
TESIS DOCTORAL

LOCAL USER MAPPING

VIA MULTI-MODAL FUSION

FOR SOCIAL ROBOTS

Autor:
Arnaud Ramey

Directores:
Miguel A. Salichs Sánchez-Caballero
Marı́a de los Ángeles Malfaz Vázquez

DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y AUTOMÁTICA
Leganés, June 1, 2015

TESIS DOCTORAL (DOCTORAL THESIS)

LOCAL USER MAPPING
VIA MULTI-MODAL FUSION

FOR SOCIAL ROBOTS

Autor (Candidate): Arnaud Ramey

Director (Adviser): Miguel A. Salichs Sánchez-Caballero
Directora (Adviser): Marı́a de los Ángeles Malfaz Vázquez

Tribunal (Review Committee)

Firma (Signature)

Presidente (Chair):

Vocal (Member):

Secretario (Secretary):

Tı́tulo (Degree): Doctorado en Ingenierı́a Eléctrica, Electrónica y Automática
Calificación (Grade):

Leganés, de de

To my loved ones

“It is by looking and seeing that we come to know what is where in the
world.”

— David Marr

i

ii

Acknowledgments

Being a PhD student is no easy task, and I can testify that by myself I would never have reached
the end. The list of people that made this PhD dissertation possible is long 1 and I owe all of you
many thanks.

First and before all, thanks to the Direction générale de l’armement 2 for giving me the great
opportunity to gather expertise in the field of robotics for several years, and for supporting me. I
am aware of how lucky I am, I have worked hard, and will work hard, to justify this investment.

I cannot thank enough times my adviser, Miguel Ángel: he introduced me to the wonderful
team of Social Robotics of the UC3M, was a helpful, resourceful and patient leader for my work,
and managed to transform my erratic research into coherence. The work of my co-adviser
Marı́a cannot be stressed enough either: in spite of a packed schedule, she always managed
to find time to advise, help, and motivate me. She was also the courageous proofreader of
this PhD dissertation. The Social Robots team is also of key importance to this work: thanks
to Alberto, for fixing all the code I broke without ever losing your smile; Fer, for your limitless
dynamism and hard work; Ana, for your kindness and your talent; Alvaro, for your wicked humor
and pragmatism (and forcing me into taking swimming classes!); Irene, for bringing fresh and
rigorous methods into the team practices; Javi, for all these meaningful ideas, the innovative
perspective you always brought and this unique taste in music; Victor, for being an unlimited
source of knowledge and wisdom – and leading the ROS battle; Esther, for your artistic skills;
Raul, for your resuscitating capabilities: you can turn legacy code into something working; Jose
Carlos, for assuring continuity to the presenting work; and last but not least, David, for being an
incredible workmate and finding a solution to all problems. Thanks to all the other members of
the Robotics Lab for the happy years in Leganés, among others Juan, Jorge, Tamara, Choukri,
Martin, and all the others.

More generally, thanks to the University Carlos III of Madrid for these master and PhD

1Way too long to fit a single page, really!
2the French Government Defense procurement agency responsible for the program management, development

and purchase of weapon systems for the French military

iii

programs, and the related post-graduate administration (CEAS): Ruth, Margarita and the others.
Thanks to the Carlos Corre runners, who found the secret way to convert suffering into a great
joy, and the swimming classes members (especially Jesús) for helping us poor students to get
out of the lab and staying fit.

As popular wisdom says, the real friends are the ones that come the day you move in /
out: my deepest thanks to Alex and Avinash for making these years in Madrid unique, and the
ones around the world: Léo, Jérémie, Johan, Baptiste, Florian, Benjamin... All my love to the
Sambanés players for rocking my life. Thanks to my family, for being there whenever I needed
you.

Ainara, there is no words to express how you enlightened the way.
And many thanks to the many others that helped at one or another point of the road.

Merci à tous.

iv

Abstract

User detection, recognition and tracking is at the heart of Human Robot Interaction, and yet, to
date, no universal robust method exists for being aware of the people in a robot’s surroundings.
The presented work aims at importing into existing social robotics platforms different techniques,
some of them classical, and other novel, for detecting, recognizing and tracking human users.
These algorithms are based on a variety of sensors, mainly cameras and depth imaging devices,
but also lasers and microphones. The results of these parallel algorithms are then merged so
as to obtain a modular, expandable and fast architecture. This results in a local user mapping
thanks to multi-modal fusion.

Thanks to this user awareness architecture, user detection, recognition and tracking capabili-
ties can be easily and quickly given to any robot by re-using the modules that match its sensors
and its processing performance. The architecture provides all the relevant information about the
users around the robot, that can then be used for end-user applications that adapt their behavior
to the users around the robot. The variety of social robots in which the architecture has been
successfully implemented includes a car-like mobile robot, an articulated flower and a humanoid
assistance robot.

Some modules of the architecture are very lightweight but have a low reliability, others
need more CPU but the associated confidence is higher. All configurations of modules are
possible, and fit the range of possible robotics hardware configurations. All the modules are
independent and highly configurable, therefore no code needs to be developed for building a new
configuration, the user only writes a ROS launch file. This simple text file contains all wanted
modules.

The architecture has been developed with modularity and speed in mind. It is based on the
Robot Operating System (ROS) architecture, a de facto software standard in robotics. The differ-
ent people detectors comply with a common interface called PeoplePoseList Publisher, while
the people recognition algorithms comply with an interface called PeoplePoseList Matcher.
The fusion of all these different modules is based on Unscented Kalman Filter techniques. Ex-
tensive benchmarks of the sub-components and of the whole architecture, using both academic
datasets and data acquired in our lab, and end-user application samples demonstrate the validity
and interest of all levels of the architecture.

v

vi

Resumen

La detección, el reconocimiento y el seguimiento de los usuarios es un problema clave para
la Interacción Humano-Robot. Sin embargo, al dı́a de hoy, no existe ningún método robusto
universal para para lograr que un robot sea consciente de la gente que le rodea. Esta tesis tiene
como objetivo implementar, dentro de robots sociales, varias técnicas, algunas clásicas, otras
novedosas, para detectar, reconocer y seguir a los usuarios humanos. Estos algoritmos se basan
en sensores muy variados, principalmente cámaras y fuentes de imágenes de profundidad,
aunque también en láseres y micrófonos. Los resultados parciales, suministrados por estos
algoritmos corriendo en paralelo, luego son mezcladas usando técnicas probabilisticas para
obtener una arquitectura modular, extensible y rápida. Esto resulta en un mapa local de los
usuarios, obtenido por técnicas de fusión de datos.

Gracias a esta arquitectura, las habilidades de detección, reconocimiento y seguimiento de
los usuarios podrı́an ser integradas fácil y rápidamente dentro de un nuevo robot, re-usando los
módulos que corresponden a sus sensores y el rendimiento de su procesador. La arquitectura
suministra todos los datos utiles sobre los usuarios en el alrededor del robot y se puede usar
por aplicaciones de más alto nivel en nuestros robots sociales de manera que el robot adapte su
funcionamiento a las personas que le rodean. Los robots sociales en los cuales la arquitectura
se pudo importar con éxito son: un robot en forma de coche, una flor articulada, y un robot
humanoide asistencial.

Algunos módulos de la arquitectura son muy ligeros pero con una fiabilidad baja, mientras
otros requieren mas CPU pero son más fiables. Todas las configuraciones de los módulos
son posibles y se ajustan a las diferentes configuraciones hardware que puede tener el robot.
Los módulos son independientes entre ellos y altamente configurables, por lo que no hay que
desarrollar código para una nueva configuración. El usuario sólo tiene que escribir un fichero
launch de ROS. Este sencillo fichero de texto contiene todos los módulos que se quieren lanzar.

Esta arquitectura se desarrolló teniendo en mente que fuese modular y rápida. Se basa en la
arquitectura Robot Operating System (ROS), un estándar software de facto en la robótica. Todos

vii

los detectores de personas tienen una interfaz común llamada PeoplePoseList Publisher, mien-
tras los algoritmos de reconocimiento siguen una interfaz llamada PeoplePoseList Matcher. La
fusión de todos estos módulos se basa en técnicas de filtros de Kalman no lineares (Unscented
Kalman Filters). Se han realizado pruebas exhaustivas de precisión y de velocidad de cada
componente y de la arquitectura completa (realizadas sobre ambos bases de datos académicas
además de sobre datos grabados en nuestro laboratorio), ası́ como prototipos sencillos de
aplicaciones finales. Ası́ se comprueba la validez y el interés de la arquitectura a todos los
niveles.

viii

Résumé

La détection, la reconnaissance et le suivi des utilisateurs est un problème fondamental pour
l’Interaction Homme Robot, et pourtant, il n’existe actuellement pas de méthode universelle et
robuste qui permette à un robot de percevoir les personnes autour de lui. Le travail présenté
ici vise à importer dans différentes plateformes existantes de robotique sociale des techniques
pour détecter, reconnaı̂tre et suivre des utilisateurs humains, certaines classiques, d’autres
innovantes. Ces algorithmes se basent sur des capteurs variés, principalement des caméras et
des périphériques permettant d’estimer la profondeur, mais aussi des lasers et des microphones.
Ces algorithmes s’exécutent en parallèle, et leurs résultats sont ensuite fusionnés, ce qui donne
une architecture modulaire, extensible et rapide. Ceci produit une cartographie locale des
utilisateurs, basée sur de la fusion multi-modale.

Grâce à cette architecture de perception des utilisateurs, l’on peut facilement et rapidement
permettre à n’importe quel robot de détecter, reconnaı̂tre et suivre ses utilisateurs, en déployant
les modules qui correspondent à ses capteurs et ses capacités de calcul. L’architecture fournit
toute les informations pertinentes sur les utilisateurs autour du robot. Elles peuvent alors être
utilisées pour des applications de plus haut niveau, qui pourront adapter leur fonctionnement
selon le comportement de ces utilisateurs. La gamme de robots sur lesquels l’architecture a été
déployée inclut un mini-véhicule, une fleur articulée et un robot humanoı̈de d’assistance.

Certains modules de l’architecture sont très rapides mais peu fiables, d’autres sont plus
gourmands en puissance de calcul mais ont une meilleure fiabilité. Toutes les configurations
de modules sont possibles, ce qui permet de s’adapter à de nombreuses configurations de
plateformes robotiques. Chaque module est indépendant et hautement configurable, ainsi l’on
n’a pas besoin d’écrire de code pour créer une nouvelle configuration, mais seulement un fichier
texte, appelé fichier launch de ROS. Ce simple fichier texte liste tous les modules désirés.

Notre architecture est pensée pour offrir une grandes modularité et une importante vitesse
d’exécution. Elle se base sur l’architecture Robot Operating System (ROS), un standard logiciel
de facto dans le monde de la robotique. Tous les algorithmes de détection de personnes
se conforment à une interface commune, appelée PeoplePoseList Publisher, tandis que les

ix

algorithmes de reconnaissance de personnes utilisent une interface appelée PeoplePoseList

Matcher. La fusion de tous ces différents modules se base sur des filtres de Kalman (Unscented
Kalman Filter). Des évaluations exhaustives de toutes les sous-composantes et de l’architecture
complète, grâce à des bases de données académiques d’une part, et des données acquises
par nos soins d’autre part, ainsi que des exemples d’application de haut niveau, démontrent la
validité et l’utilité de notre architecture à tous les niveaux.

x

Contents

Acknowledgments iii

Abstract v

Resumen vii

Résumé ix

Contents xi

List of Tables xv

List of Figures xvii

Code listings xxiii

1 Introduction, problem definition and goals 1
1.1 Potential benefit of the PhD . 2
1.2 Goals of the PhD . 3
1.3 Resources and constraints . 4

1.3.1 Specifications of the robots . 4
1.4 Methodology . 7

1.4.1 Software architecture . 9
1.5 Structure of the PhD . 12

2 Related work 15
2.1 Social robots without any user awareness mechanism 15
2.2 Detecting users as obstacles . 17

xi

2.3 Short term awareness . 18
2.3.1 User awareness through explicit actions 19
2.3.2 Autonomous user detection . 21
2.3.3 Intelligent environments . 23

2.4 Long term awareness . 24
Summary . 27

I User detection 29

3 Vision-based person detection 31
Introduction . 31
3.1 State of the art . 32

3.1.1 Face detection . 33
3.1.2 Human body detectors: Histogram of Oriented Gradients 34
3.1.3 Kinect API: NiTE . 36
3.1.4 Polar-Perspective Map (PPM) . 38

3.2 Research contribution . 38
3.2.1 Preliminaries: User mask from depth image and seed pixel 39
3.2.2 Design of a common interface for user detectors 41
3.2.3 Robust three-dimensional (3D) face detection with depth information. . . 47
3.2.4 Improvement of the original Histogram of Oriented Gradients (HOG) de-

tector and integration as a PeoplePoseList Publisher 50
3.2.5 NiTE-based PeoplePoseList Publisher 53
3.2.6 PPM-based PeoplePoseList Publisher 56
3.2.7 Tabletop PeoplePoseList Publisher . 59
3.2.8 Comparative performance of the different PeoplePoseList Publishers . 63

Summary . 65

4 Other techniques for person detection 67
Introduction . 67
4.1 State of the art . 67

4.1.1 Tag based user detection . 68
4.1.2 Voice detection . 72
4.1.3 Leg pattern detection . 73

4.2 Research contribution . 74
4.2.1 ARToolkit PeoplePoseList Publisher 75
4.2.2 Voice localization PeoplePoseList Publisher 78
4.2.3 Integration of the leg pattern detector and benchmark 81

Summary . 85

xii

II User recognition 87

5 Vision-based user recognition 89
Introduction . 89
5.1 State of the art . 90

5.1.1 Face and gender-from-face recognition 91
5.1.2 Height and other anatomy-based techniques 94
5.1.3 Histogram-based user recognition . 96

5.2 Research contribution . 102
5.2.1 Building a dataset of training sample images for gender-from-face recogni-

tion . 103
5.2.2 Implementation and benchmarking of gender-from-face recognition for the

social robot MOPI . 104
5.2.3 Height detection for user recognition and gender estimation 108
5.2.4 Breast detection for gender estimation 118
5.2.5 PersonHistogramSet : user recognition based on structured Hue histograms122

Summary . 128

6 Other techniques for user recognition 129
Introduction . 129
6.1 State of the art . 129
6.2 Research contribution - text-independent user voice identification 131

6.2.1 Description of the system . 131
6.2.2 Integration as a PeoplePoseList Matcher 132
6.2.3 Experimental results . 133

Summary . 135

III Data fusion and user mapping 137

7 Data fusion and user mapping 139
Introduction . 139
7.1 State of the art . 140

7.1.1 Particle filters . 140
7.1.2 Kalman filtering . 141

7.2 Research contribution . 150
7.2.1 Preliminary: benchmarking of linear assignment algorithms 151
7.2.2 A common interface for PeoplePoseList (PPL) matchers: the PeoplePoseList

Matcher (PPLM) . 152
7.2.3 Integration of recognition algorithms as PeoplePoseList Matchers . . . 158
7.2.4 Benchmarking and limitations of the Unscented Kalman Filter (UKF) and

different combinations of PPLMs . 160
7.2.5 Tracking of objects in a depth image . 176

Summary . 193

xiii

IV Applications for the system 195

8 Applications of our user awareness architecture for social robotics 197
8.1 Use of our user awareness architecture and associated tools 198

8.1.1 Using PeoplePoseLists (PPLs) for end-user applications 198
8.1.2 User visualization tools . 199
8.1.3 ROS Rviz Markers . 199
8.1.4 PPLViewer . 201

8.2 Example of use #1: Surveillance . 203
8.2.1 Problem definition . 203
8.2.2 Implementation . 204
8.2.3 Testing the surveillance application with users, results and conclusions . 210
8.2.4 Conclusions for the surveillance application 214

8.3 Example of use #2: games . 215
8.3.1 Tic-tac-toe . 215
8.3.2 Future works: Red Light Green Light . 217
8.3.3 Conclusions for games . 220

9 Conclusions, main contributions and future developments 223
9.1 Summary of the contributions . 226
9.2 Future works . 227

Bibliography 229

List of Publications 241

Index 245

xiv

List of Tables

3.1 Benchmark results for the face detectionPeoplePoseList Publisher (PPLP) . . . 49
3.2 Benchmark results for the HOG-basedPeoplePoseList Publisher (PPLP) 52
3.3 Benchmark results for the NiTE-basedPeoplePoseList Publisher (PPLP) 55
3.4 Benchmark results for the PPM-basedPeoplePoseList Publisher (PPLP) 59
3.5 Benchmark results for the tabletop-basedPeoplePoseList Publisher (PPLP) . . 62

4.1 Benchmark results for voice localization using machine-learning methods. . . . 81
4.2 Benchmark results for the leg detectionPeoplePoseList Publisher (PPLP) . . . 83

5.1 Benchmark results for the gender-from-face recognition trained on Google Images
Search (GIS) and tested on YaleB . 107

5.2 Benchmark results for the gender-from-face recognition trained on half of YaleB
and tested on the other half of YaleB . 108

5.3 Benchmark results for height estimation algorithms. 117
5.4 Benchmark results for gender recognition based on breast detection 121
5.5 Benchmark results for PersonHistogramSet (PHS) user recognition. 126

7.1 Benchmark results for different configurations of PPLMs on the Kinect Tracking
Precision (KTP) dataset. 163

7.2 Database properties and benchmark results for different configurations of PPLMs
on the RoboticsLab People Dataset (RLPD). 174

7.3 The result of the tracking runs along the complicated path. 189

8.1 Benchmark results for the surveillance application. 213

xv

List of Figures

1.1 The robot Maggie. 5
1.2 The hardware equipping Maggie. 6
1.3 The hardware equipping MOPI. 7
1.4 A fictional situation of user awareness around a robot. 8
1.5 Knowledge representation of the user awareness in a fictional situation. 9

2.1 The social robot ”Keecker”. 16
2.2 The social robot ”Echo”. 17
2.3 The social robot ”iCat”. 17
2.4 The social robot ”DragonBot”. 18
2.5 The collaborative industrial robot ”YuMi”. 19
2.6 The social robot ”RHINO” and its interface. 20
2.7 The first version of the social robot ”Aibo” released in 1999. 20
2.8 The social robot ”Valerie” in her booth. 21
2.9 The social robot ”Kismet”. 22
2.10 The social robot ”Roboceptionist”. 22
2.11 The social robot ”Alias”. 23
2.12 The social robot ”TOOMAS”. 23
2.13 The social robot ”Robovie” interacting with Japanese pupils 25
2.14 The social robot ”Snackbot”. 25
2.15 The social robot ”Jibo”. 26

3.1 Some of the characteristics used by Viola and Jones. 34
3.2 Sample detections with the original Histogram of Oriented Gradients algorithm. . 36
3.3 Sample images generated with the NiTE middleware 37
3.4 User mask computation given a depth image and a seed pixel. 41

xvii

3.5 An example of distributed people detection thanks to several PeoplePoseList
Publishers (PPLPs) . 44

3.6 Some samples of the DGait dataset . 46
3.7 Processing pipeline for the face detection algorithm. 48
3.8 Results of the face detection algorithm on a sample image. 49
3.9 The pipeline for the HOG-based PeoplePoseList Publisher 51
3.10 A sample detection with the HOG PPLP . 53
3.11 The NiTE-based user detector pipeline. 54
3.12 Sample images of the NiTE-based PeoplePoseList Publisher 55
3.13 The PPM-based user detector pipeline. 57
3.14 User detection thanks to Polar Perspective Maps (PPM) 58
3.15 The tabletop user detector pipeline. 60
3.16 User detection thanks to the tabletop PeoplePoseList Publisher 61
3.17 Comparative performance of the different PeoplePoseList Publishers. 63

4.1 A few samples of barcodes . 69
4.2 A sample ARToolkit pattern and a sample use case. 70
4.3 Human leg pattern detection from laser scans, image from [Bellotto and Hu, 2009]. 74
4.4 A custom ARToolkit tag for the use Alice. 76
4.5 ARToolkit PPLP using custom tags. 77
4.6 The microphones situated in the base of Maggie. 79
4.7 Sound localization with Machine Learning (ML) techniques. 80
4.8 The pipeline of the ARToolkit PeoplePoseList Publisher. 82
4.9 A capture of the benchmark of the leg detector PeoplePoseList Publisher. . . 84

5.1 Anatomy and proportions of the human body for artists 95
5.2 Effects of lightness and contrast on black-and-white image histograms 99
5.3 The Hue scale . 99
5.4 Effects of lightness and contrast on Hue image histograms 100
5.5 Gender images dataset constitution thanks to GIS 104
5.6 Number of pictures in the GIS gender dataset after each step. 105
5.7 A sample image of the gender-from-face recognition skill. 106
5.8 Times needed for finding faces and estimating their gender on a sample image

according to the size of the image (number of pixels). 106
5.9 Some samples of the YaleB dataset. 107
5.10 Results of the thinning on different samples . 110
5.11 The two basic actions for a contour image . 111
5.12 Samples of head detection in a user mask. 112
5.13 Mazes as binary masks . 113
5.14 Sample of height computation for several users at once. 115
5.15 Benchmark results for different thinning algorithms 116
5.16 Benchmark results for our homebrew height algorithm vs. the classical approach. 118
5.17 Algorithm pipeline for breast detector . 120

xviii

5.18 The effects of masks on histogram computation. 123
5.19 Multi-mask generation and histograms computation. 125
5.20 A few samples of the users in [Igual et al., 2013] dataset. 127

6.1 The pipeline for the speaker-recognition PeoplePoseList Matcher. 133
6.2 User recognition thanks to voice analysis. 134

7.1 The steps of Kalman Filter (KF) computing (from [Bishop and Welch, 2001]) . . 144
7.2 An example of linear assignment problem for 2D points 149
7.3 Benchmark of both brute-force and Jonker-Volgenant assignments solvers. . . . 152
7.4 Multimodal fusion based on Unscented Kalman Filters: fictional case of single-user

detection. 155
7.5 Multimodal fusion based on Unscented Kalman Filters: multi-user detection. . . 156
7.6 Diagram of the dataflow between the fusion node and the different PeoplePoseList

Matchers. 157
7.7 Multimodal fusion using all implemented PPLPs and PPLMs. 161
7.8 Some samples of the KTP dataset. 162
7.9 Synthesis of the RoboticsLab People Dataset (RLPD) building. 165
7.10 A sample view of the Graphical User Interface we developed for annotating images,

called user image annotator. 168
7.11 Some samples of the RLPD dataset. 169
7.12 Comparative performance of the different PeoplePoseList Publishers. 170
7.13 Sample pictures of our user awareness architecture with the RoboticsLab People

Dataset. 173
7.14 The flow chart of the user tracking system using depth images analysis. 177
7.15 The flow chart for the detection of connected components in the depth image . . 178
7.16 A example to clarify the concept of an object representation 181
7.17 Field of view of both sensors mounted on the robot: the Kinect depth camera and

the Hokuyo range finder. 184
7.18 Depth cluster tracking: motion planning towards the goal at a given time 185
7.19 A sample picture of a user selecting the object-of-interest 186
7.20 Time needs for running the algorithm on different hardware platforms. 187
7.21 The flow chart of the whole system when distributed between several computers. 188
7.22 The path followed by the user to test the tracking accuracy. 190
7.23 Map generated by a SLAM algorithm (GMapping [Grisettiyz, 2005]) overlaid with

the paths generated during a run. 191
7.24 Different frames of the GUI during a tracking sequence on the test path. 192

8.1 The package dependencies of games vision, the package containing the differ-
ent applications. 199

8.2 A sample rendering of the PPL visualization tool rviz with PPL markers. 200
8.3 A sample rendering of the PPL visualization tool ppl viewer. 201
8.4 The surveillance pipeline. 205
8.5 The different tools for the costmap needed in our surveillance application 207

xix

8.6 A possible user awareness architecture for the surveillance pipeline. 208
8.7 Two cases of use of the costmap watchdog . 209
8.8 Screenshot of the robot Graphical User Interface integrating the alert messages. 210
8.9 Consequences of the tilted Kinect in MOPI on the ”Point&Click”Graphical User

Interface (GUI). 211
8.10 The annotated birdview GUIs used during the user briefing. 212
8.11 Clouds of words chosen by the users to describe the surveillance GUIs. 213
8.12 User satisfaction against user effectiveness and performance for surveillance GUIs.214
8.13 The spatial configuration for playing tic-tac-toe with Maggie. 216
8.14 The game design for the Red Light Green Light game. 219
8.15 Sample pictures of motion detection in a user mask for Red Light Green Light. . 221

xx

List of Algorithms

1 The processing pipeline for the HOG PeoplePoseList generator 52

2 The BFS algorithm used for computing the shortest path in a binary mask 114

xxi

Code listings

1.1 People detection representation from the robot perspective 8
1.2 People recognition representation from the robot perspective 8
3.1 The PeoplePose message . 42
3.2 The PeoplePoseList message . 43
7.1 A sample PeoplePoseList message . 171

xxiii

xxiv

CHAPTER 1

Introduction, problem definition and goals

A ROBOT is, according to the definition of the Oxford dictionary, a machine capable of carrying
out a complex series of actions automatically, especially one programmable by a computer. The
frontier between an automated machine and a robot is not clear, but the latter is traditionally
characterized by a degree of intelligence and understanding of its surroundings in its decision
making, while the former repeats pre-written sequences of actions. A robot can then be seen
as an entity which has, to some extent, autonomy in its behavior and the actions it performs.
As such, Robotics, the field of science and technology that aims at designing, building and
operating robots, is a field at the convergence of mathematics, computer science, physics,
mechanics, philosophy and many other fields.

Social robotics is a field of robotics that aim at making robots daily companions, that interact
with human users, for helping and entertaining them in their everyday life, and follow social
behaviors and rules. It spans over a wide range of applications and types of users. Examples
include helping children with their homework, taking care of elderly people, giving information
and advice to people in public places, etc. The relation between the human user and the robot
can be on a short term, say, a robot indicating directions in a shopping mall ([Kanda et al., 2009]),
or long term, for instance, a robot delivering mail and food to employees in a lab on a daily basis
over a period of several months ([Lee et al., 2009]).

These examples suggest how the interaction flow between the human user and its robotic
companion, called Human-Robot Interaction (HRI), is at the core of social robotics: a social
robot aims at helping its users and as such, it needs to grow an User awareness. This consists
of the robot having the knowledge of how many users are around it, where they are, who they

1

2 Chapter 1. Introduction, problem definition and goals

are, and what they are doing.

Our goal in this PhD is to give this ability to social robots. This skill is, to date, a
challenging problem in robotics.

Subdividing the problem: how our brain tackles the issue. Paradoxically, user awareness
can appear very natural and trivial to achieve for us humans. Indeed, the human brain is a highly
sophisticated and specialized machinery which dedicates an important part of its activity for this
very same task. The retina of the eye is made of 150 millions cones and rods, which allow us to
perceive that many colors at the same time. About 30% of the human brain activity is due to the
analysis of the information given by the vision system, while the touch processing represents
about 8%, and the sound 3%. This would be the equivalent of a 150 MP digital camera. Our brain
constantly hunts for visible human faces, and more generally, human bodies in its surroundings,
thanks to its vision system. The task of counting the number of people in an image is carried out
by the human brain in only 100 ms. People counting is boosted by the so called subitizing, which
is the ability of the brain to immediately know how many objects are present in the scene without
counting them, if they are not too numerous (termed coined by [Kaufman and Lord, 1949]).

It is interesting to look at how user awareness is performed in the human brain. It seems the
brain splits this difficult tasks into independent sub-tasks of a smaller complexity, that are easier
to achieve (divide and conquer strategy).

Some patients who suffered different types of accidents, such as seizures or car accidents,
had some very specific parts of their brain damaged, leaving the rest intact. This helps under-
standing the way our brain works, and especially where the different functions are located and
how the whole system is articulated. For instance, patients of the so-called prosopagnosia, also
called face-blindness, cannot recognize the identity of known faces while rest of the brain function-
ality is intact, such as object recognition or even face detection [Grossman et al., 2000,Damasio
et al., 1982, Yin, 1970]. It seems that the way people awareness is achieved in the brain can
be divided in three modules: people detection, which consists of locating people around us
thanks to the instantaneous data stream of our sensory system; people recognition, dealing with
knowing who they are; people tracking and mapping, which is a higher-level understanding their
motion about keeping a spatial and temporal coherency in this perception of the people.

1.1 Potential benefit of the PhD

Interaction with their human users is the key function of social robots. Yet, the data their sensors
give is of high dimension and complexity, and almost deprived of any semantic meaning: a
scan given by a laser range finder is made of hundreds of numerical values (corresponding to
distances to objects), or an image from the camera of millions of integers, but this plentiful of
data is deprived of meaning for end-user application. The distance of the closest object at a
given angle, or the exact color of the pixel at given coordinates, do not really matter, but the

1.2. Goals of the PhD 3

presence of a user in that laser scan or camera image does.

This is where our system is needed: end-user applications need both semantically rich and
compact representations of the world to focus on the Human-Robot Interaction (HRI) flow. In
other words, the work presented in this PhD dissertation can be seen as a reduction of data
size from a verbose sensors input stream to a brief, semantically rich textual description of the
different users around the robot.

In addition, some other meaningful processing blocks can then be located between our user
awareness system and the end-user application, such as human action recognition (understand-
ing what the users are doing) or easier recognition of the emotional state of the users, through
the analysis of their face for instance. These blocks depend on the user awareness system as
input, and provide some higher-level information as output.

We have to take into account that giving awareness to social robots is a challenging problem,
that has been tackled already by numerous authors and with a wide range of sensors and
techniques: many algorithms already exist that solve part of the problem: user detection, user
tracking, user recognition, etc. However, none of the existing integrated architectures propose
an easy integration of these different modules, or reconfiguration of the different modules used.

1.2 Goals of the PhD

As previously stated, the goal of the work presented in this PhD dissertation is to give user
awareness to social robots. This main goal can be split into a set of sub-goals.

• Comprehensive review of the existing algorithms for both user detection and recogni-
tion. Select the ones which are the most appropriate for the needs and capabilities of our
robots hardware and software.

• Design of a lightweight common data structure supplied by all user detectors and
used by all recognizers. While encapsulating an amount of data that must be as small
as possible, it must at the same time be complete enough to give a real user-awareness
to the robot. This includes, for each detected person, her identity, her accurate position,
and some other characteristics about her. The use of this common data structure confers
modularity of the user awareness architecture: because all modules comply with this
interface, it is easy to add or remove some of them according to the robot specifications.

• Integration of the most relevant detection and recognition algorithms into the robots
software architecture, using the common data structure mentioned above. The different
robots used, later described, have very different shape, hardware and functionality, which
represent a good testbed for the modularity of the proposed architecture.

• Fusion of these detection and recognition algorithms into a user mapping module.
We will use the results of all these algorithms to obtain consistent information of where the

4 Chapter 1. Introduction, problem definition and goals

users spatially are and who they are, on a map in a static frame. This includes the spatial
tracking of each user.

• Experimental benchmarking of each component for verifying their usefulness and
accuracy. This also includes lowering as much as possible their computation requirements.

• Finally, design of one or two end-user applications of the system, which will make
use of the user detection and recognition system seen above. It can be for instance a
game, etc. Building advanced applications is not the scope of this thesis, these end-user
applications are proofs of concept: we will demonstrate that the robot can perceive who
the users are, and personalize its interaction.

These goals structure the work that has been carried out during the PhD. However, they
make no sense if no robot, i.e., no hardware platform, is available for implementing and testing
them. The available resources will now be presented, along with the constraints they present.

1.3 Resources and constraints

The target platforms for the work presented in this PhD are social robots. They are complex
systems, and integrate a wide range of processing blocks. For instance, these include drivers
for all the physical devices, low-level motion capabilities, higher-level motion planning and
localization, a voice/non verbal sound architecture, etc. As such, our system must be compatible
with the highly complex architecture of these robots. The implications are twofold.

First, the software architecture of our system must be compatible with the existing processing
blocks. The robots use a particular Operating System at a particular version, a set of particular
drivers, and a particular software architecture. Our software architecture needs to be compatible
with this set of software constraints.

Second, the central processing unit (CPU) of these robots are limited. As such, the CPU
needs of our system cannot be too high: this would make the proper parallel execution of all
blocks difficult, and makes the robot less reactive. Furthermore, the CPUs vary between different
platforms: mobile robots will often sport an embedded computer with a limited CPU, while
tabletop robots, with an electric supply by cable, can embed more powerful CPUs.

Robots used in this PhD dissertation will now be briefly presented.

1.3.1 Specifications of the robots

Two robots of the RoboticsLab of the University Carlos III of Madrid are extensively used as
experimental platforms for the different works presented in this PhD: Maggie and MOPI.

1.3. Resources and constraints 5

1.3.1.i The robot Maggie

Maggie is one of the research robots at the Robotics Lab. It is an experimental platform for
studying Human-Robot Interaction (HRI). An illustration of Maggie is below, on Figure 1.1. Here
is a summary of the extensive description of Maggie in [Barber and Salichs, 2002].

Figure 1.1: The robot Maggie.

Maggie is designed as a 1.35 meters-tall girl-like doll. Its base is motorized by two differentially
actuated wheels and a caster wheel on both sides. It is also equipped with 12 bumpers, 12
infrared optical sensors and 12 ultrasound sensors. Above the base, a laser range finder (Sick
LMS 200) has been added. A Red Green Blue Depth (RGBD) camera (Microsoft Kinect) is
located next to this device.

The upper part of the robot incorporates the interaction modalities. Two arms, one at each
side of the belly, have one degree of liberty each. A tablet PC (Acer Travel Mate 370) on its belly
allows user interaction through touch inputs, and information display. On top of the body comes
an anthropomorphic robot head with an attractive design. The head has two degrees of liberty.
The mouth also embeds a hidden webcam. Invisible touch sensors are integrated in several
parts of the body, such as the shoulders, the hands and the head.

Maggie relies on a main computer hidden inside its chest which controls all its skills. It is a
quad-core i5-3550 CPU @ 3.30GHz. For image acquisition, the camera (hidden in the mouth), is
a Logitech QuickCam Pro 9000, with a VGA resolution (640×480 pixels) and a frame rate of 30
frames per second. The previously mentioned Microsft Kinect is mounted at the belt, enabling
acquisition of synchronized RGB and depth images with also a VGA resolution and 30 frames
per second. The integration of this device on Maggie is presented in [Ramey et al., 2011].

All these features are illustrated in Figure 1.2.

6 Chapter 1. Introduction, problem definition and goals

Tactile

sensor

Webcam

and

Colorised LEDs

synchronised

with speech

Laser scanner

12 bumpers

RFID

Reader

3 Tactile

sensors

Two 1 DoF

Eyelids

Tactile

sensor

RGBD Camera

(Kinect)

Figure 1.2: The hardware equipping Maggie.

1.3.1.ii The robot MOPI

The modular robot MOPI is aimed at working within an architecture of modular robots. It is a
home-brew robot of the RoboticsLab, shaped as a mobile, car-like platform, and is visible in
Figure 1.3.

The base is moved with a differential drive thanks to two gear motors, each one in charge of
moving the two wheels of one side. It is powered by an embedded Intel Atom @ 1.60 Ghz. Note
that this embedded CPU is significantly more limited than the one in Maggie, which justifies the
required modularity of the system. MOPI uses a Li-Ion Battery, and communicates via a 802.11n
WIFI connection. Environment sensing is made by a (non tiltable) Hokuyo laser scanning range

1.4. Methodology 7

finder, and a Microsoft Kinect device tilted at 45 degrees. This enables seeing the entire bodies
of the surrounding human users up to 4 meters away.

The whole configuration gives the robot great possibilities for navigation and environment
mapping, while its limited skills in HRI are balanced by additional robots that can be placed
on top of it. However, two LCD screens of 3.2 inches can display the robot’s eyes, used for
expressing the robot inner state.

Spot for a

modular robot

RGBD Camera

(Kinect)

4 wheels

chassis

2 LCD

screens

Laser range

finder

Figure 1.3: The hardware equipping MOPI.

1.4 Methodology

In this part, I will explain how the problem of giving user awareness to the social robots of the
RoboticsLab was tackled.

We previously saw how user awareness could be split in fairly three modules, inspired by the
way the brain performs the task: people detection, people recognition, and people mapping.

We will tackle separately the three sub-problems to achieve the goal of this PhD, i.e. giving
user awareness to robots: detecting the visible users around the robot; recognizing them; and
building a consistent representation of this knowledge on a map (mapping). Such a subdivision
is conceptual, as all subproblems need to be solved simultaneously when the robot interacts
with users.

To make things clearer, let us consider the fictional case of Figure 1.4. We can see that the

8 Chapter 1. Introduction, problem definition and goals

Figure 1.4: A fictional situation of user awareness around a robot.

robot, here drawn as the blue and white shape in the middle 1, is surrounded by three users.
User detection, for the robot, consists of detecting in the current data input these three users
around it and knowing where they are. This knowledge could be represented in plain words from
the robot perspective as shown in Code listing 1.1.

Code listing 1.1: People detection representation from the robot perspective

There are three users around me.
∗ V i s i b l e user #1 i s s tanding s t i l l i n f r o n t o f me, look ing a t me.
∗ V i s i b l e user #2 i s s tanding to my r i g h t , l ook ing towards my l e f t .
∗ V i s i b l e user #3 i s moving behind me.

User recognition consists of matching each of these temporary IDs to a permanent identity.
In other words, it consists of obtaining a long-term coherency with the way it detects the users.
Using the previous example, this knowledge could be represented as in Code listing 1.2.

Code listing 1.2: People recognition representation from the robot perspective

∗ V i s i b l e user #1 i s most l i k e l y Bob .
∗ V i s i b l e user #2 i s maybe Lea , but most l i k e l y I have never seen her

↪→ .
∗ V i s i b l e user #3 i s most l i k e l y Lea .

1 It is a representation of the robot Maggie, presented in subsubsection 1.3.1.i, page 5.

1.4. Methodology 9

All this knowledge about the surrounding users can be represented in a visual way, in
a way similar to how humans visualize their surrounding people. User mapping consists in
representing these user detections into a consistent structure, such as a map in a static frame of
coordinates. It also includes being aware of the user behind it, even though this user is not visible
to the different sensors of the robot 2. See Figure 1.5 for an example of this representation.

5Bob5
LastCseenC0.1s

1.80m
RedCshirt

Face:C<...>

5Alice5
LastCseenC0.1s

1.72m
GreenCshirt
Face:C<...>

5Cindy5
LastCseenC5.3s

1.57m
BlueCshirt
Face:C<...>

Hokuyo field of view
Kinect field of view

People tracks

People detections

Alice:12%
Bob:82%
Cindy:22%
New:C7%

Alice:7%
Bob:12%
Cindy:3%
New:C57%

Alice:63%
Bob:22%
Cindy:25%
New:C17%

People detections similarities to tracks

People tracks information...
...

Figure 1.5: Knowledge representation of the user awareness in the fictional situation of Figure 1.4. The
fields of view of the different sensors are drawn as angular ranges.
The purple crosses correspond to user detections, using algorithms such as face detections.
The different users perceived by the architecture are represented as tracks and drawn as ellipses. The
knowledge about each user is in the colored frame box next to the ellipse.
User recognition is used to match detections and tracks: we can compute the similarities between
detections and tracks (the higher the similarity, the more probable the detection corresponds to the track).
Data fusion helps updating these detections into the matching tracks, to generate user mapping.

1.4.1 Software architecture

1.4.1.i ROS: the Robot Operating System

The Robot Operating System (ROS) [Quigley et al., 2009] 3 is a software architecture specifically
developed for using with robots. The ROS version used in the robots is ROS Groovy running on

2Of course, some sensor has to be able to detect the presence of a person at some point for the robot to be aware
of that person at a later instance.

3http://www.ros.org/

http://www.ros.org/
http://www.ros.org/

10 Chapter 1. Introduction, problem definition and goals

top of Ubuntu 12.04. ROS offers different advantages: modularity of the processes, distributed
architecture, many-to-many and many-to-one communication mechanisms, and great stability.
Let us describe briefly the ROS architecture.

A ROS architecture is made of independent processes that run in parallel, called nodes. A
special node, called master, is in charge of maintaining the list of active nodes.

Messages Exchange of data between these different nodes is made easy, thanks to the
use of messages. Messages are data structures that can include primitive types (bool, int,
string, etc.), arrays of these primitive types, and other messages. For instance, the LaserScan

message, used by laser drivers, is defined as following 4:

float32 angle_min

float32 angle_max

float32 angle_increment

float32[] ranges

Note how the LaserScan message is a combination of the primitive types.

Transfer of these messages from one node to another is made via a so-called publisher/sub-
scriber paradigm. Each data channel is identified by a channel name called topic, which is a
simple string, for instance "/data". If a node wants to make some data available to others, it
will first advertise the topic, in other words, notify the master of the existence of the topic and the
type of message that will be exchanged on this topic. Every time it has data that can be shared,
it can publish a message containing this data, i.e. make the data public for all nodes interested
in this data.
Now, if another node is interested in obtaining some data from a topic, it will first subscribe to the
topic, i.e. notify the master that it is interested in obtaining the messages made available on the
topic, along with the callback function that should be called upon receiving a message on that
topic. For these reasons, the message mechanism follows a many to many paradigm: any node
that publishes or subscribes to a given topic is connected to the others.

Let us give an example to clarify these concepts. Let us call N1 a first node that would be a
driver for a laser range finder. It communicates with the physical device and obtains the different
laser scans. N1 advertises a topic called "/laser_scan", of type LaserScan.
Now, let us call a second node N2 which will detect obstacles thanks to the laser data. N2

subscribes to the "/laser_scan" topic. A peer-to-peer connection is then created between N1

and N2. Every time N1 publishes a laser scan, this scan is being serialized in N1, send via the
ROS communication layer to N2, and deserialized in N2, where the callback function associated
with this topic is finally called with the deserialized data. If N1 or N2 is stopped or crashes, this
connection is silently and cleanly closed.

4 It is actually a simplified version, the curious reader can see the full message at http://docs.ros.org/
api/sensor_msgs/html/msg/LaserScan.html

http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html

1.4. Methodology 11

The use of ROS most notably gives the possibility to redistribute the computational workload.
Different machines can be connected to the same master, and the messages will be transferred
between nodes running on both machines via WiFi or LAN connection, without having to perform
any change: the topic name is a unique ID for the data channel. For example, we can send
easily via the wire or a wireless connection raw data from the sensors to remote computers for
processing. The latter can be more powerful than the embedded computers integrated within
the robot, thus lightening the computation workload of the main computer. Then, the processed
data, such as odometry, is sent back to the robot. Using the previous laser example, N1 has to
be running on the robot computer (access to the physical device), but N2 can be running on a
desktop computer.

Note that the serialization and deserialization of a message to a string equivalent for its
transmission is automatically made by ROS. The different messages are in fact defined in a
simple description language called msg, and follows the distributed object paradigm 5. Users can
define their own messages using the primitives types and other messages. During compilation
time, ROS will transform msg files into equivalent headers in several programming language
(C++, Python, Perl to date, more to be integrated). Any node written in one of these languages
can include these headers and publish this kind of messages. Furthermore, the nodes do not
have to be written in the same programming language: the laser driver can be written in C++
and the laser processing node in Python, for instance. As such, the definition of data classes
does not depend on the programming language, it is called language abstraction.

Services There is another communication mechanism than messages: services. Services are
identified by a unique string name, like the topic name, and a pair of of strictly typed messages:
the request and the response. Just like web-services, service correspond to a many-to-one
paradigm: they can be called by various nodes but can be offered by at most one. They
correspond to a remote function call, where the arguments are in the request, and the response
contains the results of the computation by the node offering the service.

An example of service could be a voice generation node. Many nodes may need to generate
voice (games, dialog managers, etc.). However, only one node can make the proper sound
generation: two voices must not be heard at the same time. As such, a fictional /GenerateVoice
service would have the following definition:

string sentence

bool was_said

Note that the dashed line divides the definition in two parts: the first part corresponds to the
request and is filled by the calling node before calling the service, the second to the response
and is filled by the voice generation node. In that case, the success or failure of the voice
generation is indicated by a simple boolean value.

