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Abstract— Programming by demonstration (PbD) allows
matching the kinematic movements of a robot with those of
a human. The presented Continuous Goal-Directed Actions
(CGDA) is able to additionally encode the effects of a de-
monstrated action, which are not encoded in PbD. CGDA
allows generalization, recognition and execution of action ef-
fects on the environment. In addition to analyzing kinematic
parameters (joint positions/velocities, etc.), CGDA focuses on
changes produced on the object due to an action (spatial,
color, shape, etc.). By tracking object features during action
execution, we create a trajectory in an n-dimensional feature
space that represents object temporal states. Discretized action
repetitions provide us with a cloud of points. Action gener-
alization is accomplished by extracting the average point of
each sequential temporal interval of the point cloud. These
points are interpolated using Radial Basis Functions, obtaining
a generalized multidimensional object feature trajectory. Action
recognition is performed by comparing the trajectory of a query
sample with the generalizations. The trajectories discrepancy
score is obtained by using Dynamic Time Warping (DTW).
Robot joint trajectories for execution are computed in a
simulator through evolutionary computation. Object features
are extracted from sensors, and each evolutionary individual
fitness is measured using DTW, comparing the simulated action
with the generalization.

I. INTRODUCTION

Humans are able to easily extract the main consequences
of an action performed on an object. However, in usual
robot imitation, there is a lack of codification of action
effects, and only the kinematic aspects are considered (it is a
kind of blind imitation). This fact limits flexibility in action
execution. We aim to solve this problem by incorporating a
way to encode the consequences of an action.

Literature from psychology indicates that the human brain
encodes actions as end-goals. For example, when children
imitate others grasping a person’s ear, they tend to imitate
the action goal (which ear to grasp) rather than the kinematic
aspects of the action (which hand is used to perform the
grasping) [1].

Neuroscience has also discovered some points supporting
goal coding of actions, especially in the study of mirror
neurons [2]. Mirror neurons fire both when an action is
performed and when the same action performed by another
subject is observed. As shown in [3], when monkeys were
trained to grasp food with a tool, their mirror neurons
activated when they performed the action, and also when
observing the action performed by an experimenter using
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a different tool. This demonstrates their kinematic indepen-
dence.

Inspired by this neuronal behavior, we present Continuous
Goal-Directed Actions (CGDA) and define them as actions in
which the only parameters analyzed are the ones belonging
to the object (or more generally, elements) affected by the
action in a continuous time. We define two kinds of goal
directed actions:

• Goal only: When the information used is only the
difference between the initial and the final state of the
element. This was studied in [4].

• Continuous tracking: When the whole process of change
is taken into account. This paper focuses on this kind
of goal directed actions.

We consider Continuous Goal-Directed Actions a useful
way to teach robots the consequences of an action. Robots
are usually taught how to perform a task by imitating how
humans do it, guiding its elements through an action execu-
tion. The robot can, effectively, repeat the same movements,
but the action goals remain a mystery for it [5]. By using
CGDA, an action can be encoded in a complementary way,
by learning, not only how to do it, but also the effects of the
action. This double learning may allow the robot to complete
the action, even when the scenario changes or when elements
block its usual path of execution, by generating alternative
motions which accomplish the encoded goals.

II. RELATED WORK

Robot imitation is usually denoted as programming by
demonstration (PbD) [6]. The way these methods generalize
an action is by recording the kinematics of a demonstrator
when performing the action, and then applying different
machine learning algorithms. The demonstrator can either
be the guided robot itself, a human with sensors attached, or
video sequences of human movements.

In [6], a human demonstrator performs a task several
times (e.g. hitting a ball) using a robotic arm. Positions,
orientations and velocities of the arm are recorded, and the
number of representative states of the action are estimated
with Hidden Markov Models (HMM). HMM are used to han-
dle spatio-temporal variabilities of trajectories across several
demonstrations. Finally, and in order for the robot to execute
the trajectory, Gaussian Mixture Regression (GMR) is used
to create a regression function using previous HMM states.
This reconstructed trajectory is the one the robot reproduces
to imitate the human movement. Another common technique
used, along with HMM [7] [8], is Gaussian Mixture Models
(GMM) as in [9] [10].



