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Abstract: The teleoperation of robotmanipulators over the
internet suffers from variable delays in the communica-
tions. Here we address a tele-assistance scenario, where a
remote operator assists a disabled or elderly user on daily
life tasks.Our behavioral approachuses local environment
information from robot sensing to help enable faster exe-
cution for a given movement tolerance. This is achieved
through a controller that automatically slows the operator
down before having collisions, using a set of distributed
proximity sensors. The controller is made to gradually in-
crease the assistance in situations similar to those where
ollisions have occurred in the past, thus adapting to the
given operator, robot and task-set. Two controlled virtual
experiments for tele-assistance with a 5 DOF manipula-
tor were performed, with 300 ms and 600 ms mean vari-
able round-trip delays. The results showed significant im-
provements in the median times of 12.6% and 16.5%, re-
spectively. Improvements in the subjective workload were
also seen with the controller. A first implementation on a
physical robot manipulator is described.

Keywords: Teleoperation, assistive robotics, time-delays,
haptics, shared control, neural network, proximity sens-
ing, Distributed Adaptive Control (DAC)

*Corresponding Author: Martin F. Stoelen: Centre for Robotics
and Neural Systems (CRNS), Plymouth University, UK, E-mail: mar-
tin.stoelen@plymouth.ac.uk
Virginia F. Tejada, Alberto Jardón, Carlos Balaguer: Robotic-
sLab, Department of Systems Engineering and Automation, Uni-
versidad Carlos III of Madrid, E-mail: (vtejada, ajardon, bala-
guer)@ing.uc3m.es
Fabio Bonsignorio: The BioRobotics Institute, Scuola
Superiore Sant’Anna, Pisa and CEO/founder of Heron
Robots, Genoa, Italy, E-mail: fabio.bonsignorio@sssup.it,
fabio.bonsignorio@heronrobots.com

1 Introduction
Robot teleoperation over the internet is subject to time-
variable delays typically ranging from hundreds of mil-
liseconds to seconds. Such delays are especially limiting
for robot manipulators, which typically require coordi-
nated, fast and precise movements. See Fig. 1a for an ab-
straction of the problem. One potential application is the
teleoperation of assistive robot manipulators mounted on
wheelchairs. These robots give users who are constrained
to a wheelchair, andwho have a low amount of mobility in
the upper-limbs, independence on some daily life tasks.
Commercial examples include the Exact Dynamics iArm
and the Kinova Jaco. At Universidad Carlos III de Madrid
(UC3M) there is ongoing research with the two platforms
ASIBOT [1] and AMOR, see Fig. 2. The latter was developed
by Exact Dynamics in Holland. Note that such robot ma-
nipulators are also known as Wheelchair-Mounted Robot
Arms (WMRA).

All current commercial platforms of this type are con-
trolled directly by the user, with little environment sens-
ing and autonomy in the robot. The users have access to a
range of personalised user interfaces, from chin joysticks
to simple push buttons. However, the task execution times
can be very high [2], and so can the mental and physi-
cal demand. Research is currently underway to explore
what assistance can be provided to the user to help amend
these issues [3–6]. Shared autonomy onmobile manipula-
tors is also being explored [7]. However, many tasks may
simply be too difficult to achieve for the user, or too tir-
ing. We believe that enabling a remote operator to aid the
user on more complex tasks could significantly increase
the usefulness of such devices. The remote operator could
for example be a family member or a care provider, con-
trolling the robot over an internet connection. This type
of teleoperation of a personal assistive robot manipulator,
here denoted tele-assistance, is the scenario application
aimed for in this paper. As tele-assistance would typically
be performed over an internet connection, considerable
and variable time-delays are likely.

A large body of work on teleoperation systems that
address time-delays make two important assumptions: 1)
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(a) Teleoperation under variable time-delays.

(b) Tele-assistance with the adaptive aid proposed here.

Figure 1: An overview of the problem (a) and the approach followed
for improving tele-assistance (b). A remote operator is helping con-
trol the assistive robot manipulator of an elderly or disabled user
on a diflcult task, but is hindered by variable time-delays in the
communications (∆T(t) in figure) and limited camera views. The ap-
proach followed here provides an adaptive aid for the teleoperator,
where a controller learns to make use of distributed proximity sen-
sors on the manipulator to limit collisions with the environment.
The main idea is that this aid helps the teleoperator enforce the ac-
curacy requirements of the task, enabling a faster execution. The
system learns by directly associating proximity sensor readings
with collisions when they occur, through distributed and real-time
neural networks. The controller operates on the Cartesian veloci-
ties provided by the user, v⃗operator, to produce suitable robot joint
velocities ˙⃗qout.

(a) ASIBOT. (b) Exact Dynamics AMOR.

Figure 2: Assistive robot manipulators used for research at UC3M.

that exact models of the environment are available (from
sensor data), and 2) that the required human movements
can be explicitly modeled [8]. Neither seem realistic for as-
sistive robotmanipulators,whichmaybeused in anynum-
ber of environments, such as in the user’s home or in a
grocery store, and on a great variety of tasks. However, we

can assume that the operator will be performing targeted
movements to objects in the environment. Such targeted
movements are characterized by the trade-off between the
speed of execution and the accuracy required to avoid er-
rors (for example collisions). This is exemplified by Fitts’
law [9], which has been extensively used for evaluating
human-machine interfaces.

We believe that a controller that can help enforce the
accuracy requirements of a teleoperation task can indi-
rectly allow the operator to move with greater speed, and
reduce the effect of the time-delays, much like obstacle-
based force-feedback can improve performance on simple
corridor following tasks [10].Wealsobelieve that sampling
the environment directly through distributed proximity
sensing can be an effective way to estimate the robot’s
effective state. This paper presents a controller for tele-
operating assistive manipulators based on these ideas,
where the aid provided is gradually adapted to each op-
erator’sneeds. Thus an attempt is made to cater for differ-
ences in the skills of different operators, in the time-delays
for different user-operator pairs, and in the typical tasks on
which the users require assistance.

