
The International Journal of Advanced Manufacturing Technology manuscript No.
(will be inserted by the editor)

Statistical evaluation of an evolutionary algorithm for
minimum time trajectory planning problem for industrial
robots

Fares J. Abu-Dakka1 · Iyad F. Assad2 · Rasha M. Alkhdour1 · Mohamed

Abderahim1

Received: date / Accepted: date

Abstract This paper presents, evaluates and validates

a genetic algorithm procedure with parallel-populations

for the obtaining of minimum time trajectories for robot

manipulators. The aim of the algorithm is to construct

smooth joint trajectories for robot manipulators using

cubic polynomial functions, where the sequence of the

robot configurations is already given. Three different

types of constraints are considered in this work: (1)

Kinematics: these include the limits of joint velocities,

accelerations, and jerk. (2) Dynamic: which include lim-

its of torque, power and energy. (3) Payload constraints.

A complete statistical analysis using ANOVA test is in-

troduced in order to evaluate the efficiency of the pro-

posed algorithm. In addition, a comparison analysis be-

tween the results of the proposed algorithm and other

different techniques found in the literature is described

in the experimental section of this paper.

Keywords Industrial robots - Minimum-time trajec-

tory planning - Obstacle avoidance

1 Introduction

Over the last few decades, industrial manipulators have

become a commonly used element in automated pro-

duction lines. They are highly nonlinear multivariable

coupled systems, which are often subjected to complex
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nonlinear constraints. Due to the mentioned complex-

ity, indirect methods (decoupled approaches) for tra-

jectory planning are frequently used. Indirect methods

solve the planning problem in two steps: planning the

path and then adjusting the trajectory. The path plan-

ning step is about finding a collision-free sequence of

configurations between an initial and a final configu-

rations of a manipulator, taking into account some as-

pects such as geometric and kinematic constraints. In

the subsequent step, the trajectory is adjusted by op-

timizing the time along the given path. In the latter

step, the optimization problem considers the manipu-

lator dynamics and its actuators’ constraints. This type

of planning is done offline.

Numerous techniques for optimal offline trajectory
planning have been developed in the last decades by

different researchers in the field. These techniques can

be classified according to the cost function to be mini-

mized, which is often related to the execution time, en-

ergy consumption, or jerk. Thus, why offline planning?

Many industrial processes are repetitive, e.g., welding,

inspection, assembling, painting and even moving ob-

jects, etc. which justify the offline trajectory planning

of an industrial manipulator. Moreover, the productiv-

ity in industry is directly proportional to the speed of

operation [34]. In order to maximize the productivity of

a robotized operation, it is necessary to maximize the

operation speed which implies a minimization of the

robot’s travelling time. In general, offline planning pro-

vides a globally optimized trajectory, smoothness by

anticipating sharp corners, and a second-order conti-

nuity along the whole trajectory [20]. In addition, if

the manipulator workspace and the objective task are

completely known, offline planning is more desirable to

ensure the minimization of the execution time. Impor-
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tant research work has been done with the objective of

achieving minimum time trajectories [37,38,39,40,41].

In order to improve the tracking accuracy and per-

mit the system to reach higher speeds during the exe-

cution of tasks, it is important to generate trajectories

with a bounded amount of jerk. This definitely entails

reducing the robot resonant frequencies excitation and,

ultimately reduces the mechanical wear of the whole

system [9,15,31,33]. In the literature, the minimum jerk

in point-to-point ballistic motion was used as a control

variable [54]. In this case, the duration of the motion

and initial and final positions are given, while the jerk

is the control signal.

In general, every procedure found in the literature

that deals with trajectory planning problem has focused

on a specific objective function or some parameters for

the optimization problem. The most significant among

them are (1) minimum execution time, (2) minimum

energy, and (3) minimum jerk.

1.1 Minimum time trajectory planning

Minimum time trajectory planning algorithms were the

first techniques presented in the literature. The reason

for that was their direct relation to increasing the pro-

ductivity of industrial automation with robots. How-

ever, considering the nonlinearity of the systems and

joint coupling in robot dynamics, exists the possibility

to obtain approximate solutions [21,22]. Other authors
in this scope developed interesting techniques in the

position-velocity phase plane [6,46]. Alternatively, dy-

namic programming techniques were employed to solve

this problem [4]. However, these algorithms suffer a dis-

continuity in the torque and acceleration profiles, and

this is due to the assumption that robot links were per-

fectly rigid and neglecting of the actuator dynamics.

Later, the authors in [8] overcame these kinds of draw-

backs by introducing limits on the actuator jerks. Al-

though, their technique could not be exactly time opti-

mal, but the generated trajectories could be employed

in more advanced control strategies. After this short

review in such a problem, it can be concluded that to

overcome the discontinuity in acceleration of the gener-

ated trajectories it is necessary to use smooth functions

to interpolate the trajectories such as spline functions.

As well as the aim of this paper is to solve minimum

time trajectory planning problem using cubic splines,

a detailed discussion about splines functions and their

use in trajectory generation is presented in Section 1.4.

1.2 Minimum energy trajectory planning

In numerous robotics applications, like those in space

or submarine exploration, it is more beneficial to min-

imize the energy consumption than minimizing the ex-

ecution time. In such applications, the robotic systems

have a limited energy source, which is worth optimizing

its use. In scientific literature, reader can find numer-

ous publications in this field. Cubic B-splines functions

have been employed to generate trajectories with min-

imum energy consumptions [45]. However, their algo-

rithm could not achieve smooth accelerations and joint

torques. Fourier series expansion is used also with ge-

netic algorithms to search for minimum energy trajec-

tories [19]. Other scientists used fifth order B-splines

for minimum energy trajectory generation [16]. Point-

to-point trajectory based on minimum absolute input

energy is proposed in [13] for an LCD glass-handing

robot. Lagrange interpolation method was used too to

perform trajectory planning for energy minimization of

industrial manipulators [29].

1.3 Minimum jerk trajectory planning

Jerk is the third derivative of the displacement and indi-

cates how rapidly the actuators change their forces. As

mentioned in [24], decreasing the jerk leads to decreas-

ing the joint position errors. Moreover, low jerk in joint

trajectories is desirable to limit the manipulator vibra-

tion which in turn extends the manipulator life-span.

However, minimum jerk techniques depend only on the

kinematics of the task. In this paper, instead of mini-

mizing the jerk, we have constrained it to some limits

given in the literature. In Section 1.4, some approaches

to deal with minimum jerk algorithms are discussed.

1.4 State of the art

Earlier trajectory planning models employed nonlin-

ear programming approaches to generate the trajec-

tory, in either gripper [28] or joint [25] space. However,

these models do not consider the manipulator dynam-

ics. In this paper, the construction/generation of joint

trajectories for industrial manipulators is based on cu-

bic spline functions. Algebraic splines are widely used in

path planning, e.g., cubic splines [25] (the focus in this

paper), quartic splines [49], quintic splines [16], trigono-

metric splines [47], and synchronized trigonometric S-

curves [30]. In literature, readers can find different types

of minimum time joint trajectory planning based on cu-

bic splines. They vary in:

– Types of constraints (kinematics or dynamics),
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– The algorithm used in the optimization,

– The optimization problem that can be extended to

be more general.

The first case is the most important one which al-

lows making a difference between kinematic and dy-

namic trajectory planning. Applying kinematic constraints

only results a simplified computational model that gives

rise to an under capacity utilization of the manipu-

lator, but still produces good solutions. On the other

hand, considering dynamic constraints provides better

solution because the problem is more defined. However,

their computational model is more complex since they

deal with some issues such as dynamic identification

[14].

