
2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

Improving CGDA execution through Genetic Algorithms
incorporating Spatial and Velocity constraints

RauI Fernandez-Fernandez, David Estevez, Juan G. Victores and CarIos BaIaguer

Abstract-In the Continuous Goal Directed Actions (CGDA)
framework, actions are modelled as time series which contain
the variations of object and environment features. As robot joint
trajectories are not explicitly encoded in CGDA, Evolutionary
Algorithms (EA) are used for the execution of these actions. These
computations usually require a large number of evaluations.
As a consequence of this, these evaluations are performed in
a simulated environment, and the computed trajectory is then
transferred to the physical robot. In this paper, constraints are
introduced in the CGDA framework, as a way to reduce the
number of evaluations needed by the system to converge to the
optimal robot joint trajectory. Specifically, spatial and velocity
constraints are introduced in the framework. Their effects in
two different CGDA commonly studied use cases (the "wax" and
"paint" actions) are analyzed and compared. The experimental
results obtained using these constraints are compared with those
obtained with the Steady State Tournament (SST) algorithm
used in the original proposal of CGDA. Conclusions extracted
from this study depict a high reduction in the required number
of evaluations when incorporating spatial constraints. Velocity
constraints provide however less promising results, which will be
discussed within the context of previous CGDA works.

I. INTRODUCTION

Robot imitation is the general name given to frameworks

where the user teaches new actions to the robot through a set

of real world demonstrations. The robot is in charge of gen­

erating a generalized trajectory from this set of demonstrated

actions. The selection of a model that is used as the internal

representation of these generalized actions greatly defines the

framework's characteristics and possibilities. In Programming

by Demonstration (PbD), Hidden Markov Models [1] and

Gaussian Mixture Models [2] have been used as a way to

encode the robot joint and Cartesian space trajectories of these

actions. Another approach is the use of Dynamic Motion Prim­

itives (DMP), where actions are encoded using control laws

that generate Cartesian space trajectories [3]. In Continuous

Goal Directed Actions (CGDA), actions are modelled as time

series which contain the variations of object and environment

scalar features [4], rather than by the robot's or demonstrator's

movements. As a consequence of this, actions are independent

from robot or demonstrator's kinematics. The correspondence

problem, which is one of the major problems presented in

programming by demonstration, is not present in CGDA. In

CGDA, an action regarding moving an object can be encoded

similar to other approaches using the X,Y,Z coordinates of

the object's centroid (three scalar features). However, other

All of the authors are members of the Robotics Lab research group within
the Department of Systems Engineering and Automation. Universidad Carlos
III de Madrid (UC3M). rauferna@ing.uc3m.es

978-1-5090-6234-8/17/$31.00 ©2017 IEEE

actions, such as pamtmg a wall, can be represented using a

single scalar feature: the percentage of the object or environ­

ment that has been painted. Features can be manually chosen,

or automatically selected using the demonstration and feature

selection algorithm presented in [5].

As the robot joint trajectory is not explicitly encoded

in CGDA, Evolutionary Algorithms (EA) are used for the

execution of these actions, which usually requires hundreds

or even thousand of evaluations. The execution of all of these

evaluations on a real physical robot is considered infeasible,

as is an extremely time consuming task. These evaluations

are, therefore, performed in a simulated environment. The

computed trajectory is then transferred to the physical robot. A

long-term goal of CGDA research is to be able to perform all

the evaluations using the real robot. The advantage of this is to

have an independence from the simulated environment, remov­

ing the problem of how to simulate unknown environments or

scenarios. In this paper, spatial and velocity constraints are

introduced in the EA, aiming at reducing the search space and

thus the number of evaluations.

The CGDA framework is described in section 11. In section

III a study of the state of the art of constrained genetic

algorithms is presented. The constraints used in this paper are

described in section IV. The results of the experiments are

presented in V, followed by the conclusions section.

11. THE CGDA FRAMEWORK

CGDA is a way to encode the effects of an action on the

environment, based on action demonstrations perceived by a

robot [4]. The CGDA framework is used for generalizing,

recognizing and executing actions by their effects on the

environment. A continuous analysis generates a trajectory

in an n-dimensional feature space, where n is the number

of tracked environment scalar features. Fig. 1 represents a

simplified block diagram of the CGDA framework.

