1. Introduction

The objective of a path planner for a mobile robot operating in environ-
ments with unknown obstacles (dynamic or not), is to calculate collision-free
trajectories.

The research carried out in this paper has mainly been inspired by the
project Robauco [1], whose main objective is the development of technolo-
gies for obtaining mobile robots capable of complex tasks that demand a high
degree of autonomy and capacity of collaboration in the presence of human
beings. One of the main applications of our work is the use of mobile robots
in dangerous missions where the environment can be risky for humans (e.g.,
rescue missions, etc.). In this case, an unmanned autonomous vehicle (UAV)
is sent in advance to obtain the images of the outdoor environment. Us-
ing the motion planning method proposed, the best trajectory to reach the
goal is obtained over these images, and this trajectory is sent to the mobile
robot. Since the UAV takes images consecutively, in case of changes in the
environment, the path can be recalculated using the same method.

Fast Marching (FM) techniques have been used directly in Path Planning
methods to calculate trajectories from one point to another. Nevertheless,
following this strategy, the generated trajectories are not guaranteed to be
safe and smooth. As explained in [2], the shortest geometrical path obtained
can be unsafe, since it can touch the corners, walls, and obstacles, as shown
in Figure 1.

Figure 1: Trajectory calculated by the Fast Marching method directly.

Moreover, in most works, these methods are used in 2D environments

(indoor environments), whilst the method presented here adds another di-
mension to the problem (outdoor environments).

The new method proposed in this paper consists of several phases. First,
as previously introduced, a 2% or 3D image of the surface is needed. Then,
a triangular mesh is constructed over the image, which allows us to generate
realistic surfaces due to the capabilities of the triangles to fit the character-
istics of the map better. Once the grid is constructed, the method extracts
some information from the environment to obtain the height and to calculate
the gradient and the spherical variance, which gives information about the
roughness of the surface. Then, it combines these data with the robot limita-
tions to generate a weight matrix W. This matrix can be view as a difficulty
or viscosity map which is situated on the 3D surface. Once the matrix is
ready, the method applies the FM algorithm over this modified surface (the
grid + matrix W) to generate the path.

If matrix W is not used, the trajectory obtained will be just the geodesic
distance, i.e., the length of the shortest path between the two points. Ap-
plying matrix W, the proposed method gives a path which considers the
features of the surface and the limitations of the robot. Moreover, it also
gives us information about the speed of the robot based on the FM wave
propagation speed [2, 3].

The results presented are carried out in the context of the project Robauco,
that is, it is assumed that the images used are taken in advance by a UAV.
First, the algorithm is used to calculate different paths, for one robot on
earth, by varying the ponder factors of the W matrix. The fast execution
of this method allows the updating of the given path as the images of the
environment are updated. Therefore, this could be considered as an on-line
path planning method. Secondly, this algorithm is also applied for avoidance
collision in case of two robots approaching. In both approaches, we prove
that, using the proposed method, it is possible to generate smooth and safe
plans in outdoor environments.

The remainder of the paper is organized as follows. In section 2, a brief
summary of other works related to grid-based methods and path planning
methods on outdoor environments is presented. Next, section 3 introduces
an explanation about the FM method and how this algorithm can be im-
plemented on orthogonal and triangulated meshes. The following section,
section 4, introduces the viscosity matrix W and how it is formed. Section 5
presents some results obtained by simulation. Finally, the main conclusions
of this paper are summarized in section 6.

2. Related work

To solve the motion planning problem it is necessary to make use of
an appropriate representation of the environment on which to implement
effective planning algorithms. This section presents a brief review of grid-
based planning methods, since the approach presented in this paper uses that
type of environment representation.

2.1. Grid-Based Methods

In the navigation of mobile robots, many methods are based on a grid-
based representation of the environment. In these methods each cell has a
binary representation (occupied or free) or an associated weight that repre-
sents the difficulty of traversing that area.

This grid is usually approximated by a graph, with the nodes situated in
the center of each cell. Many algorithms have been developed to find a path
in the graph.

