
150

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

ALGORITHM FOR GRAPH VISIBILITY
OBTAINMENT FROM A MAP OF NON-CONVEX

POLYGONS

J Crespo1*, R Barber1, J G Victores1 and A Jardon1

*Corresponding Author: J Crespo, jocrespo@ing.uc3m.es

Visibility graphs are basic planning algorithms,widely used in mobile robotics and other disciplines.
The construction of a visibility graph can be considered a tool based on geometry that provides
support to planning strategies in mobile robots. Visually, the method is used to solve that planning,
which is quite extended due to the simplicity of operating with polygons, that represent obstacles
in the environment. The cost of these algorithms tend to be quite low. The most sensitive issue
of obtaining visibility between polygons is in cases in which the polygons are non-convex. In
such cases, it is obligatory to know whether the area where one vertex of the polygon is found,
is located in a convex or non-convex area, being desirable to distinguish between both situations
in a simple way, issue that was not possible up to now. To obtain the visibility of non-convex
polygons, the authors have developed a visual and intuitive method which gives the machine the
ability to interpret the visibility with a simplicity similar to the human mind.

Keywords: Path planning algorithm, Mobile robots algorithm, Visibility graph, Visibility in
non-convex polygons

INTRODUCTION
Visibility graphs, as can be seen in LaValle
(2006), are tools for trajectory planning, widely
used in navigation of mobile robots in works
such as López (2002), but that are also extend
to other disciplines such as the one discussed
in Wein et al. (2005). In the case of robot
navigation, it can be used to set the final path
between two points as the library proposed in

ISSN 2278 – 0149 www.ijmerr.com
Vol. 3, No. 2, April 2014

© 2014 IJMERR. All Rights Reserved

Int. J. Mech. Eng. & Rob. Res. 2014

1 System Engineering and Automation Department, Carlos III University, Madrid, Spain.

Research Paper

Obermeyer (2008) is expected to be used or
as a tool for prior pre-processing for support
or comparison with other techniques, obtaining
a first solution to the problem, as suggested in
Ortega et al. (2010). Currently, they still appear
as complementary to other techniques such
as the probabilistic one, which may be more
efficient depending on the complexity of the
environment. In the mobile robot movements

151

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

planning field, quick and useful solutions are
offered. These solutions allow the robot’s
movement avoiding col l ision with the
environment obstacles. They are a practical
solution where the convergence to the solution
prevails, against other techniques that can
provide more optimal paths but may be
oscillating or may not ensure the convergence
or may require excessive time to reach it as
the environment becomes more complicated.

In this paper, the concept of classic visibility
graph is used as a basis. In LaValle (2006), a
non-directed graphis defined as the pair (N,
): where N is a nodes set made up of the initial
configuration qa, the final configuration qf, and
the obstacles vertices. The visibility function
defined is not void if and only if the two
referenced nodes are connected. Two nodes
are connected if and only if a segment that joins
them can be drawn, obtaining an edge that
does not cross with any side of the obstacle,
or being a side of an obstacle. In this way, two
nodes are connected if and only if they are
"visible". This is, when the second node can
be reached from the first one (or vice versa)
when the straight line that joins them is
fol lowed, without intercepting any
environments obstacles.

Motivation
Visibility graphs are a useful resource for robot
navigation planning when therequirements of
the movement do not require optimization of
the trajectory followed by the platform and on
the other hand, it is desirable to minimize the
calculation time, looking for simplicity in the
algorithm. In any case, a first approximation to
a problem of navigation in an environment with
obstacles may be useful. The problems that
increase the complexity of the construction of

a graph appear when dealing with non-convex
polygons, so for cases in which there are only
convex polygons, the visibility algorithm is
considerably simple both to understand and
to implement. To take advantage of using these
graphs with obstacles represented by all kinds
of polygons, whether they are convex or not, it
is expected to obtain a visibility algorithm
which, while keeping the simplicity of the
concept and of the implementation, it works
with any type of polygon.

In this paper a conceptually simple, fast, and
robust algorithm that performs a visibility graph
construction is presented. When the proposed
algorithm is used, the computational cost is
reduced. This is the computational cost due
to the obtainment of the visibility of the
obstacles of the environment when they are
represented with polygons, convex and non-
convex. In this way, an algorithm as efficient
as possible that can construct the visibility
graph is expected to be developed. A simple,
low-cost and robust algorithm that can be
applied to any environment, is proposed.

TECHNIQUES AND
PROBLEMS WHEN
VISIBILITY GRAPHS ARE
OBTAINED
Planning is defined as the search for a route
free of obstacles from an initial position to a
final one, through the working environment of
the mobile robot. This task is accomplished
using the information obtained of the
environment in that moment, the description
of the navigation task and of some kind of
strategic methodology. Thus, the planner
strongly depends on the model of the
environment and the search algorithm used.