Recognizing an action through external measurements is
called direct action recognition. In [11], they perform a
neuro-fuzzy classification of optical flow features between
consecutive frames of human movement in video sequences.
Neuro-fuzzy is a combination of fuzzy logic with neural
networks, using the classified output of a fuzzy system as
an input to the neural network. In [12], they track and
filter human hand and feet trajectories through Principal
Component Analysis (PCA). First, they record trajectories
of key points from a video. Then, they split them into sub-
units called basic motions. Next, they extract some features
of the basic motions, and project these feature vectors into a
reduced space generated by PCA, resulting in the formation
of clusters of similar actions. For recognition purposes,
they record an action, transform it with the same process
explained, project its vector onto the reduced space, and
finally, associate it with the closest cluster.

As shown, the focus in these types of research is on
learning the kinematics of actions. By using only kinematics,
actions are limited to be executed exactly as taught. Any
disturbance, e.g. a blocking path or a displaced element,
would make the task completion impossible. This is why
a complementary effect encoding is also important.

When talking about goal directed actions in robotics, a
goal encoding is found in [13] where, despite they learn the
kinematic trajectory to perform an action, they also encode
some goals to be achieved. They replicate a psychological
experiment [1] with children, where, in a table, there are
colored dots which are touched by a human with both arms in
alternation. When the dots stay on the table, children tend to
imitate the goal (what dot to touch), and not the arm used to
do it. In the replicated experiment, the demonstrator repeats
the same task and, while observing the demonstration, the
robot tries to extract a set of constraints for the task. Later,
the robot computes the trajectory that best satisfies the
constraints and generates a motion.

There are no exclusively continuous tracking goal directed
actions references in literature, to the authors knowledge.
The only slightly related one found [14] uses a combination
of object spatial and demonstrator-hand movement tracking.
In [14], they build a system with a set of primitive actions
(inverse models). When the human demonstrator performs
an action, they continuously track the object and the hand
spatially through time. At the same time, they run all inverse
models during action stages to find the best performance of
each model in each stage. Finally, they construct a high-
level inverse model composed by those selected primitives,
being able to imitate the action goal with similar spatial
movements. Notice that the parameters to be imitated are
not robot joint positions, the only target here is the hand
position. The object tracking is only used to identify grasping
and releasing stages. Despite the continuous tracking used in
this work, they do not fully exploit the benefits of the object
features variation.

Our work aims to allow a complete CGDA infrastructure,
using features beyond spatial ones, such as changes in color
or object deformations.

III. CONTINUOUS GOAL-DIRECTED ACTIONS

Continuous Goal-Directed Actions are a way to encode
the effects of an action when the action is demonstrated to
a robot. The main differences between the CGDA and PbD
paradigms can be found in Table I. We have developed a
continuous tracking infrastructure to allow the learning of
actions with relevant object feature intermediate states e.g.
recognizing the rotation of a valve is unachievable without
a continuous tracking infrastructure, because the final state
of the valve could be the same as the initial, looking like no
action has been executed.

We present a method to generalize, recognize and execute
actions by its effects on objects, in a continuous tracking
way. This tracking produces a trajectory in a n-dimensional
feature space (where n equals the number of tracked object
features). When trajectories are considered in a discrete
way, the action repetition creates a point cloud in time.
Throughout the rest of the paper, we will refer to action
trajectory as the object feature trajectory.

A. Generalization

For generalization purposes, we need to extract a repre-
sentative n-dimensional trajectory of the point cloud from
several repetitions. This process is composed by the follow-
ing three steps.

1) Time Rescaling: Before inserting a single action rep-
etition in the point cloud, it is normalized in time (range
[0, 1]). With this time rescaling, every action execution gets
bounded by the same temporal limits, making the algorithm
independent of the repetitions speed. All normalized trajecto-
ries are introduced in the same object feature space, forming
a point cloud.

