strategies only had good performance

when evaluated in convex functions, while not being able to

reach the optimal solution in non-convex ones.

Later, in [19] the authors study the implementation of FI

in a PSO algorithm (FI-PSO). However, the results here were

quite ditlerent than the obtained in [18]. The FI-PSO algorithm

was able to reach the optimal solution even in non-convex

functions. In [20] they also proposed ditlerent modifications of

the FI-PSO algorithm proposed in [19]. Here, a method based

on the flight formula of PSO was the one which performed

best.

V. EXPERIMENTS AND RESULTS

Four ditlerent methods have been used for the experiments

of this paper: Steady State Tournament (SST) [21] (used in

the original proposal of CGDA), naive PSO [14], a proposal

of a modified version of PSO with Adaptive Fuzzy Fitness

Granulation [17] (AFFG-PSO), and the Fitness Inheritance

PSO (FI-PSO) algorithm as proposed in [20]. The algorithms

have been adapted to the CGDA architecture, implemented

and open-sourced1•

From previous works with SST, a large number of evalu­

ations was expected for convergence of the algorithms. Ex­

periments were performed in a simulated environment using

OpenRAVE [22]. The robotic platform used for the simulation

was TE02, the humanoid robot from the Robotics Lab of

Universidad Carlos III de Madrid [23]. For both experiments, 3

of the 6 joints of the right arm were used, maintaining all other

joints (including torso, legs and head) static. The experiments

consisted on the executions of the "wax" (also known as

"clean") and the "paint" actions using the lET strategy as

proposed in [6].

The goal of the "wax" action is the movement of the object's

centroid following a circumference of 30 cm of diameter for

one revolution. The three scalar features tracked by the CGDA

system in this action are the Cartesian's coordinates (X,Y,Z)
of the object's centroid. While this setting of the "wax" action

makes it equivalent to solving the inverse kinematics, its

purpose is to demonstrate how the CGDA framework returns

results within the expected ranges, despite it is agnostic with

respect to the nature of the given scalar features.

For all methods, the population of individuals (collections

of 3 joint parameters) was set to 50. The termination condition

for the system to converge was set to 3 consecutive generations

without improvement of the found solution. Joint parameters

movements were restricted between -15 and 100 degrees. For

SST, the individual mutation probability was set to 60%. The

PSO inertia weight was 1.2, and the maximum particle velocity

was 5. The inheritance proportion of FI-PSO was set to 55%.

The results of the experiments for the "wax" action are

represented in Table I. The results presented are the average

of running the "wax" action 50 times.

https:llgithub.com/roboticslab-uc3m/xgnitive
2Model available at https:llgithub.com/roboticslab-uc3m/teo-main

286

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

TABLE I
EXPERIMENTAL RESULTS FOR THE "WAX" ACTION

Method Evaluations Fitness (DTW discrepancy)
SST 9679 274
PSO 8470 213

AFFG-PSO 5314 434
FI-PSO 3432 362

In Fig. 3, the cumulative number of evaluations needed at

each time interval (set at I s) is represented. In Fig. 4 the

generated trajectory for each of the methods is plotted and

compared with the generalized one.

Fig. 3. "Wax" experiment: Cumulative number of evaluations at each time
interval (set at Is).

The results from these experiments show how FI-PSO is the

method that is capable of reducing the number of evaluations

the most. Compared to the results obtained with the original

SST approach, the number of evaluations is reduced by a 65%,

while the error is increased by a 25%.

The objective of the "paint" action is to have the robot to

paint a wall. The only scalar feature tracked in this case is the

percentage of the wall painted. Fig. 7 depicts an example of

this action execution.

For all methods, the population of individuals (collections of

3 joint parameters) was set to 10. The termination conditions

for the evolution process was to reach a zero error in the

obtained trajectory, or to experience 10 followed generations

without any improvement in the fitness value. This number

of generations for the termination condition was increased

with respect to the "wax" action, due to the expected faster

convergence of the "paint" action. Joint parameters movements

were restricted between -15 and 100 degrees. For SST, the

individual mutation probability was set to 60%. The PSO

inertia weight was 1.2, and the maximum particle velocity

was 5. The inheritance proportion of FI-PSO was set to 55%.

Fig. 4. Obtained trajectories for the "wax" action studied in this paper. The
green line corresponds to the generalized trajectory. The methods used for
each case are the following: A)SST, B)PSO, C)AFFG-PSO and D)FI-PSO.