5https://en.wikipedia.org/wiki/Distributed_object

https://en.wikipedia.org/wiki/Distributed_object
https://en.wikipedia.org/wiki/Distributed_object

12 Chapter 1. Introduction, problem definition and goals

Params Finally, a last feature of ROS is params. They are numerical parameters that can be
accessed and changed in real-time. This gives the possibility of configuring easily the behavior
of a node without modifying its source code. These parameters can be set from any node, or
through command line arguments.

For instance, the previously seen voice generation node could subscribe periodically to the
param /RobotLanguage that would set the language spoken by the robot, and make on-the-fly
translation of the sentences if needed 6.

ROS summary To sum up the ROS landscape, processes are called nodes. They are inde-
pendent and run in parallel. They can exchange data via messages sent on topics. A function of
a given node can be called from another node thanks to a service. Finally, the behavior of each
node can be dynamically tuned thanks to params.

1.4.1.ii The Automatic-Deliberative (AD) architecture

The software of Maggie and MOPI, the previously presented robots of the RoboticsLab, work
according to the Automatic-Deliberative (AD) paradigm, as presented in [Barber and Salichs,
2002]. This paradigm handles skills relying on primitives. Primitives are in direct communication
with the physical devices of the robot, and send elementary orders to them. This includes the
base motors, the laser sensor, the camera, etc. A skill is the ability of the robot to do a specific
action. It relies on the data supplied by the primitives. The actions generated by a skill can
be numerous: move the car to a given point, play games with the user, interact with electric
appliances, etc.

Since they are experimental platforms, the robots have also been used since 2010 as a
bridge between the traditional implementation of AD, as seen in [Rivas, 2007], and a new one
relying on the communication mechanisms of ROS.

1.5 Structure of the PhD

The following PhD dissertation will be structured as follows. First, in chapter 2, page 15, the
existing architectures for user detection, tracking and recognition will be reviewed, along with
their relative advantages and limitations.

Part I, page 31: The first part of this dissertation will focus on user detection. chapter 3,
page 31 will focus more on techniques based on vision and image-processing, chapter 4,
page 67 on other fields, such as laser scan processing and audio analysis. In the former
chapter, we will also present the lightweight data structured mentioned in the goals, called
PeoplePoseList (PPL). Some of the vision techniques are classical vision techniques that

6 This was actually implemented in one of the robots of the RoboticsLab, in [Alonso-Martin et al., 2011].

1.5. Structure of the PhD 13

we imported and adapted to PPL, such as Viola-Jones face detector or the Polar-Perspective
Map (PPM)-based detector.

Part II, page 89: the second part, made of chapter 5, page 89 and chapter 6, page 129,
will deal with user recognition techniques. The same structure is adopted: the first chapter is
about vision-based recognition techniques, the other about other techniques, such as voice
recognition.

Part III, page 139: All the algorithms presented in the two first parts give hints about how
many users are around the robot, where they are and who they are. However, these hints can
be combined to obtain more robust estimators: this point will be covered in the third part, made
of the chapter 7, page 139. Tracking and fusion techniques such as Kalman filters and its
extensions for non-linear problems will be presented and used for merging the different user
detection and recognition algorithms seen in the previous parts. On top of that, an innovative
technique using tracking of blobs in the depth image thanks to 2D image processing techniques
will be presented.

Part IV, page 197: different applications, taking benefit of the user awareness architecture,
are detailed in the final part of this PhD Dissertation. After a brief state of the art in chapter 8,
page 197, a surveillance algorithm using our architecture for the robot MOPI will be introduced in
section 8.2, page 203 and some games between the robot Maggie and users will be presented in
section 8.3, page 215. These applications will make great use of the PPL-based user awareness
system (made of detection, recognition and mapping) and show its modularity by adapting its
structure to the robots hardware and software capabilities.

Finally, the main contributions of this PhD, along with conclusions and future works, will be
presented in chapter 9, page 223.

14 Chapter 1. Introduction, problem definition and goals

CHAPTER 2

Related work

As presented in the Introduction chapter, the aim of the work presented in this PhD dissertation
is to give user awareness to a social robot, in other words, to give it the ability to detect and
recognize the users evolving around it.

In this chapter, we will review a wide range of social robots and the methods they use to
acquire awareness of the users around them, developed by other labs and companies around
the world. Some of the presented platforms are more than a decade old, but we will focus
our attention on the most recent social robots. Note that this chapter does not cover technical
solutions to detect and track humans: each of the following chapters will include a short state of
the art concerning the field it focuses on.

2.1 Social robots without any user awareness mechanism

The uses of social robots are more and more numerous, from both academic labs and industries.
Contrary to industrial robots, social robots can help all kinds of users, and especially people
that have no technical knowledge of how they work. They have two main types of audiences:
children and elderly people. For children, robots can both help them in their education and
entertain them. For elderly people, social robots aim at taking care of them and ensuring they
remain healthy. These applications can only be made possible if the robot is aware of the user
position and engagement. And yet, very surprisingly, many social robots are actually incapable
of detecting the users around them. These robots will be covered in this section.

15

16 Chapter 2. Related work

For instance, ”Keecker” 1 is a mobile robot launched in 2014 that can move through the
house for entertaining users thanks to its embedded projector and loudspeaker. Pictures of the
robot are visible in Figure 2.1. The control of the robot is made through a mobile phone, and
although it can move autonomously through the house, users are merely detected as obstacles
for navigation. They are not recognized whatsoever, and their preferences are known from
the mobile phone remote application. The embedded camera is used for remote control and
surveillance only. This lack of user awareness is somewhat paradoxical for a personal device.

Figure 2.1: The social robot ”Keecker”. The embedded projector can display a movie on the wall, while
the integrated loudspeakers renders the sound. Images from http: // www. keecker. com/ .

The ”Echo” device 2 proposed by the company Amazon in 2014 is the combination of a
loudspeaker and a microphone aimed at integrating into homes for helping the family. It is built
around its speech recognition capacities: the users questions and orders are used to trigger
actions or get information, as the device is permanently connected to the cloud. The robot is
visible in Figure 2.2. As far as we can judge from the information given by the company, Echo is
made for speech recognition, but there is no perception whatsoever of the users around it: the
speaker is not recognized, and anybody can take control of it. Similarly, the customization of the
interface is provided by the services configured inside the robot (personal account, webservices,
etc.) but not by the detection of the position of the user or similar techniques.

These two examples of social robots made by companies focus on entertainment and even
without user awareness, they can perform their task. More surprisingly, many academic articles
focusing on Human-Robot Interaction (HRI) itself do not include any user detection or recognition
mechanism. Indeed, the robot is often remotely controlled by a human operator. This technique,
known as ”Wizard of Oz”, enables to trick the user into believing the robot is autonomous. By
these means, the scientists ensure that no algorithmic failure flaws the experiments. This is for
instance the case of the ”iCat” robot playing chess against children in [Castellano et al., 2009].
This is visible in Figure 2.3. The robot assumes the user is in front of it, and its emotions are
computed by the state of the game only.

Similarly, ”DragonBot”, the dragon robot released in 2011 from MIT Social Robotics lab
is aimed at being a platform for cloud-based social robotics. A picture is in Figure 2.4. All
the processing is done on-line, the embedded phone CPU and sensors being only in charge

1http://www.keecker.com/
2http://www.amazon.com/oc/echo

http://www.keecker.com/
http://www.keecker.com/
http://www.keecker.com/
http://www.keecker.com/
http://www.amazon.com/oc/echo
http://www.amazon.com/oc/echo

2.2. Detecting users as obstacles 17

Figure 2.2: The social robot ”Echo”. A user case is also visible: note the robot lying on the table and the
users interacting with it. Images from http: // www. amazon. com/ echo .

Figure 2.3: The social robot ”iCat”.

of acquiring information and moving effectors. DragonBot is thought to be a platform for
experimenting HRI in the wild. However, all the motion is remote-controlled: an operator chooses
the gestures and behavior of the robot remotely.

2.2 Detecting users as obstacles

We saw in the previous section how some social robots do not detect explicitly at all who the
users around them are. In this section, we will see some social robots that do perceive the users
around them, but merely as geometrical areas where the robot should not go or move, i.e. as
non-free zones. In this category fall many navigation robots from the previous decades.

For instance, ”RHINO” ([Burgard et al., 1998]) is one of the earliest autonomous navigation
and guide in museums, dating back from 1998. For navigation, there is no awareness of the
users. They are modeled as mere obstacles on a dynamic occupancy map. The museum robot
Minerva ([Thrun et al., 1999]) deepens the HRI of this robot, as it has an internal emotional state.

http://www.amazon.com/echo
http://www.amazon.com/echo

18 Chapter 2. Related work

Figure 2.4: The social robot ”DragonBot”. Images from http: // www. adamsetapen. com/ .

Comparing the dynamic map with a static map of the environment, we can know if the path is
blocked by users. According to its emotional state, the robot asks the users to make way in a
more or less polite way. However, there is still no awareness of the individual users.

Another system where user detection is at stake is autonomous vehicles: for the safety
of pedestrians, their detection is of paramount importance so that no harm is done to them.
See for instance the pedestrian detection system by [Howard and Matthies, 2007]. [Austin and
Kouzoubov, 2002] also tackles the challenge of safe navigation and aims at detecting humans
for not putting them at stake.

Industrial robots Contrary to social robots, industrial robots have been used for several
decades. However, they perform repetitive actions that can be precisely described. They often
have an important strength to perform the industrial tasks they are in charge (bend metallic
parts, saw, drill, melt iron, etc). For these reasons, important safety measures exist and the huge
majority of industrial robots does not collaborate with humans or is aware of its environment.
Important safety perimeters or safety cages prevent accidents with human co-workers. However,
latest advances in this field see the distance between human workers and robots decrease.
For instance, the latest product of the Swedish robotics society ABB, ”YuMi” 3 is a dual-arm
manipulator robot designed for collaborative work with its human co-workers. A picture is in
Figure 2.5. Safety is at the core of the robot, so that it can work with humans without posing any
risk. However, the human perception seems to be assured by force-sensing motors that can
detect if the motion does not happen as expected.

3http://www.abb.com/yumi

http://www.adamsetapen.com/
http://www.adamsetapen.com/
http://www.abb.com/yumi
http://www.abb.com/yumi

2.3. Short term awareness 19

Figure 2.5: The collaborative industrial robot ”YuMi”. Images from http: // new. abb. com/ products/

robotics/ yumi .

2.3 Short term awareness

Whereas in the previous section, we saw some social robots that could perceive users as mere
obstacles and constraints for their motion, in this section we will present prototypes of robots
that can be aware of the users around them, but only in a short term way. In other words, they
can know when a user wants to interact with them and behave in an adapted way. However, if
that same user happens to interact again later on with the robot, it will not take into account their
previous encounter.

2.3.1 User awareness through explicit actions

A simple method for detecting users willing to interact with the robot is that they declare their
presence in an explicit way.

For instance, the social robot ”RHINO” previously presented considered the users as ob-
stacles. On top of that, Human-Robot Interaction (HRI) is made through an on-board interface,
made of four colored buttons, a screen and loudspeakers. In other words, the user demonstrates
its presence by pressing the buttons. This is visible in Figure 2.6.

The robot dog ”Aibo”, released by Sony in 1999 and discontinued in 2006, was equipped
with a variety of sensors and buttons on the body of the dog. Pictures of Aibo are visible in
Figure 2.7. These buttons are pressed by the user when he wants to reward or punish the dog.
That way, when one of these buttons is pressed, the robot knows the user has pressed them
and can behave accordingly.

One of the first robot receptionists was called ”Valerie” and was used in Carnegie Mellon
university, visible in Figure 2.8 ([Gockley et al., 2005]). Valerie is involved in long-term interaction
as it stayed during several months in a booth at the entrance of offices. Although the behavior
of the robot is mostly identical every day, the authors have found that many visitors continue to

http://new.abb.com/products/robotics/yumi
http://new.abb.com/products/robotics/yumi
http://new.abb.com/products/robotics/yumi
http://new.abb.com/products/robotics/yumi

20 Chapter 2. Related work

Figure 2.6: The social robot ”RHINO” and its interface.

Figure 2.7: The first version of the social robot ”Aibo” released in 1999, chasing a pink ball.

have short interactions with the robot on a daily basis during several months. Valerie can detect
users thanks to laser range finders or a keyboard. However, the user awareness is made by the
user entering what she wants to say on the keyboard in front of the robot: user awareness is
obtained thanks to this action of the user.

2.3. Short term awareness 21

Figure 2.8: The social robot ”Valerie” in her booth.

On our own social robot ”Maggie”, presented in the Introduction chapter and visible in
Figure 1.2, page 6, several capacity sensors have been embedded in the body of the robot.
That way, when users touch the body of Maggie, a signal is triggered that can be handled
by the architecture of the robot. In the several games that were implemented to allow a rich
interaction with children, ([Gonzalez-Pacheco et al., 2011]), we came to the conclusion that these
simple sensors were especially interesting as they were much more reliable than any algorithmic
detection mechanism, that were always subject to faults. On the other hand, the interaction with
this kind of device can be seen as not very natural, as it does not really correspond to the way a
user would correspond with a fellow.

2.3.2 Autonomous user detection

This subsection focuses on robots that detect users automatically without needing them to do
any explicit action.

The social robot ”Kismet”, developed in the 90s by the MIT and visible in Figure 2.9, can
perform a closed-loop active vision thanks to face and eye detections. Audio attention is also
supplied via an embedded microphone that performs speech processing and recognition. There
is no long term coherency or memory of the user, the robot plays with whoever is in front of it.

[Kollar et al., 2012] presents a robot receptionist, coined ”Roboceptionist”, that helps users
finding their way in offices. The interaction is short term: the users ask a few questions to the
robot then go. The users are detected thanks to proximity and gestures: a short term perception
of the user is built, and the robot rotates and looks toward this detected user. There is no long
term recognition of the users. This is visible in Figure 2.10.

22 Chapter 2. Related work

Figure 2.9: The social robot ”Kismet”.

Figure 2.10: The social robot ”Roboceptionist”.

In [Geiger et al., 2013], the social robot ”ALIAS” is presented as a gaming platform for elderly
persons. This is visible in Figure 2.11. In this article, the only game presented is Tic-Tac-Toe,
played through the means of a touchscreen located between the robot and the user. The user is
detected thanks to voice detection and a face detection algorithm, but no recognition whatsoever
is performed. The Human-Robot Interaction (HRI) is made through the use of the tablet computer
on the chest of the robot. The authors stress the interest of such a platform for aging populations,
but the lack of long-term user awareness limits it.

In [Gross et al., 2009], the robot TOOMAS helps customer in a home improvement store.
This is visible in Figure 2.12. The potential users are found thanks to different vision approaches,
namely a skin color detector, a motion detector and a face detector, and a local occupancy
map-based approach (thanks to the use of a map made via a Simultaneous Localization and
Mapping (SLAM) algorithm and a laser range finder). Thus, the robot is aware of the users

2.3. Short term awareness 23

Figure 2.11: The social robot ”Alias”.

locally present around it. However, the main detector being the frontal face detector, the robot
has trouble localizing potential users if they do not face it.

Figure 2.12: The social robot ”TOOMAS”.

2.3.3 Intelligent environments

Some articles focusing on social robotics propose a user awareness mechanism based on a
modification of the environment: by equipping it with several additional sensors, extra information
can be obtained.

For instance, in [Satake et al., 2009] a shopping mall is equipped with several Laser Range
Finders (LRFs) mounted on the walls of the mall to generate a map of the users. Algorithms can
detect the speed of the visitors and their behavior (in a rush or wandering). The social robot, in

24 Chapter 2. Related work

charge of advertising shops, uses this information to approach humans in a relevant way: it will
locate itself properly and break a conversation only if the visitor is wandering.

In the work presented in this PhD, we are not interested in the approach of intelligent
environments: our social robots aim at being able to be used in any setup, including homes,
hospitals, schools, etc., which becomes difficult if the environment needs to be prepared.

2.4 Long term awareness

The previous section presented robots that could detect and interact with users on a short term
basis: if the same user happened to come back later, the robot would not remember their former
interaction. However, it is because we are able to identify individuals that we can develop a
unique relationship with each of them. Nonetheless, it is difficult for a robot to recognize the
people around it with auditory sensors: many people can talk at once, the background noise
and the noise of the robot body distort the voices, etc. The visual input is challenging too: the
environment can be unstructured, the shapes and colors of the objects might be to complex for
algorithms to understand them without error.

ID cards For this reason, some Human-Robot Interaction (HRI) authors focus their long term
awareness on person identification (ID) cards.

In the social robot ”Valerie”, presented previously ([Gockley et al., 2005]), user recognition
is made possible thanks to the use of a magnetic card reader: the users are unambiguously
identified by swiping their ID card. User recognition is possible by swiping a magnetic card-stripe
ID card, but the authors point that the implemented scenario offers little benefit to recognition
except being greeted by name. Regardless, some of these users identifying themselves , called
repeat visitors, spent more time and with more frequency with the robot, justifying the interest of
user recognition.

A similar solution is used in [Kanda et al., 2004]. The authors study the evolution of the
relationship over time in an 18-day field trial between 119 first- and sixth-grade pupils and a
humanoid robot. This is visible in Figure 2.13. They chose to perform user recognition using
wireless Radio-Frequency Identification (RFID) identification tags and sensors. Nameplates
with embedded wireless tags were given to all children. The range of the RFID reader can
be changed online, and using zones of proximity, the robot can detect the participant and the
observers. The use of RFID tags guarantees the precision of the detection; but it is unable to
handle a multi-participant dialogue, and requires to wear the tags.

[Lee et al., 2012] also stresses how personalization is of paramount importance for long-term
HRI. The study is made through ”Snackbot” ([Lee et al., 2009]), an autonomous robot in charge
of delivering snacks and other products inside a university building, during an experiment that
lasted several months. This is visible in Figure 2.14. The authors conclude that the relationship
between the user and the robot is reinforced when the robot adapts its behavior to her. In these

2.4. Long term awareness 25

Figure 2.13: The social robot ”Robovie” interacting with Japanese pupils.

examples user detection is at stake in such behaviors for the safety and acceptability of the robot
in a human environment.

Figure 2.14: The social robot ”Snackbot”.

Snackbot has a long term user awareness. However, this awareness is obtained thanks to
the snack order system and the structured environment: user preferences and profile is known
through the web interface used to order, and the office of each worker being known, the robot
assumes the person detected in the office of the delivery is the expected user. Note that the robot
was operated using a Wizard of Oz technique, so that the personalization could be manually
fitted.

The same user awareness mechanism, user awareness through gathering of information
with a web-service, is found in the PR2 robot, turned into a service robot, in [Garage, 2010]. The
beverage orders are made through a web-interface, and the user indicates her position. However,
there is no real perception of the user: the beverage is delivered to the first face detected in the
surroundings of the position indicated by the user.

Automatic user recognition We already saw some companies that sell small robot compan-
ions, that will assist the users in their everyday life for a range of tasks, such as the Keecker or the

26 Chapter 2. Related work

Echo. ”Jibo” 4 is a robot aimed at integrating into the daily life of families, that can learn, teach,
entertain and help, and that had a launching campaign in 2014. Pictures are in Figure 2.15.
Jibo recognizes the users around it thanks to its vision system (face detection and recognition)
and microphones (speech recognition). This robot being a connected device, it gathers a lot of
information about the users thanks to the applications and media she consumes, so that the
interaction is personalized. However, this product not being released yet, details about the user
awareness system are not known.

Figure 2.15: The social robot ”Jibo”. A user case is visible on the right, where Jibo is helping a user with
her hands busy thanks to speech recognition. Images from http: // www. myjibo. com/ .

4http://www.myjibo.com/

http://www.myjibo.com/
http://www.myjibo.com/
http://www.myjibo.com/
http://www.myjibo.com/

2.4. Long term awareness 27

Summary of the chapter

We have seen in this chapter a wide range of social robots and reviewed how they acquire user
awareness. Some robots are barely aware of their environment, similarly to mechanical puppets,
while other perceive and recognize their users. In other words, there are different levels of user
awareness.

At the lowest level, some social robots have no perception at all of the users around them.
They are merely obeying direct orders, for instance teleoperation orders. This is the case of the
Amazon Echo device, or HRI robots in Wizard of Oz mode.

Some autonomous robots perceive the users as mere obstacles. While this ensures the
safety of the users while moving, it does not give any satisfying social behavior in the presence
of users. This is the case of some industrial robots or some older HRI platforms.

Some social robots offer a short term awareness of the user. In other words, they can detect
and interact the users around them, but will not remember the previous interactions with a given
user. The users can notify of their presence thanks to explicit actions, such as buttons pushing.
This is the case of some HRI robots from previous decades. The robots can also detect the
users automatically, thanks to Laser Range Finders or face detections with cameras. They can
detect and track the users, as long as they stay in the vicinity of the robot. Most modern social
robots work this way.

There is a scarcity of robots that have a long term user awareness. Indeed, the few prototypes
that exist use Wizard of Oz techniques. Another technique is to use ID cards, such as RFID or
visual tags, that are accurate, but clumsy for a natural HRI.

As a conclusion, each existing user awareness system is tailored for the robot where it is
used. There is no generic user awareness system that can adapt to the variety of hardware
configurations and sensors found in social robots. In the remainder of this PhD dissertation, we
will present our solution for this problem, a generic, multimodal user awareness architecture,
divided in three parts: user detection; user recognition; and data fusion and user mapping.

28 Chapter 2. Related work

Part I

User detection

29

30

CHAPTER 3

Vision-based person detection

Introduction

The goal of the work presented in this PhD dissertation is to give user awareness to social robots.
In other words, these robots must be able to detect if there are users in their surroundings
(detection), and in that case, who they are (recognition) and they are (tracking / mapping). This
problem can be divided into two subproblems: on the one hand, user detection, which consists
of detecting the users close to the robot thanks to the sensors equipping it, on the other hand,
user recognition, which deals with recognizing these users against a set of already known users.

This chapter will tackle the problem of user detection using knowledge and algorithms coming
from the field of image processing and computer vision 1. Image processing refers to the set of
techniques and algorithms that extracts knowledge thanks to the analysis of an image, whereas
Computer vision is a higher-level field whose goal is to extract knowledge from the analysis of
images of the real world around the device. These images typically are supplied via a camera
stream, i.e., a continuous flow of instantaneous images. Image processing is a process that
maps an image to knowledge, whereas computer vision maps the world to knowledge through
images.

1 Note that following chapter 4, page 67 will focus on the same problem, but using different techniques from image
processing.

31

32 Chapter 3. Vision-based person detection

Detecting human shapes in an image stream is a problem that is related to many more fields
than just social robotics: may it be for home security ([Jung et al., 2012]), playing video games
([Berliner and Hendel, 2007]), for monitoring the activity of sick people ([Kepski and Kwolek,
2012]), etc. Even in robotics, the applications are multiple: they include gesture recognition
([Ramey et al., 2011]), follow-the-leader behaviors ([Bellotto and Hu, 2009,Ramey et al., 2013]),
turning the robot into a gaming companion ([Leite et al., 2012]), and many more. The important
amount of research that has been done results in a wide range of methods and algorithms that
have been proven to give satisfactory results for people detection.

First, in section 3.1, page 32, the algorithms for user detection existing in the different fields
mentioned above, and that are the most relevant according to our goals (which were specified
in the Introduction chapter), will be reviewed. Second, our own contributions to user detection
will be detailed in section 3.2, page 38. These contributions include the integration of some of
the existing algorithms seen in the literature review, such as face detection with Viola-Jones
detector ([Viola and Jones, 2001]), the Histogram of Oriented Gradients (HOG) detector ([Dalal
and Triggs, 2005]), or the Polar-Perspective Map (PPM) detector, used in autonomous driving for
pedestrian detection [Howard and Matthies, 2007]. The contributions then include improvements
of the existing algorithms, most notably thanks to the joint use of color and depth images, the
latter being used for false positive removal.

3.1 State of the art

As said earlier, detection of human shapes in a stream of images is a problem that has been
tackled by researchers several times in the past. Note that many articles propose ad-hoc solu-
tions: in other words, the user detection requires a non-natural modification of the environment
or of the interaction flow. For instance, when the user wears a specific color of clothing, different
from the background, the segmentation is made much easier. This is the case in [Mikić et al.,
2003] where the actors wear a red suit. In the challenging case of locating an operator by an
underwater robot, ad-hoc visual markers were used in [Dudek et al., 2007] (more about these
so-called fiducial markers will be explained in the next chapter).

In this section, we discard this category and focus on generic (non ad-hoc) detection
algorithms. Among the many existing algorithms, a limited number of them will be reviewed.
These are the ones that are at the same time the most accurate and the most relevant to the
goals we defined earlier in section 1.2, page 3.

The first two classes of algorithms are two-dimensional (2D): they are based on the analysis
of the color image, without any depth information. Namely, they focus on face detection (subsec-
tion 3.1.1) and a technique called Histogram of Oriented Gradients, based on the analysis of the
variations of the contrast (subsection 3.1.2).

Then, two relevant algorithms using the depth information will be introduced. First, the
middleware performing the detections of the players for the Microsoft Kinect device, called NiTE,
will be presented in subsection 3.1.3. Then, another algorithm called Polar-Perspective Map,

3.1. State of the art 33

originally using stereo vision and made for pedestrian detection in autonomous vehicles, will be
introduced in subsection 3.1.4.

3.1.1 Face detection

Neuroscientists have put in evidence that our brain is highly specialized in recognizing faces. An
important part of the cerebral activity is dedicated to spotting faces in the flow of data supplied by
the vision system. Actually, it is so active that very simple sets of shapes, a few circles and lines,
will make us see faces in those shapes, as one can observe looking at clouds, or the shape of
the moon for instance. It thus makes sense to apply some similar techniques to robots to supply
them with an accurate perception of the users. Face detection consists of determining if human
faces are visible in a video stream, and if it is the case, what are their position in the image. This
is one of the classical challenges in vision.

In this part, we will explain how we robustly detect human faces in the video stream of the
robot. First, faces are detected in the color video stream. The depth information is then used to
discard the detections that do not correspond to a real face, called false positives.

Viola Jones detector. Nowadays, some more or less standard techniques are available for
face detection and give a very good accuracy rate. The technique presented by Viola and Jones
in several articles ([Viola and Jones, 2004]) is one of the most used in robotics and its lightweight
computational cost allows a high frequency analysis of the video stream. The Viola-Jones object
detection framework can actually be trained to detect any object ([Viola and Jones, 2001]), but it
is especially popular for face detection.

The method of Viola and Jones is an example of supervised learning. In other words, it
first requires a training phase, in which it learns features from a training set of images, some of
them containing faces, while others do not. Then, in the detection phase, these features can be
applied to determine if a sample image contains faces or not.

The learning is based on the appearance of the training images. The process consists of
seizing the content of each image by computing so-called characteristics in rectangular zones of
the image that overlap each other. These characteristics are a synthetic and descriptive repre-
sentation of the values of the pixels, and are more efficient to be dealt with. They characterize
the difference of sum of pixels of values of adjacent rectangular zones of the image. Some
of them are visible in Figure 3.1. In order to be able to compute these characteristics quickly,
Viola introduces the concept of integral image, which is an image the same dimensions than the
original one, where each pixel P contains the sum of the pixels of the original image located
up and left of P . The computation of a characteristic over two zones then needs at most six
accesses to the integral image values, and hence a constant time.

The second key element in Viola and Jones is the use of a boosting method in order to
select the best characteristics. Boosting is a technique that enables the building of a strong
classifier with a linear combination of weak classifiers. In this method, characteristics are

34 Chapter 3. Vision-based person detection

seen as weak classifiers. The learning process of the weak classifier hence only consists of
learning the threshold value of the characteristic so as to split better positive samples from
negatives. The original detector uses three different characteristics, while the modified Lienhart
and Maydt [Lienhart and Maydt, 2002] detector adds two others, and includes two diagonal
orientations.

For the detection, the classified structure of the boosted classifiers enable a fast detection:
Viola and Jones obtain, on a Pentium III @ 700 MHz, an average processing time of 67
milliseconds, which is considerably faster than then-available similar methods and enables
real-time processing on a video feed. The strength of the detection is that wide areas of the
test image, when marked as negative, are decimated in the first steps with relatively little data
processing.

Figure 3.1: Some of the characteristics used by Viola and Jones.

Using neural networks Another very widespread face detection algorithm is the CMU
detector presented in [Rowley et al., 1998]. It only works well with frontal, upright faces. It is
based on neural networks. More detail is available in the original paper. Thanks to its accuracy,
after its release in 1998, this algorithm became the most widespread and is used in numerous
works of the following years (see for instance [Rehg, 1999]) till the publication of the previously
presented Viola-Jones detector. The latter being more accurate and about fifteen times faster
([Viola and Jones, 2004]), it became the weapon of choice.

3.1.2 Human body detectors: Histogram of Oriented Gradients

A Histogram of Oriented Gradients (HOG) is a feature used in computer vision for object
detection. It has turned out to be a very efficient technique for the detection of human shapes.
It was presented first by Navneet Dalal et Bill Triggs [Dalal and Triggs, 2005]. Note it is a
two-dimensional (2D) algorithm: it needs a Red Green Blue (RGB) image as input and returns
as output the rectangular estimations of the people: it does not need, neither uses, a depth
image. It makes use of histograms of image gradients 2.

2 Note that we will here not define what histograms are, as they are fully defined in another chapter (chapter 5),
but they can be seen as compact representations of sets of data. For a given set of numerical data, a histogram is a
set of values that represent the way this data is spread. It is made of a series of so called bins, which can be seen as
a cell contain one numerical value. Each of these cells represents a range of possible values for the data, such as the
range of a cell begins where the range of the previous cell ends.

3.1. State of the art 35

Image gradient definition The gradient of a two-dimensional function is, at each point, a 2D
vector with its components equal to the derivative of this function in the horizontal and vertical
directions. This definition can be extended for an image: a one-channel image can be seen as
the values of a monotonous function in discrete points (the pixels). The Image gradient is, in
each pixel, equal to the norm of the function gradient at this pixel value.

However, the image gradient cannot be directly computed because the monotonous function
values are only known on discrete points. It can be approximated, though, using different
one-dimensional (1D) filters, such as [−1, 0, 1] (approximation of the horizontal gradient) and its
transpose (vertical).

Histogram of Oriented Gradients (HOG) computation The HOG algorithm is based on the
computing of local histograms of the gradient orientation, called HOG descriptors. The concept
of the HOG descriptor is that the distribution of the gradient intensity or the direction of the edges
can describe the appearance and the shape of a physical object in an image.

To compute the HOG descriptors of an image, first, the image is divided into a continuous
grid of small areas called cells. In each cell, for each pixel of the cell, the directions of the
gradients is computed. An histogram of all these directions is then built. The HOG descriptor is
then made of the set of these local histograms (one histogram per cell).

Note that the histogram of a cell is normalized in contrast using the values of the image on a
block, an area centered on the cell and larger than it. The shape of the block can be circular or
rectangular, the corresponding descriptors are called respectively C-HOG or R-HOG.

Classification The HOG algorithm then needs data for supervised learning. For this purpose,
a dataset of images is created, where the position of the humans is manually labeled. The
HOG descriptors are computed on each image, and a simple binary SVM classifier ([Cortes
and Vapnik, 1995]) is trained with them for classification. Note that the SVM classifier is a
non-sophisticated classifying algorithm on purpose, so as to demonstrate the efficient description
of the objects by the HOG descriptors.

Result of the original algorithm On the INRIA set, the C-HOG and R-HOG descriptors
produced a detection miss rate of roughly 0.1 at a 10−4 false positive rate: in other words, if the
algorithm is tuned to detect a non-existing human every 10000, then it only misses one person
out of ten. Two samples detections on images of the RoboticsLab team are visible in Figure 3.2.

Further use The original HOG detector has been re-used and improved by several authors.
Two speedups in the computation, but without considerable accuracy improvement, can be
mentioned: in [Zhu and Yeh, 2006], researchers of Mitsubishi have coupled the same descriptors
with cascade classifiers, similar to the ones used by Viola and seen previously in subsection 3.1.1,
page 33, leading to a up to 70 times speedup, but their improvement is protected by a patent.

36 Chapter 3. Vision-based person detection

Figure 3.2: Sample detections with the original HOG algorithm. Note the miss detection on the right: the
white user was not detected.

In [Pang et al., 2011], sub-cell interpolation computes efficiently the HOG descriptors per block,
and the reuse of the features between overlapping blocks leads to a further 5 times speedup.

Note that my contribution to HOG, later explained in subsection 3.2.4, page 50, does not
involve any speedup, but it improves the detection accuracy by using the depth image.

3.1.3 Kinect API: NiTE

The patented PrimeSense NiTE middleware [Berliner and Hendel, 2007] allows detecting and
tracking human shapes from depth maps. It is the piece of software that powers the detection
and tracking of the users for the Microsoft Kinect device, developed for the XBox 360 ([Latta and
Tsunoda, 2009]).

Algorithm Although the technique employed and the source code are not available, it is likely
that motion analysis and clustering techniques are at the core. Indeed, detection of a human
player is activated by her motion. In other words, a still user is not detected, and a moving object
will be detected as a human user if it has similar dimensions. Note that the algorithm is very
lightweight, as we experimentally had it working at about 30 frames per second (FPS) even with
average CPUs.

Data supplied The NiTE middleware supplies three data for higher-level applications: the Red
Green Blue (RGB) image, the depth image and the multi-mask.

The Red-Green-Blue (RGB) image is a color image of what is visible in the field of view of
the device, exactly like a classical webcam. Note that some devices only supply a greyscale
version of this image. The default frame rate of the Kinect is 30 fps and resolution is 640× 480
pixels. The color depth is 24 bits (B-G-R channels, one byte per channel).

3.1. State of the art 37

The Depth image is an image of the same resolution as the RGB image. It only has one
channel, but the values of this channel are floating point numbers, unlike the RGB image, which
has three channels of bytes (integers between 0 and 255). More accurately, the value at a pixel
p is the distance in millimeters between the optical center of the Microsoft Kinect device and
the closest object being physically at pixel p. In other words, for each pixel (x, y) in the depth
map, the pixel value at (x, y) corresponds to the distance of the closest object intersecting the
three-dimensional (3D) ray from the optical center of the camera and passing by this pixel, in
millimeters. The range depends on the device. For the Microsoft Kinect, they are typically within
one to ten meters. However, the constructed light patterns projected by the device used to
measure the distance to the objects can be reflected, for instance by shiny surfaces. The depth
map contains some undefined values at those pixels, represented by NaN . The acceptable range
of the Microsoft Kinect for the depth image is typically within one to ten meters.

Finally, the Multi-mask is a one-channel byte image. This image, synchronized with the
RGB and the depth ones, indicates where the users are: if a pixel p of the users muti-mask has
a value of 0, it means there is no user in p, while if has a value of 1, p corresponds to a pixel of
the user 1, etc. For a given user, a User mask is the multi-mask image where all pixels that do
not belong to this user are set to 0 (i.e. ”erasing” the other users).

A sample of triplet (rgb, depth, user multi-mask) given by the NiTE middleware is visible in
Figure 3.3.

(a) (b) (c)

Figure 3.3: Sample images generated with the NiTE middleware.
(a): the RGB image;
(b): the depth image, remapped to grayscale;
(c): the users multi-mask. Each value is indicated by a different color. In this sample, there are two users.
Note that the segmentation is not perfect, as the leg of one user is attributed to the other one.

NiTE middleware limitations As said before, the users need to move to start their detection
and tracking. The NiTE middleware is aimed at playing video games on the Microsoft XBox 360,
and as human players are bound to move their body to play, the need for motion is not a problem
in this context. For Human-Robot Interaction (HRI) though, detecting a still, motionless audience

38 Chapter 3. Vision-based person detection

becomes challenging. This becomes an issue of paramount importance if the user stands still in
front of the robot while speaking with him.

Furthermore, the segmentation can fail. For instance, in Figure 3.3 (c), the leg of one user is
erroneously labeled as belonging to the other user, as it must appear geometrically closer to the
latter than to the former. Similarly, when users stand close to walls, pieces of wall are frequently
added to their user mask.

Finally, another kind of encounter error is called ID swaps: when two walking users cross in
front of the Kinect (thus the user in front occludes the user in the back), NiTE will, every now and
then, erroneously exchange their IDs, i.e., recognize the first user as the second one.

In conclusion, the NiTE middleware is a lightweight and fast piece of software that supplies a
fairly robust detection and tracking of the users, but that is only appropriate for a static camera
configuration and requires the users to move to detect them. Nevertheless, it will be used in
subsection 3.2.5, page 53 as one of the people detectors.

3.1.4 Polar-Perspective Map (PPM)

Another approach for people detection thanks to depth images is presented in [Howard and
Matthies, 2007], where it is part of a complete pedestrian detection system only based on
stereo-vision.

The authors use a two-dimensional (2D) occupancy map with a polar resolution, called
Polar-Perspective Map and abbreviated to PPM. The three-dimensional (3D) point cloud of the
environment is projected into the PPM: for every point of the cloud, the corresponding cell in
the map is incremented by one. The clusters of the map with a high accumulation factor are
produced by vertical objects in the original point cloud. They correspond to regions of interest:
they are segmented from the original image.
Then a simple Bayes classifier determines if the 2D shape of each cluster is similar to a
human shape. The system is compatible with classical image processing techniques, such as
appearance-based algorithms.

Stereo-vision is, according to authors, a very liable solution for navigation and pedestrian
detection. However, their system is designed for stereo cameras mounted on outdoors vehicles,
with ranges between 5 and 50 meters. It makes it difficult to use for indoor robotics platforms.
We can mention that a very similar system was presented almost at the same time in [Gavrila
and Munder, 2006]. Note that the users detection based on PPM will be further discussed and
tested in our implementation of it and benchmarking, in subsection 3.2.6, page 56.

3.2 Research contribution

The previous state of the art revealed how detecting human shapes in a color or depth image is a
problem that has already been tackled by many researchers. This is why my contributions to this

3.2. Research contribution 39

field mainly focus on integrating the most relevant and efficient algorithms into our architecture.

After a brief image processing introduction of how to retrieve a user mask from a depth image
and a seed pixel in (subsection 3.2.1), the common data structure, shared by all the algorithms
we integrated and that will be further explained, will be presented in subsection 3.2.2, page 41.

In total, five algorithms for user detection based on computer vision have been integrated in
our user awareness architecture.

Two algorithms that were originally based on color images analysis have been implemented,
adapted to use this data structure, and improved thanks to the use of the depth image: face
detection, in subsection 3.2.3, page 47; and Histogram of Oriented Gradients (HOG) people
detection, in subsection 3.2.4, page 50.

On top of these two 2D algorithms, three other algorithms and based on the analysis of the
depth image (3D algorithms) have been integrated: the NiTE middleware, powering the Microsoft
Kinect presented in subsection 3.2.5, page 53; an algorithm based on the projection of the 3D
point cloud into a clever map called Polar-Perspective Map (PPM), in subsection 3.2.6, page
56; and a novel point cloud clustering algorithm based on tabletop object detection techniques,
explained in subsection 3.2.7, page 59.

Finally, the comparative performance of each algorithm will be reviewed in subsection 3.2.8,
page 63 and conclusions about the most relevant algorithm will be drawn.

3.2.1 Preliminaries: User mask from depth image and seed pixel

In this brief introduction needed for the following user detection algorithms, we will explain how to
generate a full user mask given two inputs: the depth image, and a so called seed pixel, which
is in fact a pixel position that we know for sure that it belongs to a user.

This seed point can be obtained through a wide range of algorithms. It can come from
instance from algorithms running on the Red Green Blue (RGB) image stream, such as a face
detection, as explained in subsection 3.1.1, page 33, or Histogram of Oriented Gradients (HOG)
detectors, seen in subsection 3.1.2, page 34, or even optical tags being detected, which will be
introduced in the following chapter.

The idea is to run a propagation algorithm in the depth image, starting from the seed,
and stopping at the depth edges, which are pixels where there is an edge discontinuity. This
discontinuity can be found at the edge of a user: the background floor is several meters behind
the user, which generates a gap in the depth value, as can be seen in the depth images in
Figure 3.4 (a).

Depth Canny filter The Canny filter [Canny, 1986] originally helps us to detect edges in a
grayscale image. It requires two thresholds, a low and a high one. Two edges maps are obtained
by passing, first, a Sobel operator on the grayscale image, then, thresholding with the two

40 Chapter 3. Vision-based person detection

thresholds. A Sobel operator is a linear filter based on a simple 3× 3 kernel, and it approximates
the gradient operator on the grayscale image.
The high threshold edge map contains broken, discontinuous edges, but they are likely to belong
to the real contours of the objects. On the other hand, the low threshold edge map contains
continuous edges, but with many edges that are not useful. The two maps are combined to
create an optimal edge map: if a chain of the low threshold map enables to connect two pixels of
the high threshold map otherwise disconnected, this chain is added to the final edge map. All
the isolated chains of the low threshold map are then removed.

Coming back at our seed-to-blob problem, the edges can be obtained in the depth image
applying a Canny edge detection algorithm on it: the filter is then called a Depth Canny. A
floodfill propagation from the seed in the Depth Canny edge image will then include all points of
the user.

Issues generated by the presence of the ground In some cases, it occurs that the camera
of the robot is not tilted upwards, and then the ground and the feet of the user are visible, as
for instance in Figure 3.4 (a). The feet of the user are most of the time in contact with the
ground, and so there is no depth discontinuity between the user and the ground. As such, the
propagation from that seed will carry on further than the user, and include all the pixels of the
ground.

To address this issue, I developed two different techniques:

• Cluster closing: A cluster closing is a simple test on the edges image to find abrupt
transitions from a narrow cluster to a wide one. Starting from the row of the seed, we find
the leftmost and the rightmost pixels that are no edges. The width of the user cluster at
this row corresponds to the column difference between the left and the right pixel. We
reiterate the process for the rows below, and obtain the width of the cluster at those rows.
When there is an important increase in the width from one row to the next one, we have
most probably reached an opening, for instance when reaching the feet. The cluster is
closed by drawing a horizontal edge line at the last row before the opening.

• Ground plane estimation: This method consists of estimating the equation of the ground
plane, then obtain a binary mask of all the points of the depth image that belong to the
ground. The depth image is reprojected to 3D, giving us a three-dimensional (3D) point
cloud. If the ground is visible in the depth image, then statistically, a great amount of the
3D points belong to that ground. However, some of the 3D points do not belong to the
ground, such as object pixels. Statistically speaking, most 3D points are inliers for the
ground plane equation, while some are outliers. The ground plane equation can thus be
restored with a statistical algorithm operating on the point cloud and capable of discarding
outliers while optimizing the equation for the inliers. We used the RANSAC algorithm for
this task ([Fischler and Bolles, 1981]), implemented in the Point Cloud Library (PCL, [Rusu
and Cousins, 2011]).

3.2. Research contribution 41

Results We show in Figure 3.4 different results obtained for the user mask computation, given
a depth image and a seed pixel.

(a)

(b)

Figure 3.4: User mask computation given a depth image and a seed pixel.
(a) , (b): from left to right, the input RGB image and the seed (green circle); the input depth image;

the output final mask for both methods (third picture: cluster clothing and fourth picture: ground plane
estimation). In the final mask, the black pixels are either a lack of measure by the device or the edges
of the Depth Canny; and the gray pixels correspond to the final user mask. Note how the ground has
disappeared in the ground plane estimation mask.

3.2.2 Design of a common interface for user detectors

As seen in the literature review, a wide range of user detectors already exists, and more
generally of people detectors 3. To ease the process of integration of all these detectors into the
architecture of the robots of our lab, we designed a framework for user detectors.

Common practice in computer science consists of standardizing the communication layer
and the data that is exchanged by the different modules, better than the proper structure of these
modules 4. For this reason, we designed a common data structure that describes the data of a
user detection and needs to be filled by any user detector that we want to integrate.

We define the PeoplePose (PP) data structure: it corresponds to a single user detection and
contains all the information worth being shared: the three-dimensional (3D) pose of the user, the
confidence of the detection, a Red Green Blue (RGB) and depth images of the user if they are
available (for vision-based algorithms), etc.

3 These two terms refer to algorithms that will do the same thing, which is finding human shapes in the sensors
input. However, a user detector is more specifically used when a positive interaction between the system and the
human person is possible. This can be the case in robotics, in multimedia kiosks, etc.