2) Average in Temporal Intervals: To model the point
cloud, we split it in temporal intervals, fixing one interval
per second. The number of seconds is computed from the
average duration of the original repetitions. Each interval
contains points of all repetitions, in the same percentage of
execution. As the repetitions are normalized in time, each
interval represents a percentage of action execution, and
the number of intervals allows preserving a notion of the
action duration. The representative point of each interval is
extracted as the average for each dimension of all points
of the interval, as seen in Fig. 1. These temporal averaged
points are the ones used in the posterior interpolation.

3) Radial Basis Function Interpolation: Once we have
the representative points of the point cloud, we have to join
them to form a generalized action, i.e. an object feature
trajectory we can consider as a generalization. In a robot joint
space, an interpolation could create a jerky joint trajectory, so
literature, e.g. [6], commonly uses regressors such as GMR.
However, working in the object feature space, we use an
interpolator to assure the trajectories pass through the target
points (which are the states of the object in an instant).
We use a Radial Basis Function, which is an interpolation
technique based on measuring the influence of every known
point over the queried point [15]. The RBF interpolation



TABLE I
MAIN DIFFERENCES BETWEEN PBD AND CGDA PARADIGMS.

PbD CGDA
Objective of imitation Spatial trajectories Object feature states

Features tracked Demonstrator’s joint positions/velocities Object’s shape, area, color, coordinates, etc.
Strengths Perfect kinematic imitation Effects encoding

Weaknesses Undefined goal to achieve Undefined way to achieve the goal

Fig. 1. Plot representing a three feature trajectory. Black lines are training
action repetitions. The blue line is the generalization of all the repetitions.

f(x), which will become the final generalized trajectory, is
mathematically expressed as a sum of radial basis functions:

f(x) =

N∑
i=1

wi φ(‖x− xi‖) (1)

Where N is the number of radial basis functions, equal
to the number of intervals, and xi represents the coordinates
of each interval’s known point. The radial basis function is
denoted as φ, where the input parameter is the distance be-
tween the known point xi and the queried point x, measured
with L2 norm. The coefficient wi is the weight of a specific
known point over the queried point x, and it is the value to
be solved. As the interpolation is known at known points,
the weight problem is solved as a set of N linear equation
with N unknowns:

f(x1) =

N∑
i=1

wi φ(‖x1 − xi‖)

...

f(xN ) =

N∑
i=1

wi φ(‖xN − xi‖) (2)

From the available radial basis functions, we have selected
the linear one (as we do not care on trajectory smoothness
on the feature space):

φ(r) = r (3)

Where r = ‖x − xi‖. Once the interpolated function is
returned, we consider this output as the generalized function

of an action. Its physical meaning is how the state of the
object, regarding its features, is changing across the action
performance.

B. Recognition

Here we aim to recognize an action by comparing a query
action with the previously generalized ones. We assume
the recognition as the comparison of a query with our
generalized trajectories, returning the one with the highest
similarity.

The initial treatment of the query action is the same as
explained. As they are normalized in time, we can take t
values along time for each action to compare them. The
technique used in the comparison is Dynamic Time Warping
(DTW). DTW is an algorithm usually used to optimally align
two temporal sequences [16]. Our use of DTW is to compare
two time-dependent sequences of points X = {x1, .., xN}
and Y = {y1, .., yM} with N,M ∈ N. To compare two
elements, a local cost measure (a distance d(x, y)) is needed.
A lower cost represents a bigger similarity of the sequences.

Evaluating all pairs of points between the sequences, using
in this case a L2 norm, we obtain a cost matrix CM , with
a size of N ×M :

CM =

 d(x0, y0) · · · d(xN , y0)
...

...
...

d(x0, yM ) · · · d(xN , yM )

 (4)

Once having this matrix, the goal is to find the lowest cost
alignment path, which intuitively should run along the lowest
cost cells. This alignment is called the warping path. DTW
includes some constraints in the path calculation to assure
a monotonic advance of the path and to assure that the first
elements as well as the last elements are connected to each
other. The total path cost CP (X,Y ) is calculated as the sum
of the local costs C:

CP (X,Y ) =

L∑
l=1

C(xnl, yml) (5)

Where L is the length of the path. For programming
reasons, the path is usually calculated in an accumulated
cost matrix, where each cell represents the cost of the
correspondent pair (x, y) plus the cost to reach this cell
(see Fig. 2). In the accumulated matrix, the normalized cost
CPnorm