Lin et al. work [25] was among the firsts to address

the computation of optimal joint trajectories through

the interpolation of a sequence of nodes in the joint

space. The nodes that form the sequence are obtained

from a set of discrete positions of the end-effector of

the manipulator. Four years later, Thompson and Pa-

tel proposed a quartic B-splines formulation for joint

trajectories planning for industrial robots [49]. How-

ever, their algorithm could not achieve better execu-

tion time than Lin et al.’s algorithm for the same case

study. Lin et al.’s algorithm was employed by Wang

and Horng [53], where the trajectories are expressed as

cubic B-splines. However, their procedure did not pro-

duce better execution time than the Lin et al.’s one, but

it is faster in terms of computational time cost. The

authors in [20] developed an improved version of the

optimization algorithm proposed in [25] to include dy-

namic constraints in the calculations, while others used

the interval analysis to solve a minimum time trajec-

tory problem subject to kinematic constraints [32]. On

the other hand, Tse and Wang [50] resolved the Lin et

al.’s algorithm [25] using genetic algorithms. A detailed

comparison of results, between their algorithm and the

proposed one in this paper, is shown in Section 4.1. In

[10], hybrid optimization procedure is presented to cal-

culate time optimal path-constrained subject to kine-

matic constraints. However, the resulting trajectories

were optimal in terms of time but not smoothness. Gas-

paretto and Zanotto [16] proposed a minimum jerk tra-

jectory planning technique, which assumes that the ge-

ometric path is formed by a sequence of via points in

the operating space of the manipulator. However, their

work considered only kinematic constrains. Their algo-

rithm uses fifth order B-splines for the trajectory gen-

eration. One year later, the same authors resolved the

same objective function using a cubic polynomial for

trajectory construction [17]. Their results are compared

with the proposed algorithm’s results in Section 4.4.

Readers are advised to refer to [11,23,48,51] for fur-

ther reading about algorithms that solve minimum time

trajectories subject to kinematic constraints. Recently,

a minimum jerk joint trajectory using particle swarm

optimization (PSO) was proposed in [26]. To enhance

the computational performance, the authors integrated

the K-means clustering with PSO algorithm to select a

possible particle with the least fitness value.

Robot dynamics were considered in the work pre-

sented by Chettibi et al. [7], where they developed a

sequential quadratic programming (SQP) method for

optimal motion planning for a PUMA560 robot manip-

ulator. Among later methods considering dynamics, the

authors in [36,35] used harmonic functions to interpo-

late a sequence of configurations in order to construct

manipulator trajectories.

The methods used in the literatures such as sequen-

tial unconstrained minimization technique (SUMT) [37,

38,39,40,41], SQP [7,17], interval analysis [33], har-

mony search [48], and numerical iterative procedure [12]

to deal with the complex instances (obstacles environ-

ment) have some notable drawbacks: (1) they may fail

to find the optimal path, (2) they have limited capabil-

ities when handling cases where the limits of maximum

acceleration and maximum deceleration along the solu-

tion curve are no longer met, and (3) singular points

or critical points of robot configuration may exist. Evo-

lutionary algorithms offer an interesting alternative to

overcome the above mentioned drawbacks [3]. Among

the advantages of evolutionary techniques are:

– Population based search, and therefore it is more

likely to avoid local minima,

– No auxiliary information such as gradients or deriva-

tives is required for the algorithm itself,

– Over iterations and random selection, complex and

multimodal problems can converge for global opti-

mality, and

– Suitable to any kind of problem due to their problem

independent nature [42].

To take advantage of these benefits, Saravanan et al.

proposed a direct method called non-dominated sorting

genetic algorithm to solve the minimum time trajectory

with payload constraints for industrial robots in the

presence of obstacles. They used cubic splines for the

interpolation [42,44]. Hang et al. proposed a genetic

algorithm procedure to solve point-to-point minimum

jerk problem with fixed execution time [18]. In [5,27],

a genetic algorithm procedure combined with a deter-

ministic one based on interval analysis is used for global

minimum time optimization.

Due to the important demand in maximizing the

productivity of robotized operations, planning a mini-

mum time trajectory a priori is a must. For such goal,
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this paper proposes a new evolutionary approach to

solve the trajectory planning problem for industrial robots.

The main contributions of this paper are:

– An evolutionary approach to solve the trajectory

planning problem. This approach uses multiple pop-

ulations genetic algorithm to obtain minimum time

trajectories clamped with cubic splines. The use of

multiple populations has been proved to be advan-

tageous in other application and in our paper we

extend it to the field of indirect robot trajectory

planning. Moreover, the algorithm is independent

of the degree of freedom (Dof) of the robot and of

the robot type, and can work with different types

(and combinations) of constraints including obstacle

avoidance, kinematics, and dynamics constraints.

– An extensive statistical evaluation to show the ef-

fectiveness of the proposed approach as well as to

show the improvement achieved by the proposed al-

gorithm over the existing ones is performed. In ad-

dition, this evaluation validates the efficiency of GA

algorithms in solving such problems.

This evolutionary approach is composed of two paral-

lel populations genetic algorithms (PPGA). These al-

gorithms are distinguished by means of boundary con-

ditions applied to the system as shown in Section 2.

The first algorithm, PPGA1, resolves the cubic poly-

nomial joint trajectory formulation introduced by Lin

et al. [25], where only kinematic constraints are con-

sidered. To illustrate the advantages of the PPGA1,

a comparison is made with the results obtained from

the application of an earlier version of a genetic algo-

rithm procedure reported in [50]. Moreover, our first

proposed procedure is extended to cater for dynamic

constraints, such as, torques, power, and energy con-

sumptions. In addition, a complete statistical evalua-

tion have been established to evaluate the effectiveness

of the proposed evolutionary algorithm. The second im-

proved algorithm PPGA2 resolves the clamped cubic

spline algorithm, where only velocities are nil at the

initial and final configuration of the robot manipulator.

The algorithm takes in consideration both kinematic

and dynamic constraints.

2 Formulation of cubic polynomial joint

trajectory

The philosophy of splining is to use low order polyno-

mials to interpolate from grid point to grid point. This

is ideally suited when one has control of the grid loca-

tions and the values of data being interpolated. As this

control is dominated, the relative accuracy can be con-

trolled by changing the overall space between the grid

points.

Cubic splines are the lowest order polynomial en-

dowed with inflection points. If one would think about

interpolating a set of data points using parabolic func-

tions without inflection points, the interpolation would

be meaningless.

The path is given as a sequence of via-points in the

operative space representing the position and the ori-

entation of the robot end effector, and it is then trans-

formed into a sequence of via-points in the joint space,

by means of a kinematic inversion. The considered al-

gorithm find an optimal trade-off execution time and,

unlike most minimum time trajectory planning tech-

niques found in the literature, it does not require to

impose the execution time a priori. Constraints on the

robot joints, such as upper bounds on velocity, acceler-

ation, and jerk, are taken into account while executing

the algorithms.

The formulation of the cubic spline is based on the n

joint vectors (n configurations) that construct the joint

trajectory. Joint vectors are denoted as qji which rep-

resents the position of the joint i with respect to con-

figuration j. The cubic polynomial trajectory is then

constructed for each joint to fit the joint sequence q0i ,

q1i , · · · , qni . Let t0 < t1 < · · · < tn−2 < tn−1 < tn be an

ordered time sequence, at time t = tj the joint position

will be qji . Let Qj
i (t) be a cubic polynomial function

defined on the time interval [tj , t(j+1)]; 0 ≤ j ≤ n − 1.

The problem of trajectory interpolation is to spline

Qi(t), for i = 1, 2, · · · , n− 1, together such that the re-

quired displacement, velocity, and acceleration are sat-

isfied; and the displacement, velocity, and acceleration

are continuous on the entire time interval [t1, tn]. Given

that Qi(t) is cubic and represents the joint position, let

Q′i(t) and Q′′i (t) be the joint velocity and acceleration

between qi and qi+1.

2.1 PPGA1 Formulation

In this formulation, boundary conditions are defined for

both the velocity and acceleration at the initial and fi-

nal points. The boundary conditions in this case are

q̇1 = q̇n = q̈1 = q̈n = 0. Unlike common boundary con-

ditions for cubic splines where either velocity (clamped

boundary conditions) or acceleration (natural bound-

ary conditions) are defined at end points, with con-

straints on both, constructing a spline requires extra

Dof. To achieve this, two of the knots are not fixed.

Thus, in this formulation, the n knots correspond to (n

- 2) fixed input knots and 2 extra knots added to solve



Statistical evaluation for minimum time trajectory planning 5

the spline system and their positions are solved as part

of the linear system [25].