152

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

The simplest case is to consider a completely
known environment, static and geometrically
modeled using polygons. W ith these
assessments it is possible to apply a search
algorithm in graphs, using some cost function
to obtain the path. However, the direct
application of this methodology to use the
resulting path as a path that must be followed,
implies to carry out certain considerations
about the vehicle. In this way, it is to be
considered a specif ic vehicle, Omni-
directional and that it goes over the assigned
paths in a correct way.

Visibility Graphs as Planners
There are different approaches to the definition
of a path function path that leads to the robot
from its initial position to the final position.
Although the techniques based on visibility
graphs, in recent years represent a slow
progress in their studies, as the work of [?],
they are still being used, for example by means
of the Obermeyer (2008) library, in navigation
techniques, therefore it is still necessary to
contribute with new ideas in order to obtain
some improvements. All approaches have the
same goal, that is, the definition of a safe path
for the vehicle that ensures there is no collision
with an obstacle, and that does not fail to
comply with the kinematic and dynamics
restrictions imposed by the physical structure
of the robot. A path function free of obstacles
is searched for. This function must fulfill the
condition of continuity in position. To solve this
problem, a tool called visibility graphs can be
used. The first work contributions can be seen
in Nilsson (1969), that provide a geometric
approach to solve the problem of planning.
This method is very widespread since it
operates with polygonal models of

environment, so there are algorithms that
construct this kind of graphs with a relatively
low computational cost: O(n3) according to
Lozano-Perez and Wesley (1979). This
method needs models of environments
defined with polygons, and it can both work in
2D/3D.

This approach has been preserved and
extended at present. As the concept of
topological graph with polygonal maps that
present accessibility and connectivity seen in
de Berg et al. (2000) and LaValle (2006)
representation of obstacles. And coexisting
with other algorithms such as Chazelle (1987)
cell decomposition algorithm which have been
based on principles of computational
geometry plane-sweep seen in Boissonnat and
Yvinec (1998), in Berg et al. (2000) and in
Edelsbrunner (1987) and not forgetting the
Voronoi diagrams described in O’Dunlaing
and Yap (1982) in topological areas such as
those seen in Hocking and Young (1988), with
a cost higher than the basic visibil ity
graphs(O(n4)), although there are algorithms
that improve the execution time but that are
considerably more difficult to implement as
shown in Lee and Drysdale (1981), in Leven
and Sharir (1987) and in Sharir (2004). For
the visibility graphs, over time modifications
of the algorithm appear. These changes
provide improvements such as in Latombe
(1991) and in Mitchell (2004), reaching
algorithms much faster than the original ones
but more complicated, as the library proposed
in Obermeyer (2008) based on visibility in
floating-point computation, where a visibility
graph in non-convex polygons is also achieved,
but it is much less intuitive than the solution
proposed in this article.

153

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

Problems Related to the Visibility
Graphs
The main goal in obtaining a visibility graph is
to find a way to generate the set of existing
edges between the visible vertices of the
elements that make up the environment, with
the only information obtained from the map of
polygons. This information consists essentially
of geometric coordinates of vertices that form
polygons and the information of which of them
are connected together. Although, this idea can
be applied to 2D or 3D maps, this work
focuses on the first type.

Non-convex objects tend to be much more
difficult to manage than convex objects, a fact
proven in Bajaj and Kim (1988). Any analytic
representation of contact surfaces or study of
vertices is more complicated to formulate
because the contact of two non-convex objects
or a convex object and a segment can
occursimultaneously in multiple discrete
points. In addition, computational distance is

much less complicated among convex
polygons.

In order for convex polygons to find visibility
is relatively simple, there are a few cases
somewhat more difficult but equally resolvable.
Taking into account that the way to obtain
visibility is the calculation of breakpoints
between two segments in two dimensions.
Situations like the one shown in Figure 1 may
appear.

In this situation, the first approach to check
if two points are visible consists of drawing a
segment between two points and seeing if it
crosses a side of an obstacle. If there is a
breakpoint, as shown in Figure 1, case 1, those
points will be considered as non void
breakpoints between both segments and
therefore not visible. Figure 1, case 2, two
breakpoints are shown, as in case 1. However,
in case 1 both points are not visible and in
case 2 both points are visible. With convex
polygons this is not a problem, since if it is

Figure 1: Example of Visibility with Convex Polygons

154

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

verified that the breakpoints are not part of a
same edge of the polygon, an effective way of
differentiating when there is visibility or not is
obtained.

