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Abstract-In the Continuous Goal Directed Actions (CGDA) 
framework, actions are modelled as time series which contain 
the variations of object and environment features. As robot joint 
trajectories are not explicitly encoded in CGDA, Evolutionary 
Algorithms (EA) are used for the execution of these actions. These 
computations usually require a large number of evaluations. 
As a consequence of this, these evaluations are performed in 
a simulated environment, and the computed trajectory is then 
transferred to the physical robot. In this paper, constraints are 
introduced in the CGDA framework, as a way to reduce the 
number of evaluations needed by the system to converge to the 
optimal robot joint trajectory. Specifically, spatial and velocity 
constraints are introduced in the framework. Their effects in 
two different CGDA commonly studied use cases (the "wax" and 
"paint" actions) are analyzed and compared. The experimental 
results obtained using these constraints are compared with those 
obtained with the Steady State Tournament (SST) algorithm 
used in the original proposal of CGDA. Conclusions extracted 
from this study depict a high reduction in the required number 
of evaluations when incorporating spatial constraints. Velocity 
constraints provide however less promising results, which will be 
discussed within the context of previous CGDA works. 

I. INTRODUCTION 

Robot imitation is the general name given to frameworks 

where the user teaches new actions to the robot through a set 

of real world demonstrations. The robot is in charge of gen­

erating a generalized trajectory from this set of demonstrated 

actions. The selection of a model that is used as the internal 

representation of these generalized actions greatly defines the 

framework's characteristics and possibilities. In Programming 

by Demonstration (PbD), Hidden Markov Models [1] and 

Gaussian Mixture Models [2] have been used as a way to 

encode the robot joint and Cartesian space trajectories of these 

actions. Another approach is the use of Dynamic Motion Prim­

itives (DMP), where actions are encoded using control laws 

that generate Cartesian space trajectories [3]. In Continuous 

Goal Directed Actions (CGDA), actions are modelled as time 

series which contain the variations of object and environment 

scalar features [4], rather than by the robot's or demonstrator's 

movements. As a consequence of this, actions are independent 

from robot or demonstrator's kinematics. The correspondence 

problem, which is one of the major problems presented in 

programming by demonstration, is not present in CGDA. In 

CGDA, an action regarding moving an object can be encoded 

similar to other approaches using the X,Y,Z coordinates of 

the object's centroid (three scalar features). However, other 
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actions, such as pamtmg a wall, can be represented using a 

single scalar feature: the percentage of the object or environ­

ment that has been painted. Features can be manually chosen, 

or automatically selected using the demonstration and feature 

selection algorithm presented in [5]. 

As the robot joint trajectory is not explicitly encoded 

in CGDA, Evolutionary Algorithms (EA) are used for the 

execution of these actions, which usually requires hundreds 

or even thousand of evaluations. The execution of all of these 

evaluations on a real physical robot is considered infeasible, 

as is an extremely time consuming task. These evaluations 

are, therefore, performed in a simulated environment. The 

computed trajectory is then transferred to the physical robot. A 

long-term goal of CGDA research is to be able to perform all 

the evaluations using the real robot. The advantage of this is to 

have an independence from the simulated environment, remov­

ing the problem of how to simulate unknown environments or 

scenarios. In this paper, spatial and velocity constraints are 

introduced in the EA, aiming at reducing the search space and 

thus the number of evaluations. 

The CGDA framework is described in section 11. In section 

III a study of the state of the art of constrained genetic 

algorithms is presented. The constraints used in this paper are 

described in section IV. The results of the experiments are 

presented in V, followed by the conclusions section. 

11. THE CGDA FRAMEWORK 

CGDA is a way to encode the effects of an action on the 

environment, based on action demonstrations perceived by a 

robot [4]. The CGDA framework is used for generalizing, 

recognizing and executing actions by their effects on the 

environment. A continuous analysis generates a trajectory 

in an n-dimensional feature space, where n is the number 

of tracked environment scalar features. Fig. 1 represents a 

simplified block diagram of the CGDA framework. 