Qi(t) =
Q′′i (ti)
6hi

(ti+1 − t)3 +
Q′′i (ti+1)

6hi
(t− ti)3

+
[
qi+1

hi
− hiQ

′′
i (ti+1)
6

]
(t− ti)

+
[
qi
hi
− hiQ

′′
i (ti)
6

]
(ti+1 − t)

(1)

where i = 1, 2, · · · , n− 1, hi = ti+1 − ti

Q′i(t) =
−Q′′i (ti)

2hi
(ti+1 − t)2 +

Q′′i (ti+1)
2hi

(tti)
2

+
(

qi+1

hi
− hiQ

′′
i (ti+1)
6

)
−
(

qi
hi
− hiQ

′′
i (ti)
6

) (2)

Q′′i (t) =
ti+1 − t
hi

Q′′i (ti) +
(tti)

hi
Q′′i (ti−1) (3)

The two extra knots q2 and qi−1 are not fixed and

are used to add two new equations to the system in

such a way that it can be solved. The joint positions of

these two knots are

q2 = q1 + h1q̇1 +
h21
3
q̈1 +

h21
6
Q′′1(t2) (4)

qn−1 = qn − hn−1q̇n +
h2n−1

3
q̈n +

h2n−1
6

Q′′n−2(tn−1) (5)

Using a continuity conditions on velocities and accel-

erations, a system of n− 2 linear equations solving for

unknowns Q′′i (ti)’s is derived as [25]:

A


Q′′2(t2)

Q′′3(t3)
...

Q′′n−1(tn−1)

 = Y (6)

where matrices A and Y are given by:

A =



a11 a12
a21 a22 a23

a32 a33 a34
...

an−3,n−4 an−3,n−3 an−3,n−2
an−2,n−3 an−2,n−2


, Y =



y1
y2
yi
...

yn−3
yn−2


(7)

The values of aij and yi are given in the Appendix.

A unique solution is guaranteed once matrix A is non-

singular.

2.2 PPGA2 Formulation

In the clamped cubic spline, the border conditions are

q̇1 = q̇n = 0.

Qi(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3, (8)

Q′i(t) = bi + 2ci(t− ti) + 3di(t− ti)2, (9)

Q′′i (t) = 2ci + 6di(t− ti) (10)

where i = 1, 2, · · · , n − 1, hi = ti+1 − ti. A system of

n− 2 linear equations will be solved as following:

A


c1
c2
...

cn−1

 = Y (11)

where

A =



3h1 h1
h1 2(h1 + h2) h1 0

h2 2(h2 + h3) h3
...

0 hn−2 2(hn−2 + hn− 1) hn−1
hn−1 2hn−1


, (12)
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and, matrix Y is given by:

Y =



3
h1

(a2 − a1)− 3q̇1
3
h2

(a3 − a2)− 3
h1

(a2 − a1)
...

3
hn−2

(an−1 − an−2)− 3
hn−3

(an−2 − an−3)

3q̇n−1 − 3
hn−1

(an − an−1)

 (13)

3 Optimization technique using GA

The objective of this optimization procedure is to de-

termine a set of optimum values of time intervals t1, t2,

· · · , tn−1. A genetic algorithm procedure with parallel

populations with migration technique has been imple-

mented to optimize the time intervals needed to move

the robot through a sequence of configurations [1]. This

GA has multiple, independent populations. Each popu-

lation evolves using steady-state genetic algorithm, but

at each generation, some individuals migrate from one

population to another. The migration algorithm is de-

terministic stepping-stone, where each population mi-

grates a fixed number of its best individuals to its neigh-

bor. The master population is updated each genera-

tion with the best individual from each population. The

steady state genetic algorithm (SSGA) uses overlapping

populations which gives the ability to specify how much

of the population should be replaced in each generation.

Newly generated offspring are added to the population,

and then the worst individuals are destroyed.

Objective function

Minimize

n−1∑
i=1

hi (14)

subject to

1 Kinematic constraints

Joint positions:
∣∣∣qji (t)

∣∣∣ ≤ qmax
i

Joint velocities:
∣∣∣q̇ji (t)

∣∣∣ ≤ q̇max
i

Joint accelerations:
∣∣∣q̈ji (t)

∣∣∣ ≤ q̈max
i

Joint jerks:
∣∣∣...q j

i (t)
∣∣∣ ≤ ...

q max
i

(15)

2 Dynamic constraints
Joint torques: |τi(t)| ≤ τmax

i

Joint power: |Pi(t)| ≤ Pmax
i

Joint energy: |Ei(t)| ≤ Emax
i

(16)

3 Payload constraints

Fgmin ≤ Fk ≤ Fgmax k = 1, 2 (17)

where: i = 1, · · · ,DoF of the robot, j takes the val-

ues from 1 to the number of nodes in the trajectory,

Fk is the grasping force needed for a suitable static

equilibrium during a grasping with two fingers gripper,

Fgmin = 0 and Fgmax = 60 N are the minimum and

maximum grasping forces used in the industrial applica-

tion example, as explained in Section 4.3. This payload

constraints was adopted earlier in [39,43]. The grasped

object mass (payload) used in the illustration is 1 kg.

For industrial applications, the speed of operation

affects the productivity. In order to maximize the speed

of operation, the traveling time for the robot should be

minimized. Thus, the optimization problem is to adjust

the time intervals between each pair of adjacent config-

urations such that the total traveling time is minimal.

Chromosome consists of set of genes. Each gene con-

tains a real number that represents the time interval.

The number of genes depends on the fed path.

The value of each gene is selected randomly from[
tmin
j , tmax

j

]
. The value of tmax

j will change in each gen-

eration depending on the new generated offsprings.

Selection A roulette-wheel selection method is applied.

Crossover The crossover operator defines the proce-

dure for generating a child from two selected parents.

The new child will be calculated as follows:

ai = (momi + dadi)/2, (18)

broi = ai · dadi + (1− ai) ·momi, (19)

sisi = ai ·momi + (1− ai) · dadi (20)

Mutation In this procedure, an offspring will be se-

lected randomly then the algorithm will select a ran-

dom set of genes in each chromosome for the mutation.

genej = genej +RV
(
tmin
j , tmax

j

)
[RV (tmin

j , tmax
j )

−RV (tmin
j , tmax

j )]
(21)

where RV
(
tmin
j , tmax

j

)
means Random Value between

tmin
j and tmax

j .

4 Application Examples

The PPGA1 and PPGA2 described in this paper have

been implemented using an Object Oriented C++ and

tested in simulation for 6 DoF robot. The algorithms

have been executed in a computer with Intel Core i5−
2400 CPU 3.10 GHz, 4 GB of RAM. For the GA, the

MIT GA Library [52] is used and adapted to the prob-

lem. In the following subsection, four different exper-

iments are described to evaluate the efficiency of the

proposed algorithms.
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Fig. 1: 1st, 2nd, and 3rd joints: q = Positions [rad], v = Velocities [rad/s], a = Accelerations [rad/s2], and J =

Jerks [rad/s3].

Table 1: Minimum time when pc = 0.95 with different values of pm

Execution time (s) Avg. Comp. time (s)

Mutation pm Results Min in Avg. in PPGA2
in [50] PPGA1 PPGA1

0.001 20.156 17.657 18.716 18.091 0.355
0.01 19.880 17.223 17.824 17.726 0.402
0.05 18.211 17.145 17.617 17.706 0.836
0.1 18.226 17.138 17.522 17.971 1.401
0.2 18.929 17.221 17.622 17.896 1.732
0.3 18.957 17.339 17.689 17.897 2.062
0.4 19.062 17.362 17.846 17.931 2.562

4.1 Experimenting with kinematic constraints

In this experiment, in order to compare the proposed

procedure with previously reported results in literature,

a PUMA560 robot is used. For more details about the

example characteristics and data set, please refer to [25]

and [50]. In this first experiment, only kinematic con-

straints are considered and resolved using PPGA1 &

PPGA2. Many combinations of crossover and mutation

probabilities are experimented to find the best com-

bination that gives the best combination of minimum

execution time and better computational time.

In Fig. 1, the smoothness of the joint position and

velocity curves can be noticed. Moreover, the motion

does not violate the kinematic limits. In this scope,

multi runs of the algorithm are tested by changing the

mutation probability and fixing the crossover probabil-

ity to 0.95, see Table 1. The combination of pc = 0.95

and pm = 0.05 is chosen to do the rest of experi-

ments as it produced the best combination of execution

time and computational time. However, the combina-

tion pc = 0.95 and pm = 0.1 gives better execution

time, but worse computation time. Observing the re-

sults in Table 1, the minimum time found using PPGA1

is 17.145 s, and for PPGA2 is 17.706 s at pc = 0.95 and

pm = 0.05, while the minimum time obtained by [50]

is 18.211 s, and by [25] is 18.451 s. Besides, the rest of

results in Table 1 are better than the results reported in

[50]. In addition, the results obtained when pc = 0.35,

0.65 and pm = 0.01 and 0.05 are 18.112 and 18.191 s for

PPGA1, 18.087 and 18.009 s for PPGA2 respectively,

which are better than Tse and Wang’s [50] results which

are 18.356 and 18.258 s.

