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Abstract—This paper presents an Underground Simultaneous
Localization and Mapping (uSLAM) method to localize an au-
tonomous underground robotic system and map its surroundings.
A Rao-Blackwellized Particle Filter (RBPF) with the information
provided by a Ground Penetrating Radar (GPR) system installed
in the robot and odometry data is described. RBPF generates
possible trajectories, where each one of them has its 3D occu-
pancy grid map. A scan matching method based on groups of
GPR measurements to improve the proposed trajectories is also
described.

Index Terms—Underground robot, SLAM, Particle filters,
Scan-matching

I. INTRODUCTION

Nowadays, society would not be able to live without un-
derground utilities (pipes, cables, conduits, etc.). On a global
scale, urban population is growing, e.g. cities are expected to
grow at the rate of 1.5% per year between 2025 and 2030. As
a consequence of this, there will be more demand for utility
services.

Traditionally, open-cut excavation is the most common
approach for accessing the subsurface. This technique requires
the excavation large surface trenches, which generate noise,
traffic congestion, destruction of surface civilian infrastruc-
ture, danger for the workers and citizens, and environmental
impacts. Trenchless technology methods offer a viable solution
to install, replace, or repair underground utilities or conduits
between two defined points without continuous open-cut exca-
vations. Despite the reduction of the disturbances compared to
the trench excavation, trenchless methods are still underused,
currently representing only 5% of street works.

Currently, commercially available trenchless systems have
limited perception of the surrounding environment. Trenchless
excavation methods require obstacle free space and previous
good knowledge of the surface. Additionally, the maneuver-
ability of existing trenchless technologies is very limited.
Paths are restricted either to straight or really low curvature
lines over long distances. Trenchless operations are normally
executed by an operator with limited feedback.

BADGER is a research project funded by the European
Commission under Horizon 2020 with the aim of designing
an autonomous underground robotic system. This robot can
drill, manoeuvre, localize it self, map and navigate in the
underground space (Fig. 1). Therefore, the robot must be
equipped with a Ground Penetrating Radar(GPR) system to

perceive its surroundings and provide information to the
Simultaneous Localization and Mapping (SLAM) system. The
SLAM problem is the problem of determining the pose of
an autonomous robotic system moving through an unknown
environment, and simultaneously, mapping its environment.
The main contribution of this work is the implementation of
a Rao-Blackwellized Particle Filter (RBPF) SLAM solution
with the GPR system installed in the underground robot to
map the subsurface. In addition, a scan matching approach
using the GPR’s data is also described.

Fig. 1. Badger concept

II. RELATED WORK

The SLAM problem has been studied with different type
of sensors and environments. Ground robots employ the
information provided by Laser sensors [1], monocular and
stereo cameras [2] to map their environment. The accuracy and
density of their measurements makes them more appealing for
SLAM approaches. Regarding underwater robotics, sonars are
extensively used [3]. Sonars lack the resolution, update rate,
and density of a lasers. Our robotic system has can not rely
on visual, laser or sonar sensors, since they do not work in



the soil. Instead, a ground penetrating radar (GPR) system is
installed in the robot to be used in the SLAM method.

There are three main SLAM approaches Extended Kalman
Filter (EKF), Graph Optimization (Graph-SLAM) and Particle
Filter (PF). Graph-SLAM methods create a graph where the
nodes are the robot poses or features, and the edges represent
the constraints between poses obtained from the sensor mea-
surements. These approaches have been extensively used in
the last years [4]. Although, Rao-Blackwellized particle filter
(RBPF) SLAM is still the most popular solution [5].

Scan-matching is a useful method for any kind of SLAM
approach. It basically computes the displacement between two
sets of laser readings based on an initial guess of this relative
displacement [6]-[8].

SLAM method also vary by the way they represent the
map. Octomap [9] is a framework for 3D mapping based on
octrees and uses probabilistic occupancy estimation. Using
probabilistic occupancy estimation represents not only the
occupied areas, but also the free and unknown.

III. BADGER ROBOTIC SYSTEM

The BADGER underground robot is composed of four
different modules: Drill head module, service modules, joint
modules and wall support module (Fig. 2). The drill head
module integrates a drilling mechanism based on rotatory
drilling technologies to construct the bore hole. In addition, a
cutting transportation mechanism to transport the soil cuttings
to the surface is installed in this first module.
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Fig. 2. Badger robotic system general design

The joint modules consist of the hollow steel-made cylinder
with the six actuators. The synchronized actuation of three of
the actuators provides the propulsion movement. The other
three actuators compose a Stewart-like actuated joint to steer
the robot at the desired pitch and yaw angles.

Both service modules include a clamping mechanism, which
consists of airbags that inflate and deflate to provide anchor
points for the joint modules to push against. The combined
operation of the clamping mechanisms and the joint modules
generates a worm-like motion. These clamping mechanisms
also react the torque produced during drilling, and avoid roll
motion.