Fig. 1. Continuous Goal-Directed Actions (CGDA) framework diagram. 
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A. Generalization 

The process of generalizing consists on extracting a repre­

sentative n-dimensional feature trajectory of the task from sev­

eral repetitions. First, the demonstrated actions are discretized 

and normalized in time. Then, the generalized trajectory is 

obtained using a Radial Basis Function interpolation between 

time intervals of a fixed duration with the population of 

demonstrated actions. A generalization example can be seen 

in Fig. 2, extracted from [6]. 
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Fig. 2. Plot representing a three feature trajectory. Black lines are user action 
repetitions. The blue line is the generalization of all the repetitions. 

B. Recognition 

The generalized trajectory can be used as a tool to compare 

the action it represents with another action. The goal of the 

recognition step is to obtain a metric of the discrepancy 

between these actions. 

Recognition is performed using an intermediate result of 

the Dynamic Time Warping (DTW) algorithm. The DTW 

algorithm is usually used to optimally align two temporal 

sequences [7]. This is done by evaluating all pairs of points 

between the sequences. A cost matrix is obtained between 

the sequences using a norm such as L2. The path in the 

matrix with the lowest cost is the alignment that minimizes 

the discrepancy between the two sequences. 

In CGDA, this cost of alignment is the used DTW interme­

diate result. It describes the discrepancy between two actions 

if only a single feature was taken into account. The total 

recognized discrepancy between two actions is the sum of the 

costs of each individual feature. 

C. Execution 

CGDA is considered as both a way to encode actions to 

be recognized, and to be executed by robots. However, since 

CGDA does not encode joint motor parameters, conventional 

methods can not be used for execution. Due to this fact, several 

strategies have been studied by the authors based on Evolu­

tionary Algorithms (EA), where the recognition discrepancy 

was used as the fitness. 

The most advanced evolutionary strategy within CGDA 

execution, Incrementally Evolved Trajectories (lET), was pre­

sented in [6]. The idea behind lET is to perform an individual 

evolution over each of the time intervals of the feature trajec­

tory. For the evaluation of the trajectory at the interval time 

t, the t-I first evolved trajectory intervals are executed before 

evaluating t, in order to reuse optimal results and additionally 

take time dependencies into account. lET is a strategy that is 

general enough to be applied using any EA, and was initially 

evaluated using the Steady State Tournament (SST). The fol­

lowing section analyses literature that incorporates constraints 

to further reduce the number of required evaluations in Genetic 

Algorithms (GA), the branch of EA which includes SST. 

Ill. CONSTRAINED GENET IC AL GORITHMS 

Genetic Algorithms (GA) [8] have been widely used as 

an optimization method for complex problems. One of their 

advantage is that they are simple to use and to implement. 

However, the initial proposition of GA was designed to work 

with non-constrained problems, whereas most of the areas 

where GA are used (engineering, robotics ... ) present problems 

that involve constraints. In these problems, GA have to deal 

with situations where some of the solutions, if not all, are not 

feasible. This is the reason why different methods to handle 

constraints in GA have been proposed. These methods can be 

divided, based on the way they deal with infeasible solutions, 

into the following groups [9]: 

• Rejecting strategy: In this approach, infeasible solutions 

are rejected, and only the feasible ones are taken into 

account. 

• Repairing strategy: The objective of this strategy is 

to preserve the feasibility of the solutions. Infeasible 

solutions are repaired and converted to feasible ones. The 

drawback of this strategy is that repairing solutions can 

sometimes be as complex as the optimization problem 

itself. Chootinan and Chen used the gradient information 

obtained from the constraint function for the repair pro­

cess [10]. The gradient is used to redirect the infeasible 

solutions to the feasible space. 

• Modifying genetic operator strategy: The genetic op­

erators are modified in order to only obtain feasible 

solutions within the GA. 