Fig. 1. Continuous Goal-Directed Actions (CGDA) framework diagram.

978-1-5090-6234-8/17/$31.00 ©2017 IEEE 290

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

A. Generalization

The process of generalizing consists on extracting a repre­

sentative n-dimensional feature trajectory of the task from sev­

eral repetitions. First, the demonstrated actions are discretized

and normalized in time. Then, the generalized trajectory is

obtained using a Radial Basis Function interpolation between

time intervals of a fixed duration with the population of

demonstrated actions. A generalization example can be seen

in Fig. 2, extracted from [6].

650 700 750
X [mm] 800 850

Repetitions
Generalized

, 10
I
I

� 5 I
I

.L 0 I
I

} -5
I
I ,-10

E
E

�

N

150 100 50 �"\
-50�\� -100

Fig. 2. Plot representing a three feature trajectory. Black lines are user action
repetitions. The blue line is the generalization of all the repetitions.

B. Recognition

The generalized trajectory can be used as a tool to compare

the action it represents with another action. The goal of the

recognition step is to obtain a metric of the discrepancy

between these actions.

Recognition is performed using an intermediate result of

the Dynamic Time Warping (DTW) algorithm. The DTW

algorithm is usually used to optimally align two temporal

sequences [7]. This is done by evaluating all pairs of points

between the sequences. A cost matrix is obtained between

the sequences using a norm such as L2. The path in the

matrix with the lowest cost is the alignment that minimizes

the discrepancy between the two sequences.

In CGDA, this cost of alignment is the used DTW interme­

diate result. It describes the discrepancy between two actions

if only a single feature was taken into account. The total

recognized discrepancy between two actions is the sum of the

costs of each individual feature.

C. Execution

CGDA is considered as both a way to encode actions to

be recognized, and to be executed by robots. However, since

CGDA does not encode joint motor parameters, conventional

methods can not be used for execution. Due to this fact, several

strategies have been studied by the authors based on Evolu­

tionary Algorithms (EA), where the recognition discrepancy

was used as the fitness.

The most advanced evolutionary strategy within CGDA

execution, Incrementally Evolved Trajectories (lET), was pre­

sented in [6]. The idea behind lET is to perform an individual

evolution over each of the time intervals of the feature trajec­

tory. For the evaluation of the trajectory at the interval time

t, the t-I first evolved trajectory intervals are executed before

evaluating t, in order to reuse optimal results and additionally

take time dependencies into account. lET is a strategy that is

general enough to be applied using any EA, and was initially

evaluated using the Steady State Tournament (SST). The fol­

lowing section analyses literature that incorporates constraints

to further reduce the number of required evaluations in Genetic

Algorithms (GA), the branch of EA which includes SST.

Ill. CONSTRAINED GENET IC AL GORITHMS

Genetic Algorithms (GA) [8] have been widely used as

an optimization method for complex problems. One of their

advantage is that they are simple to use and to implement.

However, the initial proposition of GA was designed to work

with non-constrained problems, whereas most of the areas

where GA are used (engineering, robotics ...) present problems

that involve constraints. In these problems, GA have to deal

with situations where some of the solutions, if not all, are not

feasible. This is the reason why different methods to handle

constraints in GA have been proposed. These methods can be

divided, based on the way they deal with infeasible solutions,

into the following groups [9]:

• Rejecting strategy: In this approach, infeasible solutions

are rejected, and only the feasible ones are taken into

account.

• Repairing strategy: The objective of this strategy is

to preserve the feasibility of the solutions. Infeasible

solutions are repaired and converted to feasible ones. The

drawback of this strategy is that repairing solutions can

sometimes be as complex as the optimization problem

itself. Chootinan and Chen used the gradient information

obtained from the constraint function for the repair pro­

cess [10]. The gradient is used to redirect the infeasible

solutions to the feasible space.

• Modifying genetic operator strategy: The genetic op­

erators are modified in order to only obtain feasible

solutions within the GA.