The last module is the tunnel wall support. This module
sprays the walls of the drilled bore with additive material (resin
or other) to construct pipe wall support.

In order to detect the surrounding environment of the
underground robotic system, Ground Penetrating Radar (GPR)

units are installed in the drill head module. The GPR system
of the underground robot includes three GPR antenna modules
with a 120° field of view. Fig. 3 depicts the uniform disposition
of the housings where these antennas are installed. Fig. 4
shows how these GPR units cover with a 360° field of view
their surrounding environment. A single measurement from
the GPR (A-Scan) can provide data about the distance of
the antenna to the closest object that falls within the field
of view of the sensor. However, this data is not enough for
the estimation of the position of the underground objects.
This problem has been solved by concatenating A-scans while
surface GPRs move on straight lines to build a B-scan [10]. In
our approach, we do not employ this B-scan method. Instead,
we used the distance provided by each GPR to localize the
robot and map the environment using 3D occupancy grid.

Fig. 3. Three GPR units are installed in the drill head.

Fig. 4. Each GPR cover a field of view of 120°x 120°.



IV. GPR BASED SCAN MATCHING
A. Grouping GPR scans

The essential requirement of any scan maching method is
two sets of readings to establish the correspondence. Each
single measurement from a GPR unit (A-scan) provides the
distance between the antenna and the closest obstacle that falls
within the field of view of the sensor. GPRs processed in-
formation provides range measurements, like ultrasonic range
sensors, but with a bigger field of view. Each range measure-
ment can be drawn as a spherical sector centered in the GPR.
These GPR units does not provide a dense set of readings,
so a process where sets of GPR range readings are grouped is
needed. In addition, the grouping process provides redundancy
to discard the incorrect readings.

The grouping GPR scans process consist in gathering the
range measurements of the GPR ring and the odometry while
the robot is moving [11]. A range measurement 7; 5, taken by
the GPR i at time k is expressed with respect to the drill head
reference frame s, , . The relative pose of GPR i with respect
to the drill head reference frame is fixed and it is perfectly
known.

As the robot moves, the odometry is used to estimate the
displacements between the successive poses where the GPR
measurements are taken. The current pose k of the drill head
with respect to the reference frame, located at the pose of
the drill head when the previous GPR measurement k-1 was
performed, is stored x} .

The set of the odometric estimations X4, and the corre-
spondent group of GPR measurements S, are stored.

Xsca,n = {I;Ig,---azg_l} (1)

Sscan = {51752a-~-a3k} 2

Where each item of the S.4, consists of a set of the three
GPRs range measurements s, , with respect to the drill head
reference frame at instant k. These range measurement can
be transformed to the drill head reference frame at the first
instant.

B. Scan Matching

The scan matching method utilize two successive group of
scans to estimate the relative displacement between the current
group of scans S¢,, and the reference group of scans Sy.f.

Given a reference scan Sy.r, a new scan S, and an
initial guess of the displacement estimation between them,
the objective of scan matching methods is to obtain a better
estimate of the real displacement ¢ = (z,y, z, ¢, 0,1). The
motion of the underground robot does not allow roll (3)
rotation.

Our method combines two perpendicular 2d grid maps to
estimate the motion of the drill head between two groups of
scans. These maps coordinates are with respect to the drill
head reference frame when the first range measurement was
performed. The XZ grid map is employed to estimate the

Fig. 5. Occupancy grids generated with the two successives groups of scans
to compute the motion in the plane XZ.

displacement in x and z, and the tilt angle (¢). Regarding
the XY grid map, it is used for the estimation of the motion
in x, y and the yaw angle (0).

Let M.t .. be a 2D occupancy grid. Each grid cell has
a probability of occupancy p(m..). Given Sscan We seek
to estimate the posterior probability over the grid cel xy
p(My2|Sscan ). Usually, the posterior is represented using log-
odds ratios (l,.), which is computed recursively:

1 — p(ma=|st) p(ms:)
where p(m,,) is the prior occupancy probability of cell xz,
the prior for occupancy and p(mg,.|s;) is given by the inverse
sensor model [12] . A simple inverse sensor model is used in
our approach. For the cells inside the field of view of each
GPR at distances between 0 and the neighbourhood of the
range, p(my.|s:) has a value smaller than the prior. In the
neighbourhood it has a value bigger than the prior.

Another map My, ., is created in a similar way for the
current group of scans to estimate the relative displacement
(z,y, ¢). Fig. 5 shows an example of the 2D maps created with
the reference group of scans and the current group of scans.
This relative displacement is calculated using a Ceres based
scan-matcher [1]. It computes the displacement that maximizes
the probabilities at the cells M, .. when inserted on M,y ;..