This is achieved through: i) a controller that limits the
velocity of the robot (and provides haptic feedback) based
ondistributed collision andproximity sensors, and ii) neu-
ral networks that adapt in real-time the use of the proxim-
ity sensors, based on past collisions.

2 Related Work
Oneway tomitigate the effects of time-delays in teleopera-
tion is predictive displays. These displays use virtual mod-
els of the robot in its environment to provide immediate
feedback to the operator on the outcome of commanded
actions. One potential application of predictive displays
is space teleoperation [11]. Predictive displays have been
shown to aid under conditions with variable time-delays,
for example in remote vehicle operation [12]. A limitation
of predictive displays is the requirement for accurate mod-
els of the robot, and the environment in which it is used.

Haptic force feedback allows human operators to per-
form complex tasks with physical contact. This includes
applications in the medical field, handling of toxic mate-
rials, mechanical design and outer space exploration [13].
However, the variable time-delays, packet losses, and dis-
connections that can occur over an internet connection
can induce unstable force, degrade the performance and
can be harmful to the teleoperators [14]. Different time-
delay compensation techniques have been developed to
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overcome this problem, such as wave-scattering theory
(and the wave-variable approach) [15] and Smith predic-
tors [16].

Approaches that take into account information gained
online about the remote Environment, the human Opera-
tor or the desired Task to be performed have been labelled
EOT-adapted controllers [8]. This is a similar concept to
"shared control", where the user and the robot use their
own sensing, control and planning capabilities in a co-
operative way. Examples of assistive technologies include
wheelchairs that attempt to aid the disabled or elderly user
in performing navigation tasks [17, 18]. Shared control has
also been proposed for teleoperation, for example to re-
duce the velocity before impact (and the impact force) [19].
Haptic shared control has been shown to lead to perfor-
mance improvements, but sometimes at the cost of the op-
erator feeling that he/she is fighting the system [20]. The
work presented here complements the typical approaches
given that: a) it assists the operator on targetedmovements
in unknown environments, b) it does not require extensive
up-to-date models of the robot, it’s environment, and it’s
user, and c) the aid provided is adapted to each operator’s
needs in real-time.

Our approach was inspired by the Distributed Adap-
tive Control (DAC) paradigm [21–23]. In particular, to use
distributed sensing, and to adapt the usage of the sen-
sors through a simple associative learning that has some
of the main constituents of Classical Conditioning [24]:
i) a predefined value system, expressed in combinations
of Unconditioned Stimuli (US) and Unconditioned Re-
flexes (UR), and ii) a mechanism for associating Condi-
tioned Stimuli (CS) representations to US representations.
An example application of DAC is a mobile robot with
distributed collision and proximity sensing. The collision
sensors are hardwired to predefined motor actions (the
UR) that turn the robot away from the obstacles. A colli-
sion avoidance behavior, representing a Conditioned Re-
flex (CR), is then gradually learned by associating proxim-
ity sensor readings (the CS)with the collisions sensors (the
US) during collisions. That is, proximity sensors that de-
tect objects close-by during collisions will gradually begin
activating the obstacle avoidance by themselves.

The system thus creates a sense-associate-act cou-
pling,where the environment is used as a communications
channel and where the adaptation of the behavior will
bias the future sensory information it receives. This can be
taken advantage of to stabilize the system [22]. In the above
example, once the robot no longer collides with the obsta-
cles, it will stop learning new connections. See also pre-
vious work by the current authors on adaptive proximity-
based collision-limitation for disabled users controlling

assistive manipulators directly [5, 6]. The work presented
in the current paper extends this approach to teleopera-
tion with time-varying delays.

3 System Description
The overall system architecture can be seen in Fig. 1b.
The remote operator has access to visual, force and audio
feedback from the robotic manipulator, and uses this in-
formation to command the robot with Cartesian velocities
v⃗operator. The input device and control mode used here are
further described in section 3.1. Both robot commands and
operator feedback is passed over a communication chan-
nel with variable time-delays, such as a typical internet
connection. The manipulator is covered with a set of col-
lision and proximity sensors (see section 3.2). The usage
of these sensors in each link of the manipulator is regu-
latedbyadedicated link-localNeuralNetwork (NN),which
learns by associating proximity and collision sensors dur-
ing collisions with the environment. See section 3.3. The
output of each neural network is a set of virtual proximity
readings, which are used in the controller. Here the robot
is slowed down, and force/audio feedback is provided to
the operator. This is further described in section 3.4.

3.1 Haptic Control Mode

(a) Stylus local frame. (b) Haptic forces.

Figure 3: The PHANTOM Omni haptic input device, with a visualisa-
tion of the control mode assumed.

A hybrid control mode based on both position and ve-
locity input was used here, see Fig. 3. A Sensable PHAN-
TOM Omni haptic device was used, which has 6 DOF po-
sition sensing and 3 DOF (x, y, and z) force feedback. The
x, y and z displacements of the stylus, in the stylus-local
frame, was used to control the corresponding velocities of
the robot end-effector. The pitch angle of the robot end-
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effector matched the pitch angle of the stylus at all times.
The total force provided, F⃗tot in Equation (1), was com-
posed of two components. First, a spring-like component
that always returned the stylus to the same position in
space (the origin defined) if let go of. This is denoted as
F⃗spring in Equation (2). Second, a component that provided
feedback during aid, dented as F⃗prox. More details on the
calculation of the latter can be found in Equation (6) in
Section 3.3.

F⃗tot = [Fx , Fy , Fz]T = F⃗spring + F⃗prox . (1)

F⃗spring = kspring∆P⃗,
where:

∆P⃗ = [∆x, ∆y, ∆z]T .