• Penalty strategy: In this strategy, the infeasible solutions

are penalized with a penalty parameter. The constrained

function is transformed into an unconstrained one, chang­

ing the infeasible solutions into penalized ones. This

transformation can be done in two different ways:

l() {f(X), eva x =

f(x) + p(x)

l() {f(X), eva x =

f(x)p(x)

if x E F
otherwise

if x E F
otherwise

(1)

(2)

291

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

Where f (x) represents the objective function, p(x) is the

penalty function, and F is the feasible space. From these

two options, the additive one (l) is the most used.

Of all of the strategies presented here, the penalty strategy

is the one with most related literature. It can be divided in

ditlerent groups, depending on what strategy is used to obtain

the penalty value [11]. In Death penalties strategies, the fit­

ness penalty value is fixed to 00 for all the infeasible solutions.

Static penalties set this value as a finite constant. In Dynamic
penalties, this value is a function of the generation number. A

ditlerent approach is Adaptive penalties, where the penalty

value changes according to the information obtained from the

population in each iteration. An example of this approach is

[12], where the penalty value is increased when all of the

obtained solutions in the last iteration are infeasible. If they are

all feasible, the penalty value is decreased. Finally, Annealing
Penalties use Annealing Algorithms with the penalty value as

a function of the temperature value [13].

Some other works have tried to introduce constraints in their

objective functions as a way to reduce problem complexity.

In [14], Yong and Sannomiya observed that in a flowshop

problem there may be many solutions that are not valid

combinations. The goal was to introduce constraints to remove

those combinations, reducing the search space of the GA, and

therefore the complexity of the problem.

I V. REDUCING THE SEARCH SPACE IN CGDA

With the goal of reducing the search space for CGDA

execution, two ditlerent constraints are introduced in this

paper. Since CGDA is a way to generalize, recognize, and

execute actions, the objective is to choose a set of constraints

that can be as ubiquitous as the rest of the CGDA framework.

The constraints used in this paper are spatial and velocity

constraints.

The spatial constraint is defined as a set of constraints

that define a valid Cartesian space. As an initial approach,

the limits imposed by the spatial constraint are given by

the minimum bounding box that encloses the solution space,

expanded by a dilatation value on all axes.

The velocity constraint is defined inside the GA definition.

This constraint locally limits the joint velocity of each in­

dividual. This is achieved as follows: after the individual has

moved in the search space, the new solution obtained with this

individual is compared to the previous solution of the same

individual in the joint space. If this difference is bigger than

the threshold set by the constraint, then the new solution is

set as not valid.

V. EXPERIMENTS AND RESULTS

In the previous literature of CGDA [6], a Steady State

Tournament (SST) was the method used for the evolution

of trajectories. For coherence reasons, this method was also

used in this paper. From previous works with Steady State

Tournament (SST), a large number of evaluations was expected

for convergence of the algorithms. For this reason, experiments

were performed in a simulated environment using OpenRAVE

[15]. The robotic platform used for the simulation was TEOI,

the humanoid robot from the Robotics Lab of Universidad

Carlos III de Madrid [16]. For both experiments, three of the

six Degrees of Freedom of the right arm of the humanoid

were used, maintaining all other joints (including torso, legs

and head) static.

The experiments consisted on the execution of the "wax"

(also known as "clean") and the "paint" actions as proposed in

[6], using the lET strategy. Each of the actions were executed

using CGDA with the two ditlerent constraints proposed in

this paper. Due to the amount of literature related, the Death

penalty strategy was used to purge the solutions outside

the constrained space. The goal of these experiments was

to measure the impact of the proposed spatial and velocity

constraints. These constraints have been adapted to the CGDA

architecture, implemented and open-sourced 2.

A. Wax

The "wax" action is defined by the movement of a grasped

object's centroid following one revolution of a circumference

of 30 cm of diameter. Fig. 2 represents the generalized

trajectory of this action. The three scalar features tracked by

the CGDA system in this action are the Cartesian coordinates

(X,Y,Z) of a grasped object's centroid. While this setting of

the "wax" action makes it equivalent to solving the inverse

kinematics of the manipulator, its purpose is to demonstrate

how the CGDA framework returns results within the expected

ranges, despite it is agnostic with respect to the nature of the

given scalar features.