In the case of non-convex polygons, this way
of reasoning is not adequate, and both cases
cannot be distinguished, as shown in Figure
2. In a convex polygon, any vertex of a polygon
has only visibility with the preceding vertex and
the following vertex. However, in the non-convex
polygons, any point belonging to the inner side
can normally observe a large number of other
vertices of that side. Generally solving the
visibility of this type of polygon is a work of
greater complexity and computational cost.
This paper, in the line of other previous works

searching for applications in the visibility
graphs as in de Berg et al. (2000), presents a
method of resolution which its goal is to provide
more conceptual simpl icity in an
implementation that does not raise the
computation time when identifying the visibility
between two vertices of a non-convex polygon.

ALGORITHM DESCRIPTION
The implemented method to solve the problem
of visibility is based on a geometric transform.
The main algorithm, the first level of this method,
gives a general idea of the goal and the way
of working of the algorithm.

The basic idea from the visibility graphs
described earlier is based on the fact that if a

Figure 2: Example of Visibility with Convex Polygons

155

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

segment between two vertices of the graph
can be drawn without being crossed by the
edge of a polygon, then those vertices are
considered visible vertices and the way of
connecting them is added to the visibility graph
as shown in the pseudo code below. Based
on this idea, the flow diagram of this first level
of the proposed algorithm can be seen in
Figure 3.

forv = 1 nvertices do

forw = 2 nvertices do

s createSegment(v; w)

if s is part of an edge of any polygon
then add s to the list of connections of the graph

else

if s does not cross any edge then

add s to the list of connections of
the graph

; //it is VISIBLE

end if

end if

end for

end for

However, with this simple consideration, it
is not possible to find out whether the segment
crosses or not with an edge. Therefore, a
modification is included in the proposed
algorithm, which is added in red (Figure 3): a
module which checks if there is a breakpoint

Figure 3: Flow Diagram of the First Level of the Algorithm

156

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

between the segments and edges. To carry
out this verification first, the breakpoint (BP)
with the segment (S) is calculated. If BP
matches with one of the vertices that form the
edge, it is ignored. If BP is within the limits of
the studied segment and edge, then it is
returned as a valid breakpoint. If BP is also
within the boundaries of the segment, it will be
saved in a list of valid points.

For each point that is saved in the list, a
segment with the rest of points from the same
list is created. If the segment crosses the

polygon, it returns the breakpoint, concluding
that it is NOT VISIBLE. Otherwise, the
algorithm indicates that it is VISIBLE.

The flow diagram that follows this level of
the algorithm is shown in Figure 4.

Below the pseudocode that performs this
verification isshown:

whileedge! = NULL do

BP = breakPoint(edge,S) if bp =
edgevertex then

continue; end if

Figure 4: Flow Diagram of the Second Level of the Algorithm

157

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

if BP between limits of S and edge then
return BP end if

if BP between limits of S then listBP bp

end if

edge = nextEdgeOfTheGraphend while

whilel istBP No empty do p =
pointofthelistBP

whilelistBP No empty do

q = pointofthelistBP + 1 segment =
createrSegment (p; q) if crossesPolygon
(segment) then

return BP end if

end while end while

return NULL // Finally, it IS VISIBLE

Visible Points in Convex Polygons
For visibility purposes, a breakpoint between
a segment and a side of a polygon which
matches with the end of that side, is
considered that it does not cross and that,
therefore, the point may be visible. This is
because the segments are constructed by
joining each vertex with the nth point that is the

one where the iteration is run. The matching of
the breakpoint with a vertex is a logical
consequence, and it does not provide
information about visibility, that is the reason
why they are ignored in the following
verification of the algorithm, as can be seen in
Figure 5.

Non Visible Points in Convex
Polygons
In this case, it can be unequivocally concluded
that the segment crosses the polygon, so, it is
not possible that the segment points are visible
among themselves. Figure 6 tries to show this
fact.

Visible Points in Non-Convex
Polygons
An extra check is carried out due to a problem
that arises only if what has been described up
to now is considered. In this case, the algorithm
saves in a list that tells, for each polygon, the
breakpoints that match with vertices within the
range of the segment. Figure 7a is an example
of the BP that is NOTsaved (the BP is outside
the range of the segment). Those of Figure 7b
are saved in both of the described cases.