4Remote Procedure Calls (RPC), for instance, follow this paradigm.

42 Chapter 3. Vision-based person detection

The PP data structure is implemented as a ROS msg ([Quigley et al., 2009]). This is a
simple message description language for describing data structure exchanged by ROS nodes,
as previously explained in subsubsection 1.4.1.i, page 9. The details of the PP message are in
Code listing 3.1. Note the ’:’ characters describe the inner fields of a field.

Code listing 3.1: The PeoplePose message

// static value: the value of "person_name" when no recognition was

↪→ made (for instance, a simple face detection, but no face

↪→ recognition)

str ing NO RECOGNITION MADE=NOREC

// static value: the value of "person_name" when the recognition of

↪→ the person failed (for instance, the face recogntion could not

↪→ load the model)

str ing RECOGNITION FAILED=RECFAIL

// the header, useful for the stamp and the frame

std msgs / Header header
: time stamp
: str ing f rame id

// the estimated position and orientation for the head of this person

geometry msgs / Pose head pose
: geometry msgs / Point p o s i t i o n
: : f loat64 x , y , z
: geometry msgs / Quaternion o r i e n t a t i o n
: : f loat64 x , y , z , w

// the standard deviation of the estimated pose

f loat32 std dev

// the supposed name of recognized people (for instance, "Bob"). Only

↪→ filled by user recognition methods, such as ARToolkit or

↪→ multimodal fusion.

str ing person name

// the confidence (between 0=really unsure and 1=very sur)

f loat32 conf idence

// the color mask of the user. Most of the time, it does not

↪→ correspond to the full RGB input image, but a tight crop that

↪→ only keeps the region of interest of that image.

sensor msgs / Image rgb

3.2. Research contribution 43

// the depth mask of the user

sensor msgs / Image depth

// the binary mask of the user. The image pixels are = 0 where the

↪→ user is not,

// and >0 where she is (that is, any point of her body).

sensor msgs / Image user

// the offset of the rgb, depth, user images in the original input

↪→ image. Can be used for correct \ac{3D} reprojection for

↪→ instance

int16 images of fse tx , images o f fse ty

// a list of attributes of this person, for instance her height, her

↪→ preferences...

str ing [] a t t r i bu tes names

// the values of the attributes definited in attributes_names

str ing [] a t t r i b u t e s v a l u e s

All fields of the message will not be filled by all methods: for instance, a person detector
based on the information of a 2D range finder will not use the image fields.
Note that the person name field already implies some higher-level user recognition routine, that
most user detection algorithms do not have. For this reason, most of the time, this field is set at
the default value NO RECOGNITION MADE.

Then, with one given data input, a detector can detect several users at once. For instance,
a face detector can find several users in the same RGB pictures. The different PPs generated
by each detection are then gathered into a single message: this collection of PPs is then called
a PeoplePoseList. In addition to the list of PP, the PeoplePoseList (PPL) message also
contains the name of the algorithm used by the detector and a time stamp. The full structure is
visible in Code listing 3.2.

Code listing 3.2: The PeoplePoseList message

std msgs / Header header
// the name of the method used, ex: "face_recognition_eigen"

str ing method
// the list of found poses

people msgs / PeoplePose [] poses

The PP and PPL ROS msg files 5 are then transformed during compilation time into equivalent

5These file types have been presented in the ROS introduction in subsubsection 1.4.1.i, page 9.

44 Chapter 3. Vision-based person detection

headers in several programming language (C++, Python, Perl to date, more to be integrated). An
algorithm capable of generating PPL messages is called a PeoplePoseList Publisher (PPLP)
and can be written in any of the programming languages using the corresponding headers. All
the people detectors that will be integrated in the robotic architecture will then exchange this
common data structure PPL. An example of processing flow with several PPLPs is visible in
Figure 3.5.

Audio drivers Camera driver

Leg detector

Laser driver

PPL

Sound stream Color streamLaser scans

Voice detector
+ localization Face Detector HOG Detector

Microphone CameraLaser
range finder

Robot
Remote
computer

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Figure 3.5: An example of distributed people detection thanks to several PeoplePoseList Publishers
(PPLPs) in a robot equipped with a microphone, a laser range finder and a RGB webcam. Note that the
different input streams can be shared between different PPLPs: in this example two of them share the color
stream of the camera. However, the HOG PPLP is costly and then chosen to run on a remote computer.
The topics are relayed between the computers using ROS communication layer. Delays depend on the
network capabilities, but the cost generated by the serialization and deserialization of the messages is
optimized.

Advantages of the use of PeoplePoseLists (PPLs) The use of this common data structure
has numerous advantages.

• Programming language abstraction. The PPL data structure is actually implemented
as a Robot Operating System (ROS) msg message file. The ROS compilation system
then generates headers corresponding to the message file in different languages, to
date C++, Python, and LISP. We can then wrap our algorithm, written with any of these
languages, into a PPLP by including these headers. In other words, defining a standard
on the message type and not on the design of the algorithm itself results in programming
language independence.

• Workload distribution. Each ROS node is running in its own thread. Thus, several PPLPs
can run in parallel seamlessly and be written in different languages. The distributed nature
of ROS even allows these different nodes to run on different computers. For instance, if an
algorithm has a high computational cost, its input data can be transferred to an auxiliary
CPU where the computation takes place, as illustrated previously in Figure 3.5. ROS

3.2. Research contribution 45

communication layer was optimized to generate a temporal delay as small as possible
on the messages handling: even when the network connectivity is unstable, safe data
connections are created between publishers and subscribers.

• Integration of new algorithms. To be integrated into our architecture, a new user detec-
tion algorithm has only one feature to respect: publishing ROS messages of the PPL type.
This makes their implementation much easier and agile.

• Debugging made easier. Because they publish the same data structure, the different
PPLPs can be debugged thanks to common tools. For instance, a series of tests with
annotated images can check the output of a given PPLP in basic cases: images with no
users in the image, with one user easy to spot, etc.

• Benchmarking made easier. For similar reasons, it is easy to measure the performance
of different PPLPs. This point will be explained more thoroughly in the next paragraph.

• Common tools. The design of tools is made easier. For instance, the creation of a
visualization tool is easy, as we know the user positions will always be in the head_pose

field. The implementation of these tools do not depend on the detection algorithms, but on
the definition of the PPL only.

Benchmarking a PeoplePoseList Publisher (PPLP) We just introduced how all PPLPs were
publishing a common message type. A benchmark application was developed taking advantage
of this characteristic. It uses files containing both the input data (RGB and depth images) and the
manually labeled user position (user mask). Three public academic datasets were considered
for benchmarking.

1. The DGait database ([Igual et al., 2013]) contains video sequences of 55 users, both
female and male, walking on a stage with varying light conditions. Some samples of the
dataset are visible in Figure 3.6.

2. The Gaming3D (G3D) dataset ([Bloom et al., 2012]) contains a range of gaming actions
captured with Microsoft Kinect. The dataset contains synchronized video, depth and
skeleton data of 10 subjects performing 20 gaming actions: punch kick, tennis, etc.

3. Finally, the LIRIS human activities dataset ([Wolf et al., 2012]) contains (gray/rgb/depth)
videos showing people performing various activities taken from daily life (discussing,
telephone calls, giving an item etc.). The dataset is fully annotated, where the annotation
not only contains information on the action class but also its spatial and temporal positions
in the video.

An interface for each of these three datasets was written so that their data could be published
into the ROS architecture and used by our PPLPs. However, only the DGait database was finally
used for benchmarking: its high number of different actors and various points of views (front,
back and side views) offered a diversity superior to the other datasets.

46 Chapter 3. Vision-based person detection

(a)

(b)

(c)

Figure 3.6: Some samples of the DGait dataset.
(a) and (b): Sample images from the videos of two different users. Depth images have been remapped

to visible colors.
(c): The diversity of users in the dataset.

The benchmark of a PPLP is then made by running it on each frame of all video sequences
of the DGait database and comparing its results with the ground truth: the true positive, true
negative, false positive, and false negative rates are computed 6. Note that the benchmark

6 We will here briefly define these metrics through an example. For more information, please refer to [Olson and
Delen, 2008]. Let us imagine we have built an algorithm that can detect the presence of dogs in an input image. A
positive detection means that the algorithm detects a dog in the current input. Similarly, a negative detection means
that the algorithm cannot find any dog in the current input. The true and false adjectives will then describe if this
result is correct or not.

Thus, a true positive, also called hit, corresponds to a correct dog detection when the input indeed contains a
dog. A true negative or correct rejection is a negative detection when the inputs does not contain any dog. A false
positive or false alarm is a dog detection while the input contains no dog. This detection is an error of the algorithm,

3.2. Research contribution 47

application can in fact evaluate the performance of several PPLPs at the same time: each of
them, structured as a ROS node, runs in a different thread. The benchmark subscribes to the
output PPL topic of each detector.

Structure of the remainder of the chapter contributions We will now present several PPLPs
based on different techniques: face detection and 3D reprojection is at the key of the PPLP of
subsection 3.2.3; the Histogram of Oriented Gradients (HOG) detector previously seen powers
the HOG PPLP presented in subsection 3.2.4; the NiTE-based PPLP in subsection 3.2.5 makes
use of the NiTE middleware; the Polar-Perspective Map (PPM)-based PPLP in subsection 3.2.6
uses a polar transformation and an accumulation process on the ground plane; and finally the
tabletop PPLP of subsection 3.2.7 uses point cloud manipulation techniques, detecting users as
it would for objects on a table.

3.2.3 Robust three-dimensional (3D) face detection with depth information.

The classical two-dimensional (2D) Viola Jones and neural network detectors presented in
subsection 3.1.1 only use the color (Red Green Blue) image data and indicate the position of
the found faces in the image frame, by their bounding boxes, in pixels. As our robot uses a
Kinect device, we also have depth data available. We can use the depth data to discard false
positive detections, that is, zones of the image that are incorrectly classified as faces by the
2D detector. The underlying idea is the following: the 3D points corresponding to a face obey
certain geometric constraints, especially in the width and height of their bounding box. Indeed,
two points belonging to one given face cannot be away one of the other of, say, more than one
meter.

As such, to determine if a zone of the image classified as a face by the Viola-Jones detector
is really a face, we will sample a given number of 2D points from this zone, that we will reproject
to 3D using the depth (distance) image. If the bounding box of these reprojected points does not
comply with generic given geometric constraints, this detection is classified as a false positive
and discarded. The pipeline is illustrated in Figure 3.7. A sample is visible in Figure 3.8.

Face-based PeoplePoseList Publisher implementation and benchmarking The face de-
tection PeoplePoseList Publisher (PPLP) was implemented in the robot MOPI presented in
subsubsection 1.3.1.ii, page 6. It was implemented in C++, using the Viola-Jones implementation
supplied by OpenCV ([Bradski and Kaehler, 2008]). The Red Green Blue (RGB) and depth
data are supplied by the Kinect drivers. The thresholds for the dimensions of an acceptable
face bounding box were determined experimentally: the maximum bounding-box depth of the
face points is set to 30 cm and its height to 40 cm. Note these thresholds are reconfigurable
dynamically thanks to the mechanism of ROS parameters.

it could be triggered by, say, the presence of a cat. Finally, a false negative or miss is when the algorithm does not
detect a dog that was in the input.

48 Chapter 3. Vision-based person detection

Color face

Depth image

Point cloud and bounding box

Reproject to point cloud
thanks to depth info.

Kinect device

Constraints on
bounding box

Face
PPL

RGB image

Viola-Jones
detector

Camera driver

PPL
Builder

3D
reprojection

Figure 3.7: Processing pipeline for the face detection algorithm.

3.2. Research contribution 49

Figure 3.8: Results of the face detection algorithm on a sample image. The red and green rectangles
correspond to the faces as detected by the Viola-Jones detector. The inner yellow boxes are the zones
where the sample 2D points are being reprojected in 3D. The 3D-points bounding boxes of the correct
detections pass the geometric constraints of a normal 3D face, hence their green color. The 3D-points
bounding box of the wall is too big in dimensions and hence is discarded.

For each face detection, an output PeoplePose (PP) message is built: the RGB, depth, and
user masks are obtained via a propagation from seed, as seen in subsection 3.2.1, page 39,
using the 2D center of the face detection as seed. The 3D reprojection of this same seed is used
as output user position.

The performance of the algorithm was measured thanks to the benchmark based on the
DGait database presented insubsection 3.2.2, page 41. The results are gathered in table
Table 3.1.

True positives 3655
True negatives 1606
False positives 36
False negatives 12457

Hit rate 22.7%
Accuracy 29.6%

Position error per true positive (m) 0.21

Table 3.1: Benchmark results for the face detectionPeoplePoseList Publisher (PPLP).

Note that the false positive rate is very low: our contribution, the use of the depth information
to discard false positives, indeed limits the detection of non existing faces.

However, the hit rate is under 25%: less than one fourth of the users were detected. We
already commented that the Viola-Jones detector, on which this PPLP is based, only works well
with frontal faces. The dataset is made of users walking on a stage, which means that, unless

50 Chapter 3. Vision-based person detection

they look in direction of the camera, their face is not visible. Furthermore, this detector only
detects well faces that are reasonably large in the input image (the minimum size can be of
course lowered, but this triggers an important increase of false positives). Both these reasons
account for the low hit rate.

3.2.4 Improvement of the original Histogram of Oriented Gradients (HOG) detec-
tor and integration as a PeoplePoseList Publisher

The two-dimensional Histogram of Oriented Gradients detector, was introduced in subsec-
tion 3.1.2, page 34, and it was shown how it can be used for detecting people in front of the
camera.

However, the detector is made for finding people in a Red Green Blue (RGB) image, and
supplies a rough rectangular estimate of their position in that image. In our case, we are
interested in their three-dimensional (3D) position, and we can make use of the depth image too.

In this section, we will see how we can overcome these limitations so as to transform the
human shape HOG detector into a PeoplePoseList Publisher.

3.2.4.i HOG detection and PeoplePoseList Publisher

As mentioned before, the HOG detector we use takes as input a RGB image and find the human
shapes in the image. Note that our current implementation is based on the OpenCV HOG C++
implementation [Bradski and Kaehler, 2008]. The search is performed with a scaling factor
of 1.05 (increase the detection window size by 1.05 for each search scale). These human
locations are in fact rectangles that give a rough bounding box of the user. This information is
two-dimensional: the rectangles indicate where the user is in pixel coordinates.

We are interested in converting this information into an accurate user location (in meters)
and a corresponding binary user mask. We could use the same method as the face detection
PeoplePoseList Publisher: use the geometric center of each rectangle as a seed pixel and
retrieve the associated blob, as seen in subsection 3.2.1, page 39. However, the rectangles
returned by the 2D HOG detector are only rough estimates of the location of the users: it is
possible that their center pixel do not belong to the user’s mask, which is a prerequisite for the
use of this method.

Another approach is to consider that the user represents most of the content of the rectangle.
As such, for a given detection r of the HOG detector, if r is a positive detection, i.e., there
is a user in r, then this user corresponds to the main 3D cluster inside of r. In other words,
the user corresponds to the main 3D cluster in the point cloud generated by reprojecting each
point of r. This gives us a roadmap for a successful conversion of the HOG detector into a
PeoplePoseList Publisher. The processing pipeline is made of several stages, as seen on
Figure 3.9. The details are given in the following algorithm 1.

3.2. Research contribution 51

H
O

G
 P

e
o
p

le
P

o
s
e
L
is

t
p

u
b

li
s
h

e
r

PPL

RGB Depth

HOG
2D detector

2D rectangles

3D reprojection

3D clouds

Clusters bounding
boxes filters

Filtered 3D clusters

PPL builder

Euclidian clusterer

Biggest 3D clusters

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Device driver

Depth imaging
device

Figure 3.9: The pipeline for the HOG-based PeoplePoseList Publisher.

The key step of the algorithm is the clustering of the 3D point cloud cr (generated by
reprojecting in 3D the pixels in a HOG detection r). This is done thanks to the PCL (Point Cloud
Library). 7 More details are available in [Rusu, 2009]. We used an Euclidean neighbor distance
threshold of 10 cm.

The biggest cluster of the 3D point cloud cr should then correspond to the user shape.
Constraints on the 3D bounding box of this biggest cluster enable the filtering of false positives,
in a way similar to the improved face detection of subsection 3.2.3, page 47. These constraints
are actually permissive ranges on the values in meters of the height, width and depth of this
3D bounding box. If one of its dimensions is outside these thresholds, then the detection r is

7 http://www.pointclouds.org/. The clustering makes use of a compact and fast representation of
the cloud thanks to a Kd-tree, and fast access to the neighbor points of a query thanks to an octree. Very
briefly, the algorithm goes as follows: for the first point of the cloud, creating a queue with its Euclidean
neighbors. Then for each point of the queue that was not seen already, recursively add the neighbors of
this point to the queue.

http://www.pointclouds.org/
http://www.pointclouds.org/

52 Chapter 3. Vision-based person detection

Data: RGB image rgb, depth image depth
Result: PPL message ppl
RectangleVector R← HOG detect(rgb) ;
initialize PointCloudVector U ;
for Rectangle r ∈ R do

// reproject only ROI of the depth image

PointCloud cr ← reproject3D(depth(r)) ;
PointCloudVector C ← euclidean cluster(cr) ;
PointCloud ur ← biggest cluster (in number of points) of C ;
if bounding box(ur) has human dimensions then

add ur to U ;

for PointCloud u ∈ U do // build PPL

initialize PeoplePose (PP) pp ;
pp.head pose← centroid3D(u) ;
mask ← reproject2D(u) ;
pp.user ← mask ;
pp.rgb← rgb(mask) ;
pp.depth← depth(mask) ;
add pp to ppl ;

return ppl ;

Algorithm 1: The processing pipeline for the HOG PeoplePoseList generator

discarded. Otherwise, a PP message is built. The final 3D position of the user corresponds to
the 3D centroid of the main cluster. A sample is visible in Figure 3.10.

3.2.4.ii Benchmarking of the HOG PeoplePoseList Publisher

We measured the performance of the HOG PPLP thanks to the benchmark based on the DGait
database and presented in subsection 3.2.2, page 41, as we previously did for the face detection
PPLPs. The results are visible in Table 3.2.

True positives 11415
True negatives 1422
False positives 846
False negatives 4713

Hit rate 70.8%
Accuracy 69.8%

Position error per true positive (m) 0.33

Table 3.2: Benchmark results for the HOG-basedPeoplePoseList Publisher (PPLP).

3.2. Research contribution 53

Figure 3.10: A sample true positive detection with the HOG PPLP. The red rectangle corresponds to the
classical HOG detector. The red dots correspond to the 2D reprojection of the main 3D cluster.

We can first be surprised that this widespread PPLP obtains an accuracy of roughly 70%. If
we consider the fact that the detections are made using only the color information, the depth
being used only for false positive removals, this is a fairly reliable algorithm: more than two thirds
of the users will be detected.

The two PPLPs we just saw, face detection PPLP and HOG PPLP, were based on 2D algo-
rithms, as they were originally developed for RGB images. The following algorithms we will now
present were made for 3D information.

3.2.5 NiTE-based PeoplePoseList Publisher

The NiTE middleware for the Microsoft Kinect device seen in subsection 3.1.3, page 36 supplies
a data structure that is straightforward to convert into a PeoplePoseList (PPL): the users
muti-mask. We have seen that the unique values of the users muti-mask, which are strictly
positive integers, can be seen as the users IDs. The NiTE middleware already includes tracking
capabilities: the same physical user, whether she is visible in successive frames, is identified by
the same ID in the resulting successive multi-masks.

54 Chapter 3. Vision-based person detection

Implementation The number of users visible by the camera is equal to the number of unique
non-zero values (IDs) in the users muti-mask. For each ID of the users muti-mask, we define the
user mask as the set of pixels in the users multi-mask that have a value equal to this ID. This is
equivalent to setting all other IDs in the multi-mask to zero. Then, the three-dimensional (3D)
position of the user with this ID is the Center of Mass (COM) of the reprojection in 3D of this
user blob. The user Red Green Blue (RGB) image corresponds to the part of RGB image where
the user mask is non null. Similarly, the depth image of the user is the intersection of the depth
image and the user mask.

These properties are used for the conversion between the users multi-mask and the PPL

message. First, we determine all the unique values (IDs) of the multi-mask, then for each ID, we
compute the Center of Mass (COM) of its user mask. This COM is reprojected to 3D and stored
in the PPL message.

The NiTE-based PeoplePoseList Publisher (PPLP) was implemented in robots Maggie and
MOPI, both presented in the Introduction chapter, using their embedded Kinects. The PPLP is
structured as a C++ ROS node that subscribes to the three image streams published by the
NiTE middleware node: RGB, depth, and multi-mask. The full processing pipeline is visible in
Figure 3.11. A sample of user detection and PPL building thanks to the NiTE middleware is
visible in Figure 3.12.

3DmReprojector

3DmCenters
ofmMass

Uniquemvalues
COMmFinder

OpenNImdrivermg
NiTEmmiddleware

RGBmstream Usermmask
mstreamDepthmstream

Kinect

N
iT

E
 P

eo
p

le
P

o
se

L
is

t
p

u
b

lis
h

er

2DmCenters
ofmMass

PPL

PPLmbuilder

Caption

Processingmblock
PROSmnodeL

Exchangedmdata
PROSmmessageL

X
Nodempublishing
messagesmofmtypemX

X
Nodemsubscribingmto
messagesmofmtypemX

Figure 3.11: The NiTE-based user detector pipeline.

Limitations and benchmarking of the NiTE-based PeoplePoseList Publisher The bench-
mark presented earlier [Igual et al., 2013], using manually labeled videos of 55 users walking
on a stage, was used to measure the performance of the algorithm. Note that the user mask

3.2. Research contribution 55

(a) (b)

(c) (d)

Figure 3.12: Sample images of the NiTE-based PeoplePoseList Publisher.
(a) , (b) , (c): the data supplied by the NiTE middleware, respectively the RGB image; the depth image,

remapped to grayscale; the users multi-mask;
(d): the Center of Mass of each user (white circle);

supplied by the dataset was actually obtained by its authors using the NiTE middleware, so,
thanks to this dataset we can measure the accuracy of our wrapper that converts the three
image topics (RGB, depth, and user multi-mask) to PPL. The results are visible in Table 3.3.

True positives 16076
True negatives 1608
False positives 9
False negatives 1

Hit rate 100.0%
Accuracy 99.9%

Position error per true positive (m) 0.00

Table 3.3: Benchmark results for the NiTE-basedPeoplePoseList Publisher (PPLP).

For the reasons we just explained, the accuracy and precision are roughly equal to one. This

56 Chapter 3. Vision-based person detection

does not mean that the detection never fails, it means that it fails as often as the labeling of the
dataset: the labeling made by NiTE is faithfully converted by our wrapper, and so the failures in
the labeling, triggered by NiTE failures, generate identical failures in the PPLP.

The limitations of the NiTE middleware are hard to demonstrate thanks to a dataset. The
software is indeed built in such a way that it can only be used with a live stream coming from
a Kinect device. The NiTE-based PeoplePoseList Publisher has the same limitations as the
NiTE middleware itself, presented in section 3.1.3, page 37. Most seen errors are linked with
ID swaps: when two walking users cross in front of the Kinect, the middleware will erroneously
exchange their IDs. However, even if we here miss numerical data to measure it, the NiTE PPLP

is a relatively stable and accurate PPLP.

3.2.6 Polar-Perspective Map (PPM)-based PeoplePoseList Publisher

This people detector uses the fact that a person appears as a three-dimensional (3D) cluster,
i.e. a set of points tightly close one to another, in the 3D point cloud given by the range-imaging
device (Microsoft Kinect). When projecting this 3D cloud on the ground plane, these clusters will
be projected onto the same area, thus generating a sort of high-density blob on the ground plane.
Standing persons can then easily be characterized by the size of the blob: their height will most
likely belong to a span of characteristic human sizes, while their width and height correspond to
the footprint of a human user.

PPM computation The so-called Polar-Perspective Map (PPM) is an occupancy map based
on the polar coordinate system: it uses a regular grid based on the bearing of the points and
their inverse distance to the device. As such, the resolution of closer points is higher than far
points: unlike the Cartesian map, it can be tuned to match exactly the resolution of the device.
The PPM was introduced for a pedestrian detection system by [Howard and Matthies, 2007] and
was already explained in subsection 3.1.4.

We implemented the PPM-based user detector using the geometric transform from the
Cartesian system of coordinates to the PPM indicated by [Howard and Matthies, 2007] and
having the following definition:

f :

{
R2 7→ R2

(x, y) → (r, θ) =
(√

x2 + y2, tan−1 yx

)
The full processing pipeline is visible in Figure 3.13 and some samples in Figure 3.14.

First are chosen two resolutions: a spatial one (corresponding to steps in r) and an angular
one (steps in θ). Each pixel of the point cloud is transformed into the PPM coordinates and
the corresponding cell of the PPM is aggregated: this step is also called Accumulation. We
maintain at the same time a reverse map that stores the list of 3D points that were projected
onto a given cell of the PPM. A sample is visible in Figure 3.14 (c). Then the PPM is thresholded:

3.2. Research contribution 57

P
P

M
 P

e
o
p

le
P

o
s
e
L
is

t
p

u
b

li
s
h

e
r

PPL

Sync
RGB + depth Depth

3D reprojection

PPM
reprojection

3D Point cloud

PPM

Thresholder

Binary PPM

DisjointSets
components labelling

3D clusters

Clusters bounding
boxes filters

Filtered 3D clusters

PPL builder

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Device driver

Depth imaging
device

Figure 3.13: The PPM-based user detector pipeline.

all cells that have a minimum given of pixels are marked as 1, the others as 0, thus generating a
binary mask, as visible in Figure 3.14 (d).

The objects in the scene correspond to the connected components in the image. In [Ramey,
2011], we present a lightweight and fast algorithm for fetching connected components in a
monochrome image, such as our edge map. It is based on an efficient representation in memory
of the connectivity between components thanks to a disjoint-sets forest. The disjoint-sets data
structure was first presented in [Galler and Fisher, 1964] in 1964. In [Ramey, 2012], this algo-
rithm was benchmarked against two widespread ones for components labelling, flood-fill and
Chang’s [Chang et al., 2010]. On the image collection used in [Ramey, 2012], the new algorithm
turned out to be 30% faster than the two widespread ones.
We use this algorithm for fetching the different components of the PPM, as visible in Fig-
ure 3.14 (e). The 3D bounding box of each connected components is obtained by considering
the cluster made by all the 3D points that belong to that component, which is done using the
previously mentioned reverse map.

Then, we here focus on detecting standing humans: some empirical thresholds on the
bounding boxes will discard most of the connected components, enabling to keep only the ones

58 Chapter 3. Vision-based person detection

(a) (b)

(c) (d) (e)

(f)

Figure 3.14: User detection thanks to Polar Perspective Maps (PPM).
(a): The input RGB image given by the range-imaging device (Kinect).
(b): The depth map, as supplied by the Kinect, and remapped to visible colors (Hue scale).
(c): The PPM, remapped to visible colors (Hue scale). Empty bins are shown as black pixels, red colors
correspond to almost empty bins, while green bins correspond to fuller bins and blue the fullest.
(d): The previous PPM, thresholded and thus transformed into a binary map.
(e): The connected components labeled by color of the thresholded PPM.
(f): The remaining connected components after eliminating the ones that do not pass the tests on the
bounding boxes. The person on the left is a true positive. Note that the cupboard in the right image is
incorrectly identified as a person.

3.2. Research contribution 59

that are shaped as a standing person. In our implementation, the width must be between 0.3
and 1 meters, the height between 1.2 and 2.1 meters (thus also including most children aged
over 6), and the depth between 0 and 1 meters. These values were chosen so that they include
all human configurations, while discarding a reasonable amount of non-human clusters. In other
words, we aim at having a false-negative rate of zero, while having a low false-positive rate. As
can be seen on the sample in Figure 3.14 (f), we indeed have some false-negatives from time
to time. All objects in the scene that have dimensions in these spans will indeed be labeled as
users.

Finally, the 3D clusters that passed all tests are likely to be users. We then shape a
PeoplePoseList (PPL) message for each cluster. The user mask corresponds to the 2D
reprojection of the cluster in the camera frame. In this PPL are also stored the corresponding
parts of the Red Green Blue (RGB) and depth images, and the 3D Center of Mass of the centroid.

PPM-based PeoplePoseList Publisher benchmarking The DGait database already pre-
sented was used to benchmark the PPM-based PeoplePoseList Publisher (PPLP). The 55
videos of different users walking on the stage were used to compute a PPM on each frame and
determine the presence of a user. The results are gathered in Table 3.4.

True positives 12719
True negatives 1161
False positives 3857
False negatives 3353

Hit rate 79.1%
Accuracy 65.8%

Position error per true positive (m) 0.62

Table 3.4: Benchmark results for the PPM-basedPeoplePoseList Publisher (PPLP).

The PPM-based PPLP has an accuracy of about two thirds. It is designed to work specifically
with standing humans, which is no limitation for this benchmark, as all users are standing or
walking in this dataset. Note that because the PPM has no maximum distance, all the remote
objects (walls, cupboards, etc.) are used for its building and are erroneously recognized as users
from time to time. This explains the numerical difference between hit rate and accuracy for this
detector.

The detector that we will now present also handles depth information, but it will limit this
erroneous recognition of remote objects by using a so-called depth clamping: the depth values
greater than a given threshold are not taken into account.

60 Chapter 3. Vision-based person detection

3.2.7 Tabletop PeoplePoseList Publisher

People standing on the floor generate a point cloud that is similar to objects standing on a table
top. Detecting objects on a planar surface such as a table top is a problem that has already been
tackled by other authors, most notably for object grasping ([Blodow and Rusu, 2009, Marton
et al., 2011]). We here chose to combine some of these techniques in an innovative way to find
the users in front of the robot.

We implemented a straightforward PeoplePoseList Publisher using such techniques. It is
based on detecting the ground plane thanks to a statistical method, then retrieving the pixel
blobs of the objects being on top of that object. We here make the strong hypothesis than all
the blobs visible in a given range of distances are only users. For instance, no furniture, box, or
any object should enter in this range of distances. This is a very restrictive hypothesis, but it can
be met in some cases: an uncluttered environment such as a wide living room or a lab fulfills
this condition.

The computation is made of various stages, that will explained in the following paragraphs.
The pipeline is illustrated in Figure 3.15, and a sample is visible in Figure 3.16. This sample will
be referred to while we describe the processing pipeline.

Depth map clamping We supposed the users need to be detected only in a limited and static
range of distances. This makes sense in a configuration where the camera is in a given position,
say a fixed camera on a robot with no motion capabilities. We name dmin, dmax ∈ R the minimum
and maximum distances where the user can appear. Parameter dmin would typically be around
half a meter, and dmax slightly smaller than the closest wall. Then we clamp our depth map:
we mark all pixels with a value smaller than dmin or greater than dmax as not valid. All pixels
in [dmin, dmax] belong either to users, or to the ground. See how such a filter affects the depth
map on Figure 3.16 (c).

Ground plane detection The first step is the detection of the ground plane. In other words,
we want to detect which points in the image belong to the ground, and which belong to objects
on top of it. A three-dimensional (3D) plane can be represented as a 4-variables equation:

ax+ by + cz + d = 0, a, b, c, d ∈ R

We here use the classical world coordinates frame, where the ground plane is described by the
x and y axes, while z corresponds to the height.

Two methods are available to compute the plane equation.

1. Coordinates transform: If the model of the camera is available, i.e. if we have calibrated
our camera and both intrinsics and extrinsics parameters are available (cf [Bradski and
Kaehler, 2008]), then we can directly transform the coordinates of any point from the
camera frame to the world frame. The ground plane points are then {P ∈ R3; Pworld.z ≈

3.2. Research contribution 61

Ta
b

le
to

p
 P

e
o
p

le
P

o
s
e
L
is

t
p

u
b

li
s
h

e
r

Sync
RGB + depth Depth

3D reprojection

Ground plane
finder

3D Point cloud

Plane equation

Ground plane
marker

Ground plane
mask

Mask combinator

User mask

PPL builder

Depth
Canny

Edge mask

PPL

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Device driver

Depth imaging
device

Figure 3.15: The tabletop user detector pipeline.

0}.
However, this requires the calibration of the camera and the estimation of the camera in
the world frame, which can turn out to be a tedious task.

2. RANSAC plane estimator: We saw in subsection 3.2.1 how we could use the RANSAC
algorithm ([Fischler and Bolles, 1981, Rusu and Cousins, 2011]) on the 3D point cloud
generated by the depth image to estimate the plane of the ground.

Blob marking Once we have obtained the equation of the ground, we can evaluate which
pixels of the depth map belong to it. For each pixel, we evaluate the absolute distance between its
3D reprojection and the plane. If the distance is greater a given threshold, the point is evaluated
as belonging to an object. Otherwise it belongs to the ground. This enables the generation of a
ground plane mask, as seen in Figure 3.16 (d).

The user mask is obtained by combining the binary inverse of this first mask (thus removing
all ground points) with the depth mask of the points in [dmin, dmax] described before. In order to
separate aligned users, we combine this user mask with a Canny filter on the depth map that will

62 Chapter 3. Vision-based person detection

(a) (b) (c)

(d) (e) (f)

Figure 3.16: User detection thanks to the tabletop PeoplePoseList Publisher.
(a): The input RGB image given by the range-imaging device (Kinect).
(b): The depth map, as supplied by the Kinect, and remapped to visible colors (Hue scale).
(c): The valid measures of the depth map, belonging to the chosen range of depth [1, 4] (meters)
(d): The mask of the pixels belonging to the computed ground plane.
(e): The mask of all visible objects.
(f): The person blobs. In this example, there is only one person, so one color blob.

mark the edges (depth disparities) as described in section 3.2.1, page 39.

This generates a binary map where objects are indicated by a positive value, the rest being
zero. A sample is visible in Figure 3.16 (e).

Blob retrieval In section 3.2.6, we saw how to quickly retrieve the connected components
in the binary map. We supposed all objects in [dmin, dmax] can only be users. Consequently,
all connected components of the binary map correspond to the user. A sample is visible in
Figure 3.16 (f).

These components are then passed to a PeoplePoseList Publisher (PPLP), that shares this
message with the rest of the system, in a way very similar to the Polar-Perspective Map (PPM)-
baed PeoplePoseList Publisher seen in subsection 3.2.6.

Tabletop PeoplePoseList Publisher benchmarking In a way similar to the other PPLPs, the
tabletop PPLP was benchmarked on the DGait database [Igual et al., 2013]. The results are
gathered in Table 3.5.

3.2. Research contribution 63

True positives 16020
True negatives 1586
False positives 11
False negatives 45

Hit rate 99.7%
Accuracy 99.7%

Position error per true positive (m) 0.04

Table 3.5: Benchmark results for the tabletop-basedPeoplePoseList Publisher (PPLP).

The accuracy of the algorithm is very close to one: the detector is almost always true in its
predictions. We have to remember the strong assumption we made before though: we consider
an uncluttered environment, with a maximum number of users known. The database is made of
users walking on a stage, which corresponds exactly to these settings. This justifies the good
results.

Note that the PPM PPLP presented before does not have such a depth range and obtains an
accuracy of two thirds: the remote objects (walls, cupboards, etc.) are erroneously recognized
as users. The depth clamping of the tabletop detector prevents this confusion. This accuracy
would be much lower if there was an alien object on stage, such as a cupboard for instance.

3.2.8 Comparative performance of the different PeoplePoseList Publishers

The performance of the different PeoplePoseList Publishers (PPLPs) on the DGait dataset,
presented in the previous subsections, was gathered in a chart visible in Figure 3.17.

The algorithms have very different performance on this dataset. The NiTE and tabletop
PPLPs obtain excellent results, as both their accuracy and recall are very close to one. Polar-
Perspective Map (PPM)-based PPLPs and Histogram of Oriented Gradients (HOG)-based PPLPs
obtains both recall and accuracy around 70%, which makes them reliable too. On the other hand,
face detection performs worse, as it only detects roughly one user out of five.

The face-detection-based PPLP has a poor performance on this benchmark: the users visible
in the video stand several meters away from the camera and is often turning her back to it,
which does not correspond to the domain of use of face detection, thought for interaction at
short distance. On the other hand, as already mentioned when these individual results were
given, the uncluttered environment is a key explanation for the outstanding performance of
segmentation-based detectors. The introduction of any object shaped like an human user, say
a coat rack, would generate false positives and thus alter the accuracy rate of these. The
algorithms based on the color analysis (HOG and face detection) wouldn’t be affected by this
new object. For this reason, the HOG algorithm is to be noticed: its good performance, already
seen in the literature review, is here experimentally verified.

We can already see here that each of these detectors has advantages and limitations: the

64 Chapter 3. Vision-based person detection

Accuracy Hit rate (recall)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NiTE Tabletop PPM
HOG Face detection

Figure 3.17: Comparative performance of the different PeoplePoseList Publishers.

face detector works well for facing users, while the tabletop PPLP detects well remote users but
is easily fooled by objects with dimensions similar to humans. A fusion mechanism that would
use all these algorithms and cleverly mix their results according to the context would improve the
performance. This idea will be later discussed more thoroughly.

3.2. Research contribution 65

Summary of the chapter

In this chapter, we tackled the problem of detecting users around a social robot using image
processing and computer vision techniques. A common data structure called PeoplePoseList

(PPL) was designed to standardize the output of the different algorithms that were integrated.
This results in numerous advantages: programming language abstraction (thanks to Robot
Operating System (ROS) msg mechanisms), workload redistribution between several computers,
agile integration of new algorithms, debugging and benchmarking made easier, use of common
visualization tools. The algorithms integrated in our architecture and using PPLs are called
PeoplePoseList Publishers (PPLPs).

Several state-of-the-art techniques exist for detecting human shapes in an image and were
integrated as PPLPs. In addition, the use of a depth imaging device (Kinect) can often improve
their performance by removing outliers. The HOG detector ([Dalal and Triggs, 2005]), for instance,
and the Viola Jones face detector ([Viola and Jones, 2001]) were improved that way. Other
state-of-the-art algorithms such as Polar-Perspective Map (PPM)-based detectors ([Howard and
Matthies, 2007]), originally developed for pedestrian detectors in autonomous cars, tabletop
detectors, and the Kinect official API, called NiTE ([Berliner and Hendel, 2007]) were also
integrated. All algorithms were carefully tested and benchmarked.

Some algorithms turned out to perform notably better than others and all of them have a
domain of use: the face detection PPLP works fine for close users, but has a high miss rate for
remote ones, the tabletop and the PPM detectors are made for standing users and non clustered
environments as they do not discriminate humans and other shapes with human-like sizes.

A clever fusion system would then take advantage of each detector when it is the most
relevant, and discard its output when it is out of its domain of use. This point will be further
studied in chapter 7. For now, the following chapter 4 will present techniques for user detection
based on other fields than image processing and computer vision.

66 Chapter 3. Vision-based person detection

CHAPTER 4

Other techniques for person detection

Introduction

In the previous chapter, we have seen that many different approaches exist to detect humans
around a robot using algorithms on the flow of images given by cameras. Even though the
work presented in this PhD is mainly focused on methods using this visual information, other
approaches, using different sensors than cameras, to detect users. These approaches are
studied in this chapter. They do not represent the main component of the final work presented in
this dissertation but are a good proof of the modularity of the proposed architecture concerning
the hardware devices and the algorithms used.

For instance, microphones can be used to detect and localize human voices. Human users
can also indicate their presence using special tags, may they be visual (like bar codes), or based
on wireless chips. Information about the distance of the closest objects around the robot can
also be used to try to find the users.

4.1 State of the art

The state of the art will focus on the fields listed in the introduction part, as they correspond to
the ones we have explored more in depth to meet the goals of this PhD.

First, in subsection 4.1.1, we will review different techniques based on recognizing some
information added on the user, also called tags. Second, in subsection 4.1.2, we will present

67

68 Chapter 4. Other techniques for person detection

related work dealing with detecting and localizing human voices thanks to microphones. Finally,
in subsection 4.1.3, we will review some innovative techniques based on detecting the legs of
the users thanks to a laser range finder.

4.1.1 Tag based user detection

In this chapter, we aim at detecting the users around a robot. The previous chapter focused
on achieving this goal using the visual information given by the cameras without needing any
additional action of the user: no extra-device, no special clothing was required for her detection.
In this subsection, we will present an alternative method: adding some extra-information that
identifies the user uniquely, called tags. They are similar to barcodes for products in a shop, and
can be based on a variety of mechanisms. We will here present both tags based on vision and
on radiofrequency identification (RFID).

4.1.1.i Visual tags: ARToolkit, QR codes, etc.

This part focuses on visual tags, i.e., tags that can be detected by vision. In other words, the
method consists in attaching an additional physical object to the user, shaped as a label. The
content of this label can easily be recognized by some algorithm.

Barcodes Barcodes are widespread labelling tags mainly used for the recognition of products.
The barcode technology was developed in the fifties, originally for recognizing items in a food
chain, by Norman Joseph Woodland and Bernard Silver. The first item scanned was a packet of
chewing gum in an Ohio supermarket in 1974.

A barcode is originally a pattern made of vertical lines. Lines of two different thicknesses
encode a binary pattern. As there is no variation in the pattern vertically, this kind of barcode is
one-dimensional (1D). Since its invention, the barcode has known many developments: many
two-dimensional (2D) patterns (the pattern varies horizontally and vertically) now exist, such as
QR-codes, AZTEC codes, and others. Smartphones now commonly sport a barcode reader
using the embedded camera. Note that most barcodes are based on a binary encoding of
the information, or in some cases on a low-dimensional encoding (base inferior to 5). Due to
its simplicity, the barcode has been the main method for product identification over 40 years.
They have also often been used for Human-Robot Interaction (HRI), as they make possible
the detection of meaningful patterns easily by the robot. For instance, in [Katsuki et al., 2003],
QR-codes are put on top of objects to help a manipulator robot finding the right object to grasp
in home or office environment. Some samples of barcodes are visible in Figure 4.1.

However, barcodes reader are made for close range identification. Their use for people
identification is challenging if the users are far away. On top of that, barcode readers cannot
specify the spatial position of the label relative to their own frame. A label system, similar in
concept with barcodes, was conceived to solve these issues, called ARToolkit.

4.1. State of the art 69

(a) (b)

(c) (d)

Figure 4.1: A few samples of barcodes.
(a) : a classical barcode;
(b) : a QR-code, the most widespread barcodes for smartphones;
(c) : an Aztec code, used by many railroads companies for their online bills, such as Deutsche Bahn,

SNCF, Eurostar, Trenitalia and others;
(d) : a High Capacity Color Barcode, a barcode developed by Microsoft, and in this case, encoding

information with a base 4 (black, cyan, yellow, magenta).

ARToolkit ARToolkit ([Kato and Billinghurst, 1999]) is an open-source cross-platform software
suite aimed at creating Augmented Reality interfaces. It was initially developed by Dr. Hizokazu
Kato from Osaka University in 1999 for Augmented Reality (AR) purposes, hence the name. It is
now maintained by the Human Interface Technology Laboratory (HIT Lab) of the University of
Washington. The latest version dates back from 2007.

The job performed by ARToolkit is to search pre-defined patterns in the input stream of
images. These fiducial markers, called Patterns, are greyscale images of squared dimensions.
Each marker is unique and asymmetric. A sample marker is visible in Figure 4.2 (a). The internal
vision-based algorithms of ARToolkit locate these visual markers in each input image. For each
detected marker, using the size and perspective of this markers, ARToolkit can estimate its
three-dimensional (3D) position and orientation. As such, information about the position in the
environment of the marked objects is obtained. On Figure 4.2 (b) the orientation of the pattern is
represented overlaid on a sample of input frame.

70 Chapter 4. Other techniques for person detection

(a) A sample pattern. (b) The input frame superposed with the
relative orientation of the marker.

Figure 4.2: A sample ARToolkit pattern and a sample use case.

ARToolkit is a stable library, who has been in constant development and improvement for
many years. Furthermore, it is a very popular library, it has been downloaded more than 450.000
times since 2004. We led some tests to measure the accuracy of the library and they showed
some impressive recognition rates and correctness concerning the position of the camera.
Furthermore, the library has a very fast processing time: ARToolkit is efficient enough to enable
real-time processing even with embedded processors.