(2)

3.2 Collision and Proximity Sensing

The total number of individually distinguishable collision
sensors simulated for the manipulator was 229. Each sen-
sor returned a simulated force of contact based on the
depth of penetration with an obstacle. See Fig. 4. Thus the
assumed minimum spatial resolution of the tactile sens-
ing was 20 mm, which is well within the capability of
the current state of the art [25]. Infrared proximity sensors
have previously been used in full-body proximity sensing
on robot manipulators [26], and for grasping [27]. For the
former, over 1000 infrared proximity sensors were used
to perform online movement planning and execution in
unknown and dynamic environments, over 20 years ago.
This remains a challenging task today, even with the ex-
cellent sensors technology (e.g. 3D time-of-flight sensors)
and high-power computers available. See Section 4.2 and
Section 5.2, respectively, for details on the specific imple-
mentations used for the two experiments performed here.

3.3 Neural Networks

There are potentially many ways in which a distributed
set of proximity and collisions sensors could be utilized. It
may be desirable to attempt to automatically adapt the us-
age to both operator abilities and scenario of usage, given
the large set of parameters that requires tuning for correct
operation. This is the general approach followed here, see
Fig. 5. The approach assumes n collision sensors and m
proximity sensors for each link, each of which is repre-
sented by a neuron in a respective input layer of a neural
network.

Figure 4: Collision sensors (black squares) and proximity sensors
implemented on the virtual ASIBOT manipulator. Simulated field of
view shown for each proximity sensor: Long-range Sharp GP2D120
and short-range Vishay TCND5000 as green and purple square pyra-
mids, respectively. This was the proximity sensing configuration
used for the first experiment presented here.

An output layer with q neurons is used to represent a
set of virtual proximity sensors. The activation of the neu-
rons in this layer (ok) is linear, as seen in Equation (3).
The collision sensor neurons are hardwired to the virtual
proximity sensor neurons (solid green lines in Fig. 5). The
distribution of these weights depends on the proximity of
the virtual proximity sensor to a given collision sensor. In
the simplest case (the one used here), each collision sen-
sor has a unity weight connecting it to the closest virtual
proximity sensor. Whenever a collision sensor activates,
it thus also activates a virtual proximity neuron. The dis-
countedHebbian learning rule in Equation (4) is then used
to associate this activation with the simultaneous activa-
tion of any proximity sensors on the same link. The learn-
ing thus modifies the synapse weights between real and
virtual proximity sensors, the dashed green lines in Fig. 5.
In Equation (4) 𝛾 is the learning rate, ϵ the discount rate.
Thesemust be tuned to get the desired learning behaviour,
that is, to make sure the robot learns from the collisions,
but also gradually "forgets" and lowers the aid when there
have been none for a given period.

ok =
n∑︁
i=1

wk,ici +
m∑︁
j=1

wk,jpj . (3)

∆wk,j =
𝛾

m (ηokpj − ϵwk,j). (4)

The unit normal vector representing the direction of
each virtual sensor k is denominated ̂︀dk. To represent the
"distance" from each virtual proximity sensor to an ob-
stacle (based on the NN output) another variable was de-
fined, ek. This was made to vary proportionally with the
inverse of the activation of the output neuron for the same
sensor (ok), as seen in Equation (5). Each virtual proxim-
ity sensor can be associated with multiple proximity sen-
sors and multiple collision sensors, thus being capable of
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Figure 5: Visualization of the adaptive component of the aid on a generic manipulator. Each link has a set of distributed proximity sensors
and collision sensors. The sensor signals are fed into two layers of a link-local neural network. This neural network adapts the usage of the
proximity sensors during collisions with the environment, through a simple Hebbian associative learning mechanism. The output of the
neural network is used to represent "virtual" proximity sensors, which depend on the actual sensory input, but also previous associations
between sensed collisions and sensed proximity. The neural network weights are shown in green: dashed lines indicate Hebbian learning
(proximity layer), while solid lines indicate fixed weights (collision layer).

representing quite complex sensorial "fingerprints". The
number of virtual proximity sensors can also be scaled to
fit the computational resources available.

ek =
1

ϵk + ok
. (5)

3.4 Controller

The collision-limitation behavior then uses the output of
the NNs to reduce the magnitude of the commanded ve-
locity at each instant. That is, to limit v⃗operator to v⃗robot, as
shown in Fig. 6. To do this the system calculates a prox-
imity ratio r for all virtual proximity sensors, shown in Al-
gorithm 1. The proximity ratio for a given virtual proxim-
ity sensor k increases with proximity to an object (low ek)
and with a high translational velocity in the direction of
the virtual sensor vector (projection of v⃗k on ̂︀dk). The ratio
is therefore high when there is a low time to collision. The
maximumproximity ratio for each link is used at any time.
αproj is typically set to zero, to only limit velocities in the
direction of obstacles.

Fig. 7 shows the schema used for limiting the velocity
for a multi-link manipulator. The received velocities of the
end-effector, v⃗operator, are here represented in the robot
base frame (b superscript). Using an iterative solver for the
inverse Jacobian, the corresponding joint velocities for all
joints are first calculated, then each link is treated sepa-
rately. Using the known kinematic structure of the robot
and the current joint angles, the translational velocities
of each sensor for each link is calculated. These are then
used together with the output of the link-specific neural

(a) Association of activation in
proximity sensors with collision
sensed with the environment
during operator-commanded
movements (⃗vrobot = v⃗operator).

(b) Reduction of operator ve-
locity (||⃗vrobot|| < ||⃗voperator||)
using projected displacement
(⃗vk), direction (̂︀dk) of virtual
proximity sensor k, and its NN-
dependent "distance" ek .

Figure 6: The system behaviour before (b), and after (c) a colli-
sion. During the collision the system has learned to increase the
influence of a given proximity sensor k on the velocity of the robot
(for that link), v⃗robot. That is, the activation of proximity sensor k
will now allow a lower velocity than that provided by the operator,
v⃗operator, in the direction of that sensor.

network to produce the maximum proximity ratio for that
link, as described above.