Grid- or graph-based methods, such as Dijkstra’s or Ax, calculate a navi-
gation function constrained to movement choices along graph edges that are
neither optimal for execution nor an exact solution. The well-known Dijk-
stra’s algorithm computes the optimal path between a single source point to
any other point in the graph. This algorithm is indeed efficient, but suffers
from metrication errors [4]. Ax uses a heuristic to focus the search from a par-
ticular start location towards the goal and thus produces a path from a single
location to the goal very efficiently [5]. Dx*, Incremental Ax, and Dx Lite are
extensions of Ax that incrementally repair solution paths when changes occur
in the underlying graph [6]. These incremental algorithms have been used
extensively in robotics for mobile robot navigation in unknown or dynamic
environments. To reduce the computation time [7| suboptimal variants of
the search algorithms have been used, updating existing solutions efficiently
when new information is received [6], [8] to use this type of approach in
dynamic environments.

The graph-based algorithms consider the image as an oriented graph in
which a pixel is a node, and the 4 (or 8) connections to the neighboring
pixels are the vertices of the graph. These methods can not converge to the
solution of a continuous problem. Even for very fine grids, the paths restrict
the agent’s heading to increments of 7/2 or m/4 . This results in paths that
are suboptimal in length and difficult to traverse in practice. Frequently, a
smoothing step is performed after planning to alleviate this problem, which

yields to unsatisfactory results because it only locally solves the discrete na-
ture of the problem. The different metrics used lead to very different results.
Various efforts have been made to overcome these shortcomings, including
increasing the available headings or approximating continuous paths (see [9]
and [10]).

Our approach addresses this problem using the FM method. The FM
method uses the L2 metric, instead of the L1 (Manhattan) of Dijkstra sim-
ilar methods, and it makes an intrinsic interpolation that allows us to solve
efficiently the continuous light propagation equation (the Eikonal equation)
to calculate the shortest path, as shown in Figure 2. In other words, although
the FM method uses data obtained from a discrete grid, it just solves the
continuous light propagation equation and, therefore, the solution is also a
continuous function.

FIXISH
L

Figure 2: Dijkstra’s method gives multiple short paths (left image), whilst the Fast March-
ing method gives the optimal diagonal path (right image).

2.2. Nawvigation in outdoor environments

The aim of the research presented in this paper focuses on outdoor envi-
ronments. This section summarizes motion planning algorithms that can be
applied outdoors.

In 1991, Mitchell and Papadimitriou [11] proposed an algorithm for de-
termining the shortest path between a source and a destination through a
planar subdivision in which each region had an associated weight. Distances
were measured according to a weighted Euclidean metric: each region of the
subdivision had a weight associated with it, and the weighted distance be-
tween two points in a convex region was the product of the corresponding
weight and the Euclidean distance between them. In that paper, the total
length of a path is defined to be the weighted sum of (Euclidean) lengths of

4

the subpaths within each region, and the continuous Dijkstra algorithm is
used for path planning. The paper gives interesting proofs, but it is mainly
theoretical and no experimental results are presented.

Instead of considering a continuous environment, some works propose the
use of a discretization algorithm before the path planning. Guo et al. [12],
for example, use a regular grid and the A* algorithm in simulations. Another
approach, see [13], uses a framed quadtree and the D* algorithm for path
planning. In addition to decomposing the environment, the path planning
needs a cost metric for each region.

For indoor navigation, other vector field approaches that are able to com-
pute continuous fields on a discrete environment have been proposed (Conner
et al. [14] in 2003 and Lindemann and LaValle [15] in 2005). All of them
could, at first, be adapted to allow outdoor navigation as proposed in this
paper. However, the main motivation for seeking a new methodology, that in
the end became simpler and computationally more efficient than the previous
ones, was the necessity to directly and automatically incorporate some prop-
erties of the terrain into the computation, thus generating bounded speed
profiles for the robot.

In our paper, we are particularly interested in using the terrain rough-
ness, the gradient, and the height as a metric. Similarly to other outdoor
navigation works, our approach decomposes the environment into a triangu-
lar grid well adapted to the characteristics of the terrain. The environment
is decomposed using the Constrained Delaunay Triangulation (CDT) and
then the number of faces is reduced while attempting to preserve the overall
shape of the original surface. An important advantage of CDT over regular
grid and quadtree representations is that it usually generates a much smaller
number of cells when representing complex structures, typical of outdoor
environments.