There are many examples of articles using ARToolkit tags. We can notably cite [Dudek et al.,
2007], in which a diver operator can operate an underwater robot using ARToolkit tags. This
eases the task of locating the operator, which is otherwise challenging because of the light
conditions and the water distortion. In [Anezaki, 2011], the same method is applied to control a
ground robot, except that QR codes are used.

However, as pointed in [Fiala, 2005b], the binarization process of ARToolkit is made through
a simple binary threshold, which leads to detection failures for challenging light conditions.

ARTag ARTag is another kind of fiducial markers ([Fiala, 2005a]). It also uses some planar
markers to indicate planar surfaces. Its development started after ARToolkit, and it aims at
solving some of the limitations of it.

It replaces the simple threshold technique by some four sides contour finding. This most
notably solves some of the problems affecting ARToolkit, such as partial occlusions and inter-
marker confusion. as shown in [Fiala, 2005b]. A system such as ARTag was proven robust to
poor lightning condition.

Markerless AR techniques Both ARTags and ARToolkit rely on visible, predefined markers
that are detected by the algorithm. These markers are explicit: they are also visible by a human
observer watching the scene. There is another kind of marker that enables the markers to be
”hidden”: just as the invisible ink cannot be detected by an observer, these markers are integrated

4.1. State of the art 71

into another image in an invisible way for the human eye. There is a variety of techniques, check
for instance [Comport et al., 2003].

For the work of this PhD, such techniques could be interesting, because the produced
markers are not as explicit and unaesthetic as the monochrome markers of ARToolkit and ARTag.
This aspect could be interesting for helping the social acceptance of markers as a widespread
recognition system. However, the scope of this work is a lab environment, and not to use markers
among a wide population.

In the past few paragraphs, we have presented techniques for detecting the user thanks to
visible tags. They rely on widespread image analysis libraries and give real-time 3D position of
the tags, and hence of the users. However, theses tags need to be visible: in other words, any
occlusions of the card will prevent the tag from being read, and then the user to be recognized.

4.1.1.ii Radiofrequency recognition tags: Radio-Frequency Identification (RFID)

Other technologies do not need to have a visible marker. We here present the Radio-Frequency
Identification (RFID) technology. It enables the recognition of an object remotely. RFID labels do
not need to be visible to be read, even more, they can be read under a thin layer of paint, snow,
etc. Some labels can be written once and read multiple times, while others are writable several
times.

There are two categories of labels: passive and active. Passive labels are activated by the
energy transmitted by the radio waves. Active labels have their own energy source, such as a
battery, that enable them to have a greater range.

RFID tags are often used in automation and robotics for object and user recognition. The
amount of data stored on the RFID tag, although not huge, is enough to store a unique ID for a
great population of objects or users. Thus, [Oberli et al., 2010] discusses the possibility of using
RFID for passenger recognition and public transport. [Vogt, 2002] uses RFID tags for multiple
object detections at once. Ultra High Frequency RFID tags are used in [Deyle et al., 2014] for
navigation, by using the signal strength to guide the robot.

Note that, unlike ARToolkit tags seen before, RFID tags are limited in the sense that they
only give the presence or not of the tag when detected, but not their spatial (3D) position . As
such, they can be used for user detection and recognition, but not for mapping. Furthermore,
they need an additional device, the RFID reader, that can be fairly bulky and needs additional
power, which can lower the energy autonomy of the robot. And finally, the reach of RFID readers
is limited: most RFID passive tags can be read to a distance up to one meter. Note, however,
that a passive ultrahigh-frequency (UHF) transponder can be read from three to six meters feet
in free air (that is, with the tag not on an object).

Overall, RFID tag-reading can be a way of detecting and recognizing users, and is handy
from a hardware point of view, as our robots are already equipped with a RFID reader, but it is
limited by nature. We did not implement a RFID tag-based user detector.

72 Chapter 4. Other techniques for person detection

4.1.2 Voice detection

Human voice detection The previous chapter focused on detecting users around the robot
thanks to their visual appearance, but there is another sense that the humans use extensively to
locate other people: hearing. This aspect was not dealt with extensively in the work presented in
this thesis, as some other researchers are tackling it in our team. We will however briefly review
here some of the techniques.

Voice activity, which is the presence of voice in an audio stream, can be achieved using a
set of different features and metrics. Some simple systems are based on a volume threshold
activation and shutdown: if the volume of the microphone goes over a given threshold, voice
analysis starts, until the volume goes below that threshold for a given shutdown time (usually
between half a second and two seconds). This system is straightforward to implement, but
error-prone: no distinction is made among the perceived sounds.

To help discriminating human voice from other sounds, we can make use of Audio features.
These are numerical values characterizing some property of the audio stream during a given
time lapse. A simple example is the sound pressure level, which is the logarithmic measure of
the effective sound pressure of a sound relative to a reference value (this reference being the
threshold of human hearing), and is expressed in decibels.

These audio features help us discriminating voices among other noises. Even if it shows a
great diversity among humans, the human voice can be characterized with different properties.
A work of our team, [Alonso-Martin and Castro-González, 2013], listed a range of meaningful
audio features for voice detection. The used features are Pitch computed using Fast Fourier
Transform (frequency domain); Pitch computed using Haar Discrete Wavelet Transform (time-
frequency domain); Zero-crossing rate (ZCR) (time domain). Centroid (frequency domain); All of
these features are obtained thanks to mathematical transformations of the input audio stream.
Statistical analysis of dataset of both voice and non-voice samples helped determining ranges of
values for these features that characterize human voice.

Sound localization A first method to localize the spatial source of a sound is based on the
amplitude of the signal received by all microphones: the microphone which is oriented in the
direction of the source should receive a signal with a more important amplitude than the others.

In [Blauth et al., 2012], a microphone array gives away the sound source location. It makes
use of the Steered Response Power with the phase transform (SRP-PHAT) method. A HMM
determines if there is silence, and another if a user is speaking. Face detection and tracking
gives the estimated number of speakers and the three-dimensional (3D) position of their face
center. The fusion is fairly simple: the final probability of the user being at one of the discretized
positions is the estimate by the audio HMM, weighted by the distance between this position and
the output positions of face tracking.

However, this theory is compromised by the nature of the sound: the sound wave is omni-
directional, and its multiple rebounds on the walls, the ceiling and the floor will induce higher

4.1. State of the art 73

volumes for the other microphones. Furthermore, each microphone has a different sensibility
to noise, even for identical brands, models and series. The determination of the transforma-
tion on the amplitude that gives identical measures for a given output, called Calibration, is
cumbersome and difficult to achieve.

Another method is based on the phase analysis of the audio signal: all the microphones
receive more or less the same signal, but with a delay induced by the sound traveling speed.
As such, the microphone that received first the sound phase profile is the closest to the user
([Brandstein and Ward, 2001,Benesty et al., 2008]). However, the positioning of the microphones
is challenging: if the microphones are too close, they receive almost the same signal. If they are
too remote, the phase profile might differ too much to compute its delay.

4.1.3 Leg pattern detection

Viewing people face or hearing their voice is a way to detect their presence. However, some
other sensors of the robot can be used for this goal. The embedded cameras of the robot give
indeed visual (color) information, but no information about the distance of the objects, in other
words, the depth of the scene 1. On the other hand, a class of devices known as Laser range
finders gives us information about the spatial structure of the scene. It is characterized by a
two-dimensional measurement plane and gives, for a range of angles, the distance to the closest
object in this plane in each direction, in meters. The device is limited by its angular range, called
Field of View (FOV) and its distance limit. Some devices, such as the Sick LMS200, are made
for outdoors laser measuring and have a maximum range of 80m and a FOV of 180 degrees,
while smaller devices such as the Hokuyo URG-04LX have a wider FOV of 240 degrees but
a range of only four meters. Most commonly, the laser range finder is mounted on the mobile
platform so that its scan plane is horizontal. That gives us a representation of the closest objects
in all directions in this horizontal plane.

Laser range finders are one of the most widespread sensors in robotics for decades. Their
accuracy is most often millimetric and their processing is easy, as it is structured as a one-
dimensional (1D) array. It gives a two-dimensional (2D) perception of the world though: each
distance value of this array is implicitly associated with an angular value, which results in a 2D
point. Laser scans have been used in many fields in robotics, such as navigation and obstacle
avoidance. Using them for people detection is challenging though: recognizing human shapes
from an horizontal slice of the environment is not easy. However, the works presented in [Bellotto
and Hu, 2009] tackle this problem. The robotic platform they use is a mobile platform that is
about half a meter high, so that the laser range finder sees is about the height of human knees.
They have developed a people detector based on the analysis of laser scans: typical leg patterns
are searched in the scans are recognized within the scans. The information is then merged

1 Some sensors have been able to give this information for many years. Stereo-vision for instance supplies
depth maps of a good quality, but is limited by a challenging calibration, the need for textured environments, high
computational needs, and its cost. Time-of-flight cameras or structured-light devices, such as the Kinect sensor, can
give depth information.

74 Chapter 4. Other techniques for person detection

with some other algorithms (face detection) using some Kalman filtering, a method that will be
presented in chapter 7. An illustration of this method, taken from the original article, is visible in
Figure 4.3. Note that this technique is relatively straightforward, gives relatively reliable results
according to the article, and makes use of a sensor that otherwise is hard to use for people
detection. These reasons explain our interest in this method, this is why we will explain later on
in this chapter how we integrated this method in our architecture. Note that several subsequent
papers re-use this method, see for instance [Mozos et al., 2010,Varvadoukas et al., 2012].

Figure 4.3: Human leg pattern detection from laser scans, image from [Bellotto and Hu, 2009]. On top,
the color image as viewed by the webcam. Three different algorithms are compared here: minima on
the left, motion in the middle, and leg patterns on the right. Note that the leg patterns algorithm, the one
proposed by the authors, is the only one able to detect both users.

4.2 Research contribution

We have seen in the previous section some state-of-the art techniques concerning user detection
using algorithms not based on the visual appearance of the user, namely tag-based user
detection, voice detection and leg patterns in laser scans recognition. Our contribution in that
field consists in experimenting these different fields thanks to our robotic platforms, and in
integrating them into our architecture thanks to . the common framework for people detectors
called PeoplePoseList Publisher (PPLP) presented in the previous chapter. In a first part, in
subsection 4.2.1, we will present how one of the tag-based detection and localization algorithms,
namely ARToolkit ([Kato and Billinghurst, 1999]), was integrated and benchmarked. Then,
we will present two detection mechanisms that do not require extra device from the user: in
subsection 4.2.2, we will present some experiments we led on voice localization using the PPLP

framework, and in subsection 4.2.3, we will present the integration of the leg pattern detector
from laser scans of [Bellotto and Hu, 2009] in our architecture.

4.2. Research contribution 75

4.2.1 ARToolkit PeoplePoseList Publisher

We presented in subsection 4.1.1 different methods for recognizing human users thanks to
ad-hoc methods. Among others, the ARToolkit tags ([Kato and Billinghurst, 1999]) had several
advantages: they are easy to produce (printed pattern), they only require a standard RGB
camera, and the computational cost needed by the algorithm is low.

This is why we chose to convert the ARToolkit Robot Operating System (ROS) wrapper,
supplied by Gautier Dumonteil 2, into a PeoplePoseList Publisher.

Customized tag building we saw in subsection 4.1.1 that ARToolkit searches in each frame
pre-defined markers, called patterns, in the input stream of images. Patterns are encoded with
so-called Pattern files. A pattern file is a text file, representing the visual appearance of the
pattern, seen from above. However, ARToolkit does not document how to produce such pattern
files. It is only shipped with a variety of predefined patterns, and with an executable to build new
patterns from the camera input. This executable detects black rectangles in the input image and
converts them into pattern files.

By examining the produced files, we could determine the format of a pattern file. It contains
a stream of space-separated integer values, representing the brightness of of each pixel. Most
patterns are of size 256×256, so such a pattern file contains 256×256 space-separated integers
between 0 and 256. ARToolkit also works with color patterns, in that case the pattern files have
three streams of values. The analysis of the patterns produced by the camera application lead us
to the conclusion that patterns produced that way are blurry and imperfect due to the rectification
of the detected pattern from the perspective to the square point of view. This imperfect conversion
results in a poor detection rate when we later use this pattern.

For this reason, we analyzed the format of the pattern files and wrote a small program
that converts any square image into a pattern file using OpenCV. It reads the image file, and
converts it into space-separated integers files that are compatible with OpenCV. This program is
also compatible with color images. As thus, as our custom patterns are generated by printing
a custom pattern image (in our case, designed with the drawing program Inkscape 3), we
can directly use this source image to build an accurate pattern file that does not include any
deformation or blur.

Such a tool, even if is simple, is of key interest for generating meaningful markers: instead of
using cumbersome monochrome square matrices, we can generate explicit markers that can be
understood by users. A sample custom pattern is visible in Figure 4.4. In Figure 4.5 (b), we can
see two custom ARTags that can be understood by human users: one contains the text ”Alice”,
the other ”Bob”. In other words, we can generate for each user a pattern that is customized for
that specific user.

Once we have this key functionality of accurate custom pattern generation, we can focus on

2http://wiki.ros.org/artoolkit
3http://www.inkscape.org/

http://wiki.ros.org/artoolkit
http://wiki.ros.org/artoolkit
http://www.inkscape.org/
http://www.inkscape.org/

76 Chapter 4. Other techniques for person detection

Figure 4.4: A custom ARToolkit tag for the use Alice.

integrating the original ARToolkit pattern detector into our use awareness architecture: this is
done by wrapping it into a PeoplePoseList Publisher (PPLP).

PeoplePoseList Publisher wrapping: ARToolkit is a standalone library. The original ROS
wrapper of ARToolkit previously mentioned subscribes to an image stream and publishes the
detection results: this message contains the name of the labels that were recognized by the
algorithm (i.e. the pattern filenames), along with their 3D position. There is little work needed to
convert this information into a proper PeoplePoseList (PPL). The ARToolkit PPLP, at startup,
reads from a data file the correspondence map between pattern filenames and unique users ID,
and subscribes to the ARToolkit ROS wrapper output. Then, upon reception of a new ARToolkit
message, it converts it into a PPL using this map. The processing pipeline of the system is visible
in Figure 4.5 (a). A sample capture of the simultaneous detection of several tags is visible in
Figure 4.5 (b).

This system offers several advantages. First, it provides our architecture a reliable estimate
of the three-dimensional (3D) position of the different users and of their identity thanks to the
matching between pattern and person ID, while needing only a two-dimensional (2D) color
stream, and without any depth information. It then outperforms the other 2D detectors we saw in
the previous chapter, namely the face detector and the Histogram of Oriented Gradients (HOG)
detector: these PPLPs, if feeded with a 2D image feed, only provided an estimate of the 2D
position of the users. Second, the computational needs of this PPLP node is very limited, and
ARToolkit itself is a highly optimized library. For both these reasons, the whole ARToolkit PPLP is
very lightweight.

There are two drawbacks to this method. First, it requires the users to change their behavior
to be recognized: they need to wear the patterns and have them visible, which is a counter-
intuitive and somewhat cumbersome process: if the user forgets her pattern, she cannot be
recognized by the robot. Second, ARToolkit obviously cannot detect tags that are not visible or
very deformed, as seen from sideways. As such, if the user wears her logo on the torso and is
not facing the robot, the pattern cannot be detected, so neither the user. Note that this problem
could be overcome by using several tags worn by the robot from several points of view.

4.2. Research contribution 77

A
R

To
o
lk

it

P
e
o
p

le
P

o
s
e
L
is

t
p

u
b

li
s
h

e
r

PPL

ARToolkit

ARToolkit ROS wrapper

Marker pose

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

RGB

ARToolkit PPLP wrapper

Camera info

Device driver

RGB camera
(webcam, Kinect)

(a)

(b)

Figure 4.5: ARToolkit PPLP using custom tags.
(a): the pipeline of the ARToolkit PeoplePoseList Publisher.
(b): simultaneous detection of several tags.

78 Chapter 4. Other techniques for person detection

Conclusion the ARToolkit PPLP is a lightweight user detector and recognizer. It uses the color
image stream, which makes it compatible with a robot having no depth imaging sensor. It gives a
reliable estimate of the 3D position of the users and their identity. However, it requires the users
to wear a cumbersome pattern file and to have it always visible if they want to be recognized.

4.2.2 Voice localization PeoplePoseList Publisher

Whereas the previous chapter focused on detecting human activity thanks to the visual informa-
tion of the scene, humans can also be naturally detected thanks to the sounds they produce,
and especially the sound of their voice. Indeed, a human user willing to interact with a robot
platform will most probably greet it or start talking to it. Compared with the tags approach seen
in the previous section, voice activity is a more natural approach in terms of Human-Robot
Interaction (HRI), as it corresponds to the way a user would interact with another person. Voice
Activity Detection (VAD), i.e. determining with certainty if a user is speaking in the sound stream,
is a problem that has been tackled and solved by many authors, as seen in subsection 4.1.2,
page 72.

We do not tend to tackle the problem of VAD here. Readers interested in this topic can refer
to other works published by members of the team, such as [Alonso-Martin and Castro-González,
2013]. Here, on the other hand, we focus on the next stage of the scene sound analysis: once
we know a user a speaking, the following problem is to localize her spatially. We here consider
the simplified case where there is one user speaking, so that the source of the loudest sound
corresponds to this user : it is adapted to situations where there is only one user and she is
speaking, or, in multi-user scenarios, this hypothesis ensures the detection of the speaking user
only. This voice localization problem is related to a field of signal processing called sound source
localization. As we saw in the review of the state-of-the-art, some algorithms exist that can locate
a sound source thanks to the analysis of a single microphone. However, most solutions use
systems of several microphones.

Our robot Maggie, presented in subsubsection 1.3.1.i, page 5 is equipped with 8 directional
microphones located around the base. They are positioned in a uniform way, so that there is a
microphone every 45 degrees. This is visible in Figure 4.6.

Naive method: average sound pressure-based algorithm As presented in subsection 4.1.2,
page 72, we can use the amplitude, also called the sound pressure, of each microphone to know
where the sound comes from. Thanks to ALSA audio drivers, we can acquire in real time the
pressure of each microphone. The average sound pressure over a given short time lapse (half
a second) estimates the volume from each microphone. The microphone which obtains the
highest volume during several successive iterations is then considered as being the closest to
the sound source.

4.2. Research contribution 79

Figure 4.6: The microphones situated in the base of Maggie.

Machine-learning based techniques The method based on the average sound-pressure is
limited by the different effects explained in subsection 4.1.2, page 72: the rebounds of the sound
wave on the floor, the ceiling and the walls will induce artificially high volumes on all microphones.
Furthermore, the difficult calibration of the microphones does not ensure that a microphone
having a higher amplitude than its neighbor is closer from the input.

This problem can be tackled with Machine Learning (ML) algorithms: collect a lot of data
samples, where each data sample consists of the output of all microphones, together with the
ground truth user position; then train a regression algorithm on this data to predict the user
position given the microphones output.

Formally speaking, if the robot has n microphones, n ∈ N, then the input of the ML is a
vector v of size n × 1, and the output is the position of the user. It can be represented as a
three-dimensional (3D) point x ∈ R3. In our case though, we prefer using the polar coordinates
to describe it, (r, θ), r ∈ R+, θ ∈ [0, 2π[, and we only try to estimate the angular position θ. 4

ML solves the calibration problem: the different responses of the microphones to the volume
can be learned by the algorithm, which will give more weight to the microphones that are less
reactive. For instance, if a microphone has an amplitude response twice as weak as another, the
importance given to the former is likely to be twice as a strong as the latter.

We used two different ML regression algorithms for training and prediction: RandomTrees
([Breiman, 2001]) and Support Vector Machines (SVMs) ([Cortes and Vapnik, 1995]). Note that
these algorithms can be trained in parallel using the same data without any interference. The
pipeline of both training and prediction processes are indicated in Figure 4.7.

For training, the ground truth position of the user can be obtained thanks to two different
algorithms. The first method is based on the NiTE PeoplePoseList Publisher presented in

4 Indeed, the distance of the user r is hard to estimate with microphones: a first user and another further from the
microphones but speaking louder will generate a similar signal.

80 Chapter 4. Other techniques for person detection

Laser

Laser
Tracking NiTEMPPLG

Kinect

RandonForests
Training

PPL

ALSAMdriverM+
ROSMPublisher

Microphones

MicVolumes

(a)

RandonForests
Prediction

PPL

Caption

Processingublock
(ROSunode)

Exchangedudata
(ROSumessage)

X
Nodeupublishing
messagesuofutypeuX

X
Nodeusubscribinguto
messagesuofutypeuX

ALSAudriveru+
ROSuPublisher

Microphones

MicVolumes

(b)

Figure 4.7: Sound localization with ML techniques. Pipeline for (a), training, and (b), prediction.

subsection 3.2.5, page 53. The results of the user estimation are exact, but limited by the very
narrow field of view of the Kinect, around 60 degrees. This problem is overcome by the second
method: we used a cluster-tracking algorithm based on the two-dimensional (2D) laser scans.
They are provided by the SICK laser range finder, with a field of view of roughly 270 degrees.
The user initializes the blob-tracking algorithm when she stands next to it, then the algorithm
tracks this blob when she moves.
Synchronized ground truth position (shaped in a PeoplePoseList message, see subsec-
tion 3.2.2, page 41) and output of all volumes are sent to the ML algorithm, namely SVM
or RandomTrees.

For prediction, the trained ML algorithm subscribes to the output of all microphones and
gives an estimation of the position of the user, shaped as a PeoplePoseList (PPL).

Benchmarking For training, we collected samples of synchronized (user position, vector of 8
microphones outputs). To generate them, the robot Maggie was located in a quiet lab ambient
noise. A unique user walked around it, and generated noise either by speaking at different
volumes, or by singing. The user stayed in the field of view of the sensor, as presented before.
136 samples where saved, which represents roughly two minutes of recording. The synchronized
ground truth position and volume arrays were saved in a text file. The θ values span from −80 to
+97 degrees (mean of 8 degrees, standard deviation of 50 degrees), i.e. they almost span the
full visible FOV of 180 degrees. The ML algorithm was trained on this data.

For testing, another independent set of values was collected using the same process. This
test set contains 138 values of synchronized ground truth position and volumes array. Once
trained, both ML algorithms, RandomTrees and SVMs, were run on this test set. The naive
method, which sets the microphone with the highest volume as the source of the sound, was

4.2. Research contribution 81

also used. We also run all these algorithms on the training set: for the naive method, as there is
no training associated, it gives us more test data, and for both regression algorithms, we can
thus ensure the regression was coherent. The results of this benchmark for each algorithm are
collected in Table 4.1.

Algorithm Naive SVM RandomTrees
Prediction angular error on training set 0.87 rad = 49◦ 0.10 rad = 6◦ 0.31 rad = 18◦

Prediction angular error on test set 0.91 rad = 52◦ 0.47 rad = 27◦ 0.38 rad = 22◦

Table 4.1: Benchmark results for voice localization using machine-learning methods.

We can first observe that the naive algorithm, based on the maximal volume, is not a very
reliable method to determine the sound source: the angular error on both training and test sets
is over 45 degrees. This angular error is considerably reduced by using a regression algorithm.
Note that the SVM fits very accurately its training set, but the error on the test set is somewhat
higher. On the other hand, RandomTrees obtain the most accurate prediction law for the test set,
with an error about 20 degrees.

Conclusions: we built a PeoplePoseList Publisher (PPLP) based on voice localization. Voice
Activity Detection, presented in [Alonso-Martin and Castro-González, 2013], indicates when
the user is speaking. We focus on the case where there is one user speaking, and we want to
determine her position. The robot Maggie is equipped with 8 microphones pointing at different
directions, which provide simultaneous volume arrays. Sound localization is obtained thanks to
machine learning techniques: first, we obtain a great number of volume samples synchronized
with the ground truth position, which is obtained thanks to another PPLP (based on laser scan
analysis). Second, two ML algorithms are trained on this data: RandomForests and SVMs. Third,
their accuracy is evaluated on an independent test set. The naive method, which sets the sound
source to the direction of the microphone with the loudest volume, has an angular error over
45 degrees. On the other hand, the angular error of the SVM is under 30 degrees and of the
RandomForest under 25 degrees: these regression algorithms are reliable PPLPs. Furthermore,
they illustrate the modularity of the PPLPs system, mainly focused at vision-based detectors but
perfectly adapted for other classes of algorithms.

4.2.3 Integration of the leg pattern detector and benchmark

We saw previously, in subsection 4.1.3, how the laser scans provided by two-dimensional laser
range finders can offer some advantages concerning people detection that overcome limitations
of vision-based techniques. Indeed, the information being structured and associated to a metric
measure, we can have a direct understanding of the scene in front of the robot in the laser plane.
Furthermore, their wide Field of View (FOV) ensures a perception of the environment to a greater
extent than cameras, that typically have a FOV of roughly 70 degrees. Most laser range finders

82 Chapter 4. Other techniques for person detection

being typically mounted at the level of the legs of the users, i.e. about forty centimeters high,
user detection is made through the detection of their legs.

Many leg pattern detection algorithms exist. We chose the one described on [Bellotto and
Hu, 2009] for its simplicity and the overall good performance claimed by its authors. It was
integrated as a PeoplePoseList Publisher (PPLP). As an input, it subscribes to the laser scans
acquired from the laser range finder. It then performs the leg pattern detection described in the
original article, that we reimplemented in C++ using the original description. Each found pattern
is then converted into a PeoplePose (PP), using the (x, y) coordinates of the pattern and setting
a constant z height of 170 cm. All the PPs are then grouped in a PeoplePoseList (PPL) that is
published to the rest of the architecture. This pipeline is visible in Figure 4.8.

Laserurange
finder

Laseruscans

Legupattern
detector

PPL

Caption

Processingublock
(ROSunode)

Exchangedudata
(ROSumessage)

X
Nodeupublishing
messagesuofutypeuX

X
Nodeusubscribinguto
messagesuofutypeuX

Figure 4.8: The pipeline of the ARToolkit PeoplePoseList Publisher.

Benchmarking: To evaluate the performance of the leg pattern-based PPLP, we needed a
dataset of test laser scans. The DGait dataset ([Igual et al., 2013]) used for benchmarking the
vision-based detectors do not include laser scans, only raw data from the Kinect. Although there
are techniques that allow the conversion of a depth image into a laser scan, the position of the
camera, mounted on top of a cupboard, and the narrow field of view of the Kinect, do not result
in data that are similar to a laser range finder mounted on top of a robot.

For this reason, we acquired real laser scans from a Hokuyo laser range finder mounted on
top of one of our vehicle. During the acquisition, a user walks randomly around the robot, using
the whole 270 degrees of field of view. In average, we kept 3.5 scans per second that we saved in
a CSV file. In total, 139 scans were saved. They were then manually annotated: the ground-truth
user 2D position was marked on each scan thanks to a Graphical User Interface (GUI). The

4.2. Research contribution 83

final CSV file contains both the scans and the positions of the user, when visible. This dataset
is licensed under the terms of the GNU General Public License Version 2 as published by the
Free Software Foundation, and freely available to download on the author’s website, along with
images and videos 5.

The leg-pattern detector is then evaluated on this dataset: each scan is sequentially read
from the file by a CSV parser and published to the ROS architecture. The leg-pattern PPLP

subscribes to this data stream and perform the detection as described above. The resulting PPL

is then compared against the ground-truth annotation, also available in the CSV file. The results
are gathered in Table 4.2.

True positives 99
True negatives 0
False positives 703
False negatives 0

Hit rate 100%
Accuracy 12.3%

Position error per true positive (m) 0.306

Table 4.2: Benchmark results for the leg detectionPeoplePoseList Publisher (PPLP).

We can observe that the leg-detector PPLP always detects people in its surroundings: the
hit rate is 100%, which means that all ground-truth user occurrences were correctly detected.
However, it has a low accuracy: the number of false positive is very high, which means that
many leg patterns are detected in the background objects, resulting in a poor accuracy. Indeed,
we can understand that it is challenging to detect users only by the processing of an horizontal
layer of their three-dimensional (3D) shape: legs can easily be confused with other geometrical
shapes of similar appearances such as trash bins, lamps and so on.

Conclusions on the leg pattern-based PPLP: To conclude, we integrated into our user aware-
ness architecture a PPLP based on the analysis of laser scans, in which it tries to find leg patterns.
This leg-detector based PPLP has been evaluated through a benchmark on data we acquired
and that we make available to the community. It is characterized by a very high hit rate, but a
poor accuracy. This performance can be improved by coupling this detector with other detectors
having a better accuracy: this will be considered in following chapters.

5https://sites.google.com/site/rameyarnaud/research/phd/legs-in-laser-scans-datset

https://sites.google.com/site/rameyarnaud/research/phd/legs-in-laser-scans-datset
https://sites.google.com/site/rameyarnaud/research/phd/legs-in-laser-scans-datset

84 Chapter 4. Other techniques for person detection

Figure 4.9: A capture of the benchmark of the leg detector PeoplePoseList Publisher. The arrows
correspond to the position of the robot (the origin of the coordinates frame). In red, the current laser scan.
In blue, the ground truth position of the user. In green, the users detections: four detections are visible,
the one in the middle being a true positive and the three remaining false positives.

4.2. Research contribution 85

Summary of the chapter

This PhD tackles the problem of giving user awareness to social robots. This local mapping of
the users can be split into three sub-tasks: user detection, user recognition and user mapping.
This chapter focuses on the first sub-task, user detection, using methods that are not based on
image processing, dealt with in the previous chapter. Indeed, there are a variety of sensors and
algorithms that can help detecting users. Our contribution in that field is made of three elements.

First, we explored the field of tag-based user detection. Among the different tag possibilities
(barcodes, Radio-Frequency Identification (RFID) tags, IR tags, etc), we chose a specific class
of visual tags, called ARToolkit tags. They are monochrome tags, each of them different from the
others. They can easily be detected by an algorithm, which also returns the three-dimensional
position and orientation of the detected tags. Although the detection and recognition accuracy
are good, the system is limited by definition: the markers turn out to be cumbersome to wear in
a realistic setting and they need to be visible by the camera, which is hardly compatible with user
motion. We integrated the original algorithm into our architecture, shaping it as a PPLP (defined
in the previous chapter).

Second, we re-used the work done by other members of the team in voice detection. Voice
Activity Detection (VAD), which consists in determining if a user is speaking or not thanks to
the audio stream, was already tackled by previous articles of the group. We built on top of this
feature a voice localizer, that determines the angular position of the speaking user relative to
the robot center using an array of eight microphones located around the robot. The algorithm is
shaped as a PPLP and is based on machine learning techniques, namely RandomForests and
Support Vector Machines (SVMs), which do not need explicit laws between each mic volume
and the position of the user, and is modular by approach: after a change in the microphone
configuration, the process of collecting data and training the algorithm with this new configuration
is fast. The voice localizer was tested on both test datasets and live in the robot Maggie. The
precision of the estimation of the angular position is good. Perhaps more interestingly, this
algorithm demonstrates the flexibility of the PPLP interface: it fits as well audio based algorithms
as well as vision-based ones.

Finally, a user detection algorithm based on laser scans was implemented. This kind of data
is two-dimensional (2D) and by definition, more ambiguous: recognizing users from this kind of
data structure is challenging. After a careful review of the state of the art, we selected [Bellotto
and Hu, 2009] as a base for a laser-based PPLP. The detection is based on the research of
several given leg patterns in the laser scan. These patterns correspond to how a pair of user
legs are seen from the laser point of view, according to the user orientation. The algorithm was
implemented, and tested. It is characterized by a good hit rate (most users are detected), but a
high false alarm rate, as static objects are often detected as legs too.

Overall, this chapter demonstrates the modularity of the PPLP system, focused on vision-
based techniques, but also perfectly adapted for other sensors and classes of algorithms. It also
gives contributions in the field of user detection that integrate well with the other capabilities of
the robot and make use of the variety of sensors that equip it. Coupled with the previous chapter

86 Chapter 4. Other techniques for person detection

based on user detection thanks to vision-based techniques, they provide a range of methods, all
respecting the PPLP interface, that suits well the variety of sensors and configurations that can
be found in robotic architectures.

Part II

User recognition

87

88

CHAPTER 5

Vision-based user recognition

Introduction

It was shown in the previous chapters how to perform user detection for social robots using
different methods. These methods can be based for instance on vision techniques, such as face
detection, or other devices, for instance, detection of the legs with a laser range finder.

However, for a meaningful Human-Robot Interaction (HRI), detecting the users around the
robot is not enough. User recognition consists of determining that a given user visible by the
robot is in fact a given known user (uniquely identified, for instance with her name, with all her
characteristics). User recognition is of key importance for HRI: it enables having a personalized
interaction flow with the user based on her preferences, her experience with the robot, etc. User
recognition methods have an intrinsic life scope associated: for instance, an algorithm based on
the color of the clothes is valid for short term estimations (a few hours), while one based on the
visual appearance of the face of the user or her voice will last for months or even years.

Some valuable hints for the recognition of a user can be obtained via Gender recognition,
which goal is to estimate automatically and robustly the gender of the user. Although it is not a
proper recognition technique, because it does not estimate the identity of the user, its information
is useful: knowing the gender of an unknown user prunes the possible match 1. It may also have
a direct interest in HRI as it allows the customization of the interaction according to the user
genders without resolving their full identity.

1 For instance, if they are as many women as men in the user dataset, the possible matches are pruned by a
factor of two.

89

90 Chapter 5. Vision-based user recognition

This chapter first aims at making a comprehensive review of the existing vision-based
techniques for user recognition and gender recognition, in section 5.1, page 90. The topics
covered include recognizing the user according to the visual appearance of its face, anatomy-
based techniques, and histograms.
Then, in section 5.2, page 102, the different contributions we achieved in this field and their
implementations will be presented. They include the building of an image dataset for gender-from-
face using innovative techniques; details on the implementation of gender-from-face recognition
for the robot MOPI using this dataset; a novel algorithm for height detection, that can be used
either for user recognition or for gender estimation; another novel method estimating the gender
of the users according to the shape of their torso; and an innovative user recognition algorithm
based on structured histograms of the color of their clothes.

5.1 State of the art

User recognition using vision and image processing is a wide field. In this section we will only
present the most relevant and interesting techniques for our goals, defined in section 1.2, page
3.

Face and gender-from-face recognition techniques are first presented in subsection 5.1.1,
page 91. The former aims at recognizing a new face among known users thanks to a dataset of
labeled faces of these users. The latter guesses the gender of a new face thanks to a training on
a dataset of both male and female faces. This gender can then be used as a hint for pruning the
possible matches of a user recognition algorithm.

However, to obtain a natural interaction with the human user, it is important that the robot
gathers information about her. The queries can be explicit, such as questions asked to her or an
interactive display, but the range of applications widens if some features can be inferred with no
user action required. These features are called Soft biometrics. Three important families of
soft biometrics will be further presented: physical traits, behavioral traits, and adhered human
characteristics.

In subsection 5.1.2, page 94 we will present some soft biometrics techniques for user
recognition based on the anatomy of the user: first, her height, which can be challenging to
compute when she is not standing straight, and second the shape of her body, which consists of
a useful feature for recognizing her.

Then, we will consider how histograms can help us for user recognition. Histograms are a
powerful way to represent how data spreads among a range of values, and it comes especially
handy for representing color distributions. They can hence be used for user recognition algorithms
according to their color distribution, as explained in subsection 5.1.3, page 96.

5.1. State of the art 91

5.1.1 Face and gender-from-face recognition

In this part, we will present different state-of-the-art algorithms for face and gender-from-face
recognition. Face recognition consists of recognizing the user thanks to a picture of her face.
More accurately, face recognition determines the most likely user label for a given face picture,
given a set of face pictures annotated with user labels.

In subsection 3.2.3, page 47, we saw how it was possible to robustly detect faces in the
robot’s surroundings. We now aspire at recognizing these detected faces against known ones.

In subsubsection 5.1.1.i, we will review the most popular techniques for face recognition. In
subsubsection 5.1.1.ii, gender-from-face recognition will be presented as a special case of face
recognition.

5.1.1.i Face recognition basics

A facial image can be seen as a point in a high-dimensional space. Indeed, let us consider
greyscale images of p× q pixels. Then each face corresponds to a point in a pq-dimensional
space. However, for typical dimensions, such as p = q = 100, this very highly dimensional space
makes the matching problem very difficult.

The three main face recognition algorithms will be further explained: Eigenfaces, Fisherfaces
and Local Binary Patterns Histograms (LBPH).

Eigenfaces The idea behind Eigenfaces ([Turk and Pentland, 1991]) is to determine the
dimensions that matter the most, that is, that convey the most discriminative information between
faces. To achieve this, the theory of Principal Component Analysis (PCA) is used. An extensive
review of PCA is available in [Duda et al., 1995]. PCA helps to transform a set of numerous
variables possibly correlated into a smaller set of variables that are uncorrelated, and which are
the most meaningful for the description of the set. The PCA method finds the directions in the
set with the greatest variance in the data, called principal components.

The Eigenfaces approach is based on PCA. Here is a brief summary on how to compute
Eigenfaces for face recognition:

1. A small set of face pictures is used to train the classifier, which learns how to differentiate
these pictures thanks to the data distribution of these faces.
More exactly, the classifier extracts eigenvalues and eigenvectors from the covariance
matrix of the distribution of these training faces. Then, only the most discriminative
eigenvectors are kept, i.e. the ones with the eigenvalues with the highest norm. The
number of eigenvectors that should be kept heavily depends from the data, but some rules
of thumb are available [Zhao et al., 2003].

2. Faces are then represented as linear combinations of these eigenvectors, called Eigen-
faces. The Eigenface subspace is then defined as the subspace spanned by these

92 Chapter 5. Vision-based user recognition

Eigenfaces. This performs the dimensionality reduction that we sought.

3. Face recognition is then made by projecting a new image into the Eigenfaces subspace
and classifying this new image position in this subspace with relation to the labeled training
sample images. The closest neighbor is the most probable recognized face.

Fisherfaces The idea of PCA, used in Eigenfaces, is simple: to find linear combinations of
components in the training sample that maximize the total variance in the data. However, the
images of the training set are clustered by their labels: each image is associated to a physical
user, so the set of labels is the set of users, and there can be several images per label. This
label is also called Class of the image.

Eigenfaces does not take into consideration the classes (labels) of the training set, and it
might happen that the found components are not relevant to discriminate between these classes
of objects. This is the case when most of the variance in the data is not brought by the class
itself, but for instance light conditions. In such a case, images projected into the Eigenfaces
subspace do not form distinct clusters, and a successful classification becomes challenging.

On the other hand, Fisherfaces also performs a dimensionality reduction, but with respect
to the classes of the training samples. The components it computes maximize the inter-class
variance, while minimizing the variance within samples of the same class. As such, it learns
a class-specific transformation matrix: the facial features it will find are the most useful to
discriminate between the different classes (users), which is bound to increase the accuracy of
the classification, and hence the precision of the user recognition.

This strategy, called Linear Discriminant Analysis, was presented by the first time by the
statistician Sir R. A. Fisher to classify flowers [Fisher, 1936]. The first published use of this
technique for face recognition was in [Belhumeur, 1997], and the details of the computations of
Fisherfaces are available there.

Local Binary Patterns Histograms (LBPH) Both Eigenfaces and Fisherfaces follow the same
idea: a face picture can be seen as a point in a high dimensional space. Similar faces are
seen as neighbors in this high dimension space. However, such a high dimension makes it
impossible to process in practice. This is why both perform a dimensionality reduction which
tries to discriminate between faces, Fisherfaces making this reduction with respect to the class
of the objects. However, both of them remain very sensible to variance sources that do not come
from the classes, such as light conditions, orientation, pose, etc.

On the other hand, Local Binary Pattern (LBP) is a class of features that describes the image
locally. LBP finds it roots in texture analysis. The basic idea of LBP is to describe the nature of
each pixel (for instance if it is a corner or an edge) with relation to its neighbor pixels. To do that,
consider a pixel of the image and threshold its 8 immediate neighbor pixels with its value: if a
neighbor value is higher, denote this neighbor with 1, else 0. This gives a pattern of 8 binary
values, called LBP code, which can be converted into a decimal value. This operator hence

5.1. State of the art 93

transforms an image into a LBP image. By definition, the LBP operator is invariant to linear
transforms on the image.

LBP images can then be used for face recognition: the technique presented in [Ahonen
et al., 2004] divides an LBP image into n chunks. For each of them, a histogram is computed.
The long histogram, obtained by concatenation of these n histograms, constitutes a descriptive
feature of the image. Using histogram distances on these long histograms enable a robust and
efficient recognition of the class of the image.

Most efficient face recognition algorithm These three algorithms (Eigenfaces, Fisherfaces,
LBPH) have different approaches to tackle the same problem and it comes naturally to determine
which performs better. Several articles discussed which is the most accurate face recognition
algorithm, among others [Belhumeur, 1997,Zhao et al., 2003]. It seems that the performance of
each algorithm depends vastly on the dataset used for both training and testing. Later on, we
will see how we performed our own benchmark in subsubsection 5.2.2.ii.

5.1.1.ii Gender-from-face recognition

As seen in the introduction of the chapter, determining the gender of the user is a valuable
indication, as it helps pruning the possible match for other user recognition algorithms, as the
face recognition algorithms that were explained in the previous section.

In this part, we contemplate determining the gender of a (possibly never seen before) user
thanks to a picture of her face. This problem can be seen as a special case of face recognition:
there are two classes only (male and female).

In previous subsection 3.2.3, page 47, we saw how to robustly detect faces in the Red Green
Blue (RGB) and depth stream of the robot. We now target classifying these faces according to
their gender (male or female).

As underlined in [Moghaddam and Yang, 2002], a very similar approach to face recognition
can be used. Face recognition consists of determining if a given face image corresponds to a
given user label. These labels come from a so-called training set consisting of images and the
associated labels, for instance 10 pictures of user A, 15 of user B, etc. As such, gender-from-face
recognition can be seen as a specific case of face recognition with only two ”meta-users”, i.e.
two classes: user Female and user Male. The training set would then be a collection of pictures
of male faces, and another one of female faces.

In subsection 5.2.1, page 103, we will see how a gender faces dataset can be quickly
constituted thanks to automatic retrieval techniques and in subsection 5.2.2, page 104 how a
2-class face recognition classifier can be trained using this dataset.

94 Chapter 5. Vision-based user recognition

5.1.2 Height and other anatomy-based techniques

Soft biometrics were previously defined as the gathering of data about the user’s morphology
without explicitly querying them to the user. They can be divided into three families.

• Physical traits are bound with the user body, such as the height, the weight, the color of
the skin, the shape of the body, facial hair, etc.

• Adhered human characteristics concern the more temporary appearance of the user,
for instance the color of her clothes, accessories, etc.

• Finally, Behavioral traits are bound with the user motion and actions, such as her gait.

User height: The height of the user is a very useful tool, as it helps to discriminate quickly
between the different users, and so prune the search tree for a faster matching. It can also be
used for a gender estimation, as men tend to be taller than women.

On a side note, Human-Robot Interaction (HRI) studies have demonstrated that the role of
the robot is perceived differently according to the difference of size between the user and the
robot ([Rae et al., 2013]). Detecting the size of the user and adapting to it allows to shape her
relationship with the robot.

However, determining the height of the user is challenging. First, we cannot expect the user
to always stand straight. On the contrary, it is likely that during an interaction process, she will
relax and then be slightly stooped, bend over to check something, etc. Second, she might lift her
arms higher than her heads for a variety of reasons: greeting, scratching her head, etc. For both
these reasons, the metric difference between the lowest and the highest three-dimensional (3D)
point of the user is only a rough estimate of the user height.

And yet, to the best knowledge of the author, related work use this method. One of the
earliest multi-modal user tracking systems [Darrell et al., 2000] used the user height and the
color of the skin to obtain a robust tracking of the users around a multimedia kiosk (interactive
public screen display). Height is obtained by computing the median value of the highest point of
a user silhouette in 3-D. The same method is used in [Mittal and Davis, 2003]. While working in
most conditions, this is not robust to a user lifting her arm for instance.

User gait: The gait motion of the users can also be used for estimating their gender: men
and women tend to have a somewhat different gait that can be used for differentiating one from
the other, as explained in [Igual et al., 2013]. Gait analysis has even been extended for people
recognition in [Bouchrika and Nixon, 2006].