The output robot joint velocities, q⃗out, are the
operator-commanded joint velocities q⃗ divided by this
ratio. The behavior will only activate if themaximumprox-
imity ratio (rmax) exceeds one. This enables the limitation
of velocity based on the learned virtual sensor usage of
the complete manipulator. The same maximum proximity
ratio was used to generate force feedback for the haptic
input device. The force component added was calculated
as shown in Equation (6) using a normalized version of
the maximum proximity ratio (rnorm) and the gains k⃗prox.
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Figure 7: Schematic of the adaptive aid extended to a multi-link manipulator. The b superscript denotes the robot base frame and grey color
indicates external modules. The velocities commanded by the operator, b v⃗operator, are resolved into joint velocities, and then Cartesian
velocities for the virtual proximity sensors s1 , ..., sq for each link. The proximity ratio for each sensor is then calculated based on the Carte-
sian sensor velocity and the output of the link-specific neural network. The maximum proximity ratio over all sensors on all links, rmax, is
used to limit the robot joint velocities and to provide audio and haptic feedback.

for k = 1 to q do
projk = v⃗k · ̂︀dk;
rk =

αproj+βprojprojk
ek ;

end
rmax,link = max

k
(rk);

Algorithm 1: The maximum proximity ratio for a given
link, based on the translational velocities of the virtual
proximity sensors, v⃗k, the outputs of the link-specific
neural network, represented by ek, and the direction of
the respective virtual proximity sensors, ̂︀dk.

This provided the operator with direct feedback on colli-
sions, and on learned proximity usage, that is, when and
to what degree the systemwas reducing the velocity of the
robot manipulator. A redundant audio feedback was also
provided. This consisted of simple tones being playedwith
breaks in between, similar to the system for notifying the
driver of obstacles when reversing a car. The frequency of
the alternation was proportional to the current maximum
proximity ratio.

F⃗prox = rnorm k⃗prox∆P̂,
where:

k⃗prox = [kx , ky , kz]T .

(6)

4 Experiment 1: Adaptive Aid on
Tele-Assistance

4.1 Introduction

This section describes the first experimental evaluation
of the system developed. The objective of the experiment
was to evaluate the improvements in performancewith the
adaptive aid for a situation where the user of an assistive
manipulator is aided on manipulation tasks by a remote
operator over an internet connection. A balanced within-
subject experiment design was used, with two conditions:
a) benchmark with no aid provided, and b) aid with the
controller described above (after adaptation). The perfor-
mance metrics used where the time to complete the tasks
and the subjective workload (NASA-TLX) [28]. NASA-TLX
has previously been used in, for example, experiments on
robotic telepresence [29]. An internet connection with a
round-trip variable time-delay of 300 ms (standard devi-
ation of 30 ms) was approximated (see Section 4.3.2).

4.2 Implementation

For this experiment there were 68 infrared proximity
sensors in total, of which 18 were simulated as Vishay
TCND5000 with a maximum sensed distance of 50 mm.
See Fig. 4. These were all distributed over the end-effector.
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The remaining sensors were simulated as Sharp GP2D120,
with a maximum sensed distance of 400 mm. All proxim-
ity sensors had a simulated 10∘ field of view, represented
in the simulation by a square 6 by 6 array of point dis-
tance measurements. The lowest of the 36 point distance
measurements was used at any time. The voltage output of
each proximity sensor, pj, was simulated based on the dis-
tance measured and the calibration specifications of the
different sensor types. See Fig. 8. That is, the signal used
by the neural network was increased with decreasing dis-
tance measured (in the nominal range of the sensor).

(a) Sharp GP2D120. (b) Vishay TCND5000.

Figure 8: Plots of simulated voltage output for the proximity sensors
used. Gray line is output assumed, red triangles indicate calibration
data points for the physical sensors.

4.3 Experiment Method

4.3.1 Participants

The participants were 9 undergraduate students of UC3M,
5male and 4 female. A 10th participant was not able to fin-
ish all sessions due to other commitments, and was there-
fore not included in the analysis. All participants were
right-handed. 2 had previous experience with 3D input de-
vices. The mean age was 19.9, with a range from 19 to 21.
Each participant was paid e10 for participation.

4.3.2 Simulated Environment and Time-Delay

A tele-assistance scenario was simulated, as seen in Fig. 9.
The OpenRAVE [30] virtual environment was used, run-
ning at approx. 50 Hz. The participants were given the
simulated view from one camera mounted behind the
wheelchair-user, and one mounted on the end-effector of
the robot. A time-varying round-trip time delay was simu-
lated, with a mean of 300 ms and a standard deviation of
30 ms. The variation of the time delay was random, using
a Gaussian noise low-pass filtered at 0.1 Hz. Given that the
robot was virtual and there were no hard limits as to when

the robot should react, the full time delaywas added to the
user input only.

(a) The view provided to the participants, with
end-effector camera-view and timer.

(b) Physical setup
for the experiment.

Figure 9: The first simulated tele-assistance experiment.

4.3.3 Tasks Performed

The tasks performed involved moving the end-effector of
the robot from an initial resting position (see Fig. 9a) to a
pre-grasp position around one of 5 simulated cans in the
virtual environment. For a given trial the target can was
red, while the remaining were blue. A trial was automati-
cally judgedas completedwhen the twofingers of the robot
end-effector were positioned around the thickest part of
the can, stopped orwith a small remaining velocitymagni-
tude. The participants controlled the Cartesian x, z, pitch
and yaw velocities of the robot end-effector, in the end-
effector local frame. The timer changed color to red and
incremented 10 seconds if any part of the robot collided
with the environment, the physical model of the user, or
any of the target cans. For all trials the participants were
instructed to attempt to achieve the lowest times possible,
while keeping in mind that collisions were costly in terms
of time.