Among all the previous works, our work is closely related to Guo et al.
[12], in 2003, Yahja et al. [13], in 2000, and Mitchell [11], in 1991, but
with important differences. First, similarly to Guo et al. [12], our method
computes cost values for each cell of a decomposed map, but our method uses
a continuous version of Dijkstra’s method and solves the partial differential
equation of the light (Eikonal equation). Second, we work with continuous
maps like in Mitchell [11], and our path is obtained on them. Only the initial
data are given on discrete maps. However, instead of regular or quadtree
decomposition, we decompose the environment using CDT [16]. Similar to
quadtree, CDT is a non-uniform decomposition that yields in high resolution

cells in the complex regions of the environment. An important advantage of
CDT over the quadtree representation is the smaller number of cells when
representing non-poligonal, high complex structures, common in outdoors
environments.

3. The Eikonal Equation and the Fast Marching Planning Method

In robotics, the path planner of the mobile robot must drive it in a smooth
and safe way to the goal point. In nature, there are phenomena with the
same way of working: electromagnetic waves. If at the goal point there is
an antenna that emits an electromagnetic wave, then the robot could drive
himself to the destination following the waves to the source. The concept of
the electromagnetic wave is especially interesting because the potential have
all the good properties desired for the trajectory, such as smoothness (that
is, C°°) and the absence of local minima.

The moving boundary of a disturbance is called a wave front, and it
can be described by the Eikonal equation [17]. The Eikonal (from the Greek
‘eikon’, which means ‘image’) is the phase function in a situation for which the
phase and amplitude are slowly varying functions of the position. Constant
values of the Eikonal represent surfaces of constant phase, or wave fronts.
The normals to these surfaces are rays (the paths of energy flux); thus, the
Eikonal equation provides a method for “ray tracing” in a medium of slowly
varying index of refraction (or the equivalent for other kinds of waves).

One way to characterize the position of a front in expansion is to compute
the time of arrival T, in which the front reaches each point of the underlying
mathematical space of the interface. It is evident that, for one dimension,
we can obtain the equation of the arrival function T in an easy way, simply
considering the fact that the distance 6 is the product of the speed F' and
the time T'.

0=F-T (1)
The spatial derivative of the solution function becomes the gradient
drT
1=F— 2
pT] (2)

and therefore, the magnitude of the gradient of the arrival function 7(0) is
inversely proportional to the speed:

1
- =|VT] 3)

6

For multiple dimensions, the same concept is valid because the gradient
is orthogonal to the level sets of the arrival function 7'(f). In this way, we
can characterize the movement of the front as the solution of a boundary
conditions problem. If speed F depends only on the position, then equation
(3) can be reformulated as the Eikonal equation:

IVT| F = 1. (4)

The FM method is a numerical algorithm for solving the Eikonal equation,
originally on a rectangular orthogonal mesh introduced by Sethian in 1996
[18]. The FM method is an O(n) algorithm, as demonstrated in [19], where
n is the total number of grid points. The scheme relies on an upwind finite
difference approximation to the gradient and a resulting causality relationship
that lends itself to a Dijkstra-like programming approach.

The FM methods are designed for problems in which the speed func-
tion never changes sign, and so the front is always moving forward or back-
ward (there are no reflections, interferences, or diffractions). This allows us
to transform the problem into a stationary formulation, because the front
crosses each grid point only once. This conversion to a stationary formula-
tion, in addition to a whole set of numerical tricks, gives it its tremendous
speed.

Since its introduction, the FM approach has been successfully applied to a
wide variety of problems that arise in geometry, mechanics, computer vision,
and manufacturing processes (see [20] for details). Numerous advances have
been made to the original technique, including the adaptive narrow band
methodology [21] and the FM method for solving the static Eikonal equation
[18]. See [20] for further details and summaries of level set and FM techniques
for numerical purposes.

3.1. Algorithm Implementation on an orthogonal mesh

The FM method applies to phenomena that can be described as a wave
front propagating normal to itself with a speed function F' = F(i,j). The
main idea is to methodically construct the solution using only upwind values
(the so called entropy condition). Let T(i,j) be the solution surface T'(i, j)
at which the curve crosses the point (i, 7); then, it satisfies |VT|F = 1, the
Eikonal equation.

This equation is applied to grid points, which are classified into three
different types: alive, trial, and far, see Figure 3.

e Alive Points (blue points) are points where values of T are known.

e Trial Points (gray points) are points around the curve (alive points)
where the propagation must be computed. The set of trial points is
called narrow band. To compute the propagation, points in the narrow
band are updated to alive points, while the narrow band advances.

e Far Away Points (white points) are points where the propagation was
not computed yet. During the propagation, far away points are con-
verted to trial points.