• Penalty strategy: In this strategy, the infeasible solutions 

are penalized with a penalty parameter. The constrained 

function is transformed into an unconstrained one, chang­

ing the infeasible solutions into penalized ones. This 

transformation can be done in two different ways: 

l() {f(X), eva x = 

f(x) + p(x) 

l() {f(X), eva x = 

f(x)p(x) 

if x E F 
otherwise 

if x E F 
otherwise 

(1) 

(2) 
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Where f (x) represents the objective function, p( x) is the 

penalty function, and F is the feasible space. From these 

two options, the additive one (l) is the most used. 

Of all of the strategies presented here, the penalty strategy 

is the one with most related literature. It can be divided in 

ditlerent groups, depending on what strategy is used to obtain 

the penalty value [11]. In Death penalties strategies, the fit­

ness penalty value is fixed to 00 for all the infeasible solutions. 

Static penalties set this value as a finite constant. In Dynamic 
penalties, this value is a function of the generation number. A 

ditlerent approach is Adaptive penalties, where the penalty 

value changes according to the information obtained from the 

population in each iteration. An example of this approach is 

[12], where the penalty value is increased when all of the 

obtained solutions in the last iteration are infeasible. If they are 

all feasible, the penalty value is decreased. Finally, Annealing 
Penalties use Annealing Algorithms with the penalty value as 

a function of the temperature value [13]. 

Some other works have tried to introduce constraints in their 

objective functions as a way to reduce problem complexity. 

In [14], Yong and Sannomiya observed that in a flowshop 

problem there may be many solutions that are not valid 

combinations. The goal was to introduce constraints to remove 

those combinations, reducing the search space of the GA, and 

therefore the complexity of the problem. 

I V. REDUCING THE SEARCH SPACE IN CGDA 

With the goal of reducing the search space for CGDA 

execution, two ditlerent constraints are introduced in this 

paper. Since CGDA is a way to generalize, recognize, and 

execute actions, the objective is to choose a set of constraints 

that can be as ubiquitous as the rest of the CGDA framework. 

The constraints used in this paper are spatial and velocity 

constraints. 

The spatial constraint is defined as a set of constraints 

that define a valid Cartesian space. As an initial approach, 

the limits imposed by the spatial constraint are given by 

the minimum bounding box that encloses the solution space, 

expanded by a dilatation value on all axes. 

The velocity constraint is defined inside the GA definition. 

This constraint locally limits the joint velocity of each in­

dividual. This is achieved as follows: after the individual has 

moved in the search space, the new solution obtained with this 

individual is compared to the previous solution of the same 

individual in the joint space. If this difference is bigger than 

the threshold set by the constraint, then the new solution is 

set as not valid. 

V. EXPERIMENTS AND RESULTS 

In the previous literature of CGDA [6], a Steady State 

Tournament (SST) was the method used for the evolution 

of trajectories. For coherence reasons, this method was also 

used in this paper. From previous works with Steady State 

Tournament (SST), a large number of evaluations was expected 

for convergence of the algorithms. For this reason, experiments 

were performed in a simulated environment using OpenRAVE 

[15]. The robotic platform used for the simulation was TEOI, 

the humanoid robot from the Robotics Lab of Universidad 

Carlos III de Madrid [16]. For both experiments, three of the 

six Degrees of Freedom of the right arm of the humanoid 

were used, maintaining all other joints (including torso, legs 

and head) static. 

The experiments consisted on the execution of the "wax" 

(also known as "clean") and the "paint" actions as proposed in 

[6], using the lET strategy. Each of the actions were executed 

using CGDA with the two ditlerent constraints proposed in 

this paper. Due to the amount of literature related, the Death 

penalty strategy was used to purge the solutions outside 

the constrained space. The goal of these experiments was 

to measure the impact of the proposed spatial and velocity 

constraints. These constraints have been adapted to the CGDA 

architecture, implemented and open-sourced 2. 

A. Wax 

The "wax" action is defined by the movement of a grasped 

object's centroid following one revolution of a circumference 

of 30 cm of diameter. Fig. 2 represents the generalized 

trajectory of this action. The three scalar features tracked by 

the CGDA system in this action are the Cartesian coordinates 

(X,Y,Z) of a grasped object's centroid. While this setting of 

the "wax" action makes it equivalent to solving the inverse 

kinematics of the manipulator, its purpose is to demonstrate 

how the CGDA framework returns results within the expected 

ranges, despite it is agnostic with respect to the nature of the 

given scalar features. 