4.3.4 Physical Setup

The physical experiment setup can be seen in Fig. 9b. The
input device used was a Sensable PHANTOM Omni haptic
device, as described in Section 3.1. The two camera views
simulated seen in Fig. 9a were displayed on a 40 inch (ap-
prox. 102 cm) display (Samsung 3D TV, UE40D8000), at a
distance of about 2meters. A colored timerwas also shown
on the display.
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4.3.5 Procedure

Each participant performed 3 days of testing, with about
one hour of commitment each day. Each day consisted in
4 sessions. The first day was used for training only. On the
second and third day the tasks were performed with or
without (benchmark condition) the aid of the controller.
Each participant was tested on 6 repetitions of each of the
5 tasks for each condition. The order of the conditionswere
assigned randomly to each participant. Two training ses-
sions were given before measuring the performance for
each condition, with performance being measured over
the last two sessions only. In the condition with aid, the
adaptation was only active during the training sessions.
That is, each participant was told to attempt to achieve a
comfortable level of aid, and could decide when the train-
ing should be ended. Then the adaptation was disabled,
and each participant was given two sessions to establish
the performanceusing theneural networkweights learned
during training.

4.4 Results and Discussion

The completion time for each task with and without the
aid of the controller can be seen in Fig. 10. All tasks had
a lower median with the controller. Wilcoxon signed-rank
tests showed that there were statistically significant differ-
ences for tasks 3 (Z = 2.547, p = 0.008) and task 5 (Z = 2.666,
p = 0.004). As shown in Fig. 11a there was a significant
12.6% reduction of the median overall completion time. A
Wilcoxon signed-rank test was used (Z = 2.666, p = 0.004).

Fig. 12 shows the translations of the end-effector per-
formed by one participant for the two conditions. A sim-
ilar strategy seems to be used for solving the tasks with
and without the proximity-based haptic aid. The results
for the individual scales of the subjective workload mea-
sures (NASA-TLX) can be seen in Fig. 13. There was a sta-
tistically significant 23.1% reduction in themedian Tempo-
ral Demand (TD) with the controller (Z = 2.025, p = 0.039),
again using the Wilcoxon signed-rank tests. Physical De-
mand (PD) and Frustration (FR) were higher with the con-
troller, howeverPDwas given the lowestweight by the par-
ticipants. See Fig. 11b for the comparison of the overall
workload. The plot shows a slight reduction in themedian,
but this difference was not statistically significant.

Fig. 14 shows an example trajectory with the aid of
the controller. For this specific attempt the system mainly
slowed the participant down in the last 8 seconds of the
trajectory. During the first 8 seconds a gross movement
in free space was performed, where the robot moved ex-

Figure 10: Completion time for each task for the first experiment,
with and without (benchmark condition) the aid of the controller.
Box plots based on data from 9 participants with 6 repetitions per
task (N = 54). Outliers not shown for clarity. The upper whisker
represents the most extreme data point below the limit: 1.5 times
the interquartile range beyond the third quartile. And similarly for
the lower whisker and the first quartile.

(a) Completion time. Box plot
based on data from 9 partici-
pants with 6 repetitions on 5
tasks (N = 270). Notch based
on 95% confidence interval for
the median. Outliers not shown
for clarity.

(b) Overall NASA-TLX subjec-
tive workload. Box plot based
on data from 9 participants
(N = 9), with overall work-
load calculated from scales and
weights [28].

Figure 11: Overall results for the first experiment, with and without
(benchmark condition) the aid of the controller. The upper whisker
represents the most extreme data point below the limit: 1.5 times
the interquartile range beyond the third quartile. And similarly for
the lower whisker and the first quartile.

actly as the user commanded.When the end-effector of the
robot entered in-between the shelves the system aided by:
1) applying opposing forces to the operator’s input device
displacements, and 2) reducing the Cartesian velocity. The
aid was based on the previously learned proximity usage.
This corresponded to the final fine-tuning of the position
of the fingers with respect to the target can. Though only
one example, this is the type of help that we hopemay give
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(a) Benchmark condition. Task
numbering also shown.

(b)With controller.

Figure 12: Example translational trajectories, for participant 6.

Figure 13: NASA-TLX subjective workload ratings for each scale for
the first experiment, with and without (benchmark condition) the
aid of the controller. Box plots based on data from 9 participants
(N = 9). The width of each box represents the mean weight given
to the respective scale by the participants. The median of PD for
the benchmark condition was 10, with the controller 16. The upper
whisker represents the most extreme data point below the limit:
1.5 times the interquartile range beyond the third quartile. And
similarly for the lower whisker and the first quartile. Scales: EF -
Effort, FR - Frustration,MD - Mental Demand, PD - Physical Demand,
PE - Performance, TD - Temporal Demand.

the operator the confidence to move with a higher velocity
during the gross segment of a targeted movement.

Overall, the results give some indications that the in-
tervention of the system improved the quantitative perfor-
mance, while also improving (or at least not significantly
worsening) the qualitative experience from the operator’s
perspective. Thus the approach holds some promise for
mitigating the type of variable time-delay used. A key as-
pect is the adaptation performed, tuning the usage of the
68 proximity sensors in real-time to the needs of each op-
erator.

5 Experiment 2: Exploring Longer
Time Delays and Generalization

5.1 Introduction

A second experiment was performed, to test performance
on a longer (600 ms) and more variable time delay, and to
attempt some generalisation to unseen tasks.