Figure 3: Scheme of Fast Marching propagation.

It is important to observe that the propagation occurs from smaller to
greater values of T. Figure 3 explain this idea: the blue point (alive) repre-
sents the initial curve; in figure 3b, the value of T is computed in the neigh-
borhood of the blue point; this neighborhood is converted from far away
(white) to trial points (gray); in figure 3c, the trial point with the smallest
value of T is chosen (for example, "A"); in figure 3d, the values of T are com-
puted in the neighbors of point A, converting them from far away to trial

8

points. In figure 3e, the trial point with the smallest value of T is chosen (for
example, "D"); in figure 3f, the neighbors of D are converted from far away
to trial points. And so on.

3.2. Algorithm implementation on a triangulated mesh

As previously stated, since the work presented in this paper focuses on
outdoor environments, the FM method is going to be applied on a triangu-
lated mesh instead of on an orthogonal one. Sethian in several works [20] [22]
extended the method to triangulated domains with the same computational
complexity.

4. Matrix W : the viscosity map

As stated in section 1, the direct application of the FM method still
has some problems. The most important one that typically arises in mobile
robotics is that optimal motion plans may bring robots too close to obstacles,
which is not safe.

In our approach, this problem has been solved in the same way as nature
does: the electromagnetic waves, as light, have a propagation speed that de-
pends on the media, that is the slowness index of the front wave propagation
of a medium. In our case, the refraction index is defined by the viscosity
map.

The proposed technique is based on the FM method, changing the speed
of the wave front using a potential surface generated from the 3D environment
characteristics and the robot limitations. By doing so, the method changes
the time when the front reaches each point and when the generated trajectory
is calculated. This trajectory is not going to be the simple geodesic, but
it is going to be modified according to the robot and task needs. To be
able to modify this speed, the proposed method creates a weight matrix
W, which is currently built based on three main characteristics of the 3D
surface: the spherical variance, the saturated gradient, and the height. Some
other characteristics can be added to the method and it will build a different
potential surface.

4.1. Spherical variance

The spherical variance [23] consists of finding the roughness of a surface
to determine whether it is crossable or not. In [24] a method to calculate the
roughness degree is presented. This method is based on the normal vector

deviation in each point of the surface. The spherical variance is obtained
from the orientation variation of the normal vector in each point. The study
uses the following reasoning:

e In a uniform terrain (low roughness), the normal vectors in a surface
will be approximately parallel and, for this reason, they will present a
low dispersion (see Figure 4, left).

e On the other hand, in an uneven terrain (high roughness) the normal
vectors will present great dispersion due to changes in their orientation
(see Figure 4, right).

ST

\ /

Figure 4: Spherical variance analysis. Left: A uniform surface shows parallel normal
vectors. Right: An uneven surface shows normal vectors with different orientations.

The spherical variance is obtained as follows:

1. Given a set of n normal vectors to a surface, defined by their three com-
ponents ﬁl = (x4, Yi, 2i), the module of the sum vector R is calculated

by:
&) BB e

2. Next, the mean value is normalized by dividing the module R between
the number of data n, so the value of the result is within [0, 1].

L) (6)

n

10

3. Finally, the spherical variance w is defined as the complementary to
the normalized mean vectors module.

R

w=1-—— 7

- (7)

When w = 1, there exists a maximum dispersion that can be considered
as the maximum roughness degree, and when w = 0, a full alignment exists
and the terrain will be completely flat.

4.2. Saturated Gradient

In vector calculus, the gradient of a scalar field is a vector field which
points in the direction of the greatest rate of increase of the scalar field, and
whose magnitude is the greatest rate of change.

Consider a surface whose height above sea level at a point (z,y) is H(x, y).
The gradient of H at a point is a vector pointing in the direction of the
steepest slope or grade at that point. The steepness of the slope at that
point is given by the magnitude of the gradient vector.

The gradient of a scalar function f(xy,zs,...,x,) is denoted by Vf or
6 f, where V (the nabla symbol) denotes the vector differential operator.
The gradient of f is defined to be the vector field whose components are the
partial derivatives of f. That is:

_(of of
Vf= (8—551’ . 8xn) (8)

The saturated gradient consists of giving a limit value to the gradient of
each point over the 3D surface. It means that, if the gradient value exceeds
that limit, the point will not be included in the list of accessible points
determined by the robot limitations. The gradient depends on the robot
capabilities; the maximum inclination that the robot is able to cross will be
the limit value for the saturated gradient.