For all of the "wax" experiments, the population of in­

dividuals (collections of 3 joint parameters) was set to 50. 

The termination condition for the system to converge was 

set to 3 consecutive generations without improvement. Joint 

parameters movements were restricted between -15 and 100 

degrees. The individual mutation probability was set to 60%. 

The spatial constraint was evaluated for the "wax" action for 

the following dilatation values (distance between the solution 

space and the valid space in terms of bounding boxes): 0.01 m, 

0.05 m, 0.1 m, 0.2 m, 0.3 m and 00. The number of evaluations 

required and DTW discrepancy (fitness) of these experiments 

are represented in Table I. These result are the average of 

running the "wax" action 50 times with the given parameters. 

TABLE I 
EXPERIMENTAL RESULTS FOR THE "WAX" ACTION USING A SPATIAL 

Dilatation [m I 0.01 
Evaluations 3212 
Discrepancy 465 (2) 

CONSTRAINT 

0.05 0.1 
3163 2993 

503 (I) 471 (3) 

0.2 0.3 = 

4960 5722 9679 
312 331 274 

The first three cases (0.01 m, 0.05 m, 0.1 m) are marked 

with a number in parenthesis 0 describing the number of the 

experiments that resulted in a DTW Discrepancy = 00. These 

1 Model available at https:llgithub.com/roboticslab-uc3m/teo-main 
2https:llgithub.com/roboticslab-uc3m/xgnitive 
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solutions, that resulted outside of the valid space, were not 

computed within the average of the experiments. 

In Fig. 3, the cumulative number of evaluations needed at 

each time interval (set at 1 s) is represented. In these experi­

ments, the best solutions in terms of evaluation reduction were 

obtained using a dilatation :s; 0.1 m. In the three experiments 

with a dilatation :s; 0.1 m constrained space, the reduction was 

quite similar. The number of evaluations was reduced about 

60% in these experiments. This means a reduction of over 

6000 evaluations. However, the discrepancy of the generated 

trajectory obtained with dilatation :s; 0.1 m also increased, 

obtaining the cited invalid solutions. In the 0.2 m case, the 

reduction was 49%. The discrepancy in this case increased 

13%. In the 0.2 m case, the reduction was about 40%, while 

the discrepancy increased 17%. 
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Fig. 3. "Wax" spatial experiment: Cumulative number of evaluations at each 
time interval (set at 1 s) for different dilatations (0.01 m, 0.05 m. 0.1 m. 0.2 
m, 0.3 m and 00). 

The second set of experiments with the "wax" action was 

performed using the velocity constraint. Table 11 contains 

the results of these experiments using different values of the 

velocity constraint. These result are the average of running the 

"wax" action 50 times with the given parameters. 

TABLE 11 
EXPERIMENTAL RESULTS FOR THE "WAX" ACTION USING A VELOCITY 

CONSTRAINT 

Max. Velocity 5 10 20 60 80 00 
Evaluations 3591 4058 5723 6876 7349 9679 
Discrepancy 540 483 331 346 330 274 

Fig. 4 depicts the number of evaluations needed for each 

of the constraints values, in each time interval. The results 

of these experiments show how the number of evaluations is 

reduced when the velocity threshold is reduced. The maximum 

evaluation reduction is obtained in the 5 degreeliteration case, 

with a reduction in the number of evaluations of 63% with 

respect to the standard SST algorithm (which corresponds to 

00 velocity constraint). However, this reduction in the number 

of evaluation also implies an increment in the discrepancy 

of the obtained trajectory. The discrepancy obtained with the 

generated trajectory is a 50% lower using the standard SST 

algorithm than in the case of a constraint of 5 degree/iteration. 