Other metrics bound with physical traits will now be further detailed: the proportions of the
user’s body and the shape of her torso.

5.1. State of the art 95

5.1.2.i Anatomy proportions

Artists have used the human body proportions for centuries for accurate drawing and sculpting
of the human body. The relative length of parts of the body are used to build an accurate
representation of a person. For instance, for an adult male, if the height of the head is defined as
a unitary length, the user height is roughly equal to eight heads, its navel is located at five heads
from the feet, etc. This technique is widely used by artists. More details are found in [Loomis,
1971] and examples are visible in Figure 5.1.

Figure 5.1: Anatomy and proportions of the human body for artists. The size of each part of the body
can be related to the others, independently of the total height of the person. The proportions of children
are different from the adults. The three charts are from [Loomis, 1971].

96 Chapter 5. Vision-based user recognition

These proportions can then be used in computer vision algorithms. For instance, an accurate
face detector could give an estimate of the size of the user head, which could help to approximate
the user height, even though the full body is not visible. Another example is found in [Cai et al.,
2010], which aims at determining the gender of a person according to the shape of his or her
torso (more details in subsection 5.2.4). The authors use the body proportions to locate the area
of the breast and prune the surface to be examined.

5.1.2.ii Breast detection

Considering the shape of the breast of a person is a natural way of estimating its gender [Laws
and Cai, 2006]. Human proportions are used to find the area of the breast in the user scan then
a feature shape is fitted to that area. The scale of that shape determines the gender of the user.

However, this method turned out to perform poorly in real time and with challenging body
shapes. Furthermore, as further underlined in [Cai et al., 2010], the users are concerned about
the privacy of this detection and might consider it intrusive.

We will see in subsection 5.2.4 how we tackled these limitations.

5.1.3 Histogram-based user recognition

Another class of soft biometrics consists of features that describe the temporary visual appear-
ance of the user. Color is one of the most important visual cues.

Human vision system is highly trained for perceiving color (thanks to the cone cells located
in the eye retina, and then the different parts of the cortex in charge of color perception). We
heavily use color information for recognizing objects and people. As such, it makes sense to use
color information to recognize users. Histograms are a compact and robust way to represent
color distribution for an object or a user.

In subsubsection 5.1.3.i, some basic notions about histograms will be taught, the use of
histograms for images will be presented. and existing techniques and metrics for histograms
comparison will be reviewed.

In subsubsection 5.1.3.ii, we will present how histograms were used for user recognition in
previous works by other authors.

5.1.3.i Histograms basics

Definition Histograms are powerful tools for representing data in a more compact way. For
a given set of numerical data, a histogram is a set of values that represent the way this data
is spread. It is made of a series of so called bins, which can be seen as a cell contain one
numerical value. Each of these cells represents a range of possible values for the data, such
as the range of a cell begins where the range of the previous cell ends. The number of bins is

5.1. State of the art 97

constant. For instance, let us say we want to represent the height of the population of a country,
in centimeters. We could represent it with a histogram of five bins, with range [150, 160[for the
first bin, [160, 170[for the second bin, etc. As such, the whole range [150, 200[is represented by
this histogram.

As seen in this simple example, minimum and maximum values for the histogram must be
defined. It can be done either by the data own constraints (finite number of values, for instance,
percentage of accuracy of different methods, between 0 and 100), or by choosing reasonable
bounds: human ages can be safely bound in [0, 130]. In our example, we chose to represent
a given span that represents most of the population, but not all of it. We could have chosen to
have bins between 0 and 300 centimeters, thus including all possible data but resulting in a less
compact feature.

The single numerical value of a given bin represents the amount of the data set which has
values in the range of this bin. Let us now consider the data of our population is the 10 following
values: 177; 166; 185; 177; 166; 163; 196; 154; 142; 185. The first bin, accounting for [150, 160[,
contains the number 1, the second, for [160, 170[, contains 3, the third, for [170, 180[, contains 2,
the fourth, for [180, 190[, contains 2, the fifth and last, for [190, 200[, contains 1. 2 The histogram
can thus be represented as such:

Index 1 2 3 4 5

Value 1 3 2 2 1

How to choose the number of bins? There is a trade-off between precise representation,
and data compactness; and is highly dependent on the size of the data. For instance, our
previous example data has ten entries and the histogram range was [150, 200[. Using only three
bins in a poor description of the data: knowing most of the data is in the [166, 183[span is a hint,
but it could be refined. On the other hand, having ten bins with most of them empty does not
describe well the data either. Five bins then appears as a good tradeoff.

Normalization: A histogram represents the way data is dealt over a given span. As such,
what matters is not really its absolute values, but the ratio between them. If a cell has a high
value compared with the others, it means the span it represents is statistically more frequent.
Multiplying all bin values by a constant factor does then not change the meaning it contains. If
for instance, much of the data fits into one bin, multiplying all bins by 2 will not change this trend.

Norms A norm is a function that maps a set of numerical values to another numerical value.
A norm is linear, which means the norm of a set where each value is multiplied by a constant
factor is equal to that constant multiplied by the norm of the set. There are numerous kind of
norms, the most common being the L1, L2 and L∞ norms.

L1 norm The L1 norm is defined as the sum of the absolute values:

L1 :

{
Rn 7→ R

X = x1, . . . , xn → ‖X‖L1
=| x1 | + · · ·+ | xn |

2 We can see that one of the entries is discarded: 142 is outside of the data range.

98 Chapter 5. Vision-based user recognition

L2 norm The L2 norm is defined as the square root of the sum of the squared values:

L2 :

{
Rn 7→ R

X = x1, . . . , xn → ‖X‖L2
=
√
x21 + · · ·+ x2n

L∞ norm The L∞ norm is defined as the maximum of the absolute values:

L∞ :

{
Rn 7→ R

X = x1, . . . , xn → ‖X‖L∞ = max | x1 |, . . . , | xn |

Histogram normalization consists of multiplying the histogram by a specific numerical
value. This value depends on the data of the histogram and of the chosen norm. It is chosen so
that, once multiplied, the norm of the histogram is equal to one.

We consider the previous example of the heights in a given population:

Index 1 2 3 4 5

Value 1 3 2 2 1

The L1 norm of this example is 1 + 3 + 2 + 2 + 1 = 9.
The L2 norm is

√
12 + 32 + 22 + 22 + 12 = 4.36.

The L∞ norm is 3.
And so we get the following normalized histograms:

Index 1 2 3 4 5

Value of HL1
1
9

3
9

2
9

2
9

1
9

Value of HL2 0.23 0.69 0.45 0.45 0.23

Value of HL∞
1
3 1 2

3
2
3

1
3

Histograms for images Histograms are a powerful tool of data crunching, used in a wide
range of fields, among other statistics of course, but also economy, biology, physics, and many
others. They are also vastly used in image processing to represent the way images values are
dealt.

For instance, the values of a greyscale image can be used to generate a histogram. The
bounding values of the histogram are well defined: greyscale images have their values between
0 and a maximum, usually 255. The histogram will show how the image brightness is dealt over
the image. In Figure 5.2 (d), we can see a sample of a value histogram for a black and white
image.

In fact, we can use any one-dimensional value for building the histogram. A color space is
a way of representing visible colors into numerical values. Several methods remap the three-
dimensional (3D) Red Green Blue (RGB) values to a one-dimensional (1D) color space and can
be used for building histograms. For instance HSV (Hue Saturation Value) is a color space,
where the Hue values span from 0 to 360 degrees, the Saturation and the Value values span

5.1. State of the art 99

(a) (b) (c)

(d) (e) (f)

Figure 5.2: A greyscale picture: (a) is the original image, (d) is its histogram, made between 0 and 255
and 25 bins. Values stretch in a balanced way between the minimal value (0) and the maximum value
(255).
(b) is a version with more lightness (i.e., all the image values have a constant positive shift), Note how its

histogram (e) is shifted to the right, which corresponds to brighter pixels.
(c) is a version with less contrast (i.e., the span of the image values is shrunk down). Its histogram (f) is

shrunk down the same way: the values do not span from 0 to 255. .

from 0 to 1. More details about HSV come in [Bradski and Kaehler, 2008]. The Hue channel of
an image in the HSV color space can for instance be used for computing a histogram. The Hue
scale is visible in Figure 5.3.

Figure 5.3: The Hue scale. The left edge corresponds to a value of 0◦, the right edge to a value of 360◦.

The key interest of the Hue channel is that it is a 1D feature that describes the color of
objects. Furthermore, it has been proved to be fairly independent to light conditions: changes
of brightness will result in different values in the saturation or value channels, leaving the hue
component relatively intact. This differs vastly from the Red Green Blue (RGB) color space,

100 Chapter 5. Vision-based user recognition

where the value of each component directly depends on the amount of light hitting the object, and
therefore is correlated with the two others. As such, a Hue histogram results in a powerful and
relatively light-independent descriptor of the color of an object. This is illustrated in Figure 5.4.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 5.4: Effects of lightness and contrast on Hue image histograms: (a) is the original image, (b) is
the Hue component (i.e., with the Saturation and Value at their maximum), (e) is its histogram, made
between 0 and 360 and 25 bins.
(c) is a version with more lightness and (d) with less contrast. Note how the obtained histograms for the
three versions (c), (f) and (g) are almost identical.

Histogram comparison We want to estimate to what extent how two histograms represent
the same distribution of, for instance, color. Various metrics exist that enable the comparison of

5.1. State of the art 101

histograms. All of them suppose the histograms to have the same number of bins. OpenCV3,
the Computer Vision library that we used, implement five different popular metrics for histogram
comparison, namely the intersection method; the correlation method; the chi-square method;
the Bhattacharyya distance; the Earth Mover’s Distance method.

More details are available in [Schiele and Crowley, 1996] and [Bradski and Kaehler, 2008].
These metrics differ in their formula, but all of them can be remapped thanks to a linear
transformation so that: (i) a perfect match between two histograms result in a distance of 0;
(ii) a maximal mismatch gives a distance of 1. For instance for correlation, a perfect match is 1
and a maximal mismatch is −1; a value of 0 indicates no correlation. Using the transformation
d′ = −0.5× d+ 0.5, we remap it so that d′(H,H) = 0 and d′ for a maximal mismatch equals 1.

5.1.3.ii Histograms for user recognition

Face color matching has been used in many tracking systems.

Many examples of adhered human characteristics, especially the use of color histograms of
clothes, exist.

For instance, in [Darrell et al., 2000], already seen in subsection 5.1.2, a histogram of
the color of the clothes is used along with depth blobs obtained thanks to stereo-vision, face
detection, and the estimated height of the user. The unique color histogram, kept for each user,
was reported to be discriminative enough for big datasets if used with the other features, but not
alone.

In [Krumm et al., 2000], the authors tackle the problem of person tracking in an intelligent
environment, equipped with several stereo cameras. Although the detection of the persons
is made thanks to the depth information of the stereo cameras, people tracking and identity
coherency is ensured thanks to histograms of the color of the users. Each of the RGB axes
is split in four wide domains, which gives a 4× 4× 4 color cube and a 64 bin histogram. The
system works well with up to three persons, with more, occlusions triggers poor clustering and
tracks are not maintained.

The color of the clothes of the users are also used in [Saldivar-Piñon, 2012]: during a learning
phase, the color model of the upper body of the user is learnt, then thanks to segmentation, its
torso and arms are detected.

Another algorithm for extracting features of clothing is presented in [Tian and Yuan, 2010]:
the matching between clothes items is evaluated to help color blind people. Two features are
used for describing the clothes patterns: color and texture. A normalized color histogram in HSL
space is first computed, then a discrete set of its dominant colors is used for the matching. The
algorithm is reported to recognize correctly clothes pattern in a vast dataset. It is unclear to what
extent the algorithm is robust to scale variations and how it can be used in real-time. However,
unlike Hue values, RGB values are prone to change widely if light conditions change, which

3http://opencv.org/

http://opencv.org/
http://opencv.org/

102 Chapter 5. Vision-based user recognition

was solved by continuously updating the features. Such a solution is hard to use in a multi-user
environment.

These articles were about making a global histogram for the user. However, it makes sense
of using the user shape for computing different parts according to its morphology. A single color
model for the whole person is indeed be able to capture the vertical variation in color.

An interesting example is found in [Niinuma et al., 2010], where color histograms of the user’s
clothes and face enable her to identify herself in a computer, then they are used to continuously
check that it is the same user who uses this computer. Two RGB histograms, one of the colors of
the clothes and one of the face of the user, are registered during a login phase, then continuously
matched with the current ones. The algorithm is reported to identify correctly each user in a 20
users dataset, and with varying light conditions.

In [Mittal and Davis, 2003], depth information is available thanks to stereo cameras, and
several histograms are computed: the colored blob of the user is segmented by height slices of
equal length. The similarity between histogram sets is made thanks to kernel estimators.

However, using slices of fixed length suffers from a drawback: the number of slices for small
and tall people will be different. In other word, the index of a slice has no meaning, and we
cannot guarantee that two slices of same index correspond to the same body part. For this
reason, in subsection 5.2.5, page 122 we will present our own algorithm for user recognition
based on structured Hue histograms, by computing first the ehgiht

Histograms summary

We have seen briefly what are histograms, how they can be applied to color images to generate
hue histograms, and how to compare them thanks to different metrics. This knowledge will be
used in one of our contributions: the use of structured histogram sets for user recognition, later
explained in subsection 5.2.5, page 122.

5.2 Research contribution

As presented before, there is already a wide range of algorithms that exist and have been
presented to perform user recognition based on computer vision techniques. We also mentioned
how obtaining information about the user gender can be useful for its recognition.

The contributions of this PhD dissertation to this field take advantage of the existing state of
the art.

In subsection 5.2.1, we explain how a face dataset with both genders can be generated in an
innovative way, thanks to image search engines.

Next, subsection 5.2.2 presents how a gender-from-face recognizer trained with this data
was implemented in one of our robots, MOPI.

5.2. Research contribution 103

In subsection 5.2.3 is presented a novel algorithm for the detection of the height of the user,
even when she doesn’t stand straight. This height information can be used for user recognition,
or for some hints on the gender, as women tend to be smaller than men ([Nagamine and Suzuki,
1964]).

Then, subsection 5.2.4 shows how morphological features of the users can help the recogni-
tion of their genders, more specifically the shape of their breast.

Finally, subsection 5.2.5 presents a novel user recognition algorithm based on a description
of the color of the user clothing, thanks to structured Hue histograms.

5.2.1 Building a dataset of training sample images for gender-from-face recog-
nition

We have seen in subsection 5.1.3, page 96 how to perform gender-from-face recognition thanks
to efficient face recognition algorithms, coupled with datasets of both male and female pictures.

A wide range of face images are available for academic use. For instance, one of the earliest
and most used datasets is the ORL face dataset from AT&T Laboratories, Cambridge University,
consisting of images of 40 subjects (36 men and 4 women, 10 images per subject) [Samaria
and Harter, 1994]. Nowadays, an important effort has been made for building extensive face
datasets, including both an important number of subjects and a variety of pictures per subjects,
with varying poses, lighting positions, face expressions, etc. For instance, the Yale dataset [Lee
et al., 2005] contains 5760 single light source images of 10 subjects each seen under 576
viewing conditions (9 poses x 64 illumination conditions).

However, in the scope of the implementation in MOPI presented in the next part, we focus
only on gender-from-face recognition and not in specific face recognition. This is why we decide
to constitute a gender-from-face images dataset using innovative techniques.

A first raw dataset of 550 images is obtained thanks to an image search engine. We collect
the 225 first images returned by Google Images Search (GIS) 4 with the search query man face
on the one hand, with the query woman face on the other hand.

A first manual review of the so-obtained 550 images allow us to remove the most evident
outliers from these raw results, such as pictures not containing faces. The number of images
remaining after this quick manual filter is 520.

Then, a second, more accurate filter is made by applying the Viola-Jones face detection
algorithm described in section 3.1.1, page 33. The pictures which do not pass this filter might still
contain a face, but at least all pictures which pass it do contain a usable face. Furthermore, the
results of the filter supplies the bounding box of the face in the image. As such, filtered pictures
can be used for an exact training of the gender classifier described in subsubsection 5.1.1.ii,
page 93. The number of images remaining after this final filter is 467.

4http://images.google.com/

http://images.google.com/
http://images.google.com/

104 Chapter 5. Vision-based user recognition

A few samples of the dataset are visible in Figure 5.5. A pie chart about the kept images is
in Figure 5.6.

(a)

(b)

Figure 5.5: Gender images dataset constitution thanks to GIS.
(a): Raw image results from GIS, with queries man face (two first rows) and woman face (two last rows).

The images with a black frame were manually filtered, as they do not contain faces or inappropriate ones.
(b): Remaining images in the dataset after applying the Viola Jones detector ([Viola and Jones, 2001])

and pre-processing the images. The missing pictures correspond to images that were either discriminated
by the manual filtering, or the Viola Jones face detector.

5.2.2 Implementation and benchmarking of gender-from-face recognition for the
social robot MOPI

We have seen in subsubsection 5.1.1.ii, page 93 how to build an algorithm to estimate the
gender of a person according to the visual appearance of her face. It is indeed a sub-problem

5.2. Research contribution 105

5.5%
9.6%

84.9%

pictures manually filtered out (30)
pictures dismissed by Viola Jones (53)
final pictures (467)

Figure 5.6: Number of pictures in the GIS gender dataset after each step.

of face recognition with only two classes: female and male. Three popular algorithms exist for
performing face recognition: Eigenfaces, Fisherfaces and LBPH, seen in subsubsection 5.1.1.i,
page 91.

In this part, we will explain how we implemented a real-time gender-from-face recognition
system into the social robot MOPI, already presented in subsubsection 1.3.1.ii, page 6.

5.2.2.i Implementation of gender-from-face recognition into MOPI

Both face detection (seen in subsection 3.2.3, page 47) and robust gender-from-face recognition
(seen in subsubsection 5.1.1.ii, page 93) have been implemented into the social robot MOPI.

They are structured as two different Automatic-Deliberative (AD) skills running at the same
time as background skills into the software architecture of MOPI. The face detection skill
subscribes to the image and depth stream coming from the Kinect, and publishes the results of
the face detection, containing the rectangular cutouts of the image corresponding to the faces.

The gender-from-face recognition skill subscribes to this information and performs gender
recognition on the cutouts. The resulting estimated number of male and female users around
the robot is then published, and any other skill of the robot can then subscribe to it. A sample is
visible in Figure 5.7.

The required times for data processing are showed in Figure 5.8. A typical VGA image, of
size 640× 480 = 3k pixels, requires about 70 milliseconds to be procesed. The most costful
step is the face detection, the gender classifier running in less than one millisecond.

The platform can also be used to benchmark the different face recognition algorithm. Further
explanations follow.

106 Chapter 5. Vision-based user recognition

Figure 5.7: A sample image of the gender-from-face recognition skill.

103 104 105 106

Image size

0.1

1

10

100

Ti
m

e
 (

m
s)

Time for detecting faces Time for running classifier

Figure 5.8: Times needed for finding faces and estimating their gender on a sample image according to
the size of the image (number of pixels).

5.2.2.ii Comparative between face recognition methods

Classifier trained on Google Images Search (GIS), benchmarked on YaleB We presented
in subsubsection 5.1.1.i, page 91 three different methods for face recognition: Eigenfaces,
Fisherfaces and LBPH.

To evaluate to what extent which method performs better, we trained separately three
classifiers with the same training set of images from GIS, as presented in subsection 5.2.1. Then,
each of these classifiers was used to predict the genders of all faces of an annotated dataset
and we compared the results of each classifier with the ground truth.

5.2. Research contribution 107

We made use of the YaleB dataset, an extension of the Yale dataset presented in subsec-
tion 5.2.1 ([Lee et al., 2005]). This dataset contains 16.380 face pictures, 12.870 being of male
subjects and 3.510 of female. A sample of this dataset is visible in Figure 5.9. It was designed
for benchmarking user recognition, this is why we manually labeled the gender of these pictures
for our benchmark. The results are visible in Table 5.1.

Figure 5.9: Some samples of the YaleB dataset.

Eigenfaces Fisherfaces LBPH
Training set size 408

Test set size 16.380
Number of detected faces 12.3367

Precision 46.8 % 66.0 % 56.8 %

Table 5.1: Benchmark results for the gender-from-face recognition trained on GIS and tested on YaleB

Overall, the performance is not outstanding. This might be explained by the fact that most
images from our dataset offer well-lit, well contrasted images, as seen in Figure 5.5 (a), while
most of the YaleB dataset pictures offer challenging light conditions, as seen in Figure 5.9. We
should obtain better results if we train with similar images to the test images: this point will be
adressed below.

108 Chapter 5. Vision-based user recognition

We can also point out the very different performance of the three classifiers. Fisherfaces
perform much better tan Eigenfaces. This makes sense, as the dimensionality reduction made
by Fisherfaces is made with respect to the classes of the objects (here the gender), while the
one of Eigenfaces only tries to maximize the total variance of the data. As such, the found
components may or may not be appropriate to discriminate between the genders. However, the
poor performance of LBPH is harder to justify. It might be related to the previously mentioned
important differences of contrast between the two sets of images. In any case, Fisherface
outperforms both other algorithms.

Classifier trained on YaleB subset, benchmarked on YaleB subset The subset is obtained
from the original 16.361 images, where only roughly 10% are randomly kept. It then has a size
of 1669 images. It is split in two rough halves: a training set of 814 images, and a test set of 855.
As such, an image cannot belong to both training and test sets.

The results of the benchmark are visible in Table 5.2. We observe a very clear improvement
compared with the classifier trained on GIS, as Fisherfaces performs more than 20% better
when trained on YaleB. This is explained by the fact that the training set and the test set are very
similar (although the images are distinct), which helps greatly the classifier.

As in the previous benchmark, Fisherfaces outperforms the other algorithms. For this reason,
it is the one used in the final application.

Eigenfaces Fisherfaces LBPH
Training set size 814

Test set size 855
Number of detected faces 634

Precision 87.5 % 88.4 % 88.9 %

Table 5.2: Benchmark results for the gender-from-face recognition trained on half of YaleB and tested on
the other half of YaleB

5.2.3 Height detection for user recognition and gender estimation

As seen in subsection 5.1.2, page 94, the height of the users is a good metrics for two goals:
first, for a known user, it helps recognizing him from others; second, the height of unknown
users helps determining their gender, as men tend to be taller than women. However, related
articles determine the height of the users by the highest three-dimensional (3D) point of the
user bounding box. This supposes that the user stand straight, while she can relax and then be
slightly stooped, or lift an arm for greeting.

We here present a novel method for estimating the height of the user, that overcomes these
difficulties. It requires the depth image and user mask image, and supplies a estimate in meters
of the height of the user.

5.2. Research contribution 109

The next subsubsection 5.2.3.i, will first define how to perform a so-called Morphological
thinning on a binary image, that generates the Skeleton of the image. In subsubsection 5.2.3.ii,
we will see how to detect the probable position of the head in the user mask. Both the skeleton
and the head position will be used in subsubsection 5.2.3.iii for determining the height of a user
given its depth image and user mask. Finally, the accuracy and performance of the algorithm will
be discussed in subsubsection 5.2.3.iv.

5.2.3.i Preliminary: fast morphological thinning for binary images

This new height detection algorithm is based on finding a line that goes from the head of the
user to her feet, going through the middle of her body shape, i.e. more or less following her
dorsal spine and then a leg. The length of this line gives an estimation of the user height.

A field of computer vision comes of special interest for this application: Morphological
thinning. It consists of transforming a shape into a simplified version of it, but topologically
equivalent, called Topological skeleton. This topological skeleton is equidistant to the border of
the original shape. [Jang and Chin, 1990] sums up the properties that can be expected of a good
algorithm for the computation of topological skeletons: 1. the algorithm must converge; 2. the
generated skeleton must be one pixel wide; 3. it should retain the connectivity of the original
shape; 4. it should preserve the ”legs” of the shape, which are its convex parts.

Baseline algorithms used With respect to these criteria, we chose two thinning algorithms
complying with these criteria and with an available implementation in C++: [Guo and Hall, 1989]
and [Zhang and Suen, 1984]. Both are iterative algorithms that initialize the skeleton as the
original shape that we want to thin. Then, they will iteratively remove points on the contour of
the skeleton. At each iteration and for each pixel of the skeleton, a so-called deletion test will
determine if the pixel needs to be removed according to its neighbors. The two papers differ in
the definition of their deletion test. The algorithms end when no further pixel is removed from
the skeleton during an iteration. Both algorithms running on different samples and at different
iterations and at convergence are shown in Figure 5.10.

Implementation in OpenCV [Guo and Hall, 1989] and [Zhang and Suen, 1984], both reference
algorithms for image thinning mentioned above, are iterative algorithms. At each step, the
eliminated pixels are only on the contours of the non-zero pixels blobs of the current mask.

As such, we can accelerate each iteration by only considering the pixels at the border of the
mask and not all of them. We then have created a data structure called contour images, which
encodes, for each pixel, if it is outside of the blobs (pixel value of 0); if it belongs to the contour
(pixel value greater or equal to 1 and at the edge); or if it belongs to the inner part of the blobs
(pixel value greater or equal to 1 and surrounded by others non null pixels).

The basic actions on such a structure are twofold:

110 Chapter 5. Vision-based user recognition

(a) (b)

(c) (d)

(e)

(f)

Figure 5.10: Results of the thinning on different samples.
(a) and (b) are the query images, (c) and (e) correspond to thinning thanks to [Zhang and Suen, 1984],
(d) and (f) thanks to [Guo and Hall, 1989].

5.2. Research contribution 111

1. determine if a pixel belongs to the contour;

2. switch a pixel status from border to outside.

These actions trigger the update of the underlying data structure, as shown in Figure 5.11. At
each step of [Guo and Hall, 1989] and [Zhang and Suen, 1984], the elimination test, which is
run in the original algorithm on each pixel, can be run on the contour pixels only, thanks to the
use of these contour images. Retrieving the value of a pixel in a binary mask being significantly
faster than running the elimination test on it, resulting in a significant speedup for the algorithm
convergence. Numerical results will be given later on.

Outside pixel Countour pixel Inner pixel

Switching
red pixel

to "outside"

Figure 5.11: The two basic actions for a contour image

5.2.3.ii Head detection for user binary images

The height detection for a given user mask needs a reasonably accurate detection of the position
of the head of the user in the user mask.

This could be obtained thanks to a face detection, as seen in subsection 3.2.3, page
47. However, in this case, it turns out to be not the best solution for several reasons: it is
computationaly expensive; it only works with frontal detections; and it requires the Red Green
Blue (RGB) image.

This is why we created another detector, using only the user mask. In most cases of HRI,
the user stands straight in front of the robot. As such, her head is located in the blob at the upper
end of the mask. This point corresponds roughly to the head. However, the upper pixel, as used
in [Darrell et al., 2000] or [Mittal and Davis, 2003], is not appropriate, as it could belong to the
user’s arms if she is lifting them. Our method to overcome this challenge is hence to get rid of
the blob corresponding to the arms using a morphological erosion filter on the mask [Bradski
and Kaehler, 2008].

112 Chapter 5. Vision-based user recognition

For the eroding, we use a kernel size proportional to the width of the whole mask. As such, a
close user generate a wide mask, and consequently an important eroding; while a remote user is
hardly eroded. A skeleton is also computed in that same mask, as seen in subsubsection 5.2.3.i.
All ends of this skeleton, i.e. leaf points at the end of a segment, such as hands, feet, etc, are
computed. An ellipse is fitted to the eroded user mask ([Fitzgibbon and Fisher, 1995]), and
the upper end of the long axis of this ellipse is considered to be a first estimate. Then, a more
precise estimate is obtained thanks to the end of the skeleton closest to that first estimate. Some
samples are visible in Figure 5.12.

5.2.3.iii Use of the skeleton for height computation

We saw first in subsubsection 5.2.3.i how to get the skeleton of the user binary mask, and
we have just seen in subsubsection 5.2.3.ii how to determine the approximate position of the
head. As seen for instance in Figure 5.10 (c), the skeleton we obtain goes indeed from the head
position to the feet position. If the user is not occluded, the height in pixels of the user can now
be seen as the shortest path along the skeleton between the head position and the feet position
5.

First we will focus on the general problem of how to find the shortest path in a binary mask,
then we will see how to use this method for the height computation of the user in pixels, then in
meters.

Shortest path computation in a binary mask A Binary mask is an image of finite size
where the value of each pixel is either 0 or positive. Pixels with value 0 as seen as forbidden,
while positive pixels are seen as allowed. Given a mask M , we note M+ the allowed pixels
in M , and M0 the forbidden pixels. For instance, our childhood mazes can be described as
a binary mask where the hallways are positive, i.e., white, and the walls zeros, i.e., black, as
shown in Figure 5.13.

Given a maskM of pixels, whereM+ describes the allowed pixels, and two points a, b ∈M+,
we search the shortest path starting in a and ending in b that only goes through points of M+.
This problem could be efficiently solved using graph shortest path solvers such as Dijkstra’s
algorithm [Dijkstra, 1959], which complexity is roughly logarithmic in the size of the graph
Θ(log |M+|).

However, we implemented a much simpler algorithm inspired by floodfill propagation and
performing a BFS (Breadth-first search). Starting from a, we recursively add all the neighbor
pixels in a queue till reaching b. Details of the algorithm are in algorithm 2.
Time complexity is roughly linear O(|M+|) and space complexity is constant Θ(|M |). As the
skeleton obtained previously is only one pixel thick, |M+| is of the same order of magnitude

5In case of a partial occlusion, if this occlusion does not hide this shortest path, the shortest path might still be the
height of the user.

5.2. Research contribution 113

(a) (b)

(c)

(d) (e)

Figure 5.12: Samples of head detection in a user mask. The white mask on the left of each image is the
user mask. On the right, the dark red is the original mask, the light red the eroded one. The yellow ellipse
is the fitted ellipse and the yellow lines its axes. The white point is the first estimate, i.e. the highest ellipse
long axis. The blue circles are the ends of the morphological skeleton in the eroded mask. The green
circle corresponds to the final estimated head position. .

than the width or height of M . As such, a linear complexity will not generate an expensive
computation overhead compared with Dijkstra’s logarithmic one.

Application and conversion between distance in pixels and in meters We have seen
before how to obtain the morphological skeleton of the user mask M , and an approximate
location h for the user head in the user mask. Re-using previous definitions, a corresponds to

114 Chapter 5. Vision-based user recognition

(a) (b)

Figure 5.13: Mazes as binary masks. (a) represents the maze as we are used to see it, (b) its
representation as a binary mask, where the trivial paths have been forbidden and both beginning and end
points indicated. .

Data: mask M , seed a, goal b
Result: path P from a to b in M+

initialize cost matrix C such as C(M+) = 0, C(M0) = −1;
initialize queue Q with a;
C(a) = 1;
while Q not empty do

q ← first element of Q;
remove first element of Q;
if q = b then // path found

// get path back with decreasing cost values from b to a
p← q;
while p 6= a do

add p to path P ;
p← unique neighbor of p with a cost < C(p);

return P ; // done

else
// add un-seen neighbors of q with an increased cost

for q′ C4 neighbor of q do
if C(q′) == 0 then // unseen and in M+

add q′ to Q;
C(q′)← C(q) + 1;

return; // No path exists

Algorithm 2: The BFS algorithm used for computing the shortest path in a binary mask

the closest point of h in the skeleton, and b the point of the skeleton in the lowest row, which
corresponds to the position of the feet. An example is visible in Figure 5.14, where a and b are

5.2. Research contribution 115

marked with green circles.

Then the shortest path from a to b in M corresponds to a path that would follow the neck;
then the spine; then the leg bone of the user; to her feet. This path can be computed thanks to
the algorithm we just explained. Its length then gives an approximation of the size of the user, in
pixels.

Thanks to the depth image, we can then convert the distance in pixels into a distance in
meters: the average distance of the user to the optical center is equal to the average depth of
the pixels that belong to the user mask. The camera pin-hole model then is used to convert the
height in pixels at the distance into a height in meters.

The description of the height detection algorithm is now complete, we will now evaluate its
performance through a thorough benchmarking.

Figure 5.14: Sample of height computation for several users at once. The heights are both indicated in
pixels and in meters.

5.2.3.iv Benchmarking of the height detector

Benchmarking of the image contour speedup for thinning algorithms The four following
thinning algorithms were benchmarked: 1. [Guo and Hall, 1989], 2. [Zhang and Suen, 1984],
3. [Guo and Hall, 1989] using contour images, 4. [Zhang and Suen, 1984] using contour images.

Note that, as explained before, the use of contour images does not alter the resulting thinned
image and only results in a speedup in its computation.

We used one given test image. The test image was chosen to be representative of a user
skeleton computation scenario. It is visible in Figure 5.15 (a). This high resolution user mask
was scaled down to a range of given widths, and the needed time to run the algorithm 1000 times
consecutively was measured for each method. The benchmark results are visible in Figure 5.15.
The use of the contour images trigger a speedup of almost 10 times for both reference algorithms.

116 Chapter 5. Vision-based user recognition

(a) (b)

10
2

10
3

10
4

10
5

10
6

10
7

npixels

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

m
s)

zhang suen zhang suen + contour
guo hall guo hall + contour

(c)

Figure 5.15: Benchmark results for different thinning algorithms.
(a) The query image, that is resampled to different widths and heights. It corresponds to a typical user
mask.
(b) The RGB image associated with the query image. This image was not not used in this benchmark.
(c) The use of contour images results in a computation speedup of almost one order of magnitude.

Skeleton-based height computation against the classical approach To measure the pre-
cision of our skeleton-based height estimation algorithm, we benchmarked it against another
method, labeled ”the classical approach”. It corresponds to the algorithm used, among others,
in [Darrell et al., 2000] and [Mittal and Davis, 2003]. It consists in reprojecting in 3D the mask of
the user thanks to the depth information, then computing the 3D bounding box of this reprojected
point cloud. Then the height of the bounding box is the height estimation. In other words, the
height of the user is equal to the height difference between the user’s lowest point (usually the
feet) and the highest point (the head).

5.2. Research contribution 117

Although it has numerous user samples, we cannot use the DGait database ([Igual et al.,
2013]) that we previously used. Indeed, the database authors do not supply the exact metric
height of each user. We also considered the Kinect Tracking Precision (KTP) dataset ([Munaro
et al., 2012, Munaro and Menegatti, 2014]), but it suffers from the same limitation. For this
reason, we gathered a number of our own user images.

We made a quick implementation of the classical approach, previously presented. We
gathered roughly 25 images, containing users of various sizes, on which we ran the benchmark.
The results are gathered in Table 5.3. Some samples are visible in Figure 5.16.

In average, the average error of the classical method is over ten centimeters, while our
method error is about five centimeters. In most cases, the user’s head is indeed her highest
point and both approaches are similar, thus obtain similar results. However, in cases where for
instance the user is bending or lifting arms, our approach correctly locates the position of the
user’s head and obtains a better estimate.

Classical approach Our approach
Images in test set 25

Unique users in test set 5
Range of unique users heights (cm) [152, 187]

Average error (cm) 5.3 10.5

Table 5.3: Benchmark results for height estimation algorithms.

5.2.3.v Height detection for user recognition

Now that we have seen how to determine the height of the user from the input data, we can
apply it to user recognition. At each PeoplePoseList (PPL) supplied by a user detector (for
instance, any of the detectors presented in chapter 3, page 31), the height detector will compute
the height of each user present in the message. Then, for matching known tracked users to
detections, the height differences between both sets generates a similarity matrix. This will be
later presented in section 7.2.3, page 159.

5.2.3.vi Height detection for gender recognition

We previously presented how the height of the users around the robot could be inferred using
their visual appearance in a reliable way. The height of the users can, in some cases, give a hint
about their gender. Indeed, the average female population is slightly shorter than the male one
in Western countries ([Garcia and Quintana-Domeque, 2007]). Hence, the taller users tend to
be male, while the smaller ones female. Although no definite conclusion can be drawn from this
observation, it can help the system to discriminate between two possible recognition matches of
opposite gender.

118 Chapter 5. Vision-based user recognition

(a)

(b)

Figure 5.16: Benchmark results for our homebrew height algorithm vs. the classical approach.
(a) Ground truth: 152 cm, our approach: 152 cm (error: 0 cm), naive approach: 151 cm (error:1 cm).
In this case, the user stands straight: the head is the highest 3D point of the user, and so both methods
measure accurately the user height.
(b) Ground truth: 152 cm, our approach: 150 cm (error: 2 cm), naive approach: 185 cm (error:33 cm).

In this case, the user lifts an arm above her head: the classical approach measures the distance between
the hand and the feet, and so overestimates the height. Our approach finds the head accurately and
estimates the height correctly.

This possibility has unfortunately not been explored further. We instead focused our efforts on
another method for estimating the gender of the detected users thanks to their visual appearance:
breast detection.

5.2.4 Breast detection for gender estimation

We just saw how the height of the users can be a metric for recognizing them and how to
compute it.

But other morphological features can be used. This part will focus on the shape of the breast
of the users. We have seen in subsubsection 5.1.2.ii, page 96 different techniques for gender
detection thanks to breast detection. The work presented in this part aims at determining the
gender of the user using similar techniques, but overcoming the limitations of the previous work.

5.2. Research contribution 119

5.2.4.i Description of the system

A structured light sensing device (Kinect) supplies a continuous stream of color and depth images
to the robot Maggie. A full description of the robot is available in the subsubsection 1.3.1.i, page
5.

User detection and mask computation The input needed for our system is a three-dimensional
(3D) (colorless) point cloud of the user. This can be obtained through a range of input devices,
such as a structured light depth sensor such as Microsoft Kinect, or a stereo vision device. In
any case, the point cloud given by the device needs to be cut down to keep only the points of the
user. Our system sports two sources for this user mask. A device-specific solution is to use the
one directly given by the device Software Development Kit (SDK) (Kinect NiTE SDK presented
in subsection 3.1.3, page 36). The other way is to obtain a seed pixel belonging to the user
thanks to face detection (subsection 3.2.3, page 47), detect the edges in the depth mask thanks
to a Canny filter (subsection 3.2.1, page 39); the final user mask is obtained by performing a
propagative floodfill in the edge image from that seed (subsection 3.2.1, page 39). In both cases,
the point cloud is obtained by reprojecting to world coordinates the pixels of the depth map that
also belong to the user mask.

Breast feature computation Laws’ algorithm ([Laws and Cai, 2006]), which is the most recent
and similar algorithm, is based on extracting several horizontal slices of the point cloud of the
user for a span of height values that corresponds to the breast location in a body. The contour of
each slice is matched against the pattern of a breast shape using non-linear regression [Shanno,
1970]. Metrics on the pattern that fits best one of the slices are then used to evaluate the gender
of the user. However, female users with a moderate breast and over-weight males generate
similar horizontal slices.

Our algorithm is instead based on computing the vertical contour of the torso of the user.
The pipeline is illustrated in Figure 5.17.

First, the point cloud of the user is aligned with the three axes, to correct small tilts due to
the user bending over. Then the orientation of the user is determined by fitting an ellipse to the
shadow generated by the projection of the point cloud onto the ground plane ([Fitzgibbon and
Fisher, 1995]). The shortest axis of the ellipse corresponds to the front direction of the user. The
projection plane is chosen to be vertical, going through the user’s Center of Mass and parallel
to this short axis. The points of the cloud with a height corresponding to the breast, according
to morphological rules seen in subsubsection 5.1.2.i, page 95, and that are close to that plane
are projected onto it. The outline of the user thus generated is approximated by a fixed length
polygonal line, which consists of the final feature.

Gender determination A training set with pictures of users (depth images) and manually
labeled genders must be gathered to generate training features and labels. This data, once

120 Chapter 5. Vision-based user recognition

y

x

s

ba

Horizontal slice
of user cloud

Pattern fitting

3x1
Feature

(a, b, s)

[Laws' algorithm]

z

x

b
re

a
st

Vertical slice
of user cloud

15x1
Feature

Polygonal approx.

[Our algorithm]

Projection
to plane

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

K
in

e
ct

 v
ie

w
 f

ru
st

ru
m

x

y

z

Figure 5.17: Algorithms pipelines for both [Laws and Cai, 2006] and our algorithm. The robot Maggie is
the blue shape on the left. The black shadow is the projection mentioned in subsubsection 5.2.4.i, and the
ellipse the best fit to that shadow. The projection planes for both methods are indicated in dashed lines.

gathered, can then be fed as training set to a two-class Support Vector Machine (SVM) classifier
([Cortes and Vapnik, 1995]) to learn the non-linear separation between male and female shapes.
Once trained, the prediction output of the SVM for a test shape determines the gender of the
user. We will now present the data we used and our experimental results.

5.2.4.ii Implementation and benchmarking of the algorithm

The algorithm was integrated into the robot Maggie. A full description of the robot is available
in the subsubsection 1.3.1.i, page 5. It is written in C++ and is based on the Robot Operating
System (ROS) architecture (see subsubsection 1.4.1.i, page 9) and the Automatic-Deliberative
(AD) paradigm (see subsubsection 1.4.1.ii, page 12). It supplies in real-time an estimation of the
gender of the surrounding users.

5.2. Research contribution 121

A user dataset was used to benchmark our algorithm against Laws’ ([Laws and Cai, 2006]).
The DGait dataset [Igual et al., 2013] contains video sequences of 55 users, both female and
male, walking on a stage with varying light conditions. Both our and Laws’ detectors were trained
on 1100 images (20 per video), and tested on 550 (10 per video). The results are gathered in
Table 5.4.

In his original article, Laws algorithm was tested on a dataset of medical scans. with full-
figured, standing straight, subjects, and logically performs poorly on real-life user samples. Our
algorithm correctly estimates the gender of the user in almost nine times out of ten.

Laws Our
Accuracy rate 63% 89%

Average computation time (ms) 83 11

Table 5.4: Benchmark results for gender recognition based on breast detection

5.2.4.iii Privacy concerns

The gender recognition algorithm runs in the background within the robot and supplies estima-
tions of the gender of the surrounding users in real time, even though the user was never seen
before.

Discussions with potential users have given interesting results. On the one hand, users
acknowledge the usefulness of detecting their gender for a personalized interaction. On the other
hand, once told the robot considers seamless the shape of their torso to guess their gender,
some users, especially women, have shown concerns about their privacy and how measuring
their chest shape is an intrusive method, thus meeting the results of [Cai et al., 2010]. However,
once shown the output of the algorithm, some of these users have reported to have worse
expectations than reality: the sensor and the algorithm are not as intrusive as infra-red cameras.
These first conclusions now give way to deeper research using a proper experimental framework
and a bigger set of users.

5.2.4.iv Conclusions on the breast detector

The proposed algorithm turns out to be a useful metric as it helps to determine the gender of
new users. It gives a generally liable estimation of it, and its lightweight nature makes it perfectly
suitable for social robots.

Possible extensions of this detector would be to study more in details the a-priori and a-
posteriori privacy concerns of the users. Determining how the use other techniques such as
gender-from-face recognition improves the accuracy of the gender estimation would also be an
interesting topic.

122 Chapter 5. Vision-based user recognition

5.2.5 PersonHistogramSet: user recognition based on structured Hue histograms

In this part, we will achieve recognizing users thanks to their visual appearance, more specifically
to the color of their clothes.

As seen in subsection 5.1.3, page 96, color histograms have been used extensively for user
recognition. However, they often do not take into account the fact that this color data in a person
is structured. For instance, its position can be divided in three parts: head, upper body (torso
and arms), and lower body. Some articles represent the user’s color distribution as a set of
histograms, but with a constant height step [Mittal and Davis, 2003], therefore slices do not
correspond to physical body parts (head, torso, limbs, etc.). The work presented here aims at
generating a set of Hue histograms structured so as to represented a natural segmentation of
the human body. This set of Hue histograms is called a PersonHistogramSet (and abbreviated
PHS).

5.2.5.i Preliminary: Masks and vector of histograms

Histograms can be computed over any one-channel image, as seen in subsection 5.1.3, page
96. A histogram is usually computed over all the values of the image, or in some cases over a
defined region of the image. However, if the object we want to describe has a known structure, it
makes sense to describe it thanks to several histograms, each of them describing a distinct part
of this structure.

For instance, a user of the robot can be characterized by the color of its clothes thanks to the
following structure: head, torso (shirt, sweater, bare torso...), and legs (trousers, skirt...). This
would result in three histograms.