4.2 Experimenting with kinematic and dynamic

constraints

In this example, kinematics and dynamic constraints

are considered and solved using PPGA2 with crossover

probability pc = 0.95 and mutation probability pm =

0.05. The sequence of configurations used is the same as
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Figure 4. Joint Jerk in Joints 1, 2, 3 
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Fig. 2: Trajectory evolution for the first three joint solved by PPGA2 with kinematics and dynamics constraints.

the one used in the previous example (Section 4.1). The

recursive Newton-Euler formulations are used to solve

the inverse dynamic problem [9]. The robot parameters

and dynamic limits are extracted from [7]. The mini-

mum time is found to be 5.2187 s.

Observing Fig. 2, the motion does not violate the

constraints. Moreover, the generated trajectories are

smooth and the required torques for the motion ap-

proximate the set limits without violating them.

4.3 Industrial Application with payload

This experiment represents a simulation of a general

configuration of a pick and place operation in complex

industrial environment. The initial and final configura-

tions (Ci and Cf ) and obstacles dimensions and their

positions are tabulated in Tables 2 and 3, respectively.

In this example, the path-planning problem has been

solved first by Abu-Dakka et al [2], and then the tra-

jectory has been adjusted using PPGA2. In this case,

the optimization problem is to move the robot with

its payload from an initial configuration to a final one

while optimizing the time considering the robot phys-

ical constraints, dynamic constraints, and the payload

itself. The payload influence on the dynamic model of

the manipulator is considered by adding the grasped

object mass and the effect of its inertial moment to the

last link, in addition to the fact that the payload grasp-

ing force is constrained according to Eq. 17. This con-

straint is responsible for maintaining the object firmly

grasped. This indirect method of obtaining the trajec-

(a) (b) (c)

(d) (e) (f)

Fig. 3: The path and trajectory evolution for the indus-

trial application example [2]. (a) and (f) represent the

robot configurations at the pick and place positions of

the object respectively. (b) to (e) represent intermedi-

ate configurations of the pick and place operation.

tory has been compared with the direct method devel-

oped in [36] where three different algorithms were used

(A*, UC = Uniform Cost, G = Gready).

The illustrative manipulator task consists in trans-

porting a payload from an initial to a final configura-

tion. Four control parameters are used for comparison:

ds which is the distance between significant points, de
is the distance between the initial and final positions

of the end-effector, tc is the computational time, and
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Table 2: Initial Ci and Final Cf configurations for the

industrial application example

1 2 3 4 5 6

Ci −7.50 −174.80 46.40 4.30 16.50 −6.50
Cf −95.10 −101.20 15.59 0.00 0.00 0.00

te is the time needed to execute the trajectory. The

evolution of the trajectory is illustrated in Fig. 3. Ta-

ble 4 illustrates clearly that the presented algorithm;

with even more constraints, provides an improvement

over the results of the algorithms described in [36].

4.4 Statistical evaluation of the PPGA1

In this section, two sets of experiments have been im-

plemented in order to statistically evaluate the pro-

posed algorithms. In the first set, the problem data is

extracted from [25] and [50], and already mentioned

in Section 4.1. This statistical evaluation is based on

50,000 runs of the algorithm. The setup of this exper-

iment consists of 500 replicates for each different com-

bination between pc and pm. Figures 4, 5, 6, 7, 8, 9,

10, 11, 12, and 13 show the graphical representation of

the variance test for these runs. For each pc, 5000 runs

are executed divided in groups of 500 runs which corre-

spond to different pm. From tables in Figs 4, 5, 6, 7, 8,

9, 10, 11, 12, and 13, it can be observed that the execu-

tion time is normally distributed (p-value < 0.05). The

best value of the execution time obtained is 17.1316 s

with computational cost 1.585 s, when pc = 0.75 and

pm = 0.09.

In order to compare the performance of pc and pm,

the statistical of test for the equality of means (analy-

sis of variance ANOVA) is used. The null-hypothesis in

ANOVA test states that the means of different levels of

a parameter are equal, while they are not equal in the

alternative hypothesis. Thus, it can be concluded that

the parameter has an effect upon the response variable.

In this experiment, the main effect involves the indepen-

dent variables (pc and pm) one at a time. The effect of

one factor on the other is called the interaction effect.

For each hypothesis, there is a F value which is the

mean square for each main effect and the interaction

one divided by the within variance. The p-value is the

probability to observe F value as large as we did under

the null-hypothesis. These p-values in ANOVA test are

only valid if the responses (execution time or compu-

tational time: the case of this paper) are normally dis-

tributed, which are already improved in Figs. 4, 5, 6, 7,

8, 9, 10, 11, 12, and 13 and 14, 15, 16, 17, 18, 19, 20, 21,

22, and 23. The decision that the parameter has an ef-

fect upon the response variable depends on the p-value

if it is equal or less than a chosen level of significance.

This level of significance in this paper is 0.05. The re-

sults of the ANOVA test of 500 replicates for 50,000

runs are tabulated in Tables 5 and 6 for both execu-

tion and computational time. In Table 5, crossover and

mutation are both highly statistically significant on the

execution time as the interaction between them with

p-value = 0.0004. Table 6 also shows that crossover

and mutation are both highly statistically significant

on computational time as the interaction between them

with p-value = 0.0113.

Figure 24 represents the average execution and com-

putational time for each combination of pc and pm. The

computational time values have been shifted in y-axis

by 17 s to overlap with the execution time values, so it

will be easy to study the results. Observing the figure

leads us to use pc = 0.95 and pm = 0.05 to obtain the

best combination of execution and computational time.

On the other hand, a set of data introduced by Gas-

paretto and Zanotto [17], is used for a comparative anal-

ysis between the proposed PPGA1 and five different

techniques. These techniques are:

i the Sequential Quadratic Program (SQP) using cu-

bic spline [17],

ii the Harmony Search algorithm (HS) [48],

iii interval analysis using cubic spline [33],

iv trigonometric spline [47], and

v synchronized trigonometric S-curve [30].

The data used for this evaluation are detailed in

Table 7, and extracted from [17].

Gasparetto and Zanotto’s algorithm [17] determined

the initial interval time value and used SQP technique

(the MATLAB function fmincon) for minimum time

trajectory (kT = 1, kJ = 0). However, they adjusted

kT and kJ so that the execution time is 9.1 s and

the maximum jerk is 46.85◦/s3 which is better than

the jerk value in [33]. The HS simulation [48] gave a

minimum time trajectory of 8.5718 s for 10,000 itera-

tions and 8.5577 s for 200,000 iterations with maximum

jerk close to 60◦/s3 (plot information). Simon and Isik

[47] achieved 9.1 s with maximum jerk 80.84◦/s3 for

the same set of data and using trigonometric spline,

while 7.5398 s is obtained using S-curve [30] with maxi-

mum jerk 16.4178◦/s3. However, no via points are used

in [30], the planning was directly between the initial

and final configurations. The PPGA1, in this paper, is

achieving an average of 7.19 s execution time and max-

imum jerk 80.2◦/s3. The PPGA1 is using the following

GA parameters in Table 8:

A detailed analysis of results for this comparison is

tabulated in Table 9:
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Table 3: Obstacles locations and characteristics where CCyl,1
i and CCyl,2

i are the centers of cylinder i with radius

rCyl
i

1st Cylindrical obstacle 2nd Cylindrical obstacle 3rd Cylindrical obstacle 4th Cylindrical obstacle

CCyl,1
1 = (−0.7, 0.5, 0.0) CCyl,1

2 = (−0.7, 0.0, 0.0) CCyl,1
3 = (−0.7,−0.15, 0.7) CCyl,1

4 = (−0.7,−0.15, 0.15)