For all of the "wax" experiments, the population of in­

dividuals (collections of 3 joint parameters) was set to 50.

The termination condition for the system to converge was

set to 3 consecutive generations without improvement. Joint

parameters movements were restricted between -15 and 100

degrees. The individual mutation probability was set to 60%.

The spatial constraint was evaluated for the "wax" action for

the following dilatation values (distance between the solution

space and the valid space in terms of bounding boxes): 0.01 m,

0.05 m, 0.1 m, 0.2 m, 0.3 m and 00. The number of evaluations

required and DTW discrepancy (fitness) of these experiments

are represented in Table I. These result are the average of

running the "wax" action 50 times with the given parameters.

TABLE I
EXPERIMENTAL RESULTS FOR THE "WAX" ACTION USING A SPATIAL

Dilatation [m I 0.01
Evaluations 3212
Discrepancy 465 (2)

CONSTRAINT

0.05 0.1
3163 2993

503 (I) 471 (3)

0.2 0.3 =

4960 5722 9679
312 331 274

The first three cases (0.01 m, 0.05 m, 0.1 m) are marked

with a number in parenthesis 0 describing the number of the

experiments that resulted in a DTW Discrepancy = 00. These

1 Model available at https:llgithub.com/roboticslab-uc3m/teo-main
2https:llgithub.com/roboticslab-uc3m/xgnitive

292

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

solutions, that resulted outside of the valid space, were not

computed within the average of the experiments.

In Fig. 3, the cumulative number of evaluations needed at

each time interval (set at 1 s) is represented. In these experi­

ments, the best solutions in terms of evaluation reduction were

obtained using a dilatation :s; 0.1 m. In the three experiments

with a dilatation :s; 0.1 m constrained space, the reduction was

quite similar. The number of evaluations was reduced about

60% in these experiments. This means a reduction of over

6000 evaluations. However, the discrepancy of the generated

trajectory obtained with dilatation :s; 0.1 m also increased,

obtaining the cited invalid solutions. In the 0.2 m case, the

reduction was 49%. The discrepancy in this case increased

13%. In the 0.2 m case, the reduction was about 40%, while

the discrepancy increased 17%.

10000
.......... 0.01 rn

0.05rn
8000 O.lrn

00
<=1,. 0.2rn 0

:g 6000 0.3rn .E
co
> Cl

'-
0
'" Cl

.0
S
" Z

Time interval (adimensional)

Fig. 3. "Wax" spatial experiment: Cumulative number of evaluations at each
time interval (set at 1 s) for different dilatations (0.01 m, 0.05 m. 0.1 m. 0.2
m, 0.3 m and 00).

The second set of experiments with the "wax" action was

performed using the velocity constraint. Table 11 contains

the results of these experiments using different values of the

velocity constraint. These result are the average of running the

"wax" action 50 times with the given parameters.

TABLE 11
EXPERIMENTAL RESULTS FOR THE "WAX" ACTION USING A VELOCITY

CONSTRAINT

Max. Velocity 5 10 20 60 80 00
Evaluations 3591 4058 5723 6876 7349 9679
Discrepancy 540 483 331 346 330 274

Fig. 4 depicts the number of evaluations needed for each

of the constraints values, in each time interval. The results

of these experiments show how the number of evaluations is

reduced when the velocity threshold is reduced. The maximum

evaluation reduction is obtained in the 5 degreeliteration case,

with a reduction in the number of evaluations of 63% with

respect to the standard SST algorithm (which corresponds to

00 velocity constraint). However, this reduction in the number

of evaluation also implies an increment in the discrepancy

of the obtained trajectory. The discrepancy obtained with the

generated trajectory is a 50% lower using the standard SST

algorithm than in the case of a constraint of 5 degree/iteration.

Fig. 4. "Wax" velocity experiment: Cumulative number of evaluations at
each time interval (set at 1 s) for different Velocities (5. 10, 20, 60. 80
degree/iteration and 00).