Figure 5: Matching of the BP with a Vertex of its Own Side S

158

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

SOLUTION TO
DIFFERENTIATE SEGMENTS
THAT CROSS OR HAVE
CONTACT WITH CONVEX
AND NON-CONVEX
POLYGONS
The main idea of this article has been to find a
way to take advantage of the simplicity of the
algorithm previously described and to obtain
a method likewise easy, to distinguish between
polygons that are crossed by a segment(and
there is no visibility) and those that have contact

with a segment (and there is visibility). Thus
the visibility graph, without errors, is completed
for a map made up of objects that can be
represented by convex and non-convex
polygons.

Non Visible Points in Non-Convex
Polygons
It must be checked if the polygon is crossed
by the segment or it has simply have contact
with the segment. The first case corresponds
to what can be see on the right hand side of
Figure 7b and is a case in which there is NO

Figure 6: When the BP is a Point of S that is Not One of its Vertices

(b) Visibility with non-convex polygon

Figure 7: BP Position Located Off the Limits of a Segment and Visibilities Cases

a) The BP is Off the Limits of S (b) Visibility with Non-Convex Polygon

159

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

VISIBILITY between points A and B. The
second case, which corresponds to where the
segment has contact with the polygon, is
represented on the left hand side of Figure 7b
and if there is VISIBILITY. But the information
that has been obtained up to now is not enough
to tell apart both cases. There are two points
that form a segment and a third point that
matches with another vertex of the polygon
and through this point crosses that segment.
To discern between HAVING CONTACT WITH
or CROSSING, another function has been
implemented. That point in the algorithm is only
reached when there is more than one point of
crossing that matches with a vertex in a
polygon. If it is not the case, the algorithm ends
because no difficult cases of non convex
polygons have been encountered.

The function that tells if a polygon is crossed
by the segment that results from joining two of
its vertices and therefore are not visible, or if
instead it has contact with that segment and
they are visible vertices, must carry out the
following steps:

• Calculate all the breakpoints of the polygon
with the line that the segment forms part.

• Delete the breakpoints that match with the
vertices of the polygon that have contact with
and that are not crossed.

• Choose a point belonging to the segment
(the halfway point is a good candidate).

• Go over the line in both directions from the
point. If in both tours, the number of
breakpoints that has been obtained is even
or void, then the vertices that made up the
initial segment are VISIBLE between them.
Otherwise, they are not visible.

This procedure allows to find out if both
vertices were in a non-convex area of the
polygon, where they can be visible. This
function will return a void value if the segment
had contact with the polygon. Therefore, it
would be considered in the main function that
they were visible vertices. In Figure 8 the idea
described in this section is presented.
Supposing that the visibility between vertices
1 and 2 (in blue) has been evaluated, the
segment that joins them together is extended.
This extension takes place until all the
breakpoints in the polygon are obtained. A
point between vertices 1 and 2, that is, in this
example, point “B”, is selected. Now, among
the 7 breakpoints (purple numbers), those that
match with the vertices that have contact with
them and that are not crossed are removed.
It is shown that the original points 1 and 2 now
correspond to points 4 and 5 of the set of
intersections of the polygon with the extension,
among them those that match with vertices
are 3, 4, 5 and 7. Of all of them, only 7 has
CONTACT WITH it, the rest of them are
crossed. Therefore, 7 is removed from the list.
In one direction, starting from point “B”, two
breakpoints (5 and 6, since 7 was removed
because it was not crossed) are obtained. In
the other direction four breakpoints (1, 2, 3
and 4) are obtained. In both directions there
are an odd number of points, so it can be
stated that between vertex 4 and vertex 5 (the
original 1 and 2 vertices) there is not included
a portion of the area of the polygon to which
they belong (is a non-convex area), being able
to draw a segment between them without
crossing with anything. Therefore, they are
visible. As an example of non-visible vertices,
instead of considering the original vertices 1
and 2, the case of vertices 2 (original) and 3

160

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

can be studied. They are aligned with vertex
1, therefore it is the same line and the same
breakpoints, but this time, the chosen point
between two vertices is point “A”. In an
address starting from point “A” three
breakpoints (4, 5 and 6) are obtained and in
the other one another three breakpoints (the
1, 2 and 3) are obtained, being both odd
numbers. It can then be stated, that it is a

convex area of the polygon, so both vertices
are NOT VISIBLE.

Vertices Contacted with Segments
Finally, only an efficient method to check if a
vertex has had contact with a segment or it
has been crossed by a segment to be
removed or not from the list of breakpoints
of the previous function is needed. As it is

Figure 8: Example of Points Crossed and that Have Contact with Segments

Figure 9 Implication of Vertices Crossed by a Segment or that Have Contact with a
Segment

(a) Result of Finding a Vertex that has had contact
with a segment

(b) Result of Finding a Vertex that has been Crossed
by a Segment

161

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

shown in the sub Figure 9a and in Figure
9b, they are determinants facts regarding
visibility.