287

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

A)

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

B)

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

C)

X (mm)

650
600

550
500

450
400

Y (m
m)

200
250

300
350

400
450

500

Z
 (

m
m

)

180

200

220

240

260

280

300

320

D)

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

The results obtained in the experiments are the ones rep­

resented in Table 11. The results presented are the average of

running the "paint" action 100 times.

TABLE II
EXPERIMENTAL RESULTS FOR THE "PAINT" ACTION

Method Evaluations Wall Painted (%)
SST 539 94.4
PSO 583 91.44

AFFG-PSO 537 89.75
FI-PSO 441 87.88

In Fig. 5, the cumulative number of evaluations needed at

each time interval (set at 1 s) is represented. Fig. 6 depicts a

comparison between the feature trajectories obtained for each

of the methods and the generalized one.

Fig. 5. "Paint'" experiment: Cumulative number of evaluations at each time
interval (set at Is).

In this experiment, FI-PSO again required the least number

of evaluations for the execution of the task. This method

needed 17% less evaluations than in the case of using SST,

with a tradeoff of an average of 7% less painted wall.

VI. CONCLUSIONS

The results obtained during the experiments show that FI­

PSO was the method that was able to reduce the most the

number of evaluations for both of the actions, at the cost of

introducing an error in the action performance. In the case of

the "wax" action, this method was able to reduce by 65% the

evaluations needed for the system, with a 24% error increment.

In the "paint" scenario, a 17% reduction in the number of

evaluations was achieved, with a tradeoff of a 7% less painted

wall.

In the case of AFFG-PSO, however, the results did not

meet the expectations arisen from the related literature. In

both experiments scenarios, the results were worse compared

with the ones obtained with FI-PSO. In the authors' opinion,

the reason of this worse performance was due to the high

�
al
1:'

5:

SST Ex eriment

PSO Ex eriment

%��2�--4'---6C---�8--�1�0--�1�2��1�4--�1

%��2�--4�--6�--8��1�0--�1�2��1�4--�1

�F�I�-P� S�O�E� xLe= r� ime� n�t�------
�

�
al
1:'

5:

Fig. 6. Obtained trajectories for the "paint" action studied in this paper. The
straight line corresponds to the generalized trajectory. The methods used for
each case are the following: SST, PSO, AFFG-PSO and FI-PSO.

288

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

Fig. 7. Execution of the "paint" action using Particle Swarm Optimization
methods, performed by the humanoid robot TEO in the CGDA framework.

dependence between its performance and the correct tuning of

the internal parameters of the method, Some research should

be done in this direction, since there is a lack of literature

regarding the correct tuning of the AFFG methods, In this

case, this is aggrieved by the fact that in lET, each time interval

represents a different evolutionary problem, although the cost

function remains the same,

As a general conclusion extracted from this paper, the

overall performance of both of these methods (AFFG-PSO and

FI-PSO) is determined by the perfonnance of the original PSO

method, This is clearly shown in the experiments performed

in this paper, comparing the results obtained with the two

actions proposed, In the "wax" action, the performance of

the three PSO methods with respect to the SST approach

were better than in the "paint" action, However, it can be

said that the modified PSO methods studied in this paper both

achieve an important reduction of the number of evaluations

for both actions, A new range of possibilities are now open,

and choosing one or another of the methods will depend on

the particular circumstances of the problem, and the needed

tradeoff between error and number of evaluations,

VII, ACKNOWLEDGMENT

The research leading to these results has received funding

from the RoboCity2030-III-CM project (Robtica aplicada a

la mejora de la calidad de vida de los ciudadanos, fase Ill;

S2013/MIT-2748), funded by Programas de Actividades I+D

en la Comunidad de Madrid and cofunded by Structural Funds

of the EU, and by a FPU grant funded by Miniesterio de

Educaci6n, Cultura y deporte,

REFERENCES

[1] S. Calinon and A. Billard, "Recognition and Reproduction of Gestures
Using a Probabilistic Framework Combining PCA, ICA and HMM;'
in Proceedings of' the 22Nd International Conference on Machine

Learning, ser. ICML '05. New York, NY, USA: ACM, 2005, pp.
105-112.

[2] S. Calinon, F. Guenter, and A. Billard, "On Learning, Representing,
and Generalizing a Task in a Humanoid Robot," IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), voI. 37, no. 2, pp.
286-298, Apr. 2007.

[3] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
"Dynamical movement primitives: learning attractor models for motor
behaviors," Neural Computation, voI. 25, no. 2, pp. 328-373, Feb. 2013.

[4] S. Morante, J. G. Victores, A. Jard6n, and C. Balaguer, "Action ef­
fect generalization, recognition and execution through continuous goal­
directed actions," in 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 1822-1827.