4.3. Construction of Matriz W

As previously explained, with this matrix the algorithm can modify the
path that the robot is going to follow across the 3D surface. The way the
matrix modifies the path is by giving a viscosity value for each point on the
surface. It means that the propagation speed of the front end of the FM
wave is modified. Hence, the time when the wave reaches each point will

11

depend on that viscosity. We can add as many characteristics as we need to
get different paths. These characteristics will modify the viscosity at each
point.

The saturated gradient, the spherical variance, and the height are three
matrices G, Sv, and H with the same length as the vertex matrix (the 3D
mesh). The value of each vertex of the 3D grid will be determined by the
calculated gradient, spherical variance, and the height of each point.

To build matrix W we give a weight or ponder factor to each surface char-
acteristic and we can determine which one is the most important depending
on the task requirements.

The values of the three matrices vary from 0 to 255, so the values of
matrix W are also within this range. The components of matrix W with a
value of 0 will be points in the vertex matrix with maximum speed. Hence,
these are points which the robot can cross without any problem and at its
maximum speed. The components of W with a value of 255 will be points
in the verter with a minimum speed. This means that the robot will not be
able to pass across them.

W=a,-G+ay-Sv+as-H (9)

a1 (10)

The values of these ponder factors a; are selected considering the features
of the surface that want to be penalized. Those features could be penalized
depending on the task requirements or the robot limitations. For example, a
high value of a; implies that the points where the inclination of the surface
(the gradient) is high will be avoided by the path.

After matrix W is generated, the method runs the FM algorithm over the
modified mesh (3D mesh + matrix W) to calculate the best trajectory. With
the FM method the path found will be the less time path. In the normal FM
evolution, this path will be the shortest because all the points in the surface
will have the same “speed” for the front propagation. With matrix W, the
proposed method changes that “speed”, since this matrix gives information
about the difficulty to pass through each point of the surface. The trajectory
will be modified depending on the surface conditions and characteristics and
according to the robot limitations. Since the method modifies the “speed” of

where:

12

the Fast Marching wave, it gives not only the best trajectory, but also the
speed to control the robot.

5. Algorithm Simulations

5.1. Path planning on surface images

As previously stated, in the proposed method an image of the environment
is needed. In relation to the outdoor environment reconstruction, there are
many ways to build an environment and represent it as a 2% or 3D surface.
This surface can be build from sensor data, elevation maps, bitmap images,
etc.

The proposed method bases the surface reconstruction on bitmap images.
The image contains the coordinate of each pixel and a number which indicates
the value on a scale from 0 to 255. This value gives us the height of each
point from the map. Since the method is working in 3D, there are 3 matrices,
one for each coordinate X, Y, and Z. X and Y are the coordinates for a
plain surface and Z is the height of each point. In order to create a triangular
mesh, the algorithm reads the data from the bitmap file to create these three
matrices X, Y, and Z and then, it builds a plain mesh based on X and
Y coordinates. The algorithm generates a Delaunay triangulation [25] that
is equivalent to the nerve of the cells in a Voronoi Diagram [26]. Once the
triangulation is built, the next step of the algorithm is to modify the plain
surface by adding the third coordinate. With this step the height of each
point is changed for the real value acquired from the bitmap.

After the mesh is created, the algorithm is able to extract the needed
data, the vertices and the faces of the triangles, from the matrices.

From this point, the algorithm proposed works as follows:

1. The G, Sv, and the H matrices are calculated as described in the
previous section.

2. The difficulty matrix W is obtained.
3. A goal point is selected.

4. The Fast Marching potential field is calculated as a wave expansion
from the initial point.

13

5. The path is obtained by following the direction defined by the descent
gradient on the Fast Marching potential field, until the goal point is
reached.

For this experiment, the image shown in Figure 5 is used. This surface
corresponds to an area in the White Mountains of New Hampshire, USA.
This image is a Digital Elevation Model (DEM) for the Mt. Washington
quadrangle obtained from the United States Geological Survey (USGS) [27].
Following the process previously described, the algorithm is able to model
the 3D surface, as can be observed in Figure 6.