CCyl,2
1 = (−0.7, 0.5, 0.8) CCyl,2

2 = (−0.7, 0.0, 0.8) CCyl,2
3 = (−0.7, 0.65, 0.7) CCyl,2

4 = (−0.7, 0.65, 0.15)

rCyl
1 = 0.15 rCyl

2 = 0.15 rCyl
3 = 0.15 rCyl

4 = 0.15

1st Prismatic obstacle 2nd Prismatic obstacle 3rd Prismatic obstacle 4th Prismatic obstacle

P11 = (0.31, 0.79, 1.42) P21 = (0.31, 0.79, 1.42) P31 = (−0.03, 0.79, 1.42) P41 = (−0.03, 0.79, 0.97)
P12 = (0.31, 0.99, 1.42) P22 = (0.31, 0.99, 1.42) P32 = (−0.03, 0.99, 1.42) P42 = (−0.03, 0.99, 0.97)
P13 = (0.31, 0.79, 0.97) P23 = (−0.03, 0.99, 1.42) P33 = (−0.03, 0.99, 0.97) P43 = (0.31, 0.99, 0.97)
P14 = (0.31, 0.99, 0.97) P24 = (−0.03, 0.79, 1.42) P34 = (−0.03, 0.79, 0.97) P44 = (0.31, 0.79, 0.97)

Table 4: Performance comparison of the PPGA2

Rubio’s results [36] Paper’s

A* UC G results

ds (m) 5.82 5.41 5.43 4.32
de (m) 1.79
tc (s) 17,049 16,233 2674 17.78
te (s) 35.61 29.23 45.70 1.63

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 
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0.09 500 17.5325 0.24452 17.1470 18.4570 
0.1 500 17.5217 0.23793 17.1376 18.6074 
Pooled 5000 17.6251 0.28292  
Bartlett’s statistic 127.561 
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Figure 1: Execution time statistics when pc = 0.95 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
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Figure 1: Execution time statistics when pc = 0.95 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 4: Execution time statistics when pc = 0.95 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

In general, each run of genetic algorithms produces

a different solution because of the random nature of

the calculation involved. In Section 4.1, it can be seen

clearly that the results change by modifying the mu-

tation probability, see Table 1. In this section, the ge-

netic algorithm (PPGA1) uses the fixed set of parame-

ters listed in Table 8. However, to statistically evaluate

the proposed algorithm, 100 runs have been performed

with different seed values to enrich the randomness.

The statistical summary of these runs shows that even

for the worst value of a trajectory execution time of

7.4413 s, this is still less than the results reported in

other works cited earlier in this section. The minimum

value achieved is 6.9726 s, while the average is 7.198 s.

Figure 25 illustrates the statistical evaluation, where

the upper graph shows the trajectories execution time

with its average, standard deviation, etc., and the lower

one shows the procedure computational time for each

run and its average.

5 Conclusion

This paper proposes an evolutionary approach to solve

the trajectory planning problem. This approach uses

multiple populations genetic algorithm with migration

technique to obtain minimum time trajectories clamped

with cubic splines. The use of multiple populations has

been proved to be advantageous in other application

and in our paper we extend it to the field of indi-

rect robot trajectory planning. This approach has the

ability to combine different types of constraints; ob-

stacle avoidance, kinematics, and dynamics. Moreover,

it can be adapted to different manipulators since the

model is independent of the type and number of DoF of

the robot. A considerably large number of experiments

(more than 50,000) have been done based on bench-

mark paths extracted from the literature. The results

of these experiments are used in an extensive statisti-

cal evaluation to show the effectiveness of the proposed
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Table 5: ANOVA test of 500 replicates (Execution time).

Source Sum of Squares df Mean Squares F-Value p-value
Mutation probability 553.72 9 61.5245 592.31 0
Crossover probability 153.76 9 17.0842 164.47 0

Interaction 13.54 81 0.1672 1.61 0.0004
Error 5183.27 49900 0.1039
Total 5904.29 49999

Table 6: ANOVA test of 500 replicates (Computational time).

Source Sum of Squares df Mean Squares F-Value p-value
Mutation probability 5387.7 9 598.633 33754.09 0
Crossover probability 0.38 9 0.042 2.37 0.0113

Interaction 3.99 81 0.049 2.78 0
Error 884.98 49900 0.018
Total 6277.05 49999

Table 7: Kinematic limits of the joints

Joint no. 1 2 3 4 5 6

Initial configuration (◦) -10 20 15 150 30 120
Virtual configuration — — — — — —
Via config. 1 60 50 100 100 110 60
Via config. 2 20 120 -10 40 90 100
Virtual configuration — — — — — —
Final configuration 55 35 30 10 70 25
Velocity (◦/s) 100 95 100 150 130 110
Acceleration (◦/s2) 60 60 75 70 90 80
Jerk (◦/s3) 60 66 85 70 75 70
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Figure 1: Execution time statistics when pc = 0.90 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
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Figure 1: Execution time statistics when pc = 0.90 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 5: Execution time statistics when pc = 0.90 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

Table 8: PPGA1 parameters

Parameter Value

Population size 30
Number of populations 3
Number of migrations 15
Number of generations 80
Crossover probability 0.95
Mutation probability 0.05
% of solutions replaced by new generation 30 %

Table 9: Execution time comparison for the proposed

PPGA1

Trajectory Execution
generation time (sec)
scheme

Gasparetto and Cubic spline 8.5726
Zanotto [17]
Tangpattanakul,and Cubic spline 8.5577
Artrit [48]
Simon and Isik [47] Trigonometric spline 9.1
Piazzi, and Cubic spline 9.1
Visioli [33]
Perumaal, and Synchronized 7.5398
Jawahar [30] trigonometric

S-curve
Proposed PPGA1 Cubic spline 6.97259
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Figure 1: Execution time statistics when pc = 0.85 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 6: Execution time statistics when pc = 0.85 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.8900 0.37812 17.2238 19.4408 
0.02 500 17.8063 0.35182 17.1729 19.3802 
0.03 500 17.7411 0.33410 17.1716 19.5695 
0.04 500 17.6804 0.30129 17.1762 19.0460 
0.05 500 17.6406 0.26702 17.1793 18.8210 
0.06 500 17.6381 0.30512 17.1653 19.2588 
0.07 500 17.6319 0.29231 17.1415 19.5051 
0.08 500 17.6194 0.29086 17.1512 18.7139 
0.09 500 17.5824 0.27130 17.1486 18.8674 
0.1 500 17.5646 0.27970 17.1618 18.7954 
Pooled 5000 17.6795 0.30910  
Bartlett’s statistic 122.836 
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Figure 1: Execution time statistics when pc = 080 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.8900 0.37812 17.2238 19.4408 
0.02 500 17.8063 0.35182 17.1729 19.3802 
0.03 500 17.7411 0.33410 17.1716 19.5695 
0.04 500 17.6804 0.30129 17.1762 19.0460 
0.05 500 17.6406 0.26702 17.1793 18.8210 
0.06 500 17.6381 0.30512 17.1653 19.2588 
0.07 500 17.6319 0.29231 17.1415 19.5051 
0.08 500 17.6194 0.29086 17.1512 18.7139 
0.09 500 17.5824 0.27130 17.1486 18.8674 
0.1 500 17.5646 0.27970 17.1618 18.7954 
Pooled 5000 17.6795 0.30910  
Bartlett’s statistic 122.836 
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Figure 1: Execution time statistics when pc = 080 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 7: Execution time statistics when pc = 0.80 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9330 0.39452 17.2995 20.0360 
0.02 500 17.7805 0.33647 17.2015 19.3169 
0.03 500 17.7325 0.33489 17.1765 19.2183 
0.04 500 17.7020 0.33214 17.1742 18.8941 
0.05 500 17.6603 0.30744 17.1506 18.9301 
0.06 500 17.6593 0.31162 17.1949 19.0071 
0.07 500 17.6171 0.30644 17.1534 18.9054 
0.08 500 17.5978 0.26957 17.1467 18.7649 
0.09 500 17.5882 0.27739 17.1316 19.3729 
0.1 500 17.5800 0.26297 17.1452 18.8368 
Pooled 5000 17.6851 0.31554  
Bartlett’s statistic 137.408 
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Figure 1: Execution time statistics when pc = 0.75 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9330 0.39452 17.2995 20.0360 
0.02 500 17.7805 0.33647 17.2015 19.3169 
0.03 500 17.7325 0.33489 17.1765 19.2183 
0.04 500 17.7020 0.33214 17.1742 18.8941 
0.05 500 17.6603 0.30744 17.1506 18.9301 
0.06 500 17.6593 0.31162 17.1949 19.0071 
0.07 500 17.6171 0.30644 17.1534 18.9054 
0.08 500 17.5978 0.26957 17.1467 18.7649 
0.09 500 17.5882 0.27739 17.1316 19.3729 
0.1 500 17.5800 0.26297 17.1452 18.8368 
Pooled 5000 17.6851 0.31554  
Bartlett’s statistic 137.408 
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Figure 1: Execution time statistics when pc = 0.75 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 8: Execution time statistics when pc = 0.75 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9518 0.38090 17.2766 19.3087 
0.02 500 17.8293 0.35104 17.1949 19.3509 
0.03 500 17.7656 0.35880 17.1536 19.4455 
0.04 500 17.7357 0.32246 17.1793 19.3081 
0.05 500 17.7114 0.34753 17.1676 19.0280 
0.06 500 17.6918 0.31851 17.1977 19.4188 
0.07 500 17.6602 0.31556 17.1767 19.2945 
0.08 500 17.6097 0.28689 17.1368 19.2409 
0.09 500 17.6095 0.29950 17.1519 18.6143 
0.1 500 17.5887 0.28149 17.1489 18.6808 
Pooled 5000 17.7154 0.32773  
Bartlett’s statistic 89.362 
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Figure 1: Execution time statistics when pc = 0.70 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9518 0.38090 17.2766 19.3087 
0.02 500 17.8293 0.35104 17.1949 19.3509 
0.03 500 17.7656 0.35880 17.1536 19.4455 
0.04 500 17.7357 0.32246 17.1793 19.3081 
0.05 500 17.7114 0.34753 17.1676 19.0280 
0.06 500 17.6918 0.31851 17.1977 19.4188 
0.07 500 17.6602 0.31556 17.1767 19.2945 
0.08 500 17.6097 0.28689 17.1368 19.2409 
0.09 500 17.6095 0.29950 17.1519 18.6143 
0.1 500 17.5887 0.28149 17.1489 18.6808 
Pooled 5000 17.7154 0.32773  
Bartlett’s statistic 89.362 
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Figure 1: Execution time statistics when pc = 0.70 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 9: Execution time statistics when pc = 0.70 and