The mathematical operations to check this
out are greatly reduced in difficulty if a change
of axes is carried out in order to represent
these points. The other two vertices where the
vertex under study is connected, must be
checked. If a change of axis is performed in a
way in which the new X axis matches with the
crossed segment, there are two possible
situations regarding the other two vertices:

• Both vertices having the same sign in the
coordinate and, in that case the studied
vertex should not be taken into account
because it is a case of CONTACT between
the segment and the polygon.

• Both vertices having different sign in the
coordinate and, in that case the studied
vertex is being crossed by the segment.

In the example of Figure 10, assuming that
the visibility between 1 and 2 is being checked,

A is a vertex that belongs to the breakpoints
that the s segment creates with the polygon. It
is being evaluated if A is being crossed by s
or if it has had contact with s. Examining in the
system of axes of coordinates for A, B and C,
what it is shown in Figure 11a is obtained.

The change of axis consists of matching
the new X-axis with the s segment. And the
center, with A. The change consists of a
translation of A to the center of coordinates
and a rotation of angle that formed the s
segment with the old X-axis. The result is
shown in Figure 11b.

As C and B have the same sign in the Y
coordinate (positive), it can be easily checked
that the A vertex only had contact with the
segment and the visibility will not be changed.

Instead, in this other case of Figure 12, with
the change of axes, the B and C vertices will
have different sign in its Y coordinate.
Therefore, it is stated that the segment going
over vertex A crosses the polygon.

Figure 10: Example Checking Visibility Between 1 and 2

162

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

If any of the vertices, to which the segment
under study connects to, is also on the new X
axis, the next vertex should be checked to verify
and to evaluate if it is a case of CROSSING
the segment or HAVING CONTACT WITH it.

The change of axis corresponds to a simple
transformation matrix where two necessary
changes will be carried out: a translation of

the new center of coordinates, which will
match the studied vertex, and a rotation of
angle that formed the old axis with the
segment. Applying the resultant matrix to the
two vertices to which the studied vertex
connects, the sign of the Y coordinate that
these vertices would haveafter this
transformation is obtained. In this case it can

Figure 11: Continuation of the Example Procedure

(a) Example (Cont)
(b) Example Checking Visibility Between 1 and 2

(Cont II).

Figure 12: Example Checking Visibility Between 1 and 2 (Cont III)

163

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

easily be proved if the segment CROSSED
the polygon with that vertex or if the segment
HAD CONTACT WITH that vertex.

The first thing is to make a translation,
placing the breakpoint as the center of
coordinates. It is an inverse translation, the
result shown in Equation (1) is sought:

(Xc, Yc) (0, 0) ...(1)

So each point in homogeneous
coordinates, after the transformation, would
correspond to the following Equation (2):

 1,,1,, coriginalcoriginalnewnew YYXXYX

...(2)

And the translation matrix is shown in
Equation (3):

1
010
001

cc

inverse

YX
T ...(3)

Next, a rotation centered about the origin
would have to be carried out. Working in polar
coordinates (r,), points are obtained that
correspond to (x1, y1) = (r*cos, r*sen).
Therefore, this change is fulfilled in Equation
(4):

 rsenrYX newnew ,cos,

...(4)

Obtaining this matrix of change Equation
(5), typical of rotations:

100
0cos
0cos

 sen
sen

R ...(5)

Multiplying the two previous matrices, being
 = M, the final Matrix of Change (MC) is
obtained in Equation (6):

1coscos
0cos
0cos

MYsenMXsenMYMX
MsenM

senMM
MC

cccc

...(6)

Being

• M the angle that segment s formed with the
X axis

• Xc the original X coordinate of the point that
is now the center of coordinates

• Yc the original Y coordinate of the point that
is now the center of coordinates

It must be borne in mind that computational
cost can be saved because only the sign of
the coordinate and the new points (of A and B)
need to be verified, having only to carry out
the operation of Equation (7) for each point.

 MYMsenXMYMsenXY ccAAA coscos

...(7)

Once Y' for A and for B is obtained, the sign
can be compared in order to know if the
segment crossed the polygon or if the segment
had contact with the polygon.

In this way, the visibility for any type of
polygon is obtained. The only thing needed is
a multiplication of the coordinates of two points
by a three elements vector. The rest of the
matrix is not necessary, because only with the
corresponding value of the new Y coordinate
the desired verification is run. It is important to
note that this multiplication does not even have
to be carried out for all the points of the graph.
It only needs to be applied to those that form
an edge, using the basic algorithm of visibility
graphs (a quite less amount than the number
of total vertices, N), it can not be tell if it is a
convex or non-convex area. Therefore, the

164

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

computational cost of creating visibility graphs
is not increased. The cost of these operations
is insignificant because it does not affect the
order of magnitude of the cost of the base
algorithm, which remains the same. It must be
considered that the cost depends therefore on
the algorithm base on which the visibility graph
is created, having several solutions as the ones
described in Latombe (1991).