Figure 5: 3D surface built from a bitmap file

Next, several paths over the surface already presented will be obtained
between the same initial and final points.

In these images, the initial and the final points have been situated over
the top of the two sides of the mountain range. Those paths are obtained by
varying the values of the weight factors a; of matrix W.

Let us first show the path obtained without using the W matrix. This
path, as shown in Figure 7, is the shortest path between the initial and final
points since every point in the mesh has the same viscosity or difficulty value.

The fact that every point has the same viscosity value can be explained
by observing the wave front propagation in this case. In Figure 8, the wave
front propagation of the FM method without using matrix W is shown. The
wide of each color band determines the speed of the wave front propagation.

14

L

iy
fr et
e

Figure 7: Geodesic calculated without using matrix W

In the point where the speed is high, the wave front expands faster and,
therefore, the color band is wider. On the other hand, if the speed is limited,
the wave front is slower and, as a consequence, the color band is thinner.
In Figure 8, it can be observed that every color band has the same size,
therefore, the wave speed is equal for every point of the surface.

In the case that W = A, this implies that the difficulty of the path will be
determined by the height of every point of the mesh. In Figure 9, the path
obtained when the height is penalized, without considering the roughness of
the surface or its inclination, is presented. As can be observed, the calculated
path will try to reach the final point passing trough the deepest part of the
valley.

On the other hand, if we decide to calculate the path penalizing just the
inclination of the surface, then the viscosity matrix is defined as W = G. In

15

Figure 9: Path calculated when W = A

this case, as shown in Figure 10, the path will follow the top of the mountain
chain, since, although the terrain seems very uneven, its slope is lower than
the hillside one.

Another path is obtained when W = Swv, that is, when just the roughness
of the surface is considered. In this case, the path obtained will try to follow
a “soft” trajectory. In fact, as shown in Figure 11, the path is similar to the
one obtained when the height is penalized. This is because, as observed in
the figures, the roughness on the top of the mountain chain is much bigger
than the one of the slopes of the hillsides of the valley. Therefore, the path
calculated is the one expected.

Finally, the general idea proposed in this paper is the possibility of com-
bining the three matrices in order to obtain a path that considers the height
A, the roughness Sv, and the inclination G of the surface. In the previous

16

Figure 11: Path calculated when W = Swv

figures, it can be observed that, for the selected initial and final points, the
height and the spherical variance matrices favor that the path goes down the
valley. On the other hand, the gradient matrix favors the path through the
top of the mountain chain. Therefore, we can select the values of each weight
factor a; in order to consider the limitations or features of the robot used.

Figure 12 and Figure 13 show two views of the same path obtained when
W =0.15%x A+ 0.05 % Sv 4+ 0.85 % G.

Moreover, the values of the weight factors a; can be changed if the robot
to be used is different or modified. It is also important to note that the
trajectories calculated are a tentative path for the robot. The path can be
modified on line by modeling the environment with the robot sensors and
recalculating the trajectory in a local area.

In relation to the time consumption of the process, in table 1 the com-
putational costs in seconds are shown. The values shown correspond to the

17

‘
L)
o]

i

ey
=1l
i
a
(2

2T

Figure 13: Path calculated using W = 0.15% A+ 0.05% Sv + 0.85 % G

obtained paths between same initial and final points (over the same surface),
and for different meshes (different number of vertices). As observed, the total
cost of the process, which includes the time taken by the "wave expansion"
phase and the path extraction, is very low (less than 1 sec), even when the
number of vertices of the mesh is high. Therefore, we can consider that the
algorithm proposed in this paper can be used as an on-line method.

Table 1: Computational cost (seconds)

Number of vertices || 3125 | 5190 | 9300
Fast Marching time || 0.05 | 0.09 | 0.18
Path Extraction 0.25 | 0.40 | 0.74
Total time 0.30 | 0.49 | 0.92

18

5.1.1. Test on 3D images

As shown in the previous section, the main application of the algorithm
is the calculation of paths for robot navigation in outdoor environments.
Another application could be its use for calculating the path for climbing
robots in more complex environments. In this case, since the robot could be
required to climb vertical walls, the saturated gradient is not considered in
the difficulty matrix W. In order to prove the usefulness of the algorithm in
this kind of surfaces, the following simulations have been made. The proposed
algorithm has been used to calculate the path between two selected points
situated on the 3D objects shown in Figure 14 and Figure 15.

e
Ul

>

i

/
iy

Figure 14: Path calculated on a 3D object using W = 0.9 x A+ 0.1 x Sv

In Figure 14, the path has been calculated considering W = 0.9 x A +
0.1 Swv. This implies that the difficulty matrix W gives more importance to
matrix A corresponding to the height of every point. Therefore, as can be
observed, the calculated path goes under the structure in order to reach the
final point.