Fig. 4. "Wax" velocity experiment: Cumulative number of evaluations at 
each time interval (set at 1 s) for different Velocities (5. 10, 20, 60. 80 
degree/iteration and 00). 

B. Paint 

The objective of the "paint" action is to have the robot to 

paint a wall. The only scalar feature tracked in this case is the 

percentage of the wall painted. Fig. 5 shows an example of 

this action execution. 

Fig. 5. Execution of the "paint" action using constraints, performed by the 
humanoid robot TEO in the CGDA framework. 

For all of the "paint" experiments, the population of in­

dividuals (collections of 3 joint parameters) was set to 10. 

The termination conditions for the evolution process was to 

reach a zero error in the obtained trajectory, or to experience 

10 followed generations without any improvement in the 

fitness value. This number of generations for the termination 
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condition was increased with respect to the "wax" action, due 

to the expected faster convergence of the "paint" action. Joint 

parameters movements were restricted between -IS and 100 

degrees. The individual mutation probability was set to 60%. 

The spatial constraint was evaluated for the "paint" action 

for the following dilatation values: 0.01 m, 0.05 m, 0.1 m, 

0.2 m, 0.3 m and 00. The number of evaluations required and 

the DTW discrepancy (fitness) of these experiments are rep­

resented in Table Ill. These result are the average of running 

the "paint" action 100 times with the given parameters. 

TABLE III 
EXPERIMENTAL RESULTS FOR THE "PAINT" ACTION USING A SPATIAL 

CONSTRAINT 

Dilatation [m] 0.01 
Evaluations 319 
Discrepancy 193 

0. 05 0.1 0. 2 0.3 = 
307 220 334 360 539 
17 5.7 7.3 6.3 7.3 

Fig. 6 depicts the cumulative number of evaluations needed 

at each time interval (set at 1 s). In this case, the best 

performance is obtained with the 0.1 m constraint. With this 

constraint, the number of evaluations is reduced about 60% 

compared with the standard SST algorithm (which corresponds 

to 00 spatial constraint), while having a lower discrepancy. 

As the constraint value moves away from the 0.1 m case, 

the number of required evaluations increases. Compared with 

the 0.1 m case, the 0.2 and 0.3 m cases need 151 % and 

164% more evaluations respectively. In the case of 0.01 m and 

0.05 m, this increment is about 145% and 139% respectively. 

The discrepancy value increases in the two cases where the 

dilatation value is lower than 0.1 m. In the rest of the 

cases, fitness varies from 5.7 (0.1 m dilatation) to 7.3 (0.2 

m dilatation). The case with the greatest discrepancy is 0.01 

m, obtaining over a 190 discrepancy value in the generated 

trajectory. 

Fig. 6. "Paint" spatial experiment: Cumulative number of evaluations at each 
time interval (set at 1 s) for different dilatations (0.01 m, 0.05 m, 0.1 m, 0.2 
m, 0.3 m and =). 

Table IV depicts the results obtained using the velocity con­

straint with the "paint" action. In Fig. 7 the cumulative number 

of evaluations at each time interval using this constraint are 

represented. 

TABLE IV 
EXPERIMENTAL RESULTS FOR THE "PAINT" ACTION USING A VELOCITY 

CONSTRAINT 

Max. Velocity 20 60 
Evaluations 543 557 
Discrepancy 24.8 12.8 

80 100 120 = 
572 527 529 539 
10.4 8.1 8 7.3 

The greatest reduction in the number of evaluations using 

this constraint is with the 100 degree/iteration constraint, 

experiencing a evaluation reduction of about 2.2%. The 120 

degree/iteration constraint obtains a reduction of 1.9%. In the 

rest of the cases, the number of evaluations are larger than in 

the case of using the standard SST algorithm (which corre­

sponds to 00 velocity constraint). The maximum number of 

evaluations is needed with a constraint of 80 degree/iteration, 

with an increment of 6% with respect to the standard SST 

algorithm. In terms of discrepancy, the solutions obtained 

with the constrained scenarios are worse than in the non­

constrained one. The more constrained the system is, the larger 

the resulting discrepancy. The greatest discrepancy is obtained 

with a 20 degreeliteration constraint. 