EXPERIMENTAL RESULTS
This section shows the visibility obtained on a
map of cases specially chosen for the
problems they caused in basic methods of
obtaining visibility. While using the proposed
algorithm, the right visibility is obtained, without
failure, and without increasing the computing
time.

Description of the Maps
Two example of scenarios with obstacles
represented by polygons are presented.
Figure 13a shows one of the environments
where the goal is to obtain the visibility of the
polygons. The polygons are non-convex
polygons and its vertices layout have multiple

matches in coordinates that cause the
borderline cases on which there could be
errors, where all the situation referred
throughout this work are tested. It is one of the
maps designed to check the robustness of the
algorithm.

Figure 13b shows a real environment
corresponding to a polygonal simplification of
obstacles of a laboratory of the RoboticsLab
at the Universidad Carlos III de Madrid.

Visibility Obtained
Following the visibility of the chosen points that
the program has obtained, is shown. Only the
visibility of the red points is shown in Figure
13a to avoid having a great amount of
information. Theconnectivity of those nodes is
shown in Figure 14a, directly built from the
information obtained from the program and
being considered representative enough of the
performance of the algorithm. Figure 14b
shows the connectivity of visibility of the red
nodes on the map of the laboratory, being
consideredequally representative of the
overall performance. In both cases, it can be

Figure 13: Test Maps

(a) Map of a Complex Environment (b) Map of the Robotics Lab’s Laboratory

165

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

verified that the visibility obtained satisfies its
expectations, working without any problem. If
a segment can be drawn, from one node to
another, without crossing any polygon, a
connectivity of visibility is created. The
performance is correct, identifying the crossed
vertices and those that have had contact with
the segment.

COMPARATIVE STUDY WITH
OTHER METHODS OF
CALCULATION OF
TRAJECTORIES
It has been considered important to compare
this method of obtainment of trajectories with
the RRT method (Rapidly-exploring Random
Tree), as it is described in Lpez and Gmez-
Bravo (2006) being a widely used algorithm,
known and being based on a different concept

in several ways. The goal of the RRT method
is to build a tree of exploration that uniformly
covers al l the space of coll ision-free
configurations mentioned in LaValle (1998).
The idea is to spread the tree, creating random
configurations and checking if it can be
reached (that is, that there are no obstacles
between the points), in that case it is added to
the tree.

Difficulties of the Algorithms Based
on RRT
The main problem of this method is the
dependence of its effectiveness regarding the
environment and the shape of the obstacles.
This relationship is non-existent i f a
deterministic planner is used. The
deterministic planner is based on visibility
graphs as the one proposed in this paper,
since the graph is generated with the

Figure 14: Visibility Obtained from Test Maps

(a) Visibility Obtained from the Complex Map (b) Visibility Obtained from the Map of the Laboratory

166

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

information in the form of obstacles. The RRT
algorithm may not be able to obtain the right
solution if during the creation of the tree a
configuration or node which covers the free
space on a specific point in a specific iteration
does not arise. The randomness of the method,
its stochastic nature, makes this occur. This
problem appears in a more pronounced way
with environments that contain obstacles with
narrow passageways.

In addition to environments with narrow
passages that lead to unreasonable
computation time of the trajectory, RRT returns
occasionally a wrong path with some
oscillations. Another problem is the way to
check whether if a connection between the two
configurations is collision-free or not. The
method used in the implementation of
Benkmann (2001) divides the line that joins
both points in N configurations. It virtuallyplaces
the robot in each configuration and it checks if
in any of the iterations, the robot is inside an
obstacle. This seems to be a problem,
because if the N number is small, the possibility
of finding a case for a narrow obstacle (a very
thin wall) from a configuration to the next, exists,
thinking that there is a free path when there it
is not because there are not any configurations
inside the obstacle, but there is one between
both of them. The solution would be to take a
large N, but this increases the computational
cost. In the implementation cited above, N had
a default value of 10, that caused that certain
obstacles were not detected. A value of 100
was enough to perform the experiments, but it
therefore implies 10 times more iterations for
each pair of nodes created. Note that this
value does not assure that this problem may
never occur.