[5] S. Morante, J. G. Victores, and C. Balaguer, "Automatic demonstration
and feature selection for robot learning," in 2015 IEEE-RAS 15th

International Conf'erence on Humanoid Robots (Humanoids). IEEE,
Nov. 2015, pp. 428-433.

[6] S. Morante, J. G. Victores, A. Jardn, and C. Balaguer, "Humanoid
robot imitation through continuous goal-directed actions: an evolutionary
approach," Advanced Robotics, voI. 29, no. 5, pp. 303-314, 2015.

[7] M. MUlier, Dynamic Time Warping. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 69-84.

[8] Y. Jin, "A comprehensive survey of fitness approximation in evolutionary
computation," Soft Computing, voI. 9, no. I, pp. 3-12, 2003.

[9] L. Vincenzi and M. Savoia, "Improving the speed performance of an
Evolutionary Algorithm by a second-order cost function approximation,"
Proceedings of 2nd International Conference on Engineering Optimiza­
tion, Sep. 2010.

[10] R. E. Smith, B. A. Dike, and S. A. Stegmann, "Fitness inheritance in
genetic algorithms," in Proceedings of' the 1995 ACM Symposium on

Applied Computing, ser. SAC '95. ACM, 1995, pp. 345-350.
[11] R. Barbour, D. Corne, and J. McCall, "Accelerated optimisation

of chemotherapy dose schedules using fitness inheritance," in IEEE
Congress on Evolutionary Computation, 2010, pp. 1-8.

[12] A. I. Esparcia-A1czar and J. Moravec, "Fitness approximation for bot
evolution in genetic programming," Soft Computing, vo!. 17, no. 8, pp.
1479-1487, Dec. 2012.

[13] I. Bertini, M. De Felice, A. Pannicelli, and S. Pizzuti, "Soft computing
based optimization of combined cycled power plant start-up operation
with fitness approximation methods;' Applied Soft Computing, voI. 11,
no. 6, pp. 4110--4116, Sep. 2011.

[14] J. Kennedy and R. Eberhart, "Particle swarm optimization," in, IEEE

International Conference on Neural Networks, 1995. Proceedings, voI. 4,
1995, pp. 1942-1948 vol.4.

[15] R. Poli, J. Kennedy, and T. Blackwell, "Particle swarm optimization,"
Swarm Intelligence, voI. I, no. I, pp. 33-57, 2007.

[16] M. Davarynejad, M. R. Akbarzadeh-T, and N. Pariz, "A novel general
framework for evolutionary optimization: Adaptive fuzzy fitness gran­
ulation," in 2007 IEEE Congress on Evolutionary Computation, 2007,
pp. 951-956.

[17] M. R. Akbarzadeh-T, M. Davarynejad, and N. Pariz, "Adaptive fuzzy
fitness granulation for evolutionary optimization;' International Journal

of'Approximate Reasoning, vo!. 49, no. 3, pp. 523-538, 2008.
[18] E. Ducheyne, B. D. Baets, and R. D. Wulf, "Is fitness inheritance

useful for real-world applicationsT in Evolutionary Multi-Criterion

Optimization, ser. Lecture Notes in Computer Science, C. M. Fonseca,
P. J. Fleming, E. Zitzler, L. Thiele, and K. Deb, Eds. Springer Berlin
Heidelberg, 2003, no. 2632, pp. 31-42.

[19] M. Reyes-Sierra and C. A. C. Coello, "Fitness inheritance in multi­
objective particle swarm optimization," in Proceedings 2005 IEEE

Swarm Intelligence Symposium, 2005. SIS 2005., 2005, pp. 116-123.
[20] , "A study of fitness inheritance and approximation techniques for

multi-objective particle swarm optimization," in 2005 IEEE Congress

on Evolutionary Computation, vo!. I, 2005, pp. 65-72 YoU.
[21] G. Syswerda, "A study of reproduction in generational and steady-state

genetic algorithms," in Foundations of Genetic Algorithms. Elsevier,
1991, vo!. I, pp. 94-101.

[22] R. Diankov, "Automated construction of robotic manipulation pro­
grams," Ph.D. dissertation, Carnegie Mellon University, Robotics In­
stitute, August 2010.

[23] S. Martinez, C. A. Monje, A. Jard6n, P. Pierro, C. Balaguer, and
D. Munoz, "Teo: Full-size humanoid robot design powered by a fuel
cell system;' Cybernetics and Systems, vo!. 43, no. 3, pp. 163-180,
2012.

289