Fig. 7. "Paint" velocity experiment: Cumulative number of evaluations at 
each time interval (set at 1 s) for different Velocities (20, 60, 80, 100, 120 
degree/iteration and =). 

VI. CONCLUSIONS 

In this paper, spatial and velocity constraints were evaluated 

within two CGDA commonly studied use cases ("wax" and 

"paint"). The spatial constraint has provided considerable 

improvements with respect to the standard SST algorithm. 

For the "paint" action, the 0.1 m spatial constraint es­

tablishes a maximum in terms of performance. The results 
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obtained with this constraint are not only better in evaluations, 

but also in minimizing the discrepancy with respect to the 

standard SST algorithm. The number of evaluations is reduced 

by a 60%, a reduction of over 300 evaluations that would 

have to be perfonned by the robot. For the "wax" action, 

the best case greatly reduces evaluations (69% reduction of 

evaluations at 0.1 m dilatation) compared with the standard 

SST algorithm, at the cost of a discrepancy increase which 

may or not be relevant. It is also interesting to note how the 

results obtained with the 0.01 m, 0.05 m and 0.1 m cases are 

similar. This is possibly due to the fact that the constrained 

region is a box, while the solution space is something similar 

to a toroid. This means that the relative size of the valid space 

between the solution space and the constrained space does 

not suffer any significant reduction once reaching a dilatation 

reduction value. One of the best results was obtained with the 

0.2 m case. In this scenario, the "wax" action experienced a 

reduction in the number of evaluations over 50%, while having 

an increment in the discrepancy of about 14%. 

Regarding the velocity constraint results, the maximum 

reduction was obtained with the 5 degreeliteration constraint. 

In this scenario, the number of evaluations was reduced by 

a 63% with respect to the standard SST algorithm. However, 

this came at the cost of also increasing the discrepancy value 

obtained with respect to the standard SST algorithm. In the 

case of the "paint" action, introducing this constraint does 

not significantly reduce the number of evaluations in any 

of the cases. However, the discrepancy value still increased 

when lowering the threshold. These not so promising results 

could have an explanation in past works related to CGDA. 

In [17], the authors studied the performance of a Sequential 

Incremental Combinatorial Search of motor primitives, as a 

way to execute actions in the CGDA framework. For the 

experiments, the authors used different sets of primitives. 

Some sets were highly constrained, resulting in primitives 

that were limited to a maximum length. Other sets allowed 

more variations between the primitives. The results of the 

experiments presented a better performance using the sets that 

allowed more variations, rather than the more constrained sets. 

The authors concluded this was due to the richer possibilities 

offered by less constrained sets, such as coarse and fine adjust­

ment, which allowed the system to have a better performance 

on CGDA execution. With the velocity constraint presented in 

this paper, we are producing a similar effect to the case of 

the set of constrained primitives. The constraints introduced 

in the individual velocity imply a reduction in the variation of 

solution possibilities, and therefore a decay in performance. 

The variations of the effects of both constraints between the 

two presented actions "wax" and "paint" show the importance 

of correctly selecting the correct constraints for each action, in 

order to effectively reduce the search space. Some knowledge 

about the action and the environment is therefore required. 

However, future works aim at obtaining the constraints directly 

from the user demonstrations, through statistical learning 

techniques. The introduction of constraints in GA and in 

EA in general opens a new window of possibilities towards 

performing CGDA execution on real robots. 

VII. ACKNOWLEDGMENT 

The research leading to these results has received funding 

from the RoboCity2030-III-CM project (Robtica aplicada a 

la mejora de la calidad de vida de los ciudadanos. fase Ill; 

S2013IMIT-2748), funded by Program as de Actividades I+D 

en la Comunidad de Madrid and cofunded by Structural Funds 

of the EU, and by a FPU grant funded by Miniesterio de 

Educacion, Cultura y deporte. 