5.2 Implementation

There were three changes to the implementation from the
first experiment. Thefirst changemadewas to differentiate
the collision and proximity activation in the audio feed-
back. That is, the collisions were now signalled by low fre-
quency pulses of static length. The help provided by the
proximity sensors were still signalled by variable length
pulses of higher frequency. The second change made was
to limit the connectivity of the collision and proximity sen-
sors. Sensors further away than 0.25 m and with a rotation
that differed by more than 70∘ were not connected. This
was done to help avoid associating proximity sensors with
collisions that occurred in the other extremes of a link. The
third change was to replace all the proximity sensors with
digital Silicon Labs Si1143 sensors. All the proximity sen-
sors had a simulated 30∘ field of view, represented in the
simulation by a square 6 by 6 array of point distance mea-
surements. The lowest of the 36 point distance measure-
ments was used at any time. The voltage output of each
proximity sensor, pj, was simulated based on the distance
measured and the calibration specifications. See Fig. 15 for
the distribution used, and Section 6 for the first physical
implementation using these sensors.

5.3 Experiment Method

5.3.1 Participants

The participants were 8 undergraduate students of UC3M,
4 male and 4 female. 5 participants were right-handed, 3
were left-handed. 3 had previous experiencewith 3D input
devices. Themean agewas 23.0, with a range from 20 to 31.
Each participant was paid e10 for participation.
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(a) Time-varying profiles for the x and z components of three variables: i) the
velocity commanded by the operator, v⃗operator, ii) the total haptic force felt by
the participant F⃗tot, and iii) the force component due to the aid by the con-
troller, F⃗prox .

(b) Corresponding end-effector trajectory. Dark green
lines indicate the X̂ axis of the end-effector at each
point (length indicates velocity), and pink lines indi-
cate the aid-related haptic force, F⃗prox .

Figure 14: Visualization of a trajectory for one attempt by participant 6 on task 3 with the controller active.

(a) Sensors on last link. (b) All sensors.

Figure 15: Field of view of simulated proximity sensors for the sec-
ond experiment (Silicon Labs Si1143 sensors).

5.3.2 Simulated Environment and Time-Delay

A very similar tele-assistance scenario as used in the first
experiment was simulated, as seen in Fig. 16. See section
4.3.2 for details. A longer time delaywas used,with amean
of 600 ms. It was also made much more variable, with a
standard deviation of 120 ms. This meant the delay could
vary from close to none up to over a second. The variation
of the time delay was random, using a Gaussian noise low-
pass filtered at 0.1 Hz, as in the first experiment.

5.3.3 Tasks Performed

The 5 tasks performed in the first experiment were in-
cluded, but also 5 more target cans, as can be seen in
Fig. 17. The additional 5 cans were not used when adapt-
ing the controller, but only when measuring the perfor-
mance. Again, the tasks performed involved moving the
end-effector of the robot from an initial resting position
(see Fig. 9a) to a pre-grasp position around one of the sim-

Figure 16: The setup for the second experiment.

ulated cans in the virtual environment. See Section 4.3.3
for details.

Figure 17: Two views of the tasks for the second experiment. The 5
red cans were used for both learning and testing (tasks 1 to 5), the 5
blue cans only for testing (tasks 6 to 10).
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5.3.4 Physical Setup

The same physical setup as for the first experiment was
used, as can bee see in Fig. 16. Section 4.3.4 contains the
details also for this experiment.

5.3.5 Procedure

Each participant performed 3 days of testing, with about
one hour of commitment each day. Each day consisted
in 3 sessions. Each session had 20 attempts in total. The
first day was used for training only. On the second and
thirdday the taskswereperformedwith orwithout (bench-
mark condition) the aid of the controller. Each partici-
pant was tested on 4 repetitions of each of the 10 tasks
for each condition. The order of the conditions were as-
signed randomly to each participant (balanced within-
subject design). 1 training session was given before mea-
suring performance for each condition, with performance
being measured over the last 2 sessions only. In the as-
sisted condition, the adaptationwas only active during the
training session. This was the only session when only the
5 original target cans were used. Each participant was told
to attempt to achieve a comfortable level of assistance, and
could decide when the training should be ended. Then the
adaptation was disabled, and each participant was given
2 sessions to establish the performance using the neural
network weights learned during the training.

5.4 Results and Discussion

The completion time for each task for the second experi-
ment can be seen in Fig. 18. All tasks had a lower median
with the controller. Wilcoxon signed-rank tests showed
that there were statistically significant differences for task
5 (Z = 2.521, p = 0.008) and task 10 (Z = 2.381, p = 0.016). As
shown in Fig. 11a there was a significant 16.5% reduction
of the median of the overall completion time. A Wilcoxon
signed-rank test was used (Z = 2.381, p = 0.016).

The results for the individual scales of the subjective
workloadmeasures (NASA-TLX) can be seen in Fig. 20. The
Wilcoxon signed-rank tests showed that there was a statis-
tically significant 20.0% reduction in the median Tempo-
ral Demand (TD) with the controller (Z = 2.252, p = 0.031).
Physical Demand (PD) was higher with the controller, but
like in the first experiment it was given the lowest weight
by theparticipants. All other scaleswere lower, but not sta-
tistically significant. See Fig. 19b for the comparison of the
overall workload. The plot shows a considerable reduction

Figure 18: Completion time for each task for the second experiment,
with and without (benchmark condition) the aid of the controller.
Box plots based on data from 8 participants with 4 repetitions per
task (N = 32). Outliers not shown for clarity. The upper whisker
represents the most extreme data point below the limit: 1.5 times
the interquartile range beyond the third quartile. And similarly for
the lower whisker and the first quartile.

(a) Completion time. Box plot
based on data from 8 partici-
pants with 4 repetitions on 10
tasks (N = 320). Notch based
on 95% confidence interval for
the median. Outliers not shown
for clarity.

(b) Overall NASA-TLX subjec-
tive workload. Box plot based
on data from 8 participants
(N = 8), with overall work-
load calculated from scales and
weights [28].