To be computed from an image, such a vector of histograms needs a ”mask” describing to
what part of the structure, i.e. to what histogram, each pixel belongs. The previously described
description of human clothing would then need a mask consisting of 4 values: head pixels, torso
pixels, leg pixels, and pixels not belonging to the user.

It is then possible to combine several masks into one so-called Multi-mask, that will generate
several histograms at once. It is an array of integers, of the same size than the input image,
where the value of a pixel corresponds to the histogram to which the input image pixel value
should contribute 6. A value of 0 means the value of the pixel will not be used. The number of
histograms then corresponds to the number of unique values in the multi-mask, 0 excluded. As
such, if the pixel (10, 10) has a value of 2 in the multi-mask, then its hue value in the input image
should be used for the computation of the second histogram.

The following example Figure 5.18 shows how a mask or a multi-mask can influence the

6Readers with a good memory will remember that the concept of multi-mask was already met concerning the data
supplied by the Kinect, in subsection 3.1.3, page 36. In that part, it was also referring to an integer image, the value
of each pixel indicating to what user it belongs (or 0 if it does not correspond to a user). Both defintions then match,
as they refer to the same data structure type, and have the same purpose: give a structure to the input images.

5.2. Research contribution 123

histogram obtained on an image.

5.2.5.ii Computation of a PersonHistogramSet (PHS)

We have seen how to compute a vector of histograms based on a single color image and a
multi-mask. Several algorithms seen in chapter 3, such as the NiTE API subsection 3.1.3, page
36, or the algorithm based on a seed and the depth mask seen in subsection 3.2.1, page 39,
supply a so-called user mask, i.e. a binary image that indicates all pixels belonging to the user.

A user is naturally divisible into several ”morphological parts”, such as head, torso, legs,
arms and feet. We here choose to divide the user in three parts: 1: head; 2: torso; 3: legs.

If we manage to segment this user mask into different parts that correspond to the morpho-
logical parts of the user, we can then generate one histogram per part of the user. Our goal is
then to generate a user mask that contains four different values: 0 where the user is not visible
(outside of the mask), 1 for the head, 2 for the torso, 3 for the legs.

On the one hand, thanks to the anatomy rules seen in subsubsection 5.1.2.i, page 95, the
different parts of the body relate one to another in size. As such, if we know the user mask,
the position of the head of the user, and the height of her head, we can define the approximate
position of the different parts of the body. For instance, the torso is between one head and four
heads of distance from the top of the head of the user.
We have previously seen in subsubsection 5.2.3.ii, page 111 how to locate the head of the user
in a binary mask, and in subsection 5.2.3, page 108 how to determine its height. So, we know
explicitly the range of pixel distance from the top of the head that corresponds for instance to the
torso. For example, if the user height is 400 pixels, then the user head is about 400

8 = 50 pixels,
and so from the top of the head, the torso is located between 50 and 50 + 50× 3 = 200 pixels.

On the other hand, we had seen in subsection 3.2.1, page 39 how to perform a floodfill
propagation from the depth image and a seed pixel belonging to the user. We here use a similar
algorithm, using the top of the head as the seed. The difference is that the mask is considered
to be already computed here, as mentioned in the previous paragraph.

Coupling the floodfill propagation and the anatomy rules will generate a multi-mask, contain-
ing the three values mentioned before (head, torso, legs). We leave some gaps between the
parts, to avoid ambiguous zones such as the neck or the belt. The gaps between each of these
three parts can be easily re-configured. Coupled with the Hue image of the user, the multi-mask
is then used for computing the three Hue histograms of the user at once. The triplet of histograms
thus generated consists of a descriptor of the user, that we call PersonHistogramSet (PHS).
This descriptor can then be used for user recognition, as explained in the next paragraph. A
sample of user histograms computation is shown in Figure 5.19.

124 Chapter 5. Vision-based user recognition

(a) (b) (c)

(d) (e) (f)

Figure 5.18: The effects of masks on histogram computation.
(a) is the original image, and (d) is its hue histogram.
(b) is a binary mask on the original image (a) and (e) the histogram of this image using this mask.

Note how the histogram of the mask is different from (d) and only represents the content of the image
corresponding to the mask, in that case the yellow-orange stripe of the balloon.
(c) is a multi-mask on the original image (a), combining several values that will result in several histograms,
and (f) the resulting histogram collage on the original image (a). Note how each histogram describes the
corresponding zone of the multi-mask.

5.2. Research contribution 125

(a) (b) (c) (d) (e)

Figure 5.19: Multi-mask generation and histograms computation. The inputs are the user RGB image
(a) and the user binary mask (b).
(c) illustrates the floodfill made from the head seed. The head seed is drawn as a circle. (d) corresponds
to the generated multi-mask by applying the anatomy rules. Note the gaps between the three parts, to get
rid of the ambiguous zones such as the belt and the neck. Finally (e) shows the generated histograms for
this input data. The title of each histogram corresponds to the dominant color of this histogram, therefore
it is the dominant color the associated body part: in this example, we can verify that the shirt is mostly
green.

5.2.5.iii User recognition with PHSs

As explained before, a PHS is a color descriptor of a given view of a given user. It encodes
a powerful description of the visual appearance of the user, that is structured in space. It is
a constant length feature, where the length is the sum of the number of bins used for each
histogram. Furthermore, this feature is somewhat compact: our implementation uses 15 bins
per histogram, which results in a feature size of 45 floating numbers, i.e. 45× 4 = 180 bytes of
information.

PHS distance: dPHS The similarity between two PHS can be evaluated thanks to the his-
tograms distances seen in section 5.1.3.i, page 100. As a PHS is a set of histograms, we define
the PHS distance dPHS as the sum of corresponding pairs of histograms. That is, given two
PHS P and P ′, writing P = (h1, h2, h3) and P ′ = (h′1, h

′
2, h
′
3), the distance between P and P ′

is:

dPHS(P, P ′) =
1

3

3∑
i=1

d(hi, h
′
i)

126 Chapter 5. Vision-based user recognition

where d(·, ·) is one of the histogram distances, for instance the intersection distance. Two similar
PHS will then get a dPHS distance close to zero, and two very different ones will have a distance
close to one. This distance now gives use the possibility to recognize users.

User recognition We just saw how to evaluate the similarity of two PHS using a specific
distance called dPHS . We now use this distance for user recognition.

We suppose here we have a system of labels that identify uniquely a physical user. They
could be a numerical ID or a descriptive string such as ”ArnaudRamey”.

We also suppose we have a set of n PHS P = (Pi, i ∈ [1, n]) with their matching user labels
L = (li, i ∈ [1, n]). A user can have several PHS associated with her, obtained thanks to several
views of her. For instance, we can have three PHS of user A, one PHS of user B, ten PHS of
user C, etc. The number of known users then corresponds to the number of unique labels in L.

The recognition of the user l̃ associated with a new PHS P̃ is obtained easily: it corresponds
to the user label that minimizes the distance with the known PHS:

l̃ =

(
lj |j = arg min

i∈[1,n]
dPHS(P̃ , Pi)

)

Now that we have defined how to perform user recognition based on PHS, we will present
some benchmarking results of this technique.

5.2.5.iv Benchmarking of PHS-based recognition

For benchmarking user recognition based on PHS, we make use of the DGait dataset [Igual
et al., 2013] already presented in subsubsection 5.2.4.ii, page 120.

It contains 55 videos of unique users, 35% of which are female. For each user, we generated
20 training user images and 10 test user images. Consequently, the dataset P contains
55 × 20 = 1.100 PHS, each of them associated with its user label, which belongs to [1, 55].
Some samples of the user views are visible in Figure 5.20. Note how some users have similar
clothing colors, such as grey or black clothes.

The algorithm is then run on training user images to estimate the most likely user. A match is
considered as correct if the output label corresponds to the expected label. Results are visible in
Table 5.5. We obtain an accuracy of 100%, which means the algorithm successfully recognizes
the correct user among 55 in all cases. Taken in consideration the similarity of some users,
the good performance of this user recognition module is of great interest for performing user
recognition in challenging conditions, such as crowded environments.

5.2. Research contribution 127

Figure 5.20: A few samples of the users in [Igual et al., 2013] dataset. Some users have very similar
clothes colors and patterns. This makes the user recognition challenging.

Unique users 55
Training images 1.100

Test images 550
Correct matches 550

Accuracy 100%

Table 5.5: Benchmark results for PHS user recognition.

128 Chapter 5. Vision-based user recognition

Summary of the chapter

In this chapter, we have seen different methods for user recognition based on vision. Several of
these can also be used to obtain hints about the user gender, which helps for her identification.

Face recognition (subsection 5.1.1, page 91) is a key algorithm: it is a powerful tool for
long-term recognition of the users. However, it requires training images, whose acquisition by the
robot can be cumbersome for the user. Gender-from-face recognition can also give hints of the
gender of unknown users, and the training data is much easier to obtain, as it is not user-specific
(subsection 5.2.1, page 103).

Morphological features of the user can be used, such as her height (subsection 5.2.3, page
108) or the shape of her body (subsection 5.2.4, page 118). Moreover, the visual appearance
of the user is a powerful short-term recognition algorithm, that can be characterized with color
histograms (subsection 5.2.5, page 122)

However, each of them has a given domain of use where it works better, and none of these
methods have an accuracy rate enough to be used alone as a user recognition system. However,
they can run in parallel and be coupled for getting more accurate results, which will be seen later
on, in chapter 7.

CHAPTER 6

Other techniques for user recognition

Introduction

The first part of this PhD is focused on detecting users thanks to various methods using a
variety of sensors and algorithms. This part instead aims at giving temporal coherency to these
detections, in other words, recognizing the users across time. The previous chapter focused on
vision-based techniques to reach that goal, for instance, face recognition or descriptions of the
color of the clothes.

Note that recognizing the user without using her spatial appearance is a challenging task:
if we draw a parallel with how humans perform this task, they mainly rely on their vision. This
explains the brevity of this chapter: many relevant techniques were already presented in the
previous chapter, and they represent most of the work done in user recognition in the scope of
this PhD. However, the voice of the user is also a discriminant feature: we can recognize a user
according to her voice. RFID tags and other kind of tags can also be used.

6.1 State of the art

Voice recognition and user speaking detection In Human-Robot Interaction (HRI), users
who want to interact with the robot will most likely intend to communicate with it using their voice.
This is a precious clue about who the user is.

Using voice for user awareness was already considered in chapter 4, page 67. We then

129

130 Chapter 6. Other techniques for user recognition

treated how to detect if somebody is speaking in an audio stream, which is called Voice Activity
Detection (VAD). We also presented how to locate spatially this talking person, using an
array of microphones: the distribution of volumes on the different microphones will give us the
approximate angular position of the talking user.

On top of these techniques, the voice is also a powerful characterization of each user: just
like her face, the voice of a user is a way to recognize her among others.

Acoustic fingerprinting: Just as image features are compact descriptions of the characteris-
tics of an image, audio features are numerical descriptors of a given audio sample. They can
be used to describe accurately and in a compact way a voice sample. For instance, an acute
voice and a low-pitched voice differ in their pitch: the pitch can be used as an audio feature.
More generally, audio features are used to recognize an audio sample among a set of known
ones. A collection of different features is presented in [Cano et al., 2002]. Audio features can be
extracted in three domains: time, frequency and time frequency.

Overview of user voice recognition systems: The general structure for voice recognition
system is presented in [Hunt and Schalk, 1996]. These systems are most often made of two
phases:

1. Enrollment: during the enrollment phase, the user registers in the system. This phase is
most often made of several questions the user needs to answer, so that the system learns
how the voice of the user sounds like.

2. Identification (searching) phase: once the enrollment is done, the user can be identified by
the system. When she starts speaking, the description of her voice will be used as a way
to recognize her.

The enrollment can be either text-dependent or not. A text-dependent enrollment system
requires the user to record a vocal passphrase, that will then be re-used for the identification.
With a text-independent system, this constraint does not exist: the user can say any sentence so
as to be recognized by the system.

For instance, the previous user identification system of our robot Maggie, presented in
[Alonso-Martı́n et al., 2013], was a text-dependent system: This phase consisted of questions
asked by the robot to the user. Along with her name, age, language, a key-pass sentence is
chosen by the user to learn her voice tone. It can be a digit password or anything else. For this
task, we used the third-party Loquendo ASR-Speaker Verification package ([Dalmasso et al.,
2009]). The main drawback was that, to be correctly identified, the user needed to utter the
same sentence that he used in the enrollment phase.

In this work, we instead focused on developing a speaker recognition system not based on a
passphrase, but using any utterance of the user: the features computed on whatever the user
says are used to match her against the registered users.

6.2. Research contribution - text-independent user voice identification 131

Tags The different kinds of tags that can be used for user detection and recognition were dealt
with in subsection 4.1.1, page 68. Tags such as RFID tags or ARToolkit not only are easily
detected by their respective readers, but in addition they convey information about the detected
tag, such as a unique ID. This can be used as a way to recognize users. For more details, refer
to this previous chapter (page 68).

6.2 Research contribution - text-independent user voice identifica-
tion

6.2.1 Description of the system

As mentioned before, the previous system used by the robot Maggie required the user to enroll on
the system. In order to avoid this drawback, we implemented a new module of text-independent
user identification based on pattern matching techniques. During a similar question-based (but
key-pass free) enrollment phase, the robot learned features of the voice of the new user. These
features are stored into a so-called voiceprint file. Details about feature extraction and matching
come below.

The work presented in this chapter includes user identification using voice features. It is
implemented in Chuck and C++. It is part of a complete multimodal interaction system applied to
HRI called Robotics Dialog System ([Alonso-Martin and Castro-González, 2013]). This RDS
interaction system is based on the ROS architecture, detailed in the introduction chapter, and
supplies the interaction capabilities for the RoboticsLab robots, also presented in the introduction.

Used features Two aspects of the new system can be underlined: the features are extracted
without needing a specific key-pass phase, and these extracted features belong to three different
domains: time, frequency, and time-frequency (more details about them in [Alonso-Martin and
Castro-González, 2013]). The used features are Root Mean Square (RMS) (computed on time
domain); Pitch computed using Fast Fourier Transform (frequency domain); Pitch computed using
Haar Discrete Wavelet Transform (time-frequency domain); Flux (frequency domain); RollOff
(frequency domain); Centroid (frequency domain); Zero-crossing rate (ZCR) (time domain).

Real time feature extraction Once the voiceprints of the enrolled users have been generated
and stored, it is possible to identify which user is speaking at any time. Voice Activity Detection,
which consists in detecting whether users are talking or quiet, is based on our previous work
[Alonso-Martin and Castro-González, 2013]. When voice activity is detected, the previously
listed audio features are extracted. Each second of voice generates several rows of features.
Each row is called a bit, and a set of bits is known as sub-fingerprint. The number of bits that
compose a sub-fingerprint will be called sub-fingeprint size, and is the minimum information to
identify a user.

132 Chapter 6. Other techniques for user recognition

Our system works with a sample rate of 44100 Hz and a window size of 4096 samples,
therefore each bit of fingerprint corresponds to 0.1 second of voice (i.e. 1 second of voice
generates 10 bits).

Identification (matching) phase The identification is made by computing the distance be-
tween the current audio features and the features of the enrolled users, stored in each of the
voiceprint files. If the best-match distance is below a threshold, the speaking user is considered
to be the user that generated that voiceprint file.

In mathematical terms, let n = 7 the number of different audio features. The distance d
between a current bit C of n extracted features and a voice print file V , a set of nv bits of n
features, is computed with the following formula:

d(C, V) = min
j∈[0,nv]

‖[1 . . . 1]− exp(−α ◦ |C − Vj |)‖L1

where ‖.‖L1 is the Manhattan distance, ◦ is the element-wise product, and α = [α0 . . . αn] a
scaling vector.

The best match for a given bit C is then defined as the voice print which bits obtain the
minimum distance with C. It is considered a valid match if that distance is below an empirical
threshold.

The distance computation presented above is called bit-to-bit (n× 1 vectors comparison). It
can also be made on successive sets of bits (n× w,w ∈ N matrices comparison, w is called
the sub-fingerprint size).

6.2.2 Integration as a PeoplePoseList Matcher

The technique we just describes is capable of recognizing the speaker, but it needs as input a
sample of the user voice. In other words, we first need to detect if there is any user, and if he or
she is speaking, so that we can create a voice sample.

Voice Activity Detection (VAD) was presented in subsection 4.2.2, page 78: we then pre-
sented how we could detect speaking users and estimate their spatial position thanks to machine
learning techniques. The VAD algorithm keeps in its buffer a sample of the user voice, that can
be re-used: we store the voice buffer in the PeoplePoseList (PPL) message: PPLs have an
attributes field that can store any data, as defined in subsection 3.2.2.

Then, the speaker recognition algorithm is shaped as a PeoplePoseList Matcher (PPLM),
as defined in the previous chapter. For each of the PeoplePoses (PPs) contained in the PPL

message that has a voice samples stored along, speaker recognition is performed. When a
user is tracked, this voice sample is stored permanently for future references. That way, upon
reception of a PPL with voice samples, we can compute the cost matrix for each pair of (detected
user, tracked user). This pipeline is illustrated Figure 6.1. Note that this pipeline corresponds
to a robot capable of running the voice localization PeoplePoseList Publisher (PPLP): most

6.2. Research contribution - text-independent user voice identification 133

notably, it requires an array of microphones, which is what is equipping Maggie, presented in the
introduction Chapter. However, VAD could be performed with a single microphone. In that case,
some refactoring would be required to create a minimalistic VAD PPLP.

Multimodal
Fusion

Speaker Recognition
PPLM

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

ROS Service

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Tr
a
ck

s
(P

P
L)

 +
D

e
ct

io
n

s
(P

P
L)

PPL

VoiceActivityDetection
PeoplePoseList publisher

ALSA driver +
ROS Publisher

Microphones

MicVolumes

SVM/RandonForests
Prediction

PPL

Figure 6.1: The pipeline for the speaker-recognition PeoplePoseList Matcher.

6.2.3 Experimental results

In order to verify the system accuracy to identify human peers, we have used a multi-language
voice database 1. Some samples were used for generating the voiceprints, and other for
evaluating if their best match corresponded to the correct user.

Figure 6.2 relates the number of enrolled users, the sub-fingerprint size, and the accuracy
rate of the user identification. The accuracy rate is close to 100% for few users, and while it
decrease while the number of users increase, it remains over 70% for as many as eighteen users
for the best choice of sub-fingerprint size. The best results are obtained using a sub-fingerprint
size of 5. In other words, a voice sample of half a second is long enough to identify the speaker.
Similar work, presented by Lite ([Li and Jr, 1982]), claims an accuracy rate of 79% for 11 users
and 3 seconds for each identification. Our system, with 11 users gets an accuracy rate of 86%
using 0.5 seconds of voice.

1The database used was VoxDB (http://voxdb.org).

http://voxdb.org

134 Chapter 6. Other techniques for user recognition

Figure 6.2: User recognition thanks to voice analysis. The horizontal axes are the number of users
and the sub-fingerprint size. In z, the accuracy of our system. We can see an optimal accuracy for a
sub-fingerprint of size 5, whatever the number of users.

6.2. Research contribution - text-independent user voice identification 135

Summary of the chapter

This chapter focused on user recognition using a technique that does not use image processing
or computer vision, but instead processes the audio stream: speaker recognition. Speaker
recognition systems are most often made of two steps: enrollment and identification. The former
consists in registering the user in the database: the appearance of her voice is learned thanks to
the analysis of samples of her voice. The latter matches an unidentified speaker to an enrolled
one, by analyzing her voice. Most existing techniques focus on a text-dependent technique, that
forces the user to say a given sentence to be recognized. This strategy lacks of flexibility: for the
Human-Robot Interaction (HRI) to be natural, the robot must understand the user speaking to it
the way she would do with a fellow, not a machine.

We developed our own user recognition system. So as to obtain the most intuitive interaction
flow, It is a text-independent technique: the user can be recognized thanks to any sentence
she utters, even if she was not enrolled using these words. The recognition is based on the
computation of seven distinct powerful audio features in three domains: time, frequency and
time-frequency.

136 Chapter 6. Other techniques for user recognition

Part III

Data fusion and user mapping

137

138

CHAPTER 7

Data fusion and user mapping

Introduction

The work presented in this PhD dissertation aims at giving user awareness to the robot. In other
words, we want the robot to perceive the users around it, where they are, and who they are.
The first part, Part I, presented a wide range of people detectors, mainly based on computer
vision techniques. All of them are shaped as so-called PeoplePoseList Publishers (PPLPs):
they are Robot Operating System (ROS) nodes, publishing a common message type called
PeoplePoseList (PPL). In other words, a detected PPL does not correspond to a physical user,
but only to a probable user presence at that time and place.

We now need to give spatial and temporal consistency to these detections: detections
corresponding to the same physical user should be grouped under a same structure. Two
different ways of reaching this goal have been explored: matching detections using the user
recognition algorithms presented in Part II, or using a more ad-hoc tracking algorithm needing
only a seed given by a PPL and using two-dimensional (2D) techniques on the depth image.

The first method relies is made of two stages. First, the different detection algorithms,
presented in Part I and shaped as PPLPs, process in parallel the stream of data coming from the
sensors, and publish their results shaped as PPLs. Then, a so-called fusion node subscribes
to all these PPLs streams. It create and maintain the set of trajectories of these tracked users,
called tracks, which is shaped as a PPL. To do so, this fusion node calls the different recognition
algorithms, presented in Part II, that enable the matching of a PPL coming from the detection
algorithms against the PPL of tracks. Indeed, these recognition algorithms can say to what

139

140 Chapter 7. Data fusion and user mapping

extent a PeoplePose (PP) detected in the current data corresponds to a previous one. Using
these recognition blocks, this first method will now give temporal consistency to the PPs detected
thanks to the PPLPs.
The number of users, their position, and who they are, is a set of unknown variables that we
can call state of the system. The goal of the user awareness can then be seen as estimating
this system state as accurately as possible. The different detection algorithms (PPLPs) give an
estimation of this state, thanks to different input data (e.g. color video stream, laser range finder
scans), or different algorithms (for instance face detection, leg pattern detector). A more precise
state estimation can be obtained by merging the results of all these algorithms in a clever way:
this is what is called multimodal fusion. This first method for people tracking is modular, but
complex.

On the other hand, in some situations we might be only interested in detecting and tracking
a specific user, without needing to compute additional information about the other ones. Our
second approach will use this strategy: it aims at moving the robot to follow closely a chosen
user. It is based on a user initial position, also called seed, and a multimodal tracking algorithm
based on both 2D image processing techniques on the depth image and laser scan processing.
Indeed, the depth image gives important hints about where the user is in three dimensions, but
is limited by its narrow field of view, while the laser range finder has a wide Field of View (FOV)
but is a one-dimensional (1D) sensor.

This chapter follows the same structure as the previous ones: in section 7.1, we will review
the most relevant existing algorithms in multimodal fusion. Then, in section 7.2, we will present
our own two approaches for achieving this robust state estimation, thanks to the PPL architecture
and recognition algorithms, or using a seed and 2D techniques on the depth image.

7.1 State of the art

This part will present the most relevant algorithms for multimodal fusion. In other words, these
techniques allow the estimation of the state of a system, made of several unknown variables,
thanks to the imperfect estimation of several parallel algorithms (detectors and recognizers).
These algorithms are based on the analysis of different types of inputs, or use different techniques
to analyze them, hence the multimodal name. The action of these fusion algorithms can then be
seen as a clever blending of the results of different algorithms.

These fusion algorithms can be split in two families. First, particle filters will be presented in
subsection 7.1.1. Then Kalman filters will be explained in subsection 7.1.2.

7.1.1 Particle filters

Particle filters are a technique to estimate the unknown State of the system x ∈ Rn, where n
is the number of unknowns, given of set of observations, which are measures giving hits about

7.1. State of the art 141

the state. For instance, in a simple single-user detection case, the state x could be made of
the three-dimensional (3D) coordinates of the user: n = 3, and the observations can be the
presence of a face or not.

We suppose that the observations and the state are related by some functional form that
is known. Similarly, the statistical evolution of the state through time is modeled by a known
function.

The objective of the particle filter is to estimate the value of the state, using the visible
values of the observation process. A particle filter does not estimate x itself, but gives a density
estimation of x: in each point of the state space x̃ ∈ Rn, a particle filter gives the probability
p(x = x̃) ∈ [0, 1].

Sequential importance resampling (SIR) is the original particle filtering algorithm and was
presented by Gordon in 1993 [Gordon et al., 1993]. It is a particle filter commonly used in
robotics.

A particle is an estimate of the state of the system: it is made of an approximate x̃ ∈ Rn. A
particle filter is then made of an important number of these particles. Note that the estimation
in each particle will not change during its life scope. On the other hand, these particles are
removed, created or merged according to the detectors output. In other words, the particles
having a state estimation coherent with the output of the detectors will tend to be kept and
multiplied, while the particles having a state that is not confirmed by the detectors output will
tend to be removed. As such, these particles represent an exploration of the state space, and
the most relevant ones are kept. SIR in particular, and particle filters in general, are heavily used
in robotics for estimating hidden states: see for [Thrun, 2002] for a good state of the art.

They have been applied for user detection and tracking too: particle filters are relevant for
this domain, as they give the possibility of modeling different system hypotheses at the same
time. Some examples can be found in [Schulz et al., 2003] [Montemerlo et al., 2002], [Zhou,
2004] or [Muñoz Salinas, 2009].

7.1.2 Kalman filtering

Similarly to particle filters, the Kalman filter is another way to estimate the state of a given
system, using multiple uncertain measurements. The state obtained is more accurate than it
would be with any of the measurements alone. Conceived by the Hungarian émigré Rudolf E.
Kálmán, the theory was developed and gained popularity during the fifties and sixties. It is then
a common sensor and data fusion algorithm. A detailed summary is available in [Bishop and
Welch, 2001].

As pointed out in [Julier and Uhlmann, 2004], the Kalman Filter (KF) only utilizes the first two
moments of the state (mean and covariance) in its update rule. Although this is a relatively simple
state representation, it offers a number of important practical benefits. The fusion mechanism
presented in this PhD is based on Kalman filtering. For this reason, more detailed explanation
about Kalman filters will be given than about particle filters.

142 Chapter 7. Data fusion and user mapping

The original KF algorithm will be presented first. Note that the classical KF needs the system
to be linear: in other words, noting x ∈ Rn the state of the problem, exists a matrix A of size
n× n such as d

dtx = Ax. Two extensions of the original KF for non-linear problems will then be
introduced: the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF).

7.1.2.i Classical KF

The Kalman filter, as formulated by Kalman and others in the sixties, is made for estimating the
State of the system x ∈ Rn, using the values of the measurements. The measurements are
not supposed to be exact: in other words, they can be noisy.

Because of the algorithm’s recursive nature, it can run in real time using only the present
input measurements and the previously calculated state and its uncertainty matrix; no additional
past information is required.

Assumptions about the underlying system: Some assumptions are made on the system:
1. It must be a linear dynamical system, e.g., there is a matrix A ∈ Rn such as d

dtx = Ax;
2. Error measurements and terms must have a Gaussian distribution.

Model The Kalman filter assumes the true state at time k is bound with the one at time k − 1
using the following formula:

xk = A× xk−1 +B × uk + wk−1

Matrix A is of size n × n and is called the state transition model, which is applied to the
previous state.
Matrix B ∈ Rn×l relates the optional Control input u ∈ Rl to the state x.
Here wk ∈ Rn is the Process noise. It is assumed to be with normal distribution: the Process

noise covariance is called Q ∈ Rn×n : p (w) ∼ N (0, Q)

On top of this first model, we also have another model, linking the (invisible) real state of the
system and the visible measurements. This model, called measurement equation or Observation
model, is:

zk = H × xk + vk

z ∈ Rm is the Measurement. Here vk ∈ Rm is the Measurement noise. It is assumed
to be with normal distribution: the Measurement noise covariance is called R ∈ Rm×m :
p (v) ∼ N (0, R)
The m× n matrix H in the measurement equation relates the state to the measurement zk.

7.1. State of the art 143

Computation Let us now suppose that we have modeled our system and that we have in real
time measurements zk ∈ Rm. Our goal is to estimate the (hidden) real state of the system
x ∈ Rn. The computation of the KF is made of two steps:

1. Prediction step (time update equations): estimate of the current state variables and
their uncertainties.

2. Update step (measurement update equations): when the next measurement output is
known, update of the estimates with weighted averages. The purpose of the weights is that the
values with better, i.e. smaller estimation uncertainties, are trusted more.

Computation details Here come some details about the computations involved in the KF.

Prediction step: We define x̂−k ∈ Rn (note the ”super minus”) to be our A priori state
estimate at step k given knowledge of the process prior to step k.

The projection equation for state x:

x̂−k = A× x̂k−1 +B × uk

The projection equation for estimate covariance P ∈ Rn×n (involving Q, the covariance of
process noise w):

P−k = A× Pk−1 ×AT +Q

A few properties of this estimate covariance matrix: P is positive-semidefinite and
symmetric.

Update step: We define x̂k ∈ Rn to be our A posteriori state estimate at step k given
measurement zk. The Estimate update equation (from a priori to a posteriori estimate) is
written (calling In×n the identity matrix of Rn×n):

x̂k = x̂−k +Kk × (zk −H × x̂−k)

= Kk × zk + (In×n −Kk ×H)× x̂−k

(zk −H × x̂−k) ∈ Rm is called the Residual or Innovation, it reflects the difference between
the predicted measurement H × x−k (cf measurement equation) and the obtained measurement
zk.

The n×m matrix Kk in the estimate update equation is chosen to be the Gain or Blending
factor that minimizes the a posteriori estimate covariance equation.

Gain computation: an explicit formulation for Kk ∈ Rn×m can be determined:

Kk = Pk ×HT × (H × P−k ×H
T +R)−1

=
Pk ×HT

H × P−k ×HT +R

144 Chapter 7. Data fusion and user mapping

We finally obtain an a posteriori estimate covariance estimate thanks to the update equation
for estimate covariance:

Pk = (I −Kk ×H)× Pk

The steps are presented in Figure 7.1.

Figure 7.1: The steps of KF computing (from [Bishop and Welch, 2001])

Limitations As pointer out previously, Kalman filtering can only be used in case of linear
problems. If the problem we want to solve is not linear, we need to use an extension of it for non
linear problems. Two extensions will now be presented, Extended Kalman Filter and Unscented
Kalman Filter.

7.1.2.ii EKF

Extended Kalman Filter was developed between 1959 and 1961 by Kalman, in an attempt
to solve the main drawback of the original KF: it only works for a linear system, while most
engineering problems are non-linear.

EKF thus can estimate the state of the system, even for a non-linear system. The non-linear
function linking the state and its first order derivative is called f :

x̂−k = f(xk−1, uk) + wk−1

Function f can be integrated with numerical methods to obtain the a priori estimate of the
state. However, the error covariance bound with this estimate cannot be evaluated directly, this

7.1. State of the art 145

is why a matrix of partial derivatives, the Jacobian matrix, must be computed to linearize the
function. EKF is made of the same two step than the original KF, prediction and update, except
the Taylor linearization is made in the prediction step.

Limitations It suffers from limitations underlined in [Julier and Uhlmann, 2004]: 1. the EKF
can only be applied if the Jacobian matrices of f are defined; 2. the computation of Jacobian
matrices is a complicated and error-prone process.

7.1.2.iii Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is another extension of the original KF for non-linear
problems. The UKF was presented for the first time in [Wan and Merwe, 2000], and developed
in [Julier and Uhlmann, 2004]. It works for a non-linear system.

It is based on the idea that it is easier to approximate a probability distribution than to
approximate an arbitrary non-linear transformation.

Model The transformations are now non-linear. x ∈ Rn is the state of the system.

Prediction model: we suppose the state regulated by a function f : Rn 7→ Rn such as:

xk = f(xk−1) + wk−1

This function f can include a process command (which was written separately in the linear
KF). wk ∈ Rn is called the process noise, as in the classical KF. We call Q ∈ Rn×n the
covariance of the additive process noise (p (w) ∼ N (0, Q)).

Observation model: The observation model is no longer linear (the H matrix of the linear
KF) but defined by an explicit function h : Rn 7→ Rm :

zk = h(xk) + vk

vk ∈ Rm is still called the measurement noise. We call R ∈ Rm×m the covariance of the
observation noise (p (v) ∼ N (0, R)).

Computation As explained in [Bellotto and Hu, 2009], the steps are the following:

1. Sigma points : A set of relevant points, called Sigma points, are computed. They are
chosen so that their mean and covariance are x̄k and Σx, the ones of the system state.
The non-linear function is then applied to each of these sigma points to convert them into
a cloud of points. The statistics of these transformed clouds are then computed, and give
an estimate of the non-linearly transformed mean and covariance.

146 Chapter 7. Data fusion and user mapping

2. Prediction step: for each sigma point, we instantiate it through the process model, and
obtain its transformed point.
We then obtain the predicted mean and covariance of the state as weighted averages of
the predicted means and covariances of the projected sigma points.

3. Update step: once we have the real measurement of the system, we can re-inject the
residual to obtain the a posteriori state and its covariance.

Computation details We have the current state mean x̄k ∈ Rn and its estimate covariance
matrix Pk ∈ Rn×n.

1. Sigma points: we have explicit formulas to compute the 2n + 1 sigma points {χik ∈
Rn; 0 ≤ i ≤ 2n} and their weights {Wik ∈ R; 0 ≤ i ≤ 2n}.

χ0k = x̄k

W0k =
ρ

n+ ρ

χik = x̄k +
[√

(n+ ρ)Pk

]
i

Wik =
1

2(n+ ρ)

χi+n,k = x̄k −
[√

(n+ ρ)Pk

]
i

Wi+n,k =
1

2(n+ ρ)

ρ ∈ R can be positive or negative. It provides an extra degree of freedom to ”fine tune”
the higher order moments of the approximation, and can be used to reduce the overall
prediction errors. [Wan and Merwe, 2000] recommends to use ρ = α2 × (n+ κ)− n, with
a ∈ R a parameter determining the spread of the sigma points around x̄k and usually set
to a small positive value (for instance 1e− 3), and κ ∈ R is a second scaling parameter
usually set to 0. When x(k) is assumed Gaussian, section I of [Julier, 2000] shows that a
useful heuristic is to select n+ ρ = 3. If a different distribution is assumed for x(k), then a
different choice of ρ might be more appropriate.[√

(n+ ρ)Pk

]
i
∈ Rn refers to the i-th row or column of the matrix square root of (n +

ρ)Pk ∈ Rn×n 1 (Pk is positive-semidefinite and symmetric so it only has one positive-
definite square root, which can be called its principal square root).

1 If the matrix square root A ∈ Rn×n of Pk is of the form Pk = AT ×A, then the sigma points are formed from
the rows of A. However, for a root of the form Pk = A×AT , the columns of A are used.

7.1. State of the art 147

2. Prediction step: each sigma point is instantiated through the process model to yield a
set of transformed samples:

χik = f [χik−1;u(k); k]

The predicted mean is computed as:

x̂−k =
2n∑
i=0

Wikχik

The predicted estimate covariance is computed as: 2

P−k = Q+
2n∑
i=0

Wik

[
χik − x̂−k

]
×
[
χik − x̂−k

]T
We then need to compute the expected observations thanks to the observation model.
Pυυk ∈ Rm×m is called the Observation covariance.

Zik =h[χik]

ẑk =
2n∑
i=0

WikZik

Pυυk =R+ [Z0k − ẑk] [Z0k − ẑk]T +

2n∑
i=0

Wik [Zik − ẑk] [Zik − ẑk]T

3. Update step: We can compute the cross-correlation Pkxz ∈ Rn×m:

Pkxz =

2n∑
i=0

Wik

[
χik − x̂−k

]
[Zik − ẑk]T

We also compute the gain Kk ∈ Rn×m:

Kk = Pkxz ×P−1υυk

2 Section III of [Julier, 2000] investigates the case when ρ is negative. This is likely to happen when we try to
approximate system of higher order probability distributions. Then the predicted estimate covariance P−k can happen
to be non-positive. In that case, its matrix square root might not be defined, and the computation of the sigma points
is impossible. To solve this issue, it is then advised to evaluate the covariance about χ0k, i.e. compute the covariance
as:

P−k =Q+
[
χ0k − x̂−k

]
×
[
χ0k − x̂−k

]T
+

2n∑
i=0

Wik

[
χik − x̂−k

] [
χik − x̂−k

]T

148 Chapter 7. Data fusion and user mapping

Once we have the real measurements zk, we can re-inject the innovation (or residual)
ẑk − zk ∈ Rm to obtain the a posteriori state estimate and its covariance:

x̂k = x̂−k + Kk × (zk − ẑk)
Pk = P−k −Kk ×Pυυk ×KT

k

Advantages and limitations The UT approach conjugates a very simple approach and an
approximation accurate to the third order for Gaussian inputs, as underlined in [Wan and Merwe,
2000].

However, its additional computational overhead compared with EKF can generate a discus-
sion to determine which of the two is the most appropriate for a non linear problem.

7.1.2.iv Extension to multi-target tracking

UKF, as an extension of KF, has an intrinsic limitation: the dimension of the state must be known
beforehand and cannot change during the experiment. In other words, it cannot be used for the
tracking of a varying number of objects: a varying number of present objects at a given time
changes the dimension of the system state.

However, UKF can still be used in such a context. The way to proceed, presented by [Rong
Li and Bar-Shalom, 1996], is the following: we maintain in memory a list of UKFs, corresponding
to the different tracked objects, each UKF is called a Track. Upon each new detection, the new
measures are associated to the existing tracks. However, it can be that the number of new
measures and of tracks are different: in that case, the unassociated measures are stored apart.
When a critical number of unassociated measures accumulates at a given spatial position in a
window of time, a new track is created at that position.

One of the key steps in a tracking problem is Data association. It consists in determining,
upon the reception of new measurements, the track or set of tracks that will be updated with
each measurement. There are several popular methods for measure-to-track assignment:
1. Assignments (explained later on); 2. (Joint) Probabilistic Data Association Filters: (J)PDAF
([Fortmann, 1983]); 3. (Global) Nearest Neighbours: (G)NN ([Reid, 1979]); 4. Multi Hypothesis
Tracker: MHT ([Reid, 1979]); 5. Probabilistic Multi-Hypothesis Tracker (PMHT) ([Streit and
Luginbuhl, 1995]).

We here focus on the most simple of all of these: the Assignment. It consists in a hard
one-to-one assignment: there is at most one measurement per scan per target (per sensor). A
formal definition of the assignment and a presentation of the different algorithms to solve it will
now be done.

7.1. State of the art 149

Linear assignment. Let us consider the following problem: we want to associate a set of
objects A to a set B. We can suppose here |A| ≤ |B|. Let us suppose we have a ”cost” function
f : (A,B) 7→ R that enables us to evaluate how an element from A matches one from B. The
more the element a from A matches the one b from B, the smaller should be d(a, b).

An Assignment is an association of each element of the smaller set with one element in
the other set. However, each element of the bigger set can be assigned only at most once. In
combinatorial mathematics terms, an assignment is thus a one-to-one mapping between the
smaller set and a subset of the bigger set.

The Linear assignment problem aims at finding, between all possible assignments, the
assignment that minimizes the aggregated cost of its pairs.

Example: For instance, we consider two sets of 2D colored points Red,Blue ∈ RN. We
suppose here |Blue| ≤ |Red| (if not the case, we can swap names). An assignment associates
each Blue point to one Red point, such as each Red point is used zero time or once. The
cost function here can be for instance the Euclidean distance. The more a element from Blue
matches one from Rue, the smaller should be the value of the cost function between them.

f :

{
R2 × R2 7→ R

(x1, y1), (x2, y2) →
√

(x2 − x1)2 + (y2 − y1)2

Thus, the goal of the linear assignment problem is to find the assignment with minimal cost, that
is the sum of the lengths of all segments between Blue and Red. The Cost matrix is the matrix
that stores all costs between Blue and Red:

C ∈ R|Blue|×|Red|, Cij = f(xi, yj)

Solving algorithms: the easiest way to solve the problem is to try and evaluate all possible
assignments: it is called brute force solving. The possible assignments corresponds to the
k-partial permutations of n where k = |Blue| , n = |Red| (so k ≤ n). The number of possible
assignments correspond to

nPk = n · (n− 1) · (n− 2) · · · (n− k + 1)

This quantity is sometimes known as the so-called Pochhammer symbol (k)n.

However, this solution is clearly non-optimal, as it blindly tries all possible combinations. Its
complexity is O(n!) when |A| = |B| = n.

The most popular algorithm for solving linear assignments is called the Hungarian algorithm.
It was developed and published by Harold Kuhn in 1955 [Kuhn, 2006]. It has a polynomial
complexity. The original version was in O(n4), some optimizations allow a complexity in O(n3).
However, its algorithmic relative simplicity and limited computational cost make it one of the most
popular assignment algorithms.

150 Chapter 7. Data fusion and user mapping

(a) (b)

Figure 7.2: An example of linear assignment problem for 2D points.
(a): the two sets of points: the blue ones and the red ones
(b): the best assignment between both sets. Here the red set is bigger, and the point in the upper-left

corner is unassigned. Note how the red points inside the rectangles are not associated with their closest
red point: we minimize the total cost, not the cost for each point.

In the case of a sparse cost matrix, further optimizations can exploit such structure and reduce
the complexity. For instance, Lemon’s implementation 3 is in O(nm log n), where m is the
number of edges.

The auction algorithm, proposed in 1979 and published in 1985 ([Bertsekas, 1985]) is a
distributed iterative algorithm.

Finally, the Jonker-Volgenant algorithm was proposed in [Jonker and Volgenant, 1987], and
is based on linear operations on the cost matrix to obtain the assignment with the lowest cost.

Fastest method A review is available in [Dell’Amico and Toth, 2000]. The previously
proposed algorithms, and some others have been benchmarked on a set of problems. It is hard
to determine the fast assignment algorithm. However, the authors notice the poor performance of
the auction algorithm compared with the others, and the fairly good one of the Jonker-Volgenant
algorithm.

3https://bitbucket.org/alpar/lemon-bipartite

https://bitbucket.org/alpar/lemon-bipartite
https://bitbucket.org/alpar/lemon-bipartite

7.2. Research contribution 151

7.2 Research contribution

In this part, we will present the different possibilities we explored to give spatial and temporal
consistency to the people detections.

After a brief introduction that will present the benchmark of two linear assignment algorithms,
in subsection 7.2.1, we will present two different ways of giving consistency to the different user
detectors presented in the first part of this PhD: using the different people recognition trackers
seen in Part II, or tracking the detection of one given user in the depth image.

The first method, because it is multimodal, distributed and apt to track several users at the
same time, is the one who turned out to match better with our goals defined in the Introduction
chapter. For this reason, it will be detailed in several subsections. We have previously seen two
main categories of approaches that can be followed for multimodal fusion: particle filters and
Kalman filters. In subsection 7.2.2, we will present a common interface, called PeoplePoseList

Matcher, that we designed for all the people recognition algorithms to comply with. Then we
will show how Unscented Kalman Filters, coupled with the PeoplePoseList Matcher (PPLM)
mechanism, result in a robust user awareness system. In subsection 7.2.3, we will present
how the different user recognition methods presented in Part II were integrated into our user
awareness architecture by shaping them as PPLMs. The usefulness and accuracy of this user
awareness system will be demonstrated thanks to careful benchmarking, in subsection 7.2.4.

The second method is less generic: it focuses on the accurate tracking of one given user
using a chosen tracking method. It is based on the idea that once a user is detected, we can
track him or her from one frame to another in the depth image. Indeed, the user will correspond
to a blob of similar position and appearance in consecutive frames. Image processing techniques
can be used for the tracking of the shape of this blob in the depth stream. This approach will be
explained in subsection 7.2.5.

7.2.1 Preliminary: benchmarking of linear assignment algorithms

Multi-target Unscented Kalman Filter is one of the two widespread classes of algorithms for
multimodal fusion, the other being particle filters. It has been presented in subsection 7.1.2

As seen in subsubsection 7.1.2.iv, page 148, multi-target Unscented Kalman Filter (UKF)
uses assignment methods to match instantaneous detections to exiting tracks. The used
algorithm is linear assignment. In this part, we benchmark this key part of the tracking pipeline
to ensure solving the problem will not be a bottleneck.