pm varies from 0.01 to 0.1 with an interval of 0.01.
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pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9708 0.40476 17.2690 19.5408 
0.02 500 17.8468 0.35249 17.1772 19.1666 
0.03 500 17.8054 0.37302 17.1594 19.3977 
0.04 500 17.7407 0.34113 17.1608 19.2040 
0.05 500 17.7473 0.36679 17.1686 19.5904 
0.06 500 17.6922 0.33083 17.1707 19.2146 
0.07 500 17.6745 0.32852 17.1740 19.0308 
0.08 500 17.6537 0.29835 17.1392 18.9570 
0.09 500 17.6071 0.30277 17.1610 18.8086 
0.1 500 17.5863 0.27436 17.1510 19.2050 
Pooled 5000 17.7325 0.33933  
Bartlett’s statistic 120.547 
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Figure 1: Execution time statistics when pc = 0.65 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9708 0.40476 17.2690 19.5408 
0.02 500 17.8468 0.35249 17.1772 19.1666 
0.03 500 17.8054 0.37302 17.1594 19.3977 
0.04 500 17.7407 0.34113 17.1608 19.2040 
0.05 500 17.7473 0.36679 17.1686 19.5904 
0.06 500 17.6922 0.33083 17.1707 19.2146 
0.07 500 17.6745 0.32852 17.1740 19.0308 
0.08 500 17.6537 0.29835 17.1392 18.9570 
0.09 500 17.6071 0.30277 17.1610 18.8086 
0.1 500 17.5863 0.27436 17.1510 19.2050 
Pooled 5000 17.7325 0.33933  
Bartlett’s statistic 120.547 
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Figure 1: Execution time statistics when pc = 0.65 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 10: Execution time statistics when pc = 0.65 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9969 0.39304 17.3106 19.4802 
0.02 500 17.8873 0.39817 17.2242 19.5172 
0.03 500 17.7748 0.34664 17.2238 20.7859 
0.04 500 17.7711 0.34815 17.1778 19.7525 
0.05 500 17.7500 0.33486 17.1554 19.1288 
0.06 500 17.7014 0.30602 17.1702 19.0913 
0.07 500 17.6720 0.30315 17.1409 18.9516 
0.08 500 17.6657 0.32711 17.1641 19.3763 
0.09 500 17.6557 0.30552 17.1353 18.8862 
0.1 500 17.6266 0.29650 17.1405 18.9736 
Pooled 5000 17.7502 0.33769  
Bartlett’s statistic 103.233 
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Figure 1: Execution time statistics when pc = 0.60 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 17.9969 0.39304 17.3106 19.4802 
0.02 500 17.8873 0.39817 17.2242 19.5172 
0.03 500 17.7748 0.34664 17.2238 20.7859 
0.04 500 17.7711 0.34815 17.1778 19.7525 
0.05 500 17.7500 0.33486 17.1554 19.1288 
0.06 500 17.7014 0.30602 17.1702 19.0913 
0.07 500 17.6720 0.30315 17.1409 18.9516 
0.08 500 17.6657 0.32711 17.1641 19.3763 
0.09 500 17.6557 0.30552 17.1353 18.8862 
0.1 500 17.6266 0.29650 17.1405 18.9736 
Pooled 5000 17.7502 0.33769  
Bartlett’s statistic 103.233 
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Figure 1: Execution time statistics when pc = 0.60 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 11: Execution time statistics when pc = 0.60 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 18.0386 0.45081 17.2460 20.0629 
0.02 500 17.8991 0.40378 17.2034 19.3554 
0.03 500 17.8140 0.36323 17.1911 19.2162 
0.04 500 17.7798 0.35070 17.1728 19.1399 
0.05 500 17.7714 0.33565 17.1960 19.0603 
0.06 500 17.7112 0.33089 17.1588 19.3400 
0.07 500 17.6994 0.31249 17.1449 19.0088 
0.08 500 17.6801 0.32170 17.1481 18.7556 
0.09 500 17.6509 0.31512 17.1419 19.1426 
0.1 500 17.6293 0.27998 17.1542 18.7563 
Pooled 5000 17.7674 0.34960  
Bartlett’s statistic 176.691 
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Figure 1: Execution time statistics when pc = 0.55 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 18.0386 0.45081 17.2460 20.0629 
0.02 500 17.8991 0.40378 17.2034 19.3554 
0.03 500 17.8140 0.36323 17.1911 19.2162 
0.04 500 17.7798 0.35070 17.1728 19.1399 
0.05 500 17.7714 0.33565 17.1960 19.0603 
0.06 500 17.7112 0.33089 17.1588 19.3400 
0.07 500 17.6994 0.31249 17.1449 19.0088 
0.08 500 17.6801 0.32170 17.1481 18.7556 
0.09 500 17.6509 0.31512 17.1419 19.1426 
0.1 500 17.6293 0.27998 17.1542 18.7563 
Pooled 5000 17.7674 0.34960  
Bartlett’s statistic 176.691 
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Figure 1: Execution time statistics when pc = 0.55 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 12: Execution time statistics when pc = 0.55 and

pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 18.0706 0.43716 17.2359 19.5537 
0.02 500 17.9613 0.43266 17.1639 19.7019 
0.03 500 17.8686 0.40120 17.1895 19.5250 
0.04 500 17.8422 0.37250 17.2112 19.5115 
0.05 500 17.7780 0.37575 17.1625 19.5001 
0.06 500 17.7506 0.34449 17.1687 19.1491 
0.07 500 17.6943 0.33533 17.1625 19.0914 
0.08 500 17.6902 0.32123 17.1472 18.9049 
0.09 500 17.6652 0.31825 17.1485 19.3304 
0.1 500 17.6672 0.29336 17.1479 18.7389 
Pooled 5000 17.7988 0.36618  
Bartlett’s statistic 163.29 
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Figure 1: Execution time statistics when pc = 0.50 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 18.0706 0.43716 17.2359 19.5537 
0.02 500 17.9613 0.43266 17.1639 19.7019 
0.03 500 17.8686 0.40120 17.1895 19.5250 
0.04 500 17.8422 0.37250 17.2112 19.5115 
0.05 500 17.7780 0.37575 17.1625 19.5001 
0.06 500 17.7506 0.34449 17.1687 19.1491 
0.07 500 17.6943 0.33533 17.1625 19.0914 
0.08 500 17.6902 0.32123 17.1472 18.9049 
0.09 500 17.6652 0.31825 17.1485 19.3304 
0.1 500 17.6672 0.29336 17.1479 18.7389 
Pooled 5000 17.7988 0.36618  
Bartlett’s statistic 163.29 
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Figure 1: Execution time statistics when pc = 0.50 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 13: Execution time statistics when pc = 0.50 and