(X,Y ) of the optimal path is expressed as:

CPnorm
(X,Y ) =

C(xn, ym)

N +M
(6)



In our case, we use this normalized cost of the optimal
path as a measure of discrepancy between dimensions. As
DTW is computed between two signals for one dimension
only, we consider the total cost of alignment between two n-
dimensional trajectories as the sum of the costs of the optimal
paths of each dimension, obtaining a single score D:

D =

n∑
i=1

CPnorm
(Xi, Yi) (7)

Fig. 2. Example of accumulated cost matrix for two sequences. White
cells represent high cost, while dark cells are low cost ones. The red line
is the lowest cost path.

This score is used as the measure of discrepancy between
two trajectories in the n-dimensional space. In recognition,
the trajectory with the smallest score is the one we consider
the match.

IV. EXPERIMENTS

Three different experiments have been performed. Two of
them involve CGDA recognition and the last of them also
includes CGDA execution.

A. Object Feature Trajectory Recognition

The first experiment framework consist in a Kinect camera
pointed at a desktop tracking a colored marker. A demon-
strator performs several action using the marker in front
of the camera. Using YARP software [17], we connect the
camera input with a computer vision library [18] to measure
marker features. Four different basic actions were selected.
We have given names to each basic action for simplicity
in explanation, but semantics is not used in the process.
The actions involve spatial movements (MOVE, ROTATE,
WAX) and color changes (PAINT). Each action is described
as follows:

• MOVE: Marker displacement of 30 cm in one straight
direction.

• ROTATE: Rotation over the Center-of-Mass (CoM), on
one axis, of 90 degrees.

TABLE II
DTW COST MATRIX: TEST ACTIONS (LOWER CASE) VS. GENERALIZED

TRAJECTORIES (UPPER CASE). BOLD NUMBERS REPRESENT BEST

VALUES (MINIMUM DISCREPANCY).

MOVE ROTATE WAX PAINT
move 229 332059 290334 552055
rotate 389021 7606 325211 694049
wax 402555 304669 1724 44259
paint 497152 671078 25896 1277

TABLE III
DTW COST MATRIX: REDUCED TEST ACTIONS (LOWER CASE) VS.

REDUCED GENERALIZED TRAJECTORIES (UPPER CASE). BOLD

NUMBERS REPRESENT BEST VALUES (MINIMUM DISCREPANCY). ONLY

SPATIAL FEATURES ARE USED.

MOVE ROTATE WAX PAINT
move 8.15 10251.49 11428.03 4888.67
rotate 12836.77 8.94 10035.21 284.87
wax 12252.87 8977.23 13.46 5175.71
paint 4728.14 135.77 5021.54 14.33

• WAX: Keeping orientation fixed, movement of CoM
over the perimeter of a circle of 30 cm of diameter
(1 revolution).

• PAINT: Keeping its spatial coordinates fixed, the marker
is painted in a different color with a marking pen, until
almost all of the area is covered.

Seven repetitions of each basic action were recorded. Six
of the repetitions were used to generate one generalized
action. The final repetition of each set was used as a
test action to be recognized. The tracked object features
are: spatial location (X,Y,Z), area, HSV color (hue, value,
saturation) and angle (of main axis). Each test action is
passed to the CGDA recognition process, which compares
it to each of the previously generated generalized actions.
Results are shown in Table II.

To measure the influence of all dimensions (relevant or
not) over the relevant ones, we perform the same comparison
using only spatial features, and ignoring the rest. The results
can be seen in Table III.

These results show that our initial assumption is correct,
and the measure of discrepancy between similar feature
trajectories is lower than between different actions. This
makes the recognition algorithm to correctly associate all
the test trajectories with their set. Tables II and III show the
influence of additional dimensions on the comparison. As
more dimensions are used, the quality of the results decays.
Deeper analysis is needed to check how other comparisons
techniques behave in this situation.