The input of the linear assign is a cost function f , that can be also presented as a cost matrix
C where the element of C at (i, j) represents the cost generated by matching the i-th element
of A to the j-th element of B.

Out of all the different assignment algorithms that were presented in subsubsection 7.1.2.iv,
we chose to implement two for their popularity and availability: the brute-force algorithm, trying

152 Chapter 7. Data fusion and user mapping

all possible combinations, and the linear assignment, presented by [Jonker and Volgenant, 1987].
Both were implemented in C++. The brute-force was written from scratch while the Jonker
algorithm was based on the freely available original C implementation (lap.c).

We here set A and B of same sizes, and we iterate over n = |A| = |B| ∈ N. The tests
were run on a desktop PC with a full-power processor from 2008 (AMD Athlon 64 X2 Dual Core
Processor 5200+). The results are visible in Figure 7.3.

10
0

10
1

10
2

10
3

10
4

n

10
−2

10
0

10
2

10
4

m
ill

is
e
co

n
d

s

Brute force LAP
5e-05 x (1.3 n)! 0.08 n x ln(1E+5 n)

Figure 7.3: Benchmark of both brute-force and Jonker-Volgenant assignments solvers.

We can observe that brute-force is not an appropriate solution for real time matching:
its complexity is, as expected, roughly equal to n!, and for 9 tracked users for instance, the
matching takes approximately up to five seconds. As the matching needs to be made for each
PeoplePoseList Publisher (PPLP) in each frame, the matching cannot require more than a few
milliseconds, and then the use of the brute force solver must be discarded.

On the other hand, the Jonker-Volgenant solver performs much better: its complexity is
roughly equal to n lnn, and the matching is done faster that in ten milliseconds for any number of
tracked users below 256. As it is not probable that we have as many users, the Jonker-Volgenant
solver meets our requirements and will be used for solving the assignment problem in the
multi-target tracking.

7.2. Research contribution 153

7.2.2 A common interface for PeoplePoseList (PPL) matchers: the PeoplePoseList

Matcher (PPLM)

In this part, we will present how multimodal fusion algorithms can be used for giving spatial and
temporal consistency to the users detection and recognition algorithms presented in the previous
parts.

Through this section and the following ones, we will call T the set of tracks and nT the
number of tracks:

T = {pi, 0 ≤ i ≤ nT } where ∀i ∈ [0, nT [, pi is a PeoplePose (PP)

Similarly, we also consider a given detected PPL P = {pi, 0 ≤ i ≤ nP}, containing nP PPs. Our
goal is to estimate the cost matrix C between T and P , defined by the similarity between each
PP of P and each track of T . The more a detection PP from P matches a track PP from T , the
smaller should be the value of the cost function between them.

The different PeoplePoseList Publishers (PPLPs) give us estimations of the user position at
each frame. On the other hand, the multi-target Unscented Kalman Filter (UKF) builds different
tracks that correspond to highly probable user positions and states (identities, etc.). It is a
good multimodal fusion algorithm, that matches a detected PPL against its set of tracks. Linear
assignment, that solves the assignment between PPs and tracks, first requires an estimate of the
likeliness of each detected PP against each track. This likeliness is presented as the cost matrix
C, having nT rows and nP columns. A linear assignment then finds the assignment between
the detected set P and the tracks set T .

Definition of the PeoplePoseList Matcher (PPLM) An algorithm that computes a cost matrix
between T and P is called a PeoplePoseList Matcher (PPLM). The idea for integrating the
different user recognition algorithms is the following: this cost matrix C can actually be the
combination of different user matching algorithms running in parallel, each of these providing its
own cost matrix. The final cost matrix C is then the sum of all these costs matrices. Similarly to
each cost matrix, The more a detection PP from P matches a track PP from T , the smaller should
be the corresponding element in C. From now on, both terms ”recognition” and ”matching” are
used indifferently: a matching algorithm is the same as a recognition algorithm.

The following subsection will define the design and implementation of this idea, then the
process of converting the previously presented user recognition algorithms into PPLMs will be
further explained.

7.2.2.i Implementation of the multi-target Kalman filtering with PeoplePoseList Matcher
(PPLM)

We have defined a common structure for matching algorithm for PeoplePoseList Matchers
(PPLMs): they generate cost matrices.For a given detection PPL, the cost matrix describes how

154 Chapter 7. Data fusion and user mapping

each detected PP is similar to the different reference tracks (also structured as PPs). This design
is modular, distributed, flexible, among other advantages.

Several matching algorithms have been shaped as PPLMs, for instance the height-based or
the PersonHistogramSet (PHS)-based algorithm. More will be said in the next section.

However, we still need the final brick of the architecture: that brick that uses these PPLMs
on the different outputs of the PPLPs to create tracks using multimodal fusion algorithms. This
will be presented in this part: we will present how we implemented multi-user tracking using a
combination of UKFs and PPLM.

Two classes of multimodal fusion algorithms have been presented previously: Kalman filtering
and particle filters. Because of its availability, we first chose to use Kalman filtering for studying
the integration of PPLPs and PPLMs. Indeed, several libraries propose an easy integration of
Unscented Kalman Filters, among others LibDAI (4, [Mooij, 2010]). An extension of our work
using particle filters would be an interesting work.

From now on, the processing block in charge of retrieving all cost matrices and performing
the multimodal fusion, and that will be structured as a Robot Operating System (ROS) node, will
be referred as the fusion node. The idea of the multimodal fusion is the following. The fusion
node has in memory a set of tracks corresponding to the tracked users. Each of these tracks is
structured as a PPs. This node subscribes to a range of topics emitted by PPLPs. Then, upon
reception of each PPL, the node will call the different matching services offered by the set of
PPLMs. For each detected PP, the corresponding track will be updated. Finally, the updated set
of tracks, that is also shaped as a PPL, is emitted by the fusion node. This information can be
used by higher level applications that will have at their disposition all the information needed
about the local users and their mapping.

Simple example: single user tracking An example is given in Figure 7.4. We here consider
there is only one user to detect and track (simple case). There are two PPLPs: one based on the
color images, the face detection based-PPLP, and one based on scans of the laser range finder,
the leg detector PPLP. The fusion node contains only one UKF corresponding to the tracked
user. The different steps upon reception of a new PPL emitted by any of the detectors are the
following:

1. In this received PPL, not all PPs are necessarily used for the matching by the fusion node.
Indeed, let us imagine we receive a PPL with only one PP inside, but that correspond to a
false positive, several meters away from the track. We do not want to update the track with
this erroneous PP. In the so-called Gating process, three-dimensional (3D) detections that
are too far from the track position are not used to update the track, but instead are kept in
a buffer. The maximum Euclidean distance is a parameter that can be adjusted. Similarly,
if there are more detected PPs than tracks, they are also put in that buffer. When a critical
number of unassociated measures accumulates at a given spatial position in a window of

4http://cs.ru.nl/~jorism/libDAI/

http://cs.ru.nl/~jorism/libDAI/
http://cs.ru.nl/~jorism/libDAI/

7.2. Research contribution 155

time, a new track is created. 5

2. In the fusion node, once the gating is done, the set of PPLMs is called with, on the one
hand, the PPL made of all the PPs that pass the gating phase, on the other hand, the track
PPs. The fusion node requests each of them to compute its own cost matrix. The final cost
matrix corresponds to the sum of all PPLMs cost matrices successfully computed 6. The
detection PP most likely with the track is identified thanks to the generated cost matrix. As
there is only one track, the cost matrix will have only one row.

3. The unique track maintained of the fusion node, containing its own UKF, is updated with
the 3D position of the detection PP.

4. Finally, the fusion node publishes a PPL corresponding to the tracks in memory, and hence
only containing one PP centered on the user and containing the information gathered about
her: along with her 3D pose, in this case, the image of her face, that can be used by other
nodes.

Generalization to multiple user tracking This first case with one user is fictional: we cannot
guarantee the number of users beforehand in most situations. A more realistic setting is
presented in Figure 7.5. In this case, there are two physical users visible by the robot. The
fusion node subscribes to the same two PPLPs (face detection-based and leg detection-based
PPLMs). Upon reception of each new PPL, the same gating process is first applied. However,
then, we need to determine which track corresponds to which detected PP. This is where the
different PPLMs are useful: thanks to the global cost matrix, the more similar a given track PP and
a detection PP, the smaller the corresponding element of the cost matrix. The linear assignment
corresponding to this cost matrix is computed, which tells us which track corresponds to each
detected PP. As such, the tracks are updated, and published as a PPL to the higher-level
applications in the robot.

7.2.2.ii Design of the PeoplePoseList Matcher (PPLM) in ROS terms

We want the different user recognition algorithms to compute their cost matrices in parallel while
ensuring that, for a given P , we obtain all cost matrices. Two different programming solutions
are possible for obtaining such an architecture.

• All the detectors can be explicitly included within the fusion ROS node thread. During the
assignment process, the fusion node will then explicitly call all the embedded PPLMs.

5More advanced techniques than gating exist for this association, see for instance Probabilistic Data Association
Filter (PDAF) or Joint Probabilistic Data Association Filter (JPDAF). However, gating is both simple to implement and
efficient.

6 Indeed, some PPLMs might fail in their computation for a wide range of reasons and in that case, they are not
taken into account. For instance, a height detector can fail because the depth image is corrupted.

156 Chapter 7. Data fusion and user mapping

User 1 - Last seen 0.1s
1.80m

Red shirt
Face: <...>

Kinect

Sensors
data

Laser

Leg
detector

Robot

Face
detector

Fusion,node,hcontaining,Kalman,filtersX

User,b1,estimated,pose
User,b1,previous,poses,htrailX
Previously,unaffected,PPs

EndTuser
applications+,etc.

Caption

Processing,block
hROS,nodeX

Exchanged,data
hROS,messageX

X
Node,publishing
messages,of,type,X

X
Node,subscribing,to
messages,of,type,X

Estimated,user
poses,hPPLX

Estimated,user,
poses,hPPLX

Gating,G
Track,updates

Figure 7.4: Multimodal fusion based on Unscented Kalman Filters: fictional case of single-user detection.

• The other solution is to structure every PPLM as a standalone ROS node. To allow the
transfer of the data, each of this node provides a ROS service of identical type, called
MatchPPL, but with different names. Note that ROS services were introduced in the
Introduction chapter. They can be seen as inter-nodes remote function calling. The fusion
node then calls the different services that it wants to use.

The first solution offers the advantage of being the fastest possible solution, as there is no
delay generated by the transmission of data from one thread to another. However, it lacks of
modularity: all the PPLMs will be running in the same computer, so the fusion node will be as slow
as the sum of all PPLMs. Furthermore, all PPLMs need to be written in the same programming
language, as they belong to the same node. On top of that, reconfiguring the set of PPLMs
according to the needs of the robot is challenging: if we want to shut down a given one, again
we need to explicitly change the fusion node. Finally, to add a new PPLM, the fusion node itself
needs to be modified to explicitly call this new module.

On the other hand, the second solution using ROS services offers a great modularity: the
different nodes can be distributed among different machines thanks to the ROS communication
layer. Say for instance that a given PPLM is computationally costly, in that case, we can run it on
a remote, more powerful computer, and send back the generated cost matrix via the network.

7.2. Research contribution 157

User 1 - Last seen 0.1s
1.80m

Red shirt
Face: <...>

Kinect

Sensors
data

Laser

Leg
detector

Robot

Face
detector

Fusion,node,hcontaining,Kalman,filtersX

User,b2,estimated,pose
User,b2,previous,poses,htrailX
Previously,unaffected,PPs

EndTuser
applications+,etc0

Caption

Processing,block
hROS,nodeX

Exchanged,data
hROS,messageX

X
Node,publishing
messages,of,type,X

X
Node,subscribing,to
messages,of,type,X

Estimated,user
poses,hPPLX

Estimated,user,
poses,hPPLX

G
at

in
g,

G
,

T
ra

ck
,u

pd
at

es

Linear,assignment,solver
Current

Tracks

807

808

802

802

User 1 - Last seen 0.1s
1.80m

Red shirt
Face: <...>

Figure 7.5: Multimodal fusion based on Unscented Kalman Filters: multi-user detection.

Furthermore, the CPU computations are only triggered by the service calls, ensuring that we
can change dynamically the set of PPLMs used: all detectors can be instantiated in the robot
architecture, but only the ones we want to use are specified to the fusion node via a parameter.
For instance, let us say a given matcher supplies a MatchPPL service called /match1 and
another a MatchPPLservice called called /match2. If we specify to the fusion node to use only
/match2, only the MatchPPL service provided by the second node will be called, even if both
PPLMs are instantiated and running. Finally, adding a new PPLM is easy and fast: the new node
needs to supply its own MatchPPL service. It can be implemented in any of the programming
languages offered by the ROS compilation mechanisms.

For all these reasons, the second solution was chosen: a PPLM is structured as a standalone
ROS node, providing a MatchPPL service. The list of service names to use is given to the fusion
node thanks to a ROS parameter. The data flow is illustrated in Figure 7.6.

Advantages The modularity of this system presented in the previous subsection was presented
in the previous paragraph. They are very similar to the advantages we presented for the PPLP

mechanism, in subsection 3.2.2, page 41. These advantages can be thus resumed.

• Programming language abstraction. ROS generates generated headers for the MatchPPL

158 Chapter 7. Data fusion and user mapping

PPL

Multimodal
Fusion

PPLM1

PPLM2

...

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

ROS Service

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

(set of
 PPLPs)

Tr
a
ck

s
(P

P
L)

 +
D

e
ct

io
n

s
(P

P
L)

PPL

Figure 7.6: Diagram of the dataflow between the fusion node and the different PeoplePoseList Matchers.

service in C++, Python and Perl.

• Workload distribution. Thanks to ROS communication layer, the different PPLMs can be
distributed among the different machines.

• Integration of new algorithms. If we want to add a new PPLM, the only requirement is
that it supplies a MatchPPL service.

• Debugging and benchmarking made easier. We can conceive a set of tools for debug-
ging and benchmarking all PPLMs, as they provide a common interface. The debugging
tools can include simple cases, such as matching a given PPL with a copy of itself.

We will now present how the different user recognition methods presented in Part II were
integrated into our user awareness architecture by shaping them as PPLMs.

7.2.3 Integration of recognition algorithms as PeoplePoseList Matchers

The most relevant user recognition algorithms presented in Part II were shaped as PeoplePoseList
Matchers (PPLMs). We chose the algorithms that have proven to be robust and easily adaptable
into PPLMs. Namely, the following PPLMs were created: 1. a simple PPLM based on Euclidean
distance matching; 2. the face recognition-based PPLM; 3. the height-based PPLM; 4. the NiTE-
based PPLM; 5. the PersonHistogramSet (PHS)-based PPLM. Each of these PPLMs will now be
explained in further details. Note that the algorithms that allow the a-priori estimation of the
gender, i.e. the gender-from-face and the breast detector, were not integrated in the actual
version. An extension of our work with these algorithms would be an interesting work.

7.2. Research contribution 159

Distance PeoplePoseList Matcher The simplest method to estimate the likeliness of a track
against a detected PeoplePose (PP) is to compare their three-dimensional (3D) position. In other
words, the closer a track and a detection, the more likely they correspond to the same person.

We then have the explicit formula:

∀i, j ∈ [1, nP]× [1, nT], C(i, j) = ‖Pi, Tj‖

This likeliness estimation needs to choose a distance function. The most common norms
have been seen in section 5.1.3.i, page 97. We used the Euclidean L2 norm, as it corresponds
more accurately to the standard definition of distance between 3D positions:

∀A,B ∈ R3, ‖A,B‖L2
=
√

(A.x−B.x)2 + (A.y −B.y)2 + (A.z −B.z)2

Note on optimization: the computation of the L2 norm can be costly as it involves two
multiplications and a square root computation. For speedup reasons, the Manhattan L1 distance
could be used:

∀A,B ∈ R3, ‖A,B‖L1
=| A.x−B.x | + | A.y −B.y | + | A.z −B.z |

Face recognition PeoplePoseList Matcher The height is a meaningful physical trait for
recognizing one user from another. On top of that, other traits can be used. The visual
appearance of the face is key information, that the humans use extensively to discriminate
between people, as presented in the Introduction chapter. For this reason, the face recognition
algorithm presented in subsection 5.2.2, page 104 was integrated.

It re-uses the results of the face detection PeoplePoseList Publisher (PPLP) presented in
subsection 3.2.3, page 47. In each track is stored the image of the user face as soon as there
is one available (for instance, when the track is initialized by a PP containing a user face). The
PeoplePoseList (PPL) message generated by the face detection node contains for each user,
along with the color and depth images of the user, the coordinates of a rectangle delimiting the
face in these images. These coordinates are stored as in the attributes field of the PP. As
such, we do not need to run again a face detector on the color image of the user to find where
her face is. The user face images available in the PPL are then passed to the face recognizer
presented in subsection 5.1.1, page 91.

We remind that the most similar two PPs, the smaller should be their cost. The cost matrix is
initialized to a constant value: ∀i, j ∈ [1, nP]× [1, nT], C(i, j) = 1. Then, if the i-th user face
in the detection PPL is set, the face recognizer determines the most similar reference PP, say
the j-th track. The corresponding cell in the cost matrix is set to zero: C(i, j) = 0. As such, the
face recognizer suggests a match between detected PP i and track j in a ”soft way”: there is
not always a suggested matching for all detections. In the case of a PPLP that does not find the
faces, for instance the HOG detector seen in subsection 3.2.4, page 50, the cost matrix is full of
ones and then does not weight in the final assignment.

160 Chapter 7. Data fusion and user mapping

Height PeoplePoseList Matcher The previously presented PHS-based PPLM was based on
the use of soft biometrics for user identification, more especially adhered human characteristics:
the color of the clothes is indeed a feature that has a short life scope, as the user can change
them from one frame to another.

On the other hand, the height-based PPLM, presented in subsection 5.2.3, page 108, is
based on physical traits: the height of the user is a permanent feature. The idea is the following:
users can be somewhat recognized thanks to their height. Even though it is not a reliable feature
for people of an average height (average height is 1.78 m for adult Spanish men, and 1.66 m
for adult Spanish women according to [Garcia and Quintana-Domeque, 2007]), it is a powerful
feature when it comes to discriminating between adults and children, or tall users and smaller
ones.

The final cost is obtained by mapping the height difference in the [0, 1[interval:

∀i, j ∈ [1, nP]× [1, nT], C(i, j) = 1− exp (α× |heighti − heightj |)

where α > 0 is a scaling parameter. In our implementation, α = 3.

NiTE PeoplePoseList Matcher the NiTE-based PPLM: The raw output of the NiTE algorithm
was presented in subsection 3.1.3, page 36 and is shaped as a user multimap. The cost of
matching a given detected PP with the set of tracks is defined as follows: this cost is equal to
zero if both NiTE user identifiers are equal, equal to one otherwise. In other words, the cost
matrix of this PPLP is mostly set to one, with some zero values where NiTE names correspond:

∀i, j ∈ [1, nP]× [1, nT], C(i, j) =

{
0 if NiTE idi = NiTE idj
1 if NiTE idi 6= NiTE idj

PersonHistogramSet PeoplePoseList Matcher The distance matcher only uses the 3D
spatial information of the user. However, her visual appearance contains meaningful cues that
can be used for matching. For instance, if a user has a red shirt and blue trousers in one frame,
her likeliness to a PP with a similar appearance in another frame is higher than if this PP has a
green shirt. In subsection 5.2.5, page 122 we presented a user recognition algorithm based on
the visual appearance of the user, called PersonHistogramSet (PHS).

We integrated this algorithm into a PPLM: on each matching request, the PHS of each
detected user in P is computed. On the other hand, for each track of the reference set T , the
PHS needs to be computed only when the user images associated with this track is changed.
The final cost between the track and the PP is equal to the result of the histogram comparing
function presented in subsubsection 5.2.5.iii, page 124, already bounded between 0 (perfect
match) and 1 (absolute mismatch):

∀i, j ∈ [1, nP]× [1, nT], C(i, j) = dPHS(histi, histj)

7.2. Research contribution 161

Summary of the whole structure Several matching algorithms have been shaped as PPLMs:
an distance PPLM based on distance matching; a face recognition-based PPLM; a height-based
PPLM that uses the estimated physical height of the users to match them; a NiTE-based PPLM

re-using the user identifiers extracted by the NiTE algorithm; and finally a PHS-based PPLM using
the color appearance of the users.

The structure of a full user awareness sporting a multimodal fusion using all implemented
PPLPs and PPLMs is presented in Figure 7.7. Note that this is not a convenient structure: using
all the algorithms at the same time corresponds to a heavy computational overhead that could be
lightened easily selecting the most appropriate algorithms according to the intrinsic and extrinsic
configuration of the robot. For instance, if it has no laser range finder, the leg PPLP can be
removed. If the users will not come close, the face recognition PPLM is not needed.

FaceDetector
PPLP

NITE driver OpenNI driver Camera driver

NiteUserMask
PPLP

Tabletop
PPLP PPM PPLPHOGPeople

PPLP
ARToolkit

PPLP
Leg detector

PPLP

Laser driver

PPL

Sync
RGB + depth Depth RGBSync RGB+

depth+user

Multimodal
Fusion

Distance
matcher

NiTE
matcher

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

Laser
data

ROS Service

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X PPL

Face recognition
matcher

Height
matcher

Tr
a
ck

s
(P

P
L)

 +
D

e
ct

io
n
s

(P
P
L)

PersonHistogramSet
matcher

Figure 7.7: Multimodal fusion using all implemented PPLPs and PPLMs.

7.2.4 Benchmarking and limitations of the Unscented Kalman Filter (UKF) and
different combinations of PeoplePoseList Matchers (PPLMs)

To measure the accuracy of the different PPLMs, it is better to use academic benchmarks.
It does not make sense to use the DGait dataset we used for benchmarking the different
PeoplePoseList Publishers (PPLPs): this database is made of 55 videos of one user at a time,
walking on a stage. As such, the matching accuracy would be artificially high: the UKF having
only one track, matching one user against one track always succeeds.

We then used two different datasets: the Kinect Tracking Precision (KTP) dataset ([Munaro
et al., 2012,Munaro and Menegatti, 2014]), published by researchers in robotics from an Italian

162 Chapter 7. Data fusion and user mapping

university, and a homemade dataset using real data acquired from our robots, that we named
RoboticsLab People Dataset (RLPD).

7.2.4.i Benchmarking using the KTP dataset

Like the DGait database, it is made of a collection of about 2200 frames of synchronized depth
and Red Green Blue (RGB) data, along with annotated 2D coordinates of the users in the color
frame. On top of that, the authors used a system of infra-red markers placed on top of the head
of the users, so that the exact three-dimensional (3D) position of the head of each user is known
with accuracy. The video sequence is made of several users walking randomly in a room. The
number of users varies between one and four at the same time, with challenging trajectories and
a high number of crossings and occlusions. This generates a perfect benchmark for our system.
Some samples are visible in Figure 7.8.

Figure 7.8: Some samples of the KTP dataset. Note the challenging conditions: fast motion of the users,
partial or complete occlusions, complex trajectories, crowded environment, etc.

7.2. Research contribution 163

Different UKF nodes can be running in parallel, as each of these publishes their own
multimodal fusion on a different Robot Operating System (ROS) topic. This gives the possibility
of benchmarking several configurations of PPLMs at the same time. A total of 4 configurations
were used: 1. using the distance PPLM only; 2. using the PersonHistogramSet (PHS)-based PPLM

only; 3. using the height-based PPLM only; 4. using both PHS and distance-based matching.

All configurations of PPLMs cannot run at the same rate: for instance, the distance PPLM

does not have heavy computation needs. On the other hand, the PHS matcher, for instance,
requires, for each frame, the computation of the color histograms of each user. The comparative
performance of each configuration is detailed in Table 7.1. Note that the number of processed
frames helps us seeing the computational need of the different PPLMs, but the important metric is
the number of swaps: all configurations run online on the same video sequence of the database,
and hence give the same output as they would if the sequence was happening in the real
world. This is why we chose to play the sequences at normal speed and not slowed down: the
computation speed of a PPLM can be a constraint on its output in the real life.

PPLM configuration Distance PHS Height Distance+PHS
Duration (seconds) 71

Total frames 2137
Frames with several PPs 1277

... of which were processed by the PPLM 100% 45% 93% 55%
ID swaps 18 35 189 16

Table 7.1: Benchmark results for different configurations of PPLMs on the Kinect Tracking Precision (KTP)
dataset.

The distance PPLM (first column) is a naive matching algorithm: it matches a detection to
its closest track, without considering any information about the users appearance. However,
the computation associated being very light, it processes the frames at a very high speed. In
crowded environments though, it can erroneously swap IDs. Note that it is the best single PPLM:
its high frequency of matching ensure a correct labeling in most cases. Furthermore, it is more
sophisticated than a simple ”nearest neighbor” approach: the linear assignment ensures the
minimal matching cost, and no repeated ID.

The PHS-based PPLM (second column) obtains a significantly good performance: its number
of swaps is only twice as important as the distance matcher, even though it does use any spatial
information about the users: their sole color appearance gives some meaningful hints about who
is who from one frame to another. This confirms the usefulness of the use of color information
for user matching, and suggests that the PHS can be used to help a distance matching, as we
did for the last column.

The height-based PPLM (third column) performs poorly, as expected: matching users by their
height only is error prone. In the case of the KTP dataset, all the users have very similar height
(about 170 centimeters), which makes the matching unreliable. Note that the real domain of use
of the height-based PPLM is different: it is helpful when the different users have a significant size

164 Chapter 7. Data fusion and user mapping

difference.

Finally, the most interesting column concerns the combination of the PHS-based PPLM and
the distance matching (fourth column). The computational complexity of this multimodal system
is of course higher that each of the two PPLMs taken separately, which explains the framerate
being lower than the distance matcher. However, the number of swaps (16) is inferior to the best
single detector (18), obtained with the distance matching. This is the important conclusion of this
part: using several parallel matching algorithms improves the accuracy of the matching. Indeed,
in most cases, the distance is discriminative enough to match correctly the users. In ambiguous
cases though, the distances are roughly equal, and the PHS comparison will help solving the
ambiguity.

In summary, in this part we presented a common interface for the different tracking algorithms,
called PeoplePoseList Matcher (PPLM). This interface is then used to link the algorithms
with a data filter based on called Unscented Kalman Filter (UKF). This enables a modular
architecture where the configuration of matchers can be redesigned easily according to the
physical configuration of the robot and the hardware limitations. Several configurations of
matchers where benchmarked on a challenging dataset called KTP. Quite surprisingly the most
accurate matcher is the one based on the distance distance. It can be explained by its very high
frame rate compared with more sophisticated methods, such as the one based on the visual
appearance of the clothes of the user or the one based on its height. The key result is that the
combination of various measures obtains better results than the one of these taken alone. This
means our architecture makes sense and is useful for accurately tracking users around the robot.
We will now deepen these conclusions with a more extensive benchmark using homebrew data.

7.2.4.ii Benchmarking using a homemade dataset: the RoboticsLab People Dataset
(RLPD)

Academic datasets, like KTP, ensure a faithful measurement of the performance of the user
awareness system. They make easier the comparison with other similar systems, and ensure
that the measurements can be repeated in the same context.

However, our system is aimed at specific robots, which are the ones of the RoboticsLab,
even though it was designed as generic as possible. For this reason, we decided to acquire
real data from one of our robots, and with users that fit best the target audience: people from
Spain, with a variety of genders and shapes. In addition, the actors do not wander randomly
on the stage, as they did in the KTP dataset. We designed scenarios that mimic a realistic
Human-Robot Interaction (HRI) scenario in which one or several users interact naturally with
the robot: addressing the robot, using gestures, respecting the proxemics distance ([Mumm
and Mutlu, 2011]) , etc. This dataset is called RoboticsLab People Dataset (RLPD) and is
summarized in Figure 7.9.

7.2.
R

esearch
contribution

165

Figure 7.9: Synthesis of the RoboticsLab People Dataset (RLPD) building.

166 Chapter 7. Data fusion and user mapping

Dataset summary The scenario presented involves three users interacting with a robot that
integrate a Kinect camera. They move on the stage accordingly to a script that was previously
defined and visible on the figure. Their motion is challenging: they get in and out of the room,
there are occlusions and partial views.

The dataset is meaningful if and only if the real positions of the users is known. We first
thought of using markers, such as ARToolkit markers, as presented in subsubsection 4.1.1.i,
page 68. However, the imperfect detections could not guarantee an accurate ground truth
concerning the users positions in each frame. For this reason, in each of the 600+ frames,
the ground truth user positions have been manually labeled. This dataset is licensed under
the terms of the GNU General Public License Version 2 as published by the Free Software
Foundation, and freely available to download on the author’s website, along with images and
videos 7.

Input frames Each frame is labeled thanks to its timestamp. The timestamp is expressed
in milliseconds since the beginning of the recording, using six digits with leading zeros. For
instance, frame 065514 has been recorded one minute and five seconds after the beginning of
the recording. In total, we have 647 frames for 133 seconds (2 minutes 15 seconds roughly),
which is in average 5 frames per second.

Acquired data For each frame, we have 4 images and 1 data file:

• the RGB image ("XXXXX rgb.png", lossy JPG compression, quality:85).

• the depth image ("XXXXX depth.png" and "XXXXX depth params.yaml", lossy affine
depth-as-PNG compression).

• the user map obtained as output of the Kinect API, called NiTE. This image stream is
synchronized with the RGB and depth streams of the Kinect, and indicates, for each pixel
of each frame, if this pixel belongs to a detected user using the NiTE algorithm presented in
subsection 3.1.3, page 36. ("XXXXX user mask illus.png", lossless PNG compression)

• the hand-labeled ground truth user map. This image stream has the same purpose as the
NiTE user maps, but it has been manually annotated so that it contains the exact ground
truth concerning the position of each user in each depth image.
("XXXXX ground truth user.png", lossless PNG compression)

On top of that, the Kinect camera info is also stored: it is made of the camera intrinsic
parameters, and enable us to convert 2D pixels into 3D points. The calibrations for both RGB
and depth (IR) cameras are available.

7https://sites.google.com/site/rameyarnaud/research/phd/robotics-lab-people-database

https://sites.google.com/site/rameyarnaud/research/phd/robotics-lab-people-database
https://sites.google.com/site/rameyarnaud/research/phd/robotics-lab-people-database

7.2. Research contribution 167

Dataset annotation The ground truth user positions have been labeled manually in each
frame, using both RGB and depth contents. This has been eased by a series of tools that we
developed. Like the database, these tools are licensed under the terms of the GNU General
Public License Version 2 as published by the Free Software Foundation, and freely available to
download on the author’s website 8.

A first tool, called contour image annotator, is made for annotating binary contour images.
It is particularly handy for annotating images where the contour image has already been
generated, for instance with an edge detector. It generates annotated images with a given
prefix, by default <input image> user illus.png.

Another tool, called user image annotator, is an extension of contour image annotator

for depth images: it first generates the contour image from the depth image using edge detection
(namely, Canny filters). For instance, this tool can ease the annotation of ground truth user
positions in each frame of a data recording. It can also use the RGB image: it displays it in
the background, which can help annotating the user image. A sample of the GUI is visible in
Figure 7.10.

Dataset analysis The dataset was recorded on July 2014. It is made of 647 frames, each of
them being made of four images, i.e. about 2600 images. The dataset is roughly 65 megabytes
big. These images can be easily imported into any programming language, such as C++ or
Matlab. Some samples are visible in Figure 7.11.

PPLPs benchmarking Similarly to what was done in chapter 3, we benchmarked the different
user detection algorithms on this new dataset. These algorithms were all wrapped with a
common interface, PeoplePoseList Publisher.

The performance of the different PPLPs on the RLPD dataset, presented in the previous
subsections, is gathered in a chart visible in Figure 7.12.

The analysis of this chart must be compared with Figure 3.17, page 63, which was obtained
using the DGait dataset. As explained before, the RLPD dataset offers a high level of complexity:
the occlusions are frequent, the users are sometimes partially shown in the images, and in
general, they are somewhat far away from the camera.

The NiTE PPLP has a high accuracy and hit rate (both above 90%), which confirm the good
performance of the algorithm that was already seen with DGait (both metrics above 99%). Both
these benchmarks confirm that the NiTE-based PPLP is a useful method for detecting users in a
social robot, even in challenging conditions.

The tabletop PPLP had a very good performance on the DGait dataset, as it had over 99%.
However, on this benchmark, its performance is lower: it has a detection rate around 40%.
Indeed, as it can be seen in the sample images, the ground is hardly visible in the images

8https://sites.google.com/site/rameyarnaud/research/phd/user-image-annotator

https://sites.google.com/site/rameyarnaud/research/phd/user-image-annotator
https://sites.google.com/site/rameyarnaud/research/phd/user-image-annotator

168 Chapter 7. Data fusion and user mapping

Figure 7.10: A sample view of the Graphical User Interface we developed for annotating images, called
user image annotator.

acquired by the camera, which generates a poor estimation of the ground plane. We can then
conclude that the tabletop PPLP is not appropriate for the robot spatial configuration used in the
RLPD dataset.

In a way similar to the tabletop PPLP, the Polar-Perspective Map (PPM) PPLP performs much
worse on our homemade dataset than on the DGait dataset: its accuracy lowers from 66% to
16%. The reasons are very similar: the limited visibility of the ground provokes a poor estimation
of the transform between the camera space and the perspective map, which creates an incorrect
projection into the latter.

On the other hand, the face detection PPLP has low accuracy and recall, but similar to DGait
(around 25%): like the other database, the users are most of the time several meters away from
the robot and often turn their back to the camera, which are challenging conditions for face
detection.

Finally, the Histogram of Oriented Gradients (HOG) detector is maybe the most interesting:
its detection and recall rates, which were above 70%, fall drastically to under 10%. As it can be

7.2. Research contribution 169

Figure 7.11: Some samples of the RLPD dataset. From left to right: column 1: the RGB image, column
2: the depth image; column 3: the manually labeled user map; column 4: the Kinect API NiTE user map.
The dataset gathers some challenging features: partial (second row) or complete occlusions (third row),
user not fully visible (fourth row). Note how the manual color indexing of the users is consistent (third
column): the same user always corresponds to the same color. On the other hand, the NiTE algorithm
performs swaps and create new users, or even merges users (fifth row).

170 Chapter 7. Data fusion and user mapping

Accuracy Hit rate (recall)
0

0.2

0.4

0.6

0.8

1

NiTE Tabletop PPM
HOG Face detection

Figure 7.12: Comparative performance of the different PeoplePoseList Publishers.

seen in the sample images, the users are never fully seen, and especially their legs are most
of the time out of the picture frame: the HOG detector being trained for detecting fully visible
pedestrians, it performs very poorly on the RLPD dataset.

In conclusion concerning the PPLP benchmarking, we find similar conclusions to what was
seen in chapter 3, page 31: each of the different PPLPs has both strengths and limitations, and
the experimental setting will help choosing a configuration or another.

PPLMs benchmarking The different algorithms used to perform people recognition and pre-
sented in chapter 5, page 89 were benchmarked on the RLPD dataset.

Two PPLMs that were implemented and presented in subsection 7.2.3, but that could not be
used with KTP, were here benchmarked: the NiTE-based PPLM: and the face-recognition-based
PPLM. The raw output of the NiTE algorithm, which is a user multimap 9, was saved during the
recording of the RLPD dataset, enabling the use of the NiTE-based PPLM. While we didn’t have
face samples of the people visible in the KTP videos, here the face recognizer was trained with a
set of faces of the staff of the lab.

Over ten different configurations were used. The five configurations using a single PPLM were
used: 1. using the Euclidean distance PPLM only; 2. using the PersonHistogramSet (PHS)-based

9This was defined in subsection 3.1.3, page 36.

7.2. Research contribution 171

PPLM only; 3. using the height-based PPLM only; 4. using the NiTE multi-map-based PPLM only;
5. using the face recognition-based PPLM only; Then, some configurations were used relying on
several PPLMs, based on combinations of these five available PPLMs.

A sample PeoplePoseList (PPL) message obtained by the multimodal fusion based on both
the Euclidean PPLM and the face recognition-based PPLM is shown in Code listing 7.1. It contains
three users, labeled 2="david", 1="irene", 3="jc". Sample images of the data supplied
by some PPLM configurations are shown in Figure 7.13.

Note on user labeling: Some PPLM configurations have no user recognition against known
users. This is for instance the case of the configuration shown in the left column of Figure 7.13,
where we use both color-based matching and distance-based matching. The temporary inter-
frame user names are "1", "2", "3". These names are coherent, so that a given user has
the same temporary name between frames.
On the other hand, a face recognition PPLM using annotated faces with annotated names such as
"Alice" and "Bob" can set absolute names to the tracks. This is illustrated in Code listing 7.1,
where face recognition allows the matching of a temporary name to a meaningful name, like
"david", and in the right column of Figure 7.13.

Code listing 7.1: A sample PeoplePoseList message

header:
stamp: secs: 1422132943 nsecs: 848699111
frame id : / openn i rgb op t i ca l f r ame

method: / ha l / ukf EF
poses:

- header:
stamp: secs: 1422132943 nsecs: 662736721
frame id : / openn i rgb op t i ca l f r ame

head pose:
posit ion : x: −0.520989051784 y: −0.0111030681214 z: 1.63646026406
or ientat ion : x: 0.0 y: 0.0 z: 0.0 w: 1.0

std dev: 1.359126091
person name: 2
confidence: 1.0
rgb: [image raw data]
depth: [image raw data]
user: [image raw data]
images offsetx : 116
images offsety : 134
at t r ibutes :

names: [’user_multimap_name’ , ’initial_confidence’ , ’ukf_orien’ ,
↪→ ’ukf_speed’ , ’face_name’]

values: [’2’ , ’3.22347’ , ’4.00146’ , ’-0.0443592’ , ’david’]
- header:

172 Chapter 7. Data fusion and user mapping

stamp: secs: 1422132943 nsecs: 662736721
frame id : / openn i rgb op t i ca l f r ame

head pose:
posit ion : x: −0.0590717405732 y: 0.069477229913 z: 1.06420790185
or ientat ion : x: 0.0 y: 0.0 z: 0.0 w: 1.0

std dev: 1.359126091
person name: 1
confidence: 1.0
rgb: [image raw data]
depth: [image raw data]
user: [image raw data]
images offsetx : 149
images offsety : 25
at t r ibutes :

names: [’user_multimap_name’ , ’initial_confidence’ , ’ukf_orien’ ,
↪→ ’ukf_speed’ , ’face_name’]

values: [’1’ , ’3.22388’ , ’3.32724’ , ’-0.012546’ , ’irene’]
- header:

stamp: secs: 1422132943 nsecs: 662736721
frame id : / openn i rgb op t i ca l f r ame

head pose:
posit ion : x: 0.41589570164 y: 0.0827769975227 z: 1.5227458961
or ientat ion : x: 0.0 y: 0.0 z: 0.0 w: 1.0

std dev: 1.359126091
person name: 3
confidence: 1.0
rgb: [image raw data]
depth: [image raw data]
user: [image raw data]
images offsetx : 402
images offsety : 109
at t r ibutes :

names: [’user_multimap_name’ , ’initial_confidence’ , ’ukf_orien’ ,
↪→ ’ukf_speed’ , ’face_name’]

values: [’3’ , ’3.22501’ , ’4.2713’ , ’0.0791527’ , ’jc’]

7.2. Research contribution 173

Figure 7.13: Sample pictures of our user awareness architecture with the RoboticsLab People Dataset,
with two different configurations. The lower row presents the different user tracks (blue lines), along with
their user mask and names. User recognition between frames is performed by the PPLM configuration,
we can know where the user has been and so display its trail. The images were obtained thanks to a
visualization tool called PPLViewer, presented later on in subsection 8.1.2, page 199.
On the left, the configuration used is ”EP”, using both PHS-based and distance-based matching. The
three users are showing their back to the camera, and yet accurate tracking is performed thanks to the
two matchers: note how the temporary names are coherent between frames.
On the right, the configuration used is ”EF”, using the face recognition matcher combined with the
distance-based matcher. In this frame, a user is occluding the others. In this case, the user labels are
displayed along with their names, obtained thanks to face recognition.

174 Chapter 7. Data fusion and user mapping

The results of the benchmark are gathered in Table 7.2.

Duration (seconds) 133
Total frames 647

Frames with several PPs 584

Conf. name Euclidean Face Rec. Height NiTE PHS Processed frames ID swaps
E X - - - - 99% 16
F - X - - - 98% 20
H - - X - - 98% 37
N - - - X - 97% 16
P - - - - X 95% 21

EF X X - - - 98% 2
EH X - X - - 99% 12
EN X - - X - 98% 18
EP X - - - X 98% 8

EFP X X - - X 99% 8
EFHNP X X X X X 83% 22

Table 7.2: Database properties (top table) and benchmark results for different configurations of PPLMs on
the RoboticsLab People Dataset (RLPD) (bottom). Each line corresponds to a different configuration, the
PPLMss used in it are marked with the ”X” letter. For instance, the last configuration, called EFHNP, uses
all the PPLMs that we developed.

The analysis of this table must be compared with Table 7.1, page 163, which was obtained
using the KTP dataset. Before all, we can see that in the RLPD, each PPLM configuration is
able to process almost all PPLs messages, in other words, no message is skipped, while in KTP
many messages were skipped by the configurations needing more computational power. This is
explained by the lower framerate of the acquisition, around 5 Hz vs 30 Hz in KTP.

Performance of each PPLM taken alone: we first can check that the Euclidean PPLM, corre-
sponding to the E configuration, offers a very good compromise between computational needs
and precision: it makes only 16 ID swaps, which is among the best single-PPLMs configurations,
while requiring almost no CPU: practically all PPLs messages were processed.

The face-recognition-based PPLM corresponds to the F configuration. obtains a good per-
formance too: its number of ID swaps, 20, is close to the performance of the Euclidean PPLM.
However, the face recognition algorithm embedded in this PPLM was trained with a dataset of
faces of people of the lab, which is a fairly small population. Its performance would have been
lower with a greater number of people in the face dataset.

The height-based PPLM, corresponding to the H configuration, is the most error-prone: in the
roughly two-and-a-half minutes of the video, 37 ID swaps are made. Like the KTP dataset, two
of the three users have very similar heights, and for this reason their ID are frequently swapped.
Using the height information alone, without any spatial or visual additional information, is a clue

7.2. Research contribution 175

but not enough.

The performance of the NiTE PPLM, powered by the NiTE algorithm and corresponding to
the N configuration, is comparable to the Euclidean PPLM. This experimentally validates the
robustness of the NiTE algorithm for user recognition. We could expect such a good tracking of
the users: being the algorithm powering the user tracking for the XBox games using the Kinect
device, there has been a lot of development and testing to ensure its accuracy.

And finally, the PersonHistogramSet (PHS) PPLM, corresponding to the P configuration,
matches users from one frame to another uniquely using the color of their clothes. Once again,
the number of ID swaps is comparable to the Euclidean matching, without using any spatial
information.

Similarly to KTP, we can see that among the PPLMs, some perform better than others.
Namely, the Euclidean-based and the NiTE-based PPLMs perform 16 ID swaps during the whole
sequence, and the face-recognition-based PPLM get mixed up 20 times. At the other end, the
height-based PPLM taken alone is more than twice more error-prone.

Performance of configurations relying on several PPLM: we also have measured the per-
formance of configurations relying on several PPLMs. As presented in subsection 7.2.2, page
152, these configurations of data fusion call sequentially each of their PPLMs to obtain its cor-
responding cost matrix, then obtain the global cost matrix by making a weighted average of
these matrices. Except one 2-PPLM configuration, EN, all the others (EF, EH, EP) obtains less
ID swaps than the best 1-PPLM configurations, E and N, respectively 2, 12 and 8 ID swaps. In
other words, like in the KTP benchmark, the tracking errors made by the multimodal fusion are
fewer than each of the algorithms taken separately. The performance of the EF configuration
can be underlined: during the whole sequence and in spite of the very challenging scenario,
only 2 ID swaps are committed, which is the best performance obtained among all the tested
configurations. We can explain this improvement: the Euclidean tracker is efficient for most
situations and solves the ambiguities correctly. However, in complicated situations, for instance
users disappearing through the door then reappearing, more sophisticated PPLMs such as face
recognition, help solving correctly the matching.