pm varies from 0.01 to 0.1 with an interval of 0.01.
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pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.35981 0.05197 0.250 0.697 
0.02 500 0.47444 0.08007 0.307 0.901 
0.03 500 0.58534 0.09026 0.384 0.961 
0.04 500 0.70247 0.10833 0.442 1.214 
0.05 500 0.82230 0.12995 0.426 1.382 
0.06 500 0.95537 0.14430 0.648 1.565 
0.07 500 1.05173 0.15916 0.710 1.939 
0.08 500 1.17901 0.16573 0.739 1.791 
0.09 500 1.30280 0.19302 0.734 1.940 
0.1 500 1.43729 0.19310 0.980 2.198 
Pooled 5000 0.88705 0.13930  
Bartlett’s statistic 1296.01 
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Figure 1: Computational time statistics when pc = 0.50 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.35981 0.05197 0.250 0.697 
0.02 500 0.47444 0.08007 0.307 0.901 
0.03 500 0.58534 0.09026 0.384 0.961 
0.04 500 0.70247 0.10833 0.442 1.214 
0.05 500 0.82230 0.12995 0.426 1.382 
0.06 500 0.95537 0.14430 0.648 1.565 
0.07 500 1.05173 0.15916 0.710 1.939 
0.08 500 1.17901 0.16573 0.739 1.791 
0.09 500 1.30280 0.19302 0.734 1.940 
0.1 500 1.43729 0.19310 0.980 2.198 
Pooled 5000 0.88705 0.13930  
Bartlett’s statistic 1296.01 
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Figure 1: Computational time statistics when pc = 0.50 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 14: Computational time statistics when pc = 0.50

and pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.36619 0.05669 0.261 0.667 
0.02 500 0.47183 0.06805 0.320 0.764 
0.03 500 0.58763 0.08769 0.393 0.865 
0.04 500 0.70458 0.11074 0.472 1.129 
0.05 500 0.82827 0.12133 0.533 1.255 
0.06 500 0.94539 0.15055 0.594 1.578 
0.07 500 1.06193 0.16519 0.615 1.743 
0.08 500 1.17887 0.16512 0.773 2.021 
0.09 500 1.28713 0.17183 0.815 1.903 
0.1 500 1.41695 0.19825 0.828 2.251 
Pooled 5000 0.88488 0.13732  
Bartlett’s statistic 1317.97 
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Figure 1: Computational time statistics when pc = 0.55 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.36619 0.05669 0.261 0.667 
0.02 500 0.47183 0.06805 0.320 0.764 
0.03 500 0.58763 0.08769 0.393 0.865 
0.04 500 0.70458 0.11074 0.472 1.129 
0.05 500 0.82827 0.12133 0.533 1.255 
0.06 500 0.94539 0.15055 0.594 1.578 
0.07 500 1.06193 0.16519 0.615 1.743 
0.08 500 1.17887 0.16512 0.773 2.021 
0.09 500 1.28713 0.17183 0.815 1.903 
0.1 500 1.41695 0.19825 0.828 2.251 
Pooled 5000 0.88488 0.13732  
Bartlett’s statistic 1317.97 
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Figure 1: Computational time statistics when pc = 0.55 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 15: Computational time statistics when pc = 0.55

and pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.36720 0.04713 0.274 0.599 
0.02 500 0.47714 0.06590 0.290 0.715 
0.03 500 0.58625 0.09161 0.381 1.270 
0.04 500 0.70926 0.10604 0.489 1.125 
0.05 500 0.82658 0.12884 0.504 1.398 
0.06 500 0.93836 0.14268 0.559 1.575 
0.07 500 1.05634 0.15462 0.686 1.642 
0.08 500 1.18046 0.16647 0.792 1.786 
0.09 500 1.28871 0.17126 0.843 1.822 
0.1 500 1.42174 0.20494 0.878 2.315 
Pooled 5000 0.88520 0.13642  
Bartlett’s statistic 1490.28 
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Figure 1: Computational time statistics when pc = 0.60 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.36720 0.04713 0.274 0.599 
0.02 500 0.47714 0.06590 0.290 0.715 
0.03 500 0.58625 0.09161 0.381 1.270 
0.04 500 0.70926 0.10604 0.489 1.125 
0.05 500 0.82658 0.12884 0.504 1.398 
0.06 500 0.93836 0.14268 0.559 1.575 
0.07 500 1.05634 0.15462 0.686 1.642 
0.08 500 1.18046 0.16647 0.792 1.786 
0.09 500 1.28871 0.17126 0.843 1.822 
0.1 500 1.42174 0.20494 0.878 2.315 
Pooled 5000 0.88520 0.13642  
Bartlett’s statistic 1490.28 
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Figure 1: Computational time statistics when pc = 0.60 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 16: Computational time statistics when pc = 0.60

and pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.37312 0.04940 0.273 0.594 
0.02 500 0.48128 0.07346 0.311 0.767 
0.03 500 0.59596 0.08809 0.394 0.998 
0.04 500 0.72044 0.10656 0.462 1.059 
0.05 500 0.83098 0.12848 0.553 1.217 
0.06 500 0.94384 0.14904 0.543 2.018 
0.07 500 1.05056 0.15348 0.690 1.624 
0.08 500 1.17425 0.16543 0.754 1.774 
0.09 500 1.28041 0.16850 0.883 1.904 
0.1 500 1.41005 0.19952 0.922 2.854 
Pooled 5000 0.88606 0.13598  
Bartlett’s statistic 1350.47 
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Figure 1: Computational time statistics when pc = 0.65 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.37312 0.04940 0.273 0.594 
0.02 500 0.48128 0.07346 0.311 0.767 
0.03 500 0.59596 0.08809 0.394 0.998 
0.04 500 0.72044 0.10656 0.462 1.059 
0.05 500 0.83098 0.12848 0.553 1.217 
0.06 500 0.94384 0.14904 0.543 2.018 
0.07 500 1.05056 0.15348 0.690 1.624 
0.08 500 1.17425 0.16543 0.754 1.774 
0.09 500 1.28041 0.16850 0.883 1.904 
0.1 500 1.41005 0.19952 0.922 2.854 
Pooled 5000 0.88606 0.13598  
Bartlett’s statistic 1350.47 
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Figure 1: Computational time statistics when pc = 0.65 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 17: Computational time statistics when pc = 0.65

and pm varies from 0.01 to 0.1 with an interval of 0.01.
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pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.37609 0.04893 0.292 0.589 
0.02 500 0.48777 0.07556 0.339 0.828 
0.03 500 0.59432 0.08402 0.410 0.892 
0.04 500 0.70807 0.10260 0.468 1.059 
0.05 500 0.83834 0.12319 0.523 1.206 
0.06 500 0.94907 0.13736 0.610 1.459 
0.07 500 1.06473 0.15044 0.682 1.573 
0.08 500 1.17348 0.16805 0.712 1.957 
0.09 500 1.29911 0.18001 0.903 2.070 
0.1 500 1.39899 0.19592 0.959 2.627 
Pooled 5000 0.88900 0.13468  
Bartlett’s statistic 1403.15 
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Figure 1: Computational time statistics when pc = 0.70 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.37609 0.04893 0.292 0.589 
0.02 500 0.48777 0.07556 0.339 0.828 
0.03 500 0.59432 0.08402 0.410 0.892 
0.04 500 0.70807 0.10260 0.468 1.059 
0.05 500 0.83834 0.12319 0.523 1.206 
0.06 500 0.94907 0.13736 0.610 1.459 
0.07 500 1.06473 0.15044 0.682 1.573 
0.08 500 1.17348 0.16805 0.712 1.957 
0.09 500 1.29911 0.18001 0.903 2.070 
0.1 500 1.39899 0.19592 0.959 2.627 
Pooled 5000 0.88900 0.13468  
Bartlett’s statistic 1403.15 
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Figure 1: Computational time statistics when pc = 0.70 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 18: Computational time statistics when pc = 0.70

and pm varies from 0.01 to 0.1 with an interval of 0.01.
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0.02 500 0.49551 0.06797 0.340 0.796 
0.03 500 0.59715 0.08497 0.413 0.896 
0.04 500 0.71718 0.10222 0.465 1.084 
0.05 500 0.82457 0.11717 0.509 1.213 
0.06 500 0.94905 0.13701 0.626 1.371 
0.07 500 1.05663 0.14947 0.664 1.773 
0.08 500 1.16016 0.15562 0.796 1.750 
0.09 500 1.29016 0.1802 0.862 1.891 
0.1 500 1.40349 0.19361 0.923 2.154 
Pooled 5000 0.88800 0.13193  
Bartlett’s statistic 1373.4 