B. Cartesian Space Trajectory Recognition

To check whether the CGDA approach is useful, during the
previous experiment, we also measure the Cartesian positions
(X,Y,Z) of the human demonstrator’s arm joints: hand tip,
wrist, elbow and shoulder. The demonstrator did not care



TABLE IV
DTW COST MATRIX: CARTESIAN TEST ACTIONS (LOWER CASE) VS.

CARTESIAN GENERALIZED TRAJECTORIES (UPPER CASE). BOLD

NUMBERS REPRESENT BEST VALUES (MINIMUM DISCREPANCY).

MOVE ROTATE WAX PAINT
move 0.0032 0.1594 0.0448 0.1031
rotate 0.1563 0.0123 0.0939 0.0430
wax 0.0234 0.0323 0.0003 0.0371
paint 0.0486 0.0148 0.0300 0.0004

to perform the actions in a specific kinematic way, or even
equal between repetitions, the only aim was to accomplished
the, already explained, action description. When comparing
test and generalized Cartesian actions (following the same
scheme as previously), we obtain Table IV.

As shown in Table IV, in this case, the system also
recognizes the actions correctly, but the score differences
are lower. In Table II, the correct answer is 1 to 3 orders
of magnitude lower, while in Table IV results are all quite
similar. This proves that enabling CGDA, we are allowing
the demonstrator to focus on task completion, rather than
focusing on the kinematic consistency.

C. Robot CGDA Execution by Evolutionary Computation

Despite it is not the aim of the paper to establish a rigid
method to perform an encoded CGDA, we have developed
a simple framework to check its feasibility. We have used
Evolutionary Computation (EC) and a simulated model of
a humanoid robot [19], Fig. 3. We set a CGDA as the
goal, with its generalized trajectory as the reference, and EC,
starting from an initial random robot joint position trajectory,
performs joint parameter evolution until convergence.

Fig. 3. The plot shows the experimental scenario with the robot, the object
(green) and the Kinect camera. The bottom left square is the Kinect depth
map and the bottom right square shows the color segmentation of the object.

EC performs a steady state selection algorithm (few
individuals are replaced after the selection and crossover

process). The following is a summary of the operator details:
1) Selection: A tournament is performed between 3 ran-

dom individuals. Their fitness values are compared and
winners are selected for crossover.

2) Crossover: Selection winners are crossed and their
offspring substitute the worst individuals from the
previous tournament.

3) Mutation: Finally, each child may be mutated with a
70% of probability.

The termination condition is set to 10 number of genera-
tions without improvement in the fitness value. The fitness
evolution of our experiment can be found in Fig. 4.

Fig. 4. Fitness value through evolution. The red point is the minimum
value achieved by evolution.

EC evolves 30 values (3 joint positions, times 10
timesteps). Fitness is evaluated when the joint position
trajectory is executed, by analyzing object features using a
simulated Kinect camera in the environment. The reference
action and the measured one are compared using CGDA
recognition, and the score of discrepancy is used as the
fitness value to minimize. We have chosen WAX as the action
to be executed, and the object features measured are purely
spatial ones (X, Y, Z). After convergence, the winner action
is executed. Its performance compared to the generalized
reference is depicted in Fig. 5.

The resulting trajectories, when executed on the robot, are
not human natural movements. This is an expected behavior,
as the aim of the experiment was to replicate object states
during execution, and not the performance of human-like
movements. In subsequent works we will focus on improving
the precision of the execution.

V. CONCLUSIONS

One future line of research could be the integration of the
presented Continuous Goal-Directed Actions framework with
the Programming by Demonstration paradigm. A successful
integration would require having the robot decide which
features (object or human) are most relevant for recognizing
or executing an action.

Another work to be developed in the future is parametric
actions. Actions which depend on complements to be cor-
rectly performed are, at the current state of development,



Fig. 5. Unidimensional temporal plots of generalized reference (blue),
and the object feature space trajectory from executing the EC winner joint
position trajectory (red). The Z dimension gives the worst results, the system
was not able to reduce the error in this dimension.

not tackled. This is the case e.g. of the action paint: it is
not the same to paint blue than to paint red. In our feature
space, these actions would end in different coordinates for
the color dimension. The solution to this problem could be to
mix the structure here presented with semantic information,
in a similar way to our previous work with objects [20].
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