1L, = log +UIZ0©)

argmin Z(l = Myefoz (T Meuraz))? “4)

where T, transforms My, .. cells from its current frame to
the frame of the reference map. Fig. 6 depicts in a darker color
the aligned maps after the scan matching process.

V. BADGER MOTION MODEL

The motion of Badger underground robot is constrained by
the bore hole that it is drilling. This robotic system cannot
move sideways and must always move forwards in order to
steer. The drill head pose Xy = (z,¥, 2, ¢, 0,1)) at instant t is
summarized by the following equation:

Rt,1 0

Xt =X¢-1 + [ 0 Ty,

} (U + W)t (5)

Where Rt_1 is the is the 3D rotation matrix and Ty_; is
the kinematic transformation matrix.u represents the linear



Fig. 6. Final matched 2D occupancy grid of the maps from Fig. 5.

and angular velocities in the body frame. Since the joints of
the underground robot are under-actuated, the only velocities
inputs are the linear velocity in x-axis and the angular velocity
about axis x and y. The motion of the underground robot
does not allow roll (¢)) rotation. Further, w,, represent random
noise.

VI. RAO-BLACKWELIZED SLAM USING GROUND
PENETRATING RADARS

The key idea of this paper is the introduction of the GPR
data into a Rao-blackwellized particle filter to estimate the
pose of the drill head and mapping the environment. In Rao-
Blackwellized SLAM, each particle has a trajectory and a map.
Initially, the number of particles and the size of each group of
scans need to be set. For each particle the following procedure
is executed:

1) The pose of each particle x! is predicted from the

previous pose of the particle #¢ ; and the odometry
u,—1 since the last update using the motion model.

2) The particles keep being updated by the odometry
until two group of scans are available to perform the
scan matching (Syey and Scyr). The scan matching is
performed based on an initial guess provided by the
odometry transformation between the reference frame
of both group of scans.

3) If the scan matcher does not report any failure, a set of
poses are chosen from a Gaussian distribution around
the particle pose x1..

4) Each of this poses gets assign a weight w; that depends
on the probability of the pose given the odometry and
the pose of the particle p(z;|xi_;,u;—1), and the group
of scans and the current Octomap m_; of this particle
P(SeurImi_y,2;). (6) is used to compute the weights:

w; = plajle_y,ue—1)p(Seurlmi_y,z;)  (6)

5) A Gaussian distribution computed with the weighted
mean 7, and covariance ), is used to get the new pose

of the particle (7). In addition, the particle weight is
updated (8).

p = Ny ) @

w}: = w§71 Z w; ®)

6) The OctoMap of the particle is updated with the current
group of scans using log-odds formulation. Also, this
current group of scans is stored as reference for the next
scan matching process.

7) Depending on the number of effective particles, a re-
sampling process is necessary.

This algorithm is explained in detailed in [5].

VII. SIMULATIONS

For performing the simulations, we select Robot Operating
System (ROS) [13] and Gazebo Simulator. Fig. 7 shows the
underground robot model created for performing the simula-
tions and the underground scenario with several utilities to
be mapped. For sensing, the underground robot is equipped
with three sonars to simulate the three GPR units (Fig. 4).
These sonars provides the range distance to the closest obstacle
within the field of view.

An example of the resulting 3D Octomap from mapping
the simulated subsurface from Fig. 7 is depicted in Fig. 8.
This map was created using the described method in this work
while the robot drills in a straight line. Cells with a probability
of occupancy higher than 0.7 are considered obstacles. The
resulting map shows that the utilities perpendicular to the
motion of the robot are represented with low error. Although,
the green pipe, which is tilted in the simulated environment,
is represented as a wider surface in the Octomap. It is similar
as if the obstacle is inflated in the plane of the pipe. This
“inflated” Octomap can be used for collision avoidance.

The resulting map tend to be misaligned when the robot
moved large distances since we only used the previous group
of scans to correct the pose of the particles using scan-
matching. In addition, the underground environment where the
robotic system is tested is not cluttered and, it is possible that
the robot travel distances of approximately one meter without
the detection of any obstacles.

Fig. 7. Badger underground robot is simulated in Gazebo.



Fig. 8.
previous figure.

3D Octomap of the underground environment represented in the

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a SLAM method applied to the
new underground robotics field, called uSLAM. This approach
is based on the Rao-Blackwellized Particle Filter using the
distance information provided by the Ground penetrating radar
(GPR) system installed in the underground drilling robot. In
our method, a scan matching technique that matches two
successive groups of GPR scans is also applied to correct
the predicted pose from the motion model. Simulations have
shown that the proposed method creates a map of the un-
derground environment that can be used for navigation and
obstacle avoidance tasks. In our future work, we plan to use a
previously constructed subsurface map from the surface. The
combination of this prior map and the detection of obstacles
from the underground robot would be use to localize the robot,
as well as to relocate the known obstacles and map new ones.
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