B. Paint

The objective of the "paint" action is to have the robot to

paint a wall. The only scalar feature tracked in this case is the

percentage of the wall painted. Fig. 5 shows an example of

this action execution.

Fig. 5. Execution of the "paint" action using constraints, performed by the
humanoid robot TEO in the CGDA framework.

For all of the "paint" experiments, the population of in­

dividuals (collections of 3 joint parameters) was set to 10.

The termination conditions for the evolution process was to

reach a zero error in the obtained trajectory, or to experience

10 followed generations without any improvement in the

fitness value. This number of generations for the termination

293

0 1 2 3 4 5 6 7 8
Time interval (adimensional)

0

2000

4000

6000

8000

10000

N
um

be
r

of
ev

al
ua

ti
on

s

5 deg/iter
10 deg/iter
20 deg/iter
60 deg/iter
80 deg/iter
∞

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

condition was increased with respect to the "wax" action, due

to the expected faster convergence of the "paint" action. Joint

parameters movements were restricted between -IS and 100

degrees. The individual mutation probability was set to 60%.

The spatial constraint was evaluated for the "paint" action

for the following dilatation values: 0.01 m, 0.05 m, 0.1 m,

0.2 m, 0.3 m and 00. The number of evaluations required and

the DTW discrepancy (fitness) of these experiments are rep­

resented in Table Ill. These result are the average of running

the "paint" action 100 times with the given parameters.

TABLE III
EXPERIMENTAL RESULTS FOR THE "PAINT" ACTION USING A SPATIAL

CONSTRAINT

Dilatation [m] 0.01
Evaluations 319
Discrepancy 193

0. 05 0.1 0. 2 0.3 =
307 220 334 360 539
17 5.7 7.3 6.3 7.3

Fig. 6 depicts the cumulative number of evaluations needed

at each time interval (set at 1 s). In this case, the best

performance is obtained with the 0.1 m constraint. With this

constraint, the number of evaluations is reduced about 60%

compared with the standard SST algorithm (which corresponds

to 00 spatial constraint), while having a lower discrepancy.

As the constraint value moves away from the 0.1 m case,

the number of required evaluations increases. Compared with

the 0.1 m case, the 0.2 and 0.3 m cases need 151 % and

164% more evaluations respectively. In the case of 0.01 m and

0.05 m, this increment is about 145% and 139% respectively.

The discrepancy value increases in the two cases where the

dilatation value is lower than 0.1 m. In the rest of the

cases, fitness varies from 5.7 (0.1 m dilatation) to 7.3 (0.2

m dilatation). The case with the greatest discrepancy is 0.01

m, obtaining over a 190 discrepancy value in the generated

trajectory.

Fig. 6. "Paint" spatial experiment: Cumulative number of evaluations at each
time interval (set at 1 s) for different dilatations (0.01 m, 0.05 m, 0.1 m, 0.2
m, 0.3 m and =).

Table IV depicts the results obtained using the velocity con­

straint with the "paint" action. In Fig. 7 the cumulative number

of evaluations at each time interval using this constraint are

represented.

TABLE IV
EXPERIMENTAL RESULTS FOR THE "PAINT" ACTION USING A VELOCITY

CONSTRAINT

Max. Velocity 20 60
Evaluations 543 557
Discrepancy 24.8 12.8

80 100 120 =
572 527 529 539
10.4 8.1 8 7.3

The greatest reduction in the number of evaluations using

this constraint is with the 100 degree/iteration constraint,

experiencing a evaluation reduction of about 2.2%. The 120

degree/iteration constraint obtains a reduction of 1.9%. In the

rest of the cases, the number of evaluations are larger than in

the case of using the standard SST algorithm (which corre­

sponds to 00 velocity constraint). The maximum number of

evaluations is needed with a constraint of 80 degree/iteration,

with an increment of 6% with respect to the standard SST

algorithm. In terms of discrepancy, the solutions obtained

with the constrained scenarios are worse than in the non­

constrained one. The more constrained the system is, the larger

the resulting discrepancy. The greatest discrepancy is obtained

with a 20 degreeliteration constraint.