Experimentation with the
Algorithms
This work has used two implementations of
the RRT algorithm, being tested in
environments also tested with the visibility
graph based algorithm proposed in this article.
To carry out the experiments it has been
considered that the obstacles have been
increased when working with robots
considered as specific particles. In all cases,
the proposed algorithm obtained an initial
trajectory between the initial and final points in
an insignificant time (less than 1 second). It
was implemented in C++ and Java, to
objectively be compared with the RRT. Among
the RRT implementations, one uses Matlab
programmed by Gavin Paul and Matthew
Clifton, described in Clifton (2008) which is a
Multiple RRT, where several test can be run, it
will perform tests in 2D and 3D, with three-
dimensional obstacles. For the comparative
tests with the visibility graph algorithm, a 2D
environment was used, ignoring the graphical
part.

As the authors of that RRT implementation
describe in their work, the level of convergence
to a solution of the algorithm is strongly
determined by the shape of the environment.
Figure 15a very well illustrates this idea. It is
evident that the algorithm is very efficient when
exploring a particular area of the environment,
but it has great difficulties to reach another
region separated by a small opening of an
obstacle, since whenever a point is chosen on
the other side of the barrier, it is very likely that
a collision occurs. Just close to the small
opening is where the tree can be expanded,
which increases the computational cost of
finding a path.

167

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

However, in the tests performed in the
environment of Figure 15b the implementation
of Clifton (2008) reachedwith difficulty the
solution, but with a time too high (between half
an hour and one hour of execution). This time
difference was not taken into account because
it was implemented in a different language, but
the way between some areas was narrowed,
specifically in the U-shape way, next to the
point aimed for, where two protrusions that left
a more confined space were added. And thus,
the RRT algorithm does not converge, it
reaches the maximum number of iterations set
and the solution is no longer found.

An implementation in Java from Benkmann
at (2001) under GNU General Public License
(GPL) has also been used. In this
implementation the number of nodes that the
algorithm will create can be changed by the

user. Initially 500 nodes, are recommended in
order to not slow down the calculation of the
trajectory. However, in the environment of the
map of Figure 15b the tree did not expand
inside the narrow passageways, which were
not reachable destinations due to the absence
of nodes close to it.

It must be taken into account that for each
node that it is created, the connectivity should
be checked, and that it can join the graph with
a line without colliding with any obstacle. While
in the visibility graphs the cost depends on the
edges (that is, of the pairs of vertices that form
the obstacles) which is a certain number, in
the RRT depends on the number of nodes that
are created and on the iterations that are taking
place in the algorithm. Therefore, in certain
environments, the computation time is lower
with visibility graphs than with RRT based

Figure 15: Difficulties of RRT and Test Map

(a) Example of the Difficulties that May Appear
with RRT

(b) Map of Test for the RRT and the Visibility Graph.
The Final Point (Goal G) Must be Reached Beginning at

Theinitial Point (Start S)

168

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

algorithms. Using 2500 nodes, the image of
Figure 16b is obtained. It is important to note
that the stochastic nature of the algorithm

makes difficult to tell whether there will be
problems or not. This last figure, shows that
inside the area surrounded by a red circle,

Figure 16: Test Maps

(a) Map of the Tests Where the Path that Returns
the Proposed Algorithm is Shown. It is the Same

Problem that was Proposed for the RRT.
(b) Map of the Nodes Created with the RRT

Figure 17: Map of the Tests Where Two Posible Paths, with the Graph Created
by the RRT, are Shown

there is a dead zone that is left disconnected
because there are no nodes between areas
that cannot be connected without having to
cross an obstacle. The reason is that the
nodes that are inside the passageway (those
that are inside the red circle) cannot be
connected together. Not being able to
communicate among them, both zones of the
map are divided. Therefore, there are no
possible paths between areas that have to go
through this passageway, as it is shown in
Figure 17, where the algorithm approximately
creates thepath of the figure between points 1
and 2, in the same way between points 3 and
4. But no path is generated between points 1
and 3. The experimental results show that the
algorithms based on RRT does not always
reach the solution, while the algorithm
proposed in this paper always reaches a
solution (if it exists, as shown in Figure 16a),
and the algorithms can be much slower that
those based on visibilitygraphs.