9 
0 

Degrees of freedom 
p-value 

 

Figure 1: Computational time statistics when pc = 0.75 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
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Figure 1: Computational time statistics when pc = 0.75 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 19: Computational time statistics when pc = 0.75

and pm varies from 0.01 to 0.1 with an interval of 0.01.
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0.01 500 0.38444 0.04444 0.285 0.573 
0.02 500 0.49464 0.06620 0.353 0.738 
0.03 500 0.60045 0.08788 0.387 1.149 
0.04 500 0.72060 0.09823 0.458 1.122 
0.05 500 0.82918 0.11849 0.517 1.245 
0.06 500 0.93388 0.12474 0.619 1.388 
0.07 500 1.05808 0.15011 0.708 1.682 
0.08 500 1.18140 0.16706 0.787 1.794 
0.09 500 1.27970 0.16783 0.841 1.897 
0.1 500 1.39759 0.19249 0.952 2.167 
Pooled 5000 0.88800 0.13000  
Bartlett’s statistic 1507.06 
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Figure 1: Computational time statistics when pc = 0.80 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
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Figure 1: Computational time statistics when pc = 0.80 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 20: Computational time statistics when pc = 0.80

and pm varies from 0.01 to 0.1 with an interval of 0.01.
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0.02 500 0.49806 0.06557 0.337 0.777 
0.03 500 0.60814 0.08357 0.390 1.145 
0.04 500 0.71697 0.10325 0.481 1.191 
0.05 500 0.83525 0.11131 0.556 1.295 
0.06 500 0.93652 0.13365 0.574 1.442 
0.07 500 1.05184 0.14769 0.676 1.559 
0.08 500 1.17318 0.16909 0.799 1.969 
0.09 500 1.28131 0.18366 0.907 2.056 
0.1 500 1.41074 0.18538 0.973 2.085 
Pooled 5000 0.89027 0.13151  
Bartlett’s statistic 1509.21 
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Figure 1: Computational time statistics when pc = 0.85 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.39068 0.04762 0.286 0.676 
0.02 500 0.49806 0.06557 0.337 0.777 
0.03 500 0.60814 0.08357 0.390 1.145 
0.04 500 0.71697 0.10325 0.481 1.191 
0.05 500 0.83525 0.11131 0.556 1.295 
0.06 500 0.93652 0.13365 0.574 1.442 
0.07 500 1.05184 0.14769 0.676 1.559 
0.08 500 1.17318 0.16909 0.799 1.969 
0.09 500 1.28131 0.18366 0.907 2.056 
0.1 500 1.41074 0.18538 0.973 2.085 
Pooled 5000 0.89027 0.13151  
Bartlett’s statistic 1509.21 

9 
0 

Degrees of freedom 
p-value 

 

Figure 1: Computational time statistics when pc = 0.85 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 21: Computational time statistics when pc = 0.85

and pm varies from 0.01 to 0.1 with an interval of 0.01.
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pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.39812 0.04868 0.288 0.763 
0.02 500 0.50492 0.06910 0.357 0.761 
0.03 500 0.60953 0.08540 0.418 0.972 
0.04 500 0.71912 0.10093 0.480 1.132 
0.05 500 0.83304 0.10740 0.536 1.235 
0.06 500 0.93705 0.12843 0.610 1.454 
0.07 500 1.05438 0.14616 0.704 1.925 
0.08 500 1.17712 0.15364 0.822 1.762 
0.09 500 1.27779 0.17547 0.881 1.923 
0.1 500 1.38810 0.18558 0.998 2.529 
Pooled 5000 0.88992 0.12761  
Bartlett’s statistic 1361.55 
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Figure 1: Computational time statistics when pc = 0.90 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
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Figure 1: Computational time statistics when pc = 0.90 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 22: Computational time statistics when pc = 0.90

and pm varies from 0.01 to 0.1 with an interval of 0.01.

 

pm runs Mean[sec] Std. Dev. min [sec] max [sec] 

0.01 500 0.40200 0.05066 0.287 0.784 
0.02 500 0.50800 0.06606 0.374 0.957 
0.03 500 0.61884 0.08490 0.424 0.928 
0.04 500 0.72966 0.10749 0.516 1.487 
0.05 500 0.83582 0.11068 0.574 1.294 
0.06 500 0.94852 0.11799 0.559 1.353 
0.07 500 1.04761 0.13876 0.653 1.701 
0.08 500 1.17235 0.15284 0.824 1.787 
0.09 500 1.28251 0.17789 0.942 2.574 
0.1 500 1.40142 0.18312 0.987 2.260 
Pooled 5000 0.89467 0.12635  
Bartlett’s statistic 1322.04 
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Figure 1: Computational time statistics when pc = 0.95 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
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Figure 1: Computational time statistics when pc = 0.95 and pm varies from 0.01 to 0.1 with an interval of 0.01. 
 

Fig. 23: Computational time statistics when pc = 0.95

and pm varies from 0.01 to 0.1 with an interval of 0.01.

 
Figure 1: Average Execution time and Computational time for all combinations 

between pc and pm. 

 
Fig. 24: Average Execution time and Computational

time for all combinations between pc and pm.

approach as well as to show the improvement achieved

by the proposed algorithm over the existing ones. The

computational cost of the procedure itself is not a con-

cern and is out of the scope of this work, as in indus-

trial manipulators applications, the optimal trajectory

planning is often done offline. In further work, it would

be interesting to apply the presented parallel popula-

tions genetic algorithm procedure to trajectories with

different interpolation functions, such as: fifth-order B-

splines, harmonic, etc.

Appendix A

The values of aij and yi in Eq. 7.

a11 = 3h1 + 2h2 +
h21
h2
, a12 = h2, a21 = h2 −

h21
h2
,

a22 = 2(h2 + h3), a23 = h3, a32 = h3,

a33 = 2(h3 + h4), a34 = h4, an−3,n−4 = hn−3,

an−3,n−3 = 2(hn−3 + hn− 2),

an−3,n−2 = hn−2 −
h2n−1
hn−2

,

an−2,n−3 = hn−2

an−2,n−2 = 3hn−1 + 2hn−2 +
h2n−1
hn−2

,

yi = 6

(
qi+1 − qi

hi
− qi − qi−1

hi−1

)
,

y1 = 6
(

q3
h2

+ q1
h1

)
−6
(

1
h1

+ 1
h2

)(
q1 + h1q̇1 +

h2
1

3 q̈1

)
− h1q̈1,

y2 =
6

h2

(
q1 + h1q̇1 +

h21
3
q̈1

)
+

6q4
h3
− 6

(
1

h2
+

1

h3

)
q3,
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Figure 1: Statistical analysis of the trajectory execution time and the computational cost of the PPGA1. 

 

Fig. 25: Statistical analysis of the trajectory execution time and the computational cost of the PPGA1.

yn−3 = 6
hn−2

(
qn − hn−1q̇n +

h2
n−1

3 q̈n

)
−6
(

1
hn−2

+ 1
hn−3

)
qn−2 + 6qn−3

hn−3
,

yn−2 = −6
(

1
hn−1

+ 1
hn−2

)(
qn − hn−1q̇n +

h2
n−1

3 q̈n

)
+6
(

qn
hn−1

+ qn−2

hn−2

)
− hn−1q̈n.
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