Fig. 7. "Paint" velocity experiment: Cumulative number of evaluations at
each time interval (set at 1 s) for different Velocities (20, 60, 80, 100, 120
degree/iteration and =).

VI. CONCLUSIONS

In this paper, spatial and velocity constraints were evaluated

within two CGDA commonly studied use cases ("wax" and

"paint"). The spatial constraint has provided considerable

improvements with respect to the standard SST algorithm.

For the "paint" action, the 0.1 m spatial constraint es­

tablishes a maximum in terms of performance. The results

294

0 2 4 6 8 10 12 14 16
Time interval (adimensional)

0

100

200

300

400

500

600

N
um

be
r

of
ev

al
ua

ti
on

s

0.01 m
0.05 m
0.1 m
0.2 m
0.3 m
∞

0 2 4 6 8 10 12 14 16
Time interval (adimensional)

0

100

200

300

400

500

600

N
um

be
r

of
ev

al
ua

ti
on

s

20 deg/iter
60 deg/iter
80 deg/iter
100 deg/iter
120 deg/iter
∞

2017 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC)

April 26-28, Coimbra, Portugal

obtained with this constraint are not only better in evaluations,

but also in minimizing the discrepancy with respect to the

standard SST algorithm. The number of evaluations is reduced

by a 60%, a reduction of over 300 evaluations that would

have to be perfonned by the robot. For the "wax" action,

the best case greatly reduces evaluations (69% reduction of

evaluations at 0.1 m dilatation) compared with the standard

SST algorithm, at the cost of a discrepancy increase which

may or not be relevant. It is also interesting to note how the

results obtained with the 0.01 m, 0.05 m and 0.1 m cases are

similar. This is possibly due to the fact that the constrained

region is a box, while the solution space is something similar

to a toroid. This means that the relative size of the valid space

between the solution space and the constrained space does

not suffer any significant reduction once reaching a dilatation

reduction value. One of the best results was obtained with the

0.2 m case. In this scenario, the "wax" action experienced a

reduction in the number of evaluations over 50%, while having

an increment in the discrepancy of about 14%.

Regarding the velocity constraint results, the maximum

reduction was obtained with the 5 degreeliteration constraint.

In this scenario, the number of evaluations was reduced by

a 63% with respect to the standard SST algorithm. However,

this came at the cost of also increasing the discrepancy value

obtained with respect to the standard SST algorithm. In the

case of the "paint" action, introducing this constraint does

not significantly reduce the number of evaluations in any

of the cases. However, the discrepancy value still increased

when lowering the threshold. These not so promising results

could have an explanation in past works related to CGDA.

In [17], the authors studied the performance of a Sequential

Incremental Combinatorial Search of motor primitives, as a

way to execute actions in the CGDA framework. For the

experiments, the authors used different sets of primitives.

Some sets were highly constrained, resulting in primitives

that were limited to a maximum length. Other sets allowed

more variations between the primitives. The results of the

experiments presented a better performance using the sets that

allowed more variations, rather than the more constrained sets.

The authors concluded this was due to the richer possibilities

offered by less constrained sets, such as coarse and fine adjust­

ment, which allowed the system to have a better performance

on CGDA execution. With the velocity constraint presented in

this paper, we are producing a similar effect to the case of

the set of constrained primitives. The constraints introduced

in the individual velocity imply a reduction in the variation of

solution possibilities, and therefore a decay in performance.

The variations of the effects of both constraints between the

two presented actions "wax" and "paint" show the importance

of correctly selecting the correct constraints for each action, in

order to effectively reduce the search space. Some knowledge

about the action and the environment is therefore required.

However, future works aim at obtaining the constraints directly

from the user demonstrations, through statistical learning

techniques. The introduction of constraints in GA and in

EA in general opens a new window of possibilities towards

performing CGDA execution on real robots.