Figure 19: Overall results for the second experiment, with and with-
out (benchmark condition) the aid of the controller. The upper
whisker represents the most extreme data point below the limit:
1.5 times the interquartile range beyond the third quartile. And sim-
ilarly for the lower whisker and the first quartile.

in the median, but this difference was only weakly statis-
tically significant with the Wilcoxon signed-rank test (Z =
1.820, p = 0.078).

Fig. 21 shows the development of the system during
the session when the learning was activated. The weights,
and the resulting level of assistance, varies from partici-
pant to participant. All participants, except participant 6,
started the sessionwith several collisions during the 5 first
trials. This likely gave a fast response about the type of as-
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Figure 20: NASA-TLX subjective workload ratings for each scale for
the second experiment, with and without (benchmark condition) the
aid of the controller. Box plots based on data from 8 participants
(N = 8). The width of each box represents the mean weight given
to the respective scale by the participants. The median of PD for the
benchmark condition was 17.5, with the controller 24. The upper
whisker represents the most extreme data point below the limit:
1.5 times the interquartile range beyond the third quartile. And
similarly for the lower whisker and the first quartile. Scales: EF -
Effort, FR - Frustration,MD - Mental Demand, PD - Physical Demand,
PE - Performance, TD - Temporal Demand.

sistance the system could provide. That is, they typically
moved the robot arm at a velocity that was slightly above
what they could normally control. The collisions experi-
enced led to increased NN weights specific to where the
collisions were sensed, and the operator would then feel
an increased reduction of the commanded velocity in the
direction of obstacles in similar situations. After the initial
increase most participants then had smaller adjustments
to theirweights,with participant 1 and 7 choosing to freeze
the weights before ending the 20 attempts of the session.

It can be seen that some collisions did not noticeably
increase the NN weights, for example in trial 6 for partici-
pant 1. This would typically indicate that there was an in-
sufficient coverage of proximity sensors for that location,
a limitation of the sparse sensing used. It should also be
noted that the different tasks typically provoked very dif-
ferent levels of assistance for a given participant. Finally,
it is interesting that two participants with very different
NN weights, participant 1 and 2, were both in the top 3
with respect to performance for the experiment (comple-
tion time). This indicates that it is possible to use quite
different strategies for taking advantage of the assistance.
The range of strategies can likely be exploredmore quickly
because the robot adapts in real-time.

6 Towards a Physical
Implementation

This section will outline the current progress on imple-
menting the controller on a real assistive manipulator, the
AMOR robot of Exact Dynamics in Holland. It is hoped that
the work outlined can lead to practical systems that can
adapt to, and assist, the user of similar physical robots in
the near future. A first implementation of distributed prox-
imity sensing on the hand can be seen in Fig. 22, based
on infrared Silicon Labs Si1143 sensors. Each sensor has
its own digital circuit, and the sensors readings can be ac-
cessed over an I2C bus. A great advantage of these sensors
is that they work from approx. 5 cm to 40 cm. However,
as with other distance sensors based on infrared light,
they are noisy when used on black, transparent or shiny
surfaces. Redundancy could be achieved through sensors
based on other physical modalities, like sound waves.

Fig. 23 shows the same type of proximity sensors on
the body of the AMOR, with integration well underway.
The current plan is to have local information-gathering
on each link of the robot using an Arduino Nano board.
Each board will communicate the readings to a central
controller over wires or Bluetooth. Initial compatibility tri-
als with the PMD Nano and the Microsoft Kinect 3D sen-
sors is also under way. These sensors also use infrared
light around 850 nm, but with spatial modulation that
should not significantly interfere with the temporal mod-
ulation of the distance sensors. The current results do in-
deed indicate that there is little or no interference between
the different sensors. More testing is needed to confirm
this during usage on the robot platform. Combining static,
hand-mounted and distributed infrared sensing would in-
crease robustness and provide redundancy in case of oc-
clusions and sensor malfunction. The current implemen-
tation does not yet include a tactile skin, but there are sev-
eral promising technological alternatives under develop-
ment, and in use. For example for full-body tactile sensing
on humanoid robots [35].

7 General Discussion
The neuronal units of the NN used here are linear and the
networks do not have hidden layers. The term "neural net-
work" is still used here, but it is clear that the complexity
of the learning algorithm is on the extreme low end of typ-
ical NNs. This low algorithmic complexity is made possi-
ble by the extremely simple, and task relevant, informa-
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(a) Participant 1. (b) Participant 2. (c) Participant 3.

(d) Participant 4. (e) Participant 5. (f) Participant 6.

(g) Participant 7. (h) Participant 8.

Figure 21: Visualization of the adaptation by the system (and the operator) during the session with learning in the controller. Mean val-
ues for each trial are shown. The mean weights of the neural network for the last link are drawn in a thick green line. Starting from zero,
the weights grow with collisions with the environment, and decay slowly otherwise. Collisions are indicated by vertical grey bars, with the
thickness signifying the summed estimated force of the collisions for that trial. Thin blue lines indicate the percentage of time during each
trial that the participant was given assistance by the system. That is, how often the system reduced the Cartesian velocity commanded
based on the learned proximity sensor usage (when rmax > 1).

tion coming from the robot’s main sensory apparatus, the
distributed collision and proximity sensing. The simplic-
ity also influences the scalability of the approach, which
can easily scale to 1000s of sensors without compromising
the ability to learn andprovide aid in real-time.More tradi-
tional approaches, like predictive displays, employ holis-
tic whole-scene sensors, combined with geometric mod-
els of the robot and its environment. The approach pre-
sented is complementary rather than in competition, and
can help reduce the need for maintaining exact models of
every aspect of the world. For example by seeing "behind"

the arm,where you otherwisewould have to rely on sensor
data stored previously.

The two experiments presented used able-bodied par-
ticipants (undergraduate and graduate students of both
sexes) as the robot teleoperators. We do believe that ac-
tual end-users shouldbe includedas participants in exper-
iments on assistive technology in general. However, this
study examined a controller to aid the tele-operation of an
assistive robot by an able-bodied operator from a distance.
The operator is in this case meant to help the disabled or
elderly user control the robot on especially difficult tasks.
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(a) Hand, front view. (b)With PMD Nano.