Another object is shown in Figure 15, where the calculated path also tries
to go through the lower part of the object since W = 0.8 x A + 0.2 x Sv. In
both figures, it is shown how the proposed algorithm is also useful in 3D

objects.

5.2. Dynamic evolution of the paths of two robots approaching

Another interesting application of the proposed method is the obtain-
ing of the dynamic trajectories of two robots which navigate approaching

19

)

el

SR

e

Figure 15: Path calculated on a 3D object using W = 0.8 x A+ 0.2 x Sv

each other. In this case, another situation within the context of the project
Robauco is considered. The idea is that a UAV takes an image of the surface
and sends it to both robots. Then, each robot calculates the right path to get
to their goals using the proposed algorithm. In order to get these trajecto-
ries, each robot maintains a map with the matrix of difficulty of the terrain.
In this map, it is necessary to add a small Gaussian to the position of each
robot in order to avoid possible collisions. The position of each robot can be
obtained by their owns using GPS signals and, when they are separated by
a reasonable distance, they communicate their respective positions by radio.

This bivariable Gaussian distribution is centered at the observed position
of each robot with a standard deviation of 10 in the direction of the trajectory
(longer vector), and of 3 in the second direction (shorter vector, orthogonal
to the longer vector). This Gaussian has been rescaled with a factor of 10 so
that it can have the necessary importance in the difficulty map.

In the initialization phase, the algorithm calculates the general difficulty
matrix or viscosity map W.

Then, at each iteration, a Gaussian G;(k) is added to the observed po-
sition of each robot ¢. Afterwards, at each iteration, the trajectory of the
robot i is calculated using the described Fast Method on the map W +G;(k),
until the goal point is reached.

In the following figures the dynamic evolution of the trajectories of two

20

robots is shown. The goal of each robot is represented by two red dots (one
of them situated in the upper-right corner and the other one in the bottom-
left corner), while the current position is represented by two blue ones. The
starting point of each robot, as shown in Figure 16, is almost the same goal
point of the other one. Therefore, the first planned paths cross each other
in several points, provoking potential collisions. As the robots move towards
their goals, they approach each other. In Figure 17 we observe the situation
where both robots are approaching but they are not aware of the position of
the other. In this case, a collision of both robots is expected. Later, when
the robots are closer, they start sensing each other and, as can be seen in
Figure 18, their paths run in parallel with no collision. Finally, in Figure 19
it is observed that each robot moves away from the other till they reach their
goal points. As has just been explained, this robot avoidance is made thanks
to the modification of the difficulty matrix W by adding a Gaussian to the
given position of the robot.

6. Conclusions

The algorithm we have presented here is a new way to calculate trajecto-
ries for moving a robot over a 3D outdoor surface. One main point about the
proposed method is that it can be used not only as a Path Planning method,
but also to control the robot speed to keep it within a range given by the
limit speed allowed over the 3D surface, taking into account environmental
characteristics and task requirements (shortest path, lower consumption, etc)
reflected in matrix W. There are two values that can be attained from the
results of the algorithm: the robot speed and the robot orientation. The
speed is taken from the potential surface and the orientation can be taken
from the next point in the trajectory that is going to be occupied by the
robot. If the robot orientation and the next point where the robot is going
to be are known, we can calculate the control law that has to be given to the
robot in order to make it reach that next point. The most important thing
about this algorithm is that it works in real time. It is really fast and gives
us the possibility to use it on-line to make decisions in order to avoid fixed
or moving obstacles.

7. Acknowledgment

The research leading to these results has received funding from the RoboCity2030-
[I-CM project (S2009/DPI-1559), funded by Programas de Actividades 14D

21

Figure 18: Robots approaching sensing Figure 19: Robots moving away from each
their mutual position. other.

22

en la Comunidad de Madrid and cofunded by Structural Funds of the EU.

References
[1] Robauco, Robauco project. <http://www.robauco.es/> (2007).