VII. ACKNOWLEDGMENT

The research leading to these results has received funding

from the RoboCity2030-III-CM project (Robtica aplicada a

la mejora de la calidad de vida de los ciudadanos. fase Ill;

S2013IMIT-2748), funded by Program as de Actividades I+D

en la Comunidad de Madrid and cofunded by Structural Funds

of the EU, and by a FPU grant funded by Miniesterio de

Educacion, Cultura y deporte.

REFERENCES

[I] S. Calinon and A. Billard, "Recognition and Reproduction of Gestures
Using a Probabilistic Framework Combining PCA, ICA and HMM,"
in Proceedings of the 22Nd International Conference on Machine

Learning, ser. ICML '05. New York, NY, USA: ACM, 2005, pp.
105-112.

[2] S. Calinon, F. Guenter, and A. Billard, "On Learning, Representing,
and Generalizing a Task in a Humanoid Robot," IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp.
286-298, Apr. 2007.

[3] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
"Dynamical movement primitives: learning attractor models for motor
behaviors," Neural Computation, vol. 25, no. 2, pp. 328-373, Feb. 2013.

[4] S. Morante, J. G. Victores, A. Jard6n, and C. Balaguer, "Action ef­
fect generalization, recognition and execution through continuous goal­
directed actions," in 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 1822-1827.

[5] S. Morante, J. G. Victores, and C. Balaguer, "Automatic demonstration
and feature selection for robot learning," in 2015 IEEE-RAS 15th

International Conference on Humanoid Robots (Humanoids). IEEE,
Nov. 2015, pp. 428-433.

[6] S. Morante, J. G. Victores, A. Jardon, and C. Balaguer, "Humanoid
robot imitation through continuous goal-directed actions: an evolutionary
approach," Advanced Robotics, vol. 29, no. 5, pp. 303-314, 2015.

[7] M. MUlier, Dynamic Time Warping. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 69-84.

[8] J. H. Holland, Adaptation in natural and artificial systems, second
edition (1992). (first edition, university of michigan press, 1975). ed.
Cambridge: MIT Press, 1975.

[9] K. Deep and Dipti, "A self-organizing migrating genetic algorithm for
constrained optimization," Applied Mathematics and Computation, vol.
198, no. 1, pp. 237-250, Apr. 2008.

[10] P. Chootinan and A. Chen, "Constraint handling in genetic algorithms
using a gradient-based repair method," Computers & Operations Re­

search, vol. 33, no. 8, pp. 2263-2281, Aug. 2006.
[11] O. Yeniay, "Penalty Function Methods for Constrained Optimization

with Genetic Algorithms," Mathematical and Computational Applica­

tions, vol. 10, no. 1, pp. 45-56, Apr. 2005.
[12] A. Ben Hadj-Alouane and J. C. Bean, "A Genetic Algorithm for the

Multiple-Choice Integer Program," Operations Research, vol. 45, no. 1,
pp. 92-101, 1997.

[13] Z. Michalewicz and N. Attia, "Evolutionary Optimization of Constrained
Problems," in Proceedings of the 3rd Annual Conference on Evolution­

ary Programming. River Edge, NJ: World Scientific Publishing, 1994,
pp. 98-108.

[14] Z. Yong and N. Sannomiya, "Au Improvement of Genetic Algorithms by
Search Space Reductions in Solving Large-Scale Flowshop Problems,"
in Transactions of The Institute of Electrical Engineers of Japan, 200 I,
vol. 121, pp. 1010-1015.

[15] R. Diankov, "Automated construction of robotic manipulation pro­
grams," Ph.D. dissertation, Carnegie Mellon University, Robotics In­
stitute, August 2010.

[16] S. Martinez, C. A. Monje, A. Jard6n, P. Pierro, C. Balaguer, and
D. Munoz, "Teo: Full-size humanoid robot design powered by a fuel
cell system;' Cybernetics and Systems, vol. 43, no. 3, pp. 163-180,
2012.

[17] S. Morante, J. G. Victores, A. Jard6n, and C. Balaguer, "On using guided
motor primitives to execute Continuous Goal-Directed Actions," in The

23rd IEEE International Symposium on Robot and Human Interactive

Communication, Aug. 2014, pp. 613-618.

295