Figure 22: Development of distributed proximity sensing for the
AMOR hand, based on infrared sensors (Silicon Labs Si1143) and a
PMD Nano depth camera. In-hand web camera also seen.

Figure 23: Overview of the current implementation of proximity sen-
sors on the body of the AMOR robot manipulator. Data processing
and communications units not shown.

The operator can be a professional, a care provider, or a
family member. The able-bodied participants used seem a
reasonable choice for this group of operators, but it would
be interesting to includemoremature participants and ac-
tual health care providers in future studies. The experi-
ments used also simulated the round-trip delays caused by
teleoperation over an internet connection. The exactmean
and variability of such delays would differ greatly from lo-
cation to location, but the quite distinct delays used here
should represent an interesting subset of actual delays.
This should give an indication that the system can per-
form under a range of different conditions. As a compar-
ison, Rodríguez-Seda, Lee and Spong [16] included one-
way time-varying delays with means ranging from 80 ms
to 480 ms, Xiu et al. [14] approximated variable one-way
delays of around 300 ms, while Davis, Smyth and McDow-
ell [12] used a variable round-trip delay with amean of 700
ms. However, future studies should include tele-operation
over physical distances and real internet connections.

A somewhat controversial aspect about the approach
presented is the need for collisions with the environment

for the system to learn to aid the operator. First, most cur-
rent assistive devices aremadewith the idea that collisions
are not acceptable. This makes perfect sense for robots
with rigid structures, position/velocity control, and hard
outer surfaces. However, the authors feel that physically
assistive robots will necessarily need to become "softer"
to be safe enough for use at home with elderly and dis-
abled users, for example by incorporating passive com-
pliance in the structure, which can make collisions much
less risky. In fact, manipulators with passive compliance,
like the human arm, can benefit from the physical inter-
action with the environment to simplify the control [36].
The work may be quite suitable for "softer" robot arms,
given the real-time adjustment of the sensor usage, and
the limited need for exact arm models. Second, most cur-
rent assistive robots move very slowly. Partially because
of the need to avoid collisions, and partially because the
devices are challenging to control, especially multi-DOF
manipulators. A good goal for such manipulators, and for
prosthetics, must be to approach the performance of the
human arm. In this context, safety, which typically means
avoiding dangerous collisions, cannot easily be separated
from movement speed, as targeted arm movements are
strongly driven by the speed-accuracy trade-off. The study
presented here attempts to take this into account on two
levels: 1) through performancemetrics, as the participants
have to keep in mind the time lost by collisions, and 2)
through the limitation of velocity in situations similar to
those where collisions were experience in the past, rather
than an active collision avoidance system.

Nonetheless, the training of the system is not a fully
resolved issue. A coarse tuning of the weights of the sys-
tem could perhaps be done in simulation before moving
to the real-world system. Exactly when to learn and when
to freeze the weights in a real situation is also not clear.
More research is needed to resolve these issues. Similarly
with the plain dot-product used, which means local veloc-
ities that are perpendicular to the virtual proximity read-
ing will not have an effect. This could be altered by the use
of the αproj and βproj parameters (see Algorithm 1), to for
example slow the system down by a certain degree in all
directions when close to an obstacle. The algorithm used
for allowing the link-specific NNs to influence the move-
ment of the whole manipulator is also quite restrictive. It
can, for example, limit wrist motion by sensing proximity
to an obstacle (previously learned) near the shoulder. This
could likely be relaxed, for example if the arm is kinemat-
ically redundant.

Perhaps the main limitation of the work is that the
learned assistance typically works best in the given sce-
nario where the learning was performed, for example the
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refrigerator scenario used here. The second experiment
showed that the system can still provide aid on tasks that
are similar to those on which it was trained. However, if
the system is to be used also in other scenarios, for exam-
ple when the user is at the office, a mechanism for switch-
ing between sets of learnedweights is likely needed. Given
the small size of each weight matrix, a large number of
such sets can easily be stored. Task-oriented approaches
have also been used for adapting the physical structure of
assistive robot manipulators to the user’s needs [31, 32].
One of the advantages of the system proposed here is that
it should scale well also to much higher density proxim-
ity sampling, for example in approaches based on elec-
tric fields [33, 34]. It is also interesting to note that a be-
havioural approach that from an algorithmic point of view
looks very simple, canprovide quantitative andqualitative
improvements in performance on a complex human-robot
system.

The results should be seen in relation with the previ-
ous studies that applied a similar approach to direct con-
trol by users with simulated disabilities [5, 6]. If the ben-
efits are confirmed with real end-users the same physical
system could one day assist both on direct control by the
user and on tele-assistance by a remote operator on more
difficult tasks.

8 Conclusions and Future Work
Anapproach for providing adaptive aid in a tele-assistance
scenario was presented. The disabled or elderly user of
an assistive robot manipulator is here helped by a remote
operator on tasks that are too complex to perform by di-
rect control. The approach assumes a set of tasks that are
regularly performed, on which the system can learn from
the collisions with the environment. The learning adapts
a proximity-based haptic aid for the remote operator. The
adaptation occurs online during operation, by associating
a set of distributed infrared proximity sensors to a coarse
tactile skin. By using local sensor information to filter the
received commands, the system can help mitigate some of
the negative effects of the variable time-delays in the com-
municationwith the operator. Promising improvements in
the time to complete tasks and the subjective temporal de-
mand were found in two controlled virtual experiments
with 9 and 8 participants.

Future work is needed to assess the performance on a
larger set of tasks with more diversity, and on the physical
implementation described here. It would also be interest-

ing to test a similar system undermore severe time-delays,
including those found in space teleoperation.
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