[2] S. Garrido, L. Moreno, D. Blanco, Exploration of a cluttered environ-
ment using voronoi transform and fast marching method, Robotics and
Autonomous Systems 56(12) (2008) 1069-1081.

[3] S. Garrido, L. Moreno, M. Abderrahim, D. Blanco, Fm2: A real-time
sensor-based feedback controller for mobile robots, International Journal
of Robotics and Automation 24(1) (2009) 3169-3192.

[4] E. Dijkstra, A note on two problems in conexion with graphs, Nu-
merische Mathematik 1 (1959) 269-271.

[5] N. Nilsson, Principles of Artificial Intelligence, Palo Alto, CA: Tioga
Publishing Company, 1980.

[6] A. Stentz, The focused D* algorithm for real-time replanning, in: Pro-
ceedings of the Internatinal Joint Conference on Artificial Intelligence

(LJCAI), 1995.

[7] M. Likhachev, G. Gordon, S. Thrun, Advances in Neural Information
Processing Systems, MIT Press, 2003, Ch. ARA*: Anytime A* with
provable bounds on sub-optimality.

[8] S. Koenig, M. Likhachev, Improved fast replanning for robot navigation
in unknown terrain, in: Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), 2002.

[9] A. Nash, K. Danie, S. Koenig, A. Felner, Theta*: Any-angle path plan-
ning on grids, in: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), p. 1177-1183, 2007.

[10] D. Ferguson, A. Stentz, Advances in Telerobotics, Springer Berlin, 2007,
Ch. Field D*: An Interpolation-Based Path Planner and Replanner, pp.
239-253.

23

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]
21]

22]

J. S. B. Mitchell, C. H. . Papadimitriou, The weighted region problem:
finding shortest paths through a weighted planar subdivision., Journal
of the Association for Computing Machinery 38(1) (1991) 18-73.

Y. Guo, L. E. Parker, D. Jung, Z. Dong, Performance-based rough ter-
rain navigation for nonholonomic mobile robots., in: Proceedings of the
IEEE Industrial Electronics Society, pp., 2003, pp. 2811-2816.

A. Yahja, S. Singh, A. Stentz, An efficient online path planner for out-
door mobile robots., Robotics and Autonomous Systems 32 (2000) 129
143.

D. Conner, A. Rizzi, H. Choset, Composition of local potential functions
for global robot control and navigation, in: Proc. of 2003 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS 2003),
3546-3551, 2003.

S. Lindemann, S. LaValle, Smoothly blending vector fields for global
robot navigation, in: Proc. of the 44th IEEE Conference on Decision
and Control, 3553-3559., 2005.

J. R. Shewchuk, Applied Computational Geometry: Towards Geometric
Engineering,, 1996, Ch. Triangle: engineering a 2D quality mesh gener-
ator and Delaunay triangulator.

J. L. Davis, Wave propagation in solids and fluids, Springer, 1988.

J. A. Sethian, Theory, algorithms, and aplications of level set meth-
ods for propagating interfaces, Acta numerica (1996) 309-395Cambridge
Univ. Press.

L. Yatziv, A. Bartesaghi, G. Sapiro, A fast O(n) implementation of the
fast marching algorithm, Journal of Computational Physics 212 (2005)
393-399.

J. Sethian, Level set methods, Cambridge University Press, 1996.

D. Adalsteinsson, J. Sethian, A fast level set method for propagating
interfaces, J. Comput. Phys. 118 (2) (1995) 269-277.

R. Kimmel, J. A. Sethian, Computing geodesic paths on manifolds, in:
The National Academy of Sciences, Vol. 95, 1998.

24

[23] K. Mardia, P. Jupp, Directional Statistics, Wiley Series in Probability
and Statistics, 1999.

[24] Traversable region modeling for outdoor navigation, Journal of Intelli-
gent and Robotic Systems 43 (2-4).

[25] D. T. Lee, B. J. Schachter, Two algorithms for constructing a Delaunay
triangulation, Int. J. Computer Information Sci. 9 (1980) 219-242.

[26] A. Okabe, B. Boots, K. Sugihara, Spatial Tessellations: Concepts and
Aplications of Voronoi Diagrams. , 1992., Chichester, UK, 1992.

[27] United states geological survey <http://eros.usgs.gov> [online| (2012)
lcited 2012-09-23).

25