REFERENCES 

[I] S. Calinon and A. Billard, "Recognition and Reproduction of Gestures 
Using a Probabilistic Framework Combining PCA, ICA and HMM," 
in Proceedings of the 22Nd International Conference on Machine 

Learning, ser. ICML '05. New York, NY, USA: ACM, 2005, pp. 
105-112. 

[2] S. Calinon, F. Guenter, and A. Billard, "On Learning, Representing, 
and Generalizing a Task in a Humanoid Robot," IEEE Transactions on 

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 
286-298, Apr. 2007. 

[3] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, 
"Dynamical movement primitives: learning attractor models for motor 
behaviors," Neural Computation, vol. 25, no. 2, pp. 328-373, Feb. 2013. 

[4] S. Morante, J. G. Victores, A. Jard6n, and C. Balaguer, "Action ef­
fect generalization, recognition and execution through continuous goal­
directed actions," in 2014 IEEE International Conference on Robotics 
and Automation (ICRA). IEEE, 2014, pp. 1822-1827. 

[5] S. Morante, J. G. Victores, and C. Balaguer, "Automatic demonstration 
and feature selection for robot learning," in 2015 IEEE-RAS 15th 

International Conference on Humanoid Robots (Humanoids). IEEE, 
Nov. 2015, pp. 428-433. 

[6] S. Morante, J. G. Victores, A. Jardon, and C. Balaguer, "Humanoid 
robot imitation through continuous goal-directed actions: an evolutionary 
approach," Advanced Robotics, vol. 29, no. 5, pp. 303-314, 2015. 

[7] M. MUlier, Dynamic Time Warping. Berlin, Heidelberg: Springer Berlin 
Heidelberg, 2007, pp. 69-84. 

[8] J. H. Holland, Adaptation in natural and artificial systems, second 
edition (1992). (first edition, university of michigan press, 1975). ed. 
Cambridge: MIT Press, 1975. 

[9] K. Deep and Dipti, "A self-organizing migrating genetic algorithm for 
constrained optimization," Applied Mathematics and Computation, vol. 
198, no. 1, pp. 237-250, Apr. 2008. 

[10] P. Chootinan and A. Chen, "Constraint handling in genetic algorithms 
using a gradient-based repair method," Computers & Operations Re­

search, vol. 33, no. 8, pp. 2263-2281, Aug. 2006. 
[11] O. Yeniay, "Penalty Function Methods for Constrained Optimization 

with Genetic Algorithms," Mathematical and Computational Applica­

tions, vol. 10, no. 1, pp. 45-56, Apr. 2005. 
[12] A. Ben Hadj-Alouane and J. C. Bean, "A Genetic Algorithm for the 

Multiple-Choice Integer Program," Operations Research, vol. 45, no. 1, 
pp. 92-101, 1997. 

[13] Z. Michalewicz and N. Attia, "Evolutionary Optimization of Constrained 
Problems," in Proceedings of the 3rd Annual Conference on Evolution­

ary Programming. River Edge, NJ: World Scientific Publishing, 1994, 
pp. 98-108. 

[14] Z. Yong and N. Sannomiya, "Au Improvement of Genetic Algorithms by 
Search Space Reductions in Solving Large-Scale Flowshop Problems," 
in Transactions of The Institute of Electrical Engineers of Japan, 200 I, 
vol. 121, pp. 1010-1015. 

[15] R. Diankov, "Automated construction of robotic manipulation pro­
grams," Ph.D. dissertation, Carnegie Mellon University, Robotics In­
stitute, August 2010. 

[16] S. Martinez, C. A. Monje, A. Jard6n, P. Pierro, C. Balaguer, and 
D. Munoz, "Teo: Full-size humanoid robot design powered by a fuel 
cell system;' Cybernetics and Systems, vol. 43, no. 3, pp. 163-180, 
2012. 

[17] S. Morante, J. G. Victores, A. Jard6n, and C. Balaguer, "On using guided 
motor primitives to execute Continuous Goal-Directed Actions," in The 

23rd IEEE International Symposium on Robot and Human Interactive 

Communication, Aug. 2014, pp. 613-618. 

295 