CONCLUSION
The method described in this article allows
to obtain the visibility of a map of polygons,
to easily build the related visibility graph. The
calculation of the visibility in convex polygons
is easy, but the case of non-convex polygons
is the main problematic of the visibility graph
construction. In this article, a method that is
based on an idea that is simple and very
visual on how to interpret the vertices that are
crossed along the way between another pair
of vertices is presented. For the human mind,
it is a task that is solved with a knockout view.
However, discern with geometric calculations,
the visibility between two points can be very
tedious for an algorithm. The idea of the
change of axis, allows that with a small size

matrix (3 x 3) the visibility between vertices
that make up a segment can be checked. This
operation with the matrix is only necessary
when the situation of the segment matches
with several vertices of a polygon and it needs
to tell apart whether they are crossed vertices
or vertices that have had contact with the
segment, because it is a determinant fact for
visibility. This way, a solution that solves the
problem of visibility on maps with non-convex
polygons is obtained. The way of solving the
problem is intuitive, easy to understand and
efficient since the computation time of the
base algorithm is not increased. It has also
been demonstrated that this algorithm always
finds a solution (if it exists) regardless of the
form of the environment, problems that arise
with other algorithms such as the RRT.
Therefore, this algorithm results reliable and
an interesting option when the environment
contains narrow passageways or
complicated areas.

ACKNOWLEDGEMENT
The research leading to these results has
received funding from the RoboCity2030-II-CM
project (S2009/DPI-1559), funded by
Programas de Actividades I+D en la
Comunidad de Madrid and cofunded by
Structural Funds of the EU.

REFERENCES
1. Bajaj C and Kim M (1988), “Generation

of Configuration Space Obstacles, the
Case of a Moving Sphere”, IEEE Journal
of Robotics and Automation, Vol. 4,
pp. 94-99.

2. Benkmann M S (2001), Motion Planning
Using Random Networks.

170

This article can be downloaded from http://www.ijmerr.com/currentissue.php

Int. J. Mech. Eng. & Rob. Res. 2014 J Crespo et al., 2014

3. Boissonnat J D and Yvinec M (1998),
Algorithmic Geometry.

4. Chazelle B (1987), “Approximation and
Decomposition of Shapes”, Algorithmic
and Geometric Aspectsof Robotics,
pp. 145-185.

5. Cl ifton M (2008), “Evaluating
Performance of Multiple RRTs”,
Mechtronic and Embedded Systems
and Applications, MESA, IEEE/ASME
International Conference.

6. de Berg M, van Kreveld M and M O Y O S
(2000), Computational Geometry:
Algorithms and Aplications.

7. Edelsbrunner H (1987), Algorithms in
Combinational Geometry.

8. Hocking J G and Young G (1988),
Topology.

9. Latombe J C (1991), Robot Motion
Planning.

10. LaValle S M (1998), “Rapidly-Exploring
Random Trees: A New Tool for Path
Planning”.

11. LaValle S M (2006), Planning Algorithms.

12. Lee D T and Drysdale R L (1981),
“Generalization of Voronoi Diagrams in
the Plane”, SIAM Journal on Computing,
Vol. 10, pp. 73-87.

13. Leven D and Sharir M (1987), “Planning
a Purely Translational Motion for a Convex
Object in Two Dimensional Space Using
Generalized Voronoi Diagrams”, Discrete
and Computational Geometry, Vol. 2,
pp. 9-31.

14. López S (2002), Robots móviles:
técnicas de navegación, grafos de
visibilidad.

15. Lozano-Perez Y and Wesley M (1979),
“An Algorithm for Planning Collision-Free
Paths Among Polyhedral Obstacles”,
Communications of the ACM, Vol. 22,
pp. 560-570.

16. Lpez D and Gmez-Bravo F (2006), “F.A.O.
Planificacin de trayectorias con el
algoritmo RRT”, Aplicacin a robots no
holnomos, RIAI, Vol. 3, pp. 56-67.

17. Mitchell J S B (2004), “Shortest Paths and
Networks”, Handbook of Discrete and
Computational Geometry.

18. Nilsson N (1969), “Searching Problem-
Solving and Game-Playing Trees for
Minimal-Cost Solutions”, Information
Processing 68, in Morrell A (Ed.), Vol. 2,
pp. 1556-1562.

19. O’Dunlaing C and Yap C (1982), “A
Retraction Method for Planning the Motion
of a Disc”, Journal of Algorithms, Vol. 6,
pp. 104-111.

20. Obermeyer K J (2008), “Contributors”,
The VisiLibity Library , http://
www.VisiLibity.org

21. Ortega L M, Rueda A J and Feito F R
(2010), “A Solution to the Path Planning
Problem Using Angle Preprocessing”,
Robot. Auton. Syst., Vol. 58, pp. 27-36.

22. Sharir M (2004), “Algorithmic Motion
Planning”, Handbook of Discrete and
Computational Geometry, pp. 1037-1064.

23. Wein R, van den Berg J P and Halperin D
(2005), “The Visibility-Voronoi Complex
and its Applications”, Proceedings of the
21st Annual Symposium on
Computational Geometry, pp. 63-72,
ACM, New York, USA.