When we increase the number of PPLMs involved in the multimodal fusion, the performance
of the fusion is affected. For instance, merging the two best 2-PPLM configurations, EF and EP,
into EFP (Euclidean + Face recognition + PHS), does not improve further the performance. The
multimodal tracking capabilities do not compensate the computational overload generated by
the successive calls of PPLMs. Worse, in some situations, while one of the trackers correctly
matches the current users to the tracks, the others get mixed up and the final result is erroneous.

Conclusion: Both benchmarks on complicated datasets (KTP and RLPD) validate the structure
of our user awareness architecture: by using several parallel algorithms for detecting and
matching users, then merging their outputs by multimodal fusion, we obtain a more reliable local
user mapping. The optimal configuration depends on the environment settings and the robot
capabilities, and testing different configurations can be needed to determine the best one.

176 Chapter 7. Data fusion and user mapping

We will now present another solution for people tracking not using PPLMs, but instead based
on a simpler technique: blob tracking in depth images.

7.2.5 Tracking of objects in a depth image

The first contribution of this PhD in data fusion was just explained. It consists in using data filters,
namely Kalman filters, for giving data spatial coherence to the different user detectors across
time. In this part, a different approach will be followed: when a user is first detected around the
robot, his or her shape in the depth image corresponds to a blob we can characterize thanks to
image processing techniques. We can then track this shape in the consecutive depth images
using this characterization. The detection can still be made with a wide range of detectors as
seen in Part I. This approach is less modular then the one using Kalman filters we just explained,
and it is only made for single-user tracking, but it is more straightforward and easy to implement
on a real robot.

The aim of this part is then to provide a mobile robot a lightweight algorithm for clusters
detection and tracking. These clusters can be human users, or objects. The only required
input data is the stream of depth maps. The Red Green Blue (RGB) data, i.e. color images,
also supplied by the Kinect, is discarded for this algorithm. This ensures the compatibility of
the algorithm with devices such as PMDVision CamCubes or Asus Xtion PRO devices, that
do not supply RGB images. It should be able to be either processed on-board or on a remote
computer, but the goal is to have it done on-line, in real time. As such, the visual tracking of the
object-of-interest is made simultaneously with the navigation of the robot.

More accurately, the tracking is made at two levels: on the first hand, at the sensor processing
level, the robot is expected to keep track of the followed cluster. On the second hand, we want
the former to physically move itself and keep close to the latter. The whole process results in the
robot coming to the tracked cluster and following its trail if it is moving.

7.2.5.i Approach

The whole processing pipeline is illustrated in Figure 7.14. Note that along with the description
of each stage of the algorithm, sample captures will be visible in Figure 7.15.

It is detailed in the following order: the acquisition of depth images from the depth sensing
device is detailed in subsubsection 7.2.5.ii. As previously said, the RGB (color) images that can
be provided by the Kinect sensor are not used. Thus, the algorithm can also be used with single
depth imaging devices, such as CamCubes.

Then, our tracking algorithm is articulated in three phases:

1. Cluster detection: the clusters are found in the current depth map thanks to 2D image
processing techniques. This is presented in subsubsection 7.2.5.iii.

7.2. Research contribution 177

MWheel
actuators

Kinect OpenNI
node

Robot

Robot
control

serial port

USB port

Touch screen

Object of
interest

selection GUI

Raw data

Motor
orders

Cluster
detector

Object
trackerWIFI transport

Object of
interest

Tracking GUI

Depth
images

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Current
clusters

Instantaneous
speeds

Figure 7.14: The flow chart of the whole user tracking system. It presents all the components needed
for the vision-based algorithm and does not include the fusion with the laser data presented later in
subsubsection 7.2.5.v.

2. Cluster matching and tracking: the clusters of the current depth map are matched to
the objects found in the previous depth maps. If the user has selected an object to track,
the three-dimensional (3D) position of this object is estimated. More detail is given in
subsubsection 7.2.5.iv.

3. Robot control: depending on the tracking results, the robot motion is controlled. For
instance, if the object selected by the user has been found, the robot will move and come
closer. This is explained in subsubsection 7.2.5.v. Will also be presented how the results
from our algorithm and from another one, based on the data of the laser, are mixed.

7.2.5.ii Depth image acquisition

We saw in subsection 3.1.3 how a depth imaging device, such as the Microsoft Kinect, can
provide at a high frame rate depth maps indicating the distance to the closest object at each
pixel. We however need to take into account that the constructed light patterns projected by the
device, used to measure the distances, can be reflected, for instance by shiny surfaces. The
depth map then contains some undefined values at those pixels, represented by NaN . A sample
is visible in Figure 7.15 (a).

For an easier handling of the depth map, NaN values can be filtered. For instance, the Canny
algorithm explained afterwards would fail with an image containing NaN values, as they are seen

178 Chapter 7. Data fusion and user mapping

(a) (b)

(c) (d)

(e) (f)

Figure 7.15: The flow chart for the detection of connected components in the depth image.
(a): The depth map, as supplied by the range-imaging device (Kinect), and remapped to visible colors

(Hue scale).
(b): The ”clean” depth map, after handling the NaN values.
(c): Canny edge detection on the clean depth map
(d): Morphological erosion of the Canny edges
(e): Recombination of the opened Canny edges and the NaN values
(f): The connected components found and their matches to objects. Each one is drawn with a color

corresponding to the object it was matched to, and the index of this object is overlaid.

7.2. Research contribution 179

as a regular 0 value. To get rid of the undefined values, the values are replaced with the closest
value to the left (or to the right if we are at the left border). This technique is called directional
propagation (to the right). A sample is visible in Figure 7.15 (b).

7.2.5.iii Clusters detection

In this section, the method used to find the 3D clusters in the current depth map is explained.

To be able to make use of conventional vision techniques, the float depth map is first
converted into an usual image with values in the [0, 255] span, by using an affine mapping from
the range of values of the map to [0, 255].

Edge detection Now the depth images have been transformed into standard byte images
and the undefined values have been handled, we can apply without problem ”classical” image
processing algorithms. As the goal is to find clusters in the depth map, we use a Canny filter on
the remapped image as seen in section 3.2.1, page 39.

A sample is visible in Figure 7.15 (c).

The two parameters of the Canny filter are defined for values of the RGB space, and their
meaning depend on the values of α, β. Hence, they are not consistent between frames. This is
why instead of setting the thresholds, we set as constants the values of α× low threshold, α×
high threshold between frames. Parameter β is not taken into account as it is a constant offset
factor, it is neutralized by the gradient simulated by the Sobel operator.

Morphological erosion We have explained previously how we get rid of undefined NaN

values by directional propagation. However, it still can weaken local contrasts. To compensate
this effect, we apply a morphological transformation that thickens the edges. This can close
some edges that had been left opened by the Canny filter.

This result is obtained by passing a morphological erosion filter on the image. The erosion
filter replaces each value in the image with the maximum of the values of the surrounding pixels.
We use here a 3× 3 pixels kernel. It could close gaps in the border that are up to 4 pixels wide.
A sample is visible in Figure 7.15 (d).

Then, as we do not want to include the undefined NaN values in the objects, we need to
restore the undefined values erased in the step of handling of undefined values. They are
restored by: first, computing the minimum of the original remapped and the eroded edge map,
second, thresholding this minimum with a binary threshold at value 0. A sample is visible in
Figure 7.15 (e).

Fast connected component detection First, we define connected components for depth
maps: two pixels of a depth map belong to the same connected component if there is a chain

180 Chapter 7. Data fusion and user mapping

from one to the other, such as there is no depth gap between two consecutive elements of the
chain.

At this step of the processing pipeline, an edge map has been computed that also includes
the undefined NaN values returned by the range-imaging device. A 3D object visible in the current
depth map corresponds to a cluster without discontinuity in the inside, and with a discontinuity at
the border with the neighbor pixels. It should then correspond to a connected component in our
edge map.

In section 3.2.6, we presented how to quickly retrieve the connected components in a binary
image. Our edge map being a binary map, we can use these methods. A sample is visible in
Figure 7.15 (f).

The method also returns the bounding boxes of the components. We recall here that the
bounding box of a set of 2D points is the smallest rectangle that fits all the points within its
surface.

Cluster filtering Some filters can be applied for removing some of the non-relevant clusters
found in the current depth map. The actual version of the algorithm discards the too small
clusters. This is obtained by checking if the size of the corresponding connected component is
under a given threshold.

7.2.5.iv Cluster matching and tracking

In the previous section, the detection of the different clusters in the current depth map was
explained. However, our aim is to give temporal consistency to this cluster information: we want
to match these clusters to objects detected in previous images. For instance, if the robot is
following a person, we want to spot what is the cluster corresponding to this person in the current
image. Having this temporal consistency for objects gives the possibility of a meaningful chasing
motion for the robot.

Let us define the concept of object in the scope of our detector: an object, is a set of
connected components of the successive depth maps, each of which corresponds to the same
physical entity. There is, at most, one connected component in each depth map corresponding to
a given object. However, it might be that some frames do not contain any connected component
corresponding to a given object, i.e., the object might be occluded or not successfully recognized.

For the clarity of the concept, an example issued from real data is presented in Figure 7.16.
It shows the recognition state of an object labeled 3. This object has been recognized five times
in the previous depth maps. For each frame, we have stored the connected component and
the bounding box representing it. On the other hand, the object has not been recognized in the
depth maps number 9, 10, 11, 14, 15.

In order to maintain the computation time as low as possible, the recognition is made in two
steps.

7.2. Research contribution 181

Frame 7 Frame 8 Frame 12 Frame 13 Frame 16

Object #3

Figure 7.16: A example to clarify the concept of an object representation. The data is real and comes
from the tracking sequence of a given user. The object connected component is the filled area and the
bounding box is marked as a rectangle.

1. A first rough matching using only the bounding boxes of the components gives us a first
estimation of which clusters correspond to which objects. This is explained immediately
after.

2. Ambiguities are solved using an analytic distance with strong discrimination properties,
the Hausdorff distance. This is explained in section 7.2.5.iv.

The definitive matching is the one obtained at the end of this second phase.

Rough estimator: bounding boxes correspondences Let us represent a given connected
component C of the current depth map. We want to have a fast estimation of what object is the
most likely to be matched with C.

Let us now consider a given appearance at frame i in the past of an objectO in the recognition
history, that we call Oi. We compare the bounding box bbiO of this appearance with the bounding
box bbC of C.

Definition of the bounding box distance Let us define a bounding box distance dbbox
such as ∀X,Y bounding box, dbbox(X,X) = 0, and the more similar X and Y , the smaller
dbbox(X,Y).

Let us write bbX = {TLX , BRX} , bbY = {TLY , BRY } where TL refers to the top-left
corner of the bounding box, and BR refers to the bottom-right corner. Then, we define dbbox as
defined in Equation 7.1. This corresponds to the sum of the distance between corresponding
corners of both bounding boxes.

dbbox(X,Y) = d (TLX , TLY) + d (BRX , BRY) (7.1)

182 Chapter 7. Data fusion and user mapping

A distance function between 2D points, however, needs to be chosen. The most usual norms
(L1, L2, L∞) have been seen in section 5.1.3.i, page 97. Keeping in mind the speed of execution,
the L1 norm is here chosen. The (Euclidean) L2 norm indeed needs expensive square root
computations.

Application to the tracking The result of dbbox(bbiO, bbC) gives us an idea of the similarity
of Oi, i.e. the appearance of the object O at frame i in the past, and C, i.e. the current connected
component of the depth map. The smaller the value, the more likely it is that C is an appearance
of the object O in the current frame. In addition, to take into account the age of this appearance
of O, we weight the obtained dbbox(bbiO, bbC) by the age (in seconds) of the depth map where
Oi belongs.

However, this estimation only takes in consideration the position of the objects in the frame,
and not their shape. For our given connected component C, we compare it to all the appearances
of all objects and store all the obtained marks in a list. We then sort this list by similarity, that is
with the lowest dbbox distances firsts. Then, we use the precise estimator presented in the next
section iteratively on each element of this sorted list. This gives us the final distance dfinal of C
with each object that appeared the previous frames. 10

Precise estimator: modified Hausdorff distance Using the rough matching with bounding
boxes, matching ambiguities can occur. For instance, two connected components, similar in size
and close to the last apparition of a given object, could both correspond to the same object then
generate an ambiguous matching. For solving such ambiguities, we need a mathematical tool
for properly comparing the shapes of components.

Modified Hausdorff Distance In [Dubuisson and Jain, 1994], a comparison is made
between the different ways of computing a distance between two sets of points. According to
these findings, we use the distance d22, defined as in Equation 7.2.

∀A,B ∈ R2N, d22(A,B) = max (d6(A,B), d6(B,A))

with

d6(A,B) =

1

| A |
∑
a∈A

d(a,B)

d(a,B) = min
b∈B
‖a− b‖

(7.2)

For a given connected component C, d22(C,C) = 0, and given two connected components
A and B, the lower the result returned by d22(A,B), the more similar they are.

d22 requires the choice of a norm for estimating the distance between two points.
10 We can thus avoid the computing of dfinal for the majority of the object appearances. If, for a given object

appearance, its dbbox is superior to the smallest dfinal computed at that time, we can stop comparing all the following
appearances in the list. They will indeed inevitably obtain a higher dfinal distance than this match.

7.2. Research contribution 183

Accurate component comparator The Hausdorff distance helps to solve ambiguities. For
each frame, all the components are first scaled to a given size, say 32× 32 pixels.

Then, the different candidates for the same object are compared using d22 distance. In a
similar way to how we weighted dbbox, d22 is weighted by the age of the object appearance. The
final distance is then given by:

dfinal(O
i, C) = dbbox(bbiO, bbC) + d22(O

i, C)

The best object candidate for the recognition of C is the one getting the lowest dfinal. It
is considered as a positive match if it gets a mark inferior to a given threshold. This mark is
empirically determined and can be set through the Graphical User Interface (GUI). Its default
value is 0.8.

Object tracking: selection of the object-of-interest At this step, the connected compo-
nents of the current depth map are matched to the objects already found. However, the tracking
needs to know what object we aim at tracking. In other words, the user needs a way to select the
object-of-interest. A Graphical User Interface we have developed and working with an auxiliary
touch-screen computer will be presented in section 7.2.5.vi.

The 3D pose of the object-of-interest is obtained thanks to the 3D reprojection of the
barycenter of all points of the object-of-interest. The cluster matcher periodically republishes this
3D pose of the tracked object-of-interest.

7.2.5.v Robot motion and user tracking

Multi-sensor fusion As all range-imaging devices, the Kinect is limited by a field of view.
Horizontally, it can see objects that belong to an angular domain of 57 degrees, and of 43
vertically. Neither can it detect objects at a distance inferior to 1.2 meters according to the Kinect
datasheet. Furthermore, for higher distances, the further the object, the lower the precision. On
the other hand, the robot is also equipped with a Hokuyo laser scanning range finder, which can
only detect objects on a horizontal plane, but with a field of view of 240 degrees. However, its
range is limited to approximately four meters. Both fields of view are compared in Figure 7.17.

The poor visibility of the Kinect device results in objects moving laterally getting easily out of
its view spectrum, and hence getting lost by the tracking algorithm, while they remain visible for
the Hokuyo laser. On the other hand, distant object are out of range for the latter.

Thus, to enable a robust tracking even with challenging trajectories, including curves with
hairpin turns, we chose to combine two different tracking algorithms: the vision-based method
presented before and another one based on the laser data only. The latter consists of a simple
2D cluster-tracking algorithm. A cluster is defined by a continuous set of points where each
point is separated from its neighbors by a distance inferior to a given threshold, say 35 cm. The
tracking is initialized thanks to a 3D seed point supplied to the tracker.

184 Chapter 7. Data fusion and user mapping

Figure 7.17: Field of view of both sensors mounted on the robot: the Kinect depth camera and the
Hokuyo range finder.

These two tracking algorithms run simultaneously on the robot. They publish periodically their
status, and the 3D pose of the object-of-interest obtained by the tracking (as defined previously).
On top of them, a dialog node decides what algorithm has priority, and reinitialize the other
thanks to the 3D pose it returns. When it performs successfully, the vision-based algorithm
presented before always has priority on the laser-based one. As such, if the tracked object is
located in the view frustum of the Kinect device, the former is used before the latter. The latter
enables the tracking to go on successfully outside of the view frustum, and recovering from
eventual failures of the vision-based tracking algorithm.

Goal navigation The dialog node republishes the resulting 3D pose of the tracking algorithm
that has priority. This is used as a goal for the motion planning system, that is the point to reach
by the robot. This goal is moved after each iteration of the tracking algorithms. This corresponds
to each acquisition of a depth map by the range-imaging device.

The motion control is made through a Dynamic Window Approach, as presented in [Fox
et al., 1997].

The admissible velocities, that is, the ones where the robot is then able to stop without
collision, are determined with the local costmap. This local costmap is obtained via the fusion of
the laser scanning range finder and the reprojected Kinect point cloud.

7.2. Research contribution 185

When the robot is close enough to the goal, the robot keeps steady till the goal moves again.
An example is visible in Figure 7.18.

(a)

(b)

Figure 7.18: Motion planning towards the goal at a given time.
(a): The detection status at a given time. The tracked object is the shape with a 0 index on the left of the

bottom-right image.
(b): Visualization of the plan of the robot. The white spots correspond to the laser scan. The light

gray squares represent the local costmap, and the dark ones to its inflated version (inflation by a radius
corresponding to the one of the robot). The robot is indicated by its white footprint and its frame axes.
The goal is the sphere with the tilted axes on top of the image. The direction indicated by the arrow
corresponds to the orientation of the Kinect within the robot. The dotted curved line corresponds to the
planned trajectory until the goal.

186 Chapter 7. Data fusion and user mapping

7.2.5.vi Experimental Results

The method explained before has been implemented into the robot MOPI, already presented in
the Introduction chapter. The experiments have been made in several phases. First, the GUI
developed to select the object-of-interest is presented. Then the times needed for the algorithm
to run in several hardware platforms is presented and discussed. After that, how the workload
can be distributed between several computers is explained . And finally, the accuracy of the
whole tracking algorithm is measured. The success rate of the process is measured, while the
user goes across a marked path with obstacles and occlusions.

Selection of the object-of-interest thanks to a GUI A GUI interface was developed for
the touch screen. It enables the user to select the object-of-interest by clicking on it. The
touch-screen computer used is a TravelMate C110 computer equipped with a touch-sensitive
screen. It is equipped with a CPU of modest performance dating back from 2003. This makes it
appropriate for selection and drawing by users via Graphical User Interfaces (GUIs), but not for
heavy computation.

A sample is visible in Figure 7.19.

Figure 7.19: A sample picture of a user selecting the object-of-interest. It is indicated by the shape with a
white border. The other objects are drawn with a different color.

Time costs for clusters detection and tracking The tracking algorithm has been tried in
several hardware architectures. It was first used on the on-board computer of the MOPI robot,
which is an embedded computer with a CPU with limited capabilities (Intel Atom CPU Z530 @
1.60Ghz). In a second configuration, everything was processed on the touch-screen, which
dates from 2003 (Intel Pentium M @ 1000Mhz). And finally, a desktop PC with a full-power

7.2. Research contribution 187

processor from 2008 was used (AMD Athlon 64 X2 Dual Core Processor 5200+).

The time needed for running the algorithm is shown in Figure 7.20. The on-board computer
needs around 50 milliseconds for a performing a cycle of the algorithm. As such, it can run up
to 20 Hz. However, it represents a workload for the CPU with limited capabilities. The use of a
remote computer for processing solves this issue.

It would also be possible to run the algorithm in the touch screen, reducing the number of
devices to two. However, it is preferable having a smooth GUI running at high frequency to a
choppy display that might cause trouble to the user when selecting the object-of-interest of her
choice. This would also reduce the battery autonomy of the touch screen.

AMD Athlon 64 X2
Dual Core Processor 5200+
(remote computer)

Intel Atom CPU Z530
@ 1.60Ghz
(embedded computer)

Intel Pentium M
 @ 1000Mhz
(touchscreen computer)

0

10

20

30

40

50

60

70

80
ms

object tracking (motion)
component matching
component filtering
connected comp detection
edge detection
remapping

Figure 7.20: Time needs for running the algorithm on different hardware platforms. The time allocated
for each step is also indicated.

Workload distribution among several computers It is possible to make use of the commu-
nication strengths of Robot Operating System (ROS): several computers can share the same
data and the different subtasks can be distributed between them, without affecting the result.

As such, it is possible to send via a wireless connection the raw depth maps to a remote

188 Chapter 7. Data fusion and user mapping

computer. It will run the algorithm presented previously and return the 3D pose of the object if
found.

The whole architecture for processing is then structured as presented in Figure 7.21. The
task demanding much CPU is the detection of the clusters. It has been moved to a remote
computer with a faster processor. The results of the processing are sent back to the robot
embedded computer.

MWheel
actuators

Kinect OpenNI
node

Robot

Robot
control

serial port

USB port

Touch screen

Object of
interest

selection GUI

Raw data

Motor
orders

WIFI transport

Float images
encoder

Cluster
detector

Object
tracker

Remote computer

Float images
decoder

WIFI transport

WIFI transport Object
tracker

Cluster
detector

Object
tracker

WIFI transport

Compressed
depth

images

Instantaneous
speeds

Laser
point
array

Status + pose of
object of interest

Seed pose

Laser

Vision-based
current clusters

Laser-based
current clusters

Decompressed
depth images

Object of
interest

Tracking GUI

Depth images

Figure 7.21: The flow chart of the whole system when distributed between several computers. It also
includes the laser data fusion presented in subsubsection 7.2.5.v.

7.2. Research contribution 189

Tracking accuracy on a complicated path The multi-sensor fusion has been presented in
subsubsection 7.2.5.v. It gives a high priority to the presented vision-based algorithm, and uses
a laser-based fallback tracking to enable a successful tracking along a complicated path.

We measured the performance of the tracking system on an unstructured lab environment,
which represents a complicated path. The path followed by the user is visible in Figure 7.22. The
length of the whole path that the robot has to follow, from its start position to the finish circle, is
around 33 meters. It includes straight lines, hairpin turns, and narrow passages.

A user initializes the tracking on him thanks to the GUI presented in section 7.2.5.vi, then
follows the path without giving more orders to the robot, until reaching the finish line. A run is
declared as successful if the robot follows the user along the whole path, does not collide with
any obstacle, and reaches the finish line. The experience is repeated for twenty runs.

The results are presented in Table 7.3. Some screenshots of the GUI, obtained during a
tracking sequence, are visible in Figure 7.23 and Figure 7.24. 11 90 % of the runs have finished
successfully, in an average time under two minutes. The cases of failure are most often due to a
wrong match of the user’s shape from one frame to the another. For instance, during one of the
failed runs, the robot incorrectly recognized a passive observer as the tracked user, and started
tracking him. A standard deviation of more than ten seconds can be noticed. The time needed
to go along the whole path depends indeed on the speed of the user, which may vary from one
run to another.

This high success rate experimentally validates the robustness and usability of the developed
tracking system.

Number of runs 20
Success rate 90 %

Average time for successful runs 114 s
Standard deviation of average time 12.8 s

Table 7.3: The result of the tracking runs along the complicated path.

11 The full output of the algorithm, is visible in an on-line video here. It lasts about two hours.

https://www.youtube.com/watch?v=9xclN8ncYSY

190 Chapter 7. Data fusion and user mapping

1 m
1 m

Robot start position

User’s start position

Path followed by user

Cardboard boxes

Current chasing distance

Robot finish line

Mobile robot

User of interest
(tracked user)

Static human observer

Figure 7.22: The path followed by the user to test the tracking accuracy. The gray boxes correspond to
cardboard boxes aimed at making the path planning harder and preventing the robot from cutting the
curves.
The robot intends to maintain the chasing distance as close as possible to the goal distance. When the
robot enters the circle without losing the track of the user, the test is marked as successful.

7.2. Research contribution 191

Figure 7.23: Map generated by a SLAM algorithm (GMapping [Grisettiyz, 2005]) overlaid with the paths
generated during a run.
The light gray area corresponds to the free space of the map and the black edges its occupied space.
The irregular line is the path of the user, as detected by the algorithm.
The smooth line ending into the rectangular shape corresponds to the path of the robot, as determined by
its odometry.
The remaining symbols are identical to the ones used in Figure 7.18 (b).

192 Chapter 7. Data fusion and user mapping

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.24: Different frames of the GUI during a tracking sequence on the test path. The numbers stand
for the objects names. The object-of-interest has a white stroke.
(a): GUI just before the user initialization, and (b), just after. The selected user then is marked with a

white stroke (cluster 968).
(c): Shortly after initialization, the robot has come next to the user (cluster 968), who already started

walking along the path.
(d): The user starts walking in a transverse direction to the robot motion, which triggers a fast on-place
rotation.
(e): Another user (cluster 1424) crosses the path of the robot. The tracking is not affected.
(f): In the narrow passage between the tables (cluster 1510) and the wall.
(g): The vision-based tracking loses track of the user (cluster 1493) after a sharp turn. The tracking goes
on thanks to the laser-based tracking.
(h): After the sharp S-turns at the end, the final door is visible (cluster 2008).
(i): Approaching the final door (cluster 2532).

7.2. Research contribution 193

Summary of the chapter
The previous parts of this PhD presented methods for detecting and recognizing users around a
social robot, by using various algorithms mainly based on vision and image processing, but also
on other devices and methods. However these different detection and recognition algorithms
did not provide any temporal coherence to the results given. This is why, in this chapter, we
presented two methods to recognize and track given users by the robot, and hence to build a
local map of the users around the robot.

The first method uses an Unscented Kalman filtering algorithm for merging the output of
these different detection and recognition methods. A standard interface for the recognition algo-
rithms, called PeoplePoseList Matcher (PPLM), was also defined to help integrating smoothly
the algorithms into a common fusion process.
Note that the proposed system offers a range of advantages. It is highly modular, which means
that one can choose the different detection and recognition components, according to the phys-
ical configuration of the robot and the hardware limitations. It makes possible the workload
distribution, thanks to ROS communication layers. A new algorithm is easily integrated: it just
has to comply with this interface, and it can be implemented in the programming languages
supported by ROS: C++, Python and Perl.
The experimental usefulness of the proposed solution was experimentally benchmarked. We
used a challenging academic dataset on the one hand, and realized from scratch a new dataset
supplying realistic data for Human-Robot Interaction (HRI) on the other hand. Some very in-
teresting results were obtained. First, simple tracking algorithms that perform at a very high
rate give better results than sophisticated ones that take a long time to compute. The distance
tracker worked much better than the height-based one for instance. Second, the combination
of different PPLMs improved the tracking accuracy compared with the output of each of these
trackers taken separately. In other words, using a set of trackers adapted to a robot helps having
a precise detection and tracking of the users around this robot.

The second method takes a different approach. Instead of aiming at tackling the recognition
of all visible users simultaneously, which is an error-prone process, it focuses on tracking
accurately one given user. This given user is initialized either thanks to one of the detection
algorithms, called PeoplePoseList Publisher (PPLP), defined in earlier chapters, or thanks
to a Graphical User Interface. The tracking of this given user of interest does not use the
different PPLMs, but instead focuses on a straightforward method with a minimized computational
overhead, based on the shape of the objects in the depth image. Similarly to the the first method
(PPLMs), this depth-tracking method was extensively benchmarked with real life tests, thanks to
dynamic tracking processes of a user across a crowded stage. This second method is simpler
than the PPLMs-based one, but it offers great stability and little computational needs, and turns
out to be perfectly adapted for human following situations, such as follow-the-leader.

Thanks to the work developed in the three first parts of this PhD, we now have a robust,
modular and fast person detection and tracking system building local user maps for social robots.
It is aimed at being used by end-user applications: the next part will present some applications
relying on our system.

194 Chapter 7. Data fusion and user mapping

Part IV

Applications for the system

195

196

CHAPTER 8

Applications of our user awareness architecture for social
robotics

The three first parts of this PhD presented how we implemented a user awareness system
into social robots, our approach being made of three parts: user detectors, user recognizers,
and data fusion thanks to Unscented Kalman Filters. In this chapter, we will focus on possible
applications for such a system.

Indeed, user awareness in HRI can be put to use for a wide range of applications. We have
seen in the chapter linked with the literature review, chapter 2, page 15, how user awareness is a
key component for social robots, and how the applications for such skills are numerous. Please
refer to this chapter for a detailed list of robots using user awareness.

In addition with what was said in that chapter, note that not only end-user applications can
benefit this architecture. It can also help tackling some more advanced problems that are also
required by end-user applications. An example is user action recognition. This handles with
understanding what the users are doing: thanks to their motion and behavior, their intentions and
actions can be understood. For instance, dangerous actions such as children playing with electric
plates, or anomalous behaviors such as elderly people falling in staircases can be detected.
([Schüldt et al., 2004,Laptev et al., 2008]) A survey of such algorithms can be found in [Poppe,
2010].

In short, applications for user awareness are numerous. They go beyond the scope of the
work presented in this PhD, but we chose to adapt a few, as samples of the modularity of the
whole system. We will first present how we adapted our system in the most agile possible way
to fit to this range of possible applications, in section 8.1. Then, the following two sections will

197

198 Chapter 8. Applications of our user awareness architecture for social robotics

explain how we integrated two sample end-user applications: surveillance, section 8.2, page
203 and games, section 8.3, page 215.

8.1 Use of our user awareness architecture and associated tools

The work presented in this PhD dissertation presented the implementation of a full user aware-
ness system. Its final output consists of a so called PeoplePoseList (PPL) message that was
defined in subsection 3.2.2, page 41 and that contains all the relevant information about the
users that could be gathered: the number of users, their position, their most probable identity,
etc.

We will in this section explain how to use the developed system for building end-user
applications that also sport the user awareness architecture.

8.1.1 Using PeoplePoseLists (PPLs) for end-user applications

Our main contribution, the user awareness system, is implemented in several Robot Operating
System (ROS) packages. Here comes an explanatory list.

• people msgs: this is where the proper PeoplePose (PP) and PPL messages are de-
fined. Along with these come some useful applications for writing both PeoplePoseList

Publisher (PPLP) and PeoplePoseList Matcher (PPLM) applications, and for testing them.
Also come some visualization tools, we will come back on that later on.

• people detection vision: in this package are present all the vision-based PPLPs (Part I,
page 31).

• people recognition vision: All the files implementing the vision-based PPLMs are
present in this package (Part II, page 89), along with the Unscented Kalman Filter (UKF)
used for the multimodal fusion (Part III, page 139).

To be able to use PPL messages in a ROS node, you need to depend on the people msgs

package. This package contains almost exclusively the definitions of PPL, which means it is a
very light dependency.

However, if you want to bring up the user awareness pipeline, you need to launch some
ROS nodes belonging to the two other packages. Some launch files 1 are present in these
packages, that present different possible detection and recognition pipelines. Most notably,
people detection vision/all pplp.launch will launch all implemented PPLPs, along with a
Graphical User Interface (GUI) to start and stop each of them, while people recognition vision/all pplm.launch

contains all implemented PPLMs.
1ROS launch files are XML files that contain a list of ROS nodes, along with their parameters, that will be all

launched at once.

8.1. Use of our user awareness architecture and associated tools 199

The applications that we will present in the following sections, for instance, use PPLs for
user detection. Consequently, the package they belong to, called games vision, depends on
person msgs. The full list of dependencies can be seen on Figure 8.1.

Figure 8.1: The package dependencies of games vision, the package containing the different ap-
plications. Note how the end-user package, games vision, depends on people msgs, the package
defining the PeoplePoseList message, but not on the packages defining detectors and matchers,
people detection vision and people recognition vision

8.1.2 User visualization tools

User awareness, the capacity to know how many users are around the robot.

However, the knowledge delivered by the PeoplePoseLists (PPLs) can be somewhat cum-
bersome to visualize. It is a complex message that encapsulates abundant data, and the different
three-dimensional (3D) positions of the users are given in the coordinates frame in which they
were detected, which is often the camera optical frame, while it is easier to represent things in
the robot frame.

For this reason, two different visualization systems were developed and will now be presented:
on the one hand, ROS rviz markers taking advantage of the ROS visualization native tool, on
the other hand, PPLViewer, a lightweight, self-contained and simple tool for displaying the PPL

emitted by the robot.

8.1.3 ROS Rviz Markers

The Robot Operating System (ROS) framework includes a wide range of useful tools for visualiz-
ing data.

200 Chapter 8. Applications of our user awareness architecture for social robotics

For instance, rqt plot can plot in real time any numeric field of a topic. In our case, we
could plot the confidence of the detection, thanks to the field confidence belonging to [0, 1] and
contained in the PeoplePoseList (PPL) message defined in subsection 3.2.2, page 41.

Another useful tool, rqt Package Graph, shows the dependencies between ROS packages
in a graphical way. This tool was used to generate the previous Figure 8.1.

The tool we will focus on in this subsection is the ROS visualization tool, called rviz. It is
a three-dimensional (3D) viewer, based on OpenGL and Ogre. It gives a representation of the
world, in a given, selectable, coordinates frame. The user can scroll, tilt and zoom the view thanks
to the mouse. Many kinds of topics are convertible into some display inside rviz. For instance,
the robot footprint can be displayed as a polygon, the different registered coordinates frame can
be displayed thanks to 3D arrows. New message types can be converted into visualization in
two ways: using rviz plugins or through markers. The first one consists of writing a C++ chunk
of code that converts the message into OpenGL primitives. The second consists of using an
intermediary ROS message type, called Marker. They are actually a way of displaying different
OpenGL primitives straight from the node code. Supported primitives are sphere, points, cubes,
3D text, etc.

We wrote a generic rviz wrapper, called ppl2marker, that subscribes to a PPL topic and
converts it into a ROS marker. For each PeoplePose (PP) of the received message, a sphere is
displayed in the user position, and another circle displays the confidence of the detection: the
wider the circle, the less reliable the detection. Finally, a 3D text displays the detector used and
the user name. A sample is visible in Figure 8.2.

Figure 8.2: A sample rendering of the PPL visualization tool rviz with PPL markers.

This tool is adaptable, as the PPL topic of the wrapper is reconfigurable via a ROS parameter,
and so are the visual properties of the marker (Red Green Blue color, persistence in second,

8.1. Use of our user awareness architecture and associated tools 201

etc.). It also blends in perfectly in a typical ROS architecture, as it converts our custom data type
into rviz, one of the key tools of ROS.

8.1.4 PPLViewer

However, it might not always be desirable to use rviz. Among others, it is a fully accelerated
three-dimensional (3D) visualizer, that requires heavy CPU and GPU resources, thus being
impractical on robots with limited hardware, and that cannot be run via remote connection (ssh).

For this reason, we developed another, much lighter, two-dimensional (2D) tool, called
PPLViewer. It is written in C++, using OpenCV ([Bradski and Kaehler, 2008]) drawing capabilities.
It offers a birdview representation of the world, and can subscribe to various PeoplePoseList

(PPL) topics at the same time. All these topics are then drawn on the interface in real time. In
addition, the previous position for each pair (user name, detector name) is also stored in memory,
which enables the drawing of the trail of each user. This is a polygonal line going through the
previous positions of that user. On top of that, the color image of the user is drawn next to her
trail in the interface. A sample is visible in Figure 8.3.

Figure 8.3: A sample rendering of the PPL visualization tool ppl viewer.

This allows us to see in real time the result of different PeoplePoseList Publishers (PPLPs)
and the output of the Unscented Kalman Filter (UKF)-based multimodal fusion. While running

202 Chapter 8. Applications of our user awareness architecture for social robotics

a benchmark, we can visually compare if the output is correct by comparing the tracks of the
different detectors, with track of the ground truth.

Conclusion In this section, the different applications in social robots using user awareness
were present. We then presented how to use our own user awareness system for end-user
applications. The development of a Robot Operating System (ROS) package using our system
is straightforward: this package needs to depend on the package defining the PeoplePose (PP)
and PeoplePoseList (PPL) messages. Then the two visualization tools for PPL were detailed.
One uses the ROS visualization environment, called rviz. The other offers a minimalistic 2D
viewer that shows in real-time the trails of the different users for several PPLP.

8.2. Example of use #1: Surveillance 203

8.2 Example of use #1: Surveillance

The previous parts of this PhD dissertation presented the multi-modal, modular, distributed user
awareness system I developed. Part I was focusing on user detection thanks to different sensor
inputs and algorithms, Part II was about user recognition from one detection to another, and
Part III merged the results of these different detectors thanks to the results of the recognition.
This section will present an application of the whole system: personalized surveillance of an
Alzheimer’s patient by a social robot. Note that the application we will describe can in fact be
used for any kind of surveillance, but it will be applied to this special category of people, as part
of a broader work with Alzheimer’s caretakers.

Surveillance consists of observing a given zone over time and determining if intruders enter
that zone. In such a case, the surveillance application is in charge of triggering an alarm system.
This can be notifying a human operator, who can be either at the same place as the robot, or
activating other emergency mechanisms.

However, it is hard to control an area with selective rules, that depend on the identity of the
detected person, i.e. allow certain people to be in that area and other not. Our system gives this
possibility.

8.2.1 Problem definition

Surveillance has been an active field of research for the last decades. Most related work focus on
the analysis of the Red Green Blue (RGB) or greyscale image, cf for instance [Haritaoglu et al.,
1999,Haritaoglu et al., 2000,Bouchrika and Nixon, 2006] Other include depth information thanks
to stereo vision, or other physical devices. [Kepski and Kwolek, 2012] for instance presents a
monitoring algorithm that detects when the people around the robot fall on the ground, based on
the depth image analysis.

However, most of these surveillance systems rely only on one detection algorithm. Further-
more, they do not always include any mechanism of user recognition, as all detected persons
are treated equally. Such limitations are acceptable when the goal is to ensure nobody enters
a forbidden area, say, next to the edge of a cliff. However, in most scenarios, not all persons
have the same rights and permissions: for instance, a banker will be allowed to enter the vault
of a bank, while a client will not. Such scenarios require an accurate person detection and
recognition.

The user detection and mapping system presented in the previous chapters gives us the
ability to make selective surveillance, in other words, the behavior of the robot can depend on
the identity of the persons detected.

204 Chapter 8. Applications of our user awareness architecture for social robotics

Alzheimer’s patients caretaking The RoboticsLab has a collaboration with the Spanish
Alzheimer’s Foundation or Fundacion Alzheimer España (FAE) 2. This project aims at helping
both patients of Alzheimer’s and their caretakers by the means of robotics. We aim at building
small robots that are present in the house of the patients for long term instances.

The goal is not that the robot substitutes the caretaker, but on the other hand that it helps
her in the most tedious daily tasks. Indeed, most caretakers are close family: the husband or
wife of the patient, her son or daughter, etc. Taking care of a patient is an exhausting task, first
because of the very important amount of time needed, second because taking care of a beloved
one losing one’s capacities is a terrible burden.

One of the tasks that can be heavily automatized for the wellbeing of the caretaker is the
surveillance of the patient: the patients have trouble staying quiet at night, and tend to wake up
and stroll around the house.

This creates a perfect testbed for the person detector we presented in the previous chapters:
the caretaker is allowed to go wherever she wants, while there are some so-called dangerous
zones for the patient. When dangerous activities occur, such as entering the kitchen at night,
going through the entrance doors, the caretaker should be warned.

8.2.2 Implementation

The surveillance system uses the user awareness system, based on PeoplePoseList Publishers
(PPLPs) for detection and PeoplePoseList Matchers (PPLMs) for recognition and tracking.

The surveillance system can be articulated into different modules: 1. definition of the
forbidden zones by the caretaker; also called Costmap; 2. user detection and recognition,
shaped as a PeoplePoseList (PPL) and performed by a set of PPLPs and PPLMs; 3. Costmap
watchdog: detection of anomalous activity thanks to the costmap and the PPL; 4. caretaker
notification.

The full pipeline is visible in Figure 8.4. The user awareness architecture presented in the
previous parts corresponds to the first orange block, the surveillance pipeline is in the second
block. Note that the definition of the forbidden zones and the detection of the users are two
independent, concurrent modules; the fusion is made in the anomalous activity detector.

Definition of the forbidden zones We first need to define the forbidden zones in the room. We
can think of forbidden zones semantically (for instance, the door, the oven, etc.) or geometrically,
thanks to three-dimensional (3D) coordinates.
The former solution is higher-level and corresponds more closely to how we conceive the potential
dangers for the patient. However, it requires the identification of these semantic concepts during
the phase of surveillance (for instance, is the patient using the oven, or is he just next to it?).
Such an identification is challenging and error-prone.

2http://alzfae.org/

http://alzfae.org/
http://alzfae.org/

8.2. Example of use #1: Surveillance 205

S
u

rv
e
ill

a
n

ce

U
se

r
a
w

a
re

n
e
ss

U
se

r
n

o
ti

fi
ca

ti
o
n

NITE driver OpenNI driver

Devices
data

Sync
RGB + depthDepthSync RGB+

depth+user

Costmap
Watchdog

Alert message

PPL

Costmap

Autoload/save
moduel

Point&Click
GUI

Birdview
GUI

Other devices Kinect

(set of
 PPLG)

(set of
 PPLG)

(set of
 PPLPs)

Alert
GUI

(other
notificators)

Caption
Processing block
(ROS node)

Exchanged data
(ROS message)

X
Node publishing
messages of type X

X
Node subscribing to
messages of type X

Device driver

Figure 8.4: The surveillance pipeline.

This is why we chose the geometrical definition of dangerous zones, using a so-called
Costmap. The concept of costmap comes from geometrical autonomous navigation (see for
instance [Wooden et al., 2010]). It consists of dividing the surroundings of the robot into an
infinite grid of squared cells of fixed width, centered on the robot. This width, in meters, is bound
with the resolution of the map: the smaller the width, the more accurate the representation of the
environment. Each cell has an associated cost (hence the name): this cost is a floating point
number that represents the penalty for the robot to enter in it. For instance, a cell distant from all
obstacles will have a cost close to zero, a wall cannot be crossed by the robot and will result
in an infinite cost, while zones close from walls have a high cost as they represent a collision
danger for the robot.

In our case, the costmap will represent the forbidden zones: if a cell has a cost of zero, then
it can be freely entered by the patient, if its cost is positive, it is forbidden. The patient should not
enter it, if she does, then the caretaker must be warned.

Initially, the costmap is empty: all cells are allowed. The caretaker, who has the knowledge
of the house and who knows what are the dangerous zones, is in charge of indicating the
dangerous zones in the costmap. Three tools were developed for that goal:

206 Chapter 8. Applications of our user awareness architecture for social robotics

• a birdview Graphical User Interface (GUI) that displays the state of the grid cells. It
gives a representation of the world as seen from above. In other words, the 3D world
is projected to two-dimensional (2D) by dismissing the vertical component. By clicking
on a given cell on the grid, the caretaker toggles the state of that cell between forbidden
and allowed. Because it presents the world seen from above and does not overlay any
information of the real world (the furniture and other visible objects are not drawn), it can
be challenging for the caretaker to get her bearings. A sample is visible in Figure 8.5 (a).

• a ”Point&Click”GUI that shows the camera frame. By clicking on the a pixel on the image,
the user can toggle the state of the corresponding floor cell (vertical projection of the pixel
to the floor). It is more natural to use for the caretakers, as they can see what the camera
sees. However, it is computationally more expensive as it requires subscribing to the Red
Green Blue (RGB) and depth stream of the camera (when the caretaker clicks on a 2D
pixel, the pinhole model of the camera is used to reproject this 2D point in a 3D ray, then
the depth value at that pixel converts the clicked point into a 3D point). A sample is visible
in Figure 8.5 (b).

• Finally, the autosave/autoload tool saves the costmap in a file on the hard drive when
the surveillance system is shutdown, and loads it when the system is turned on again. It
ensures no data is lost on a reboot of the surveillance system. It has no visible interface
and does not require any action of the user.

Note that these three modules exchange the built costmap in real time, as they subscribe
and publish on the same costmap Robot Operating System (ROS) topic 3. This means the
caretaker can for instance create the costmap with a the birdview GUI, then continue editing it
with the ”Point&Click”GUI.

These three tools enable the editing of the costmap in a given frame of coordinates, most
often the camera frame. However, in the case of a moving robot, we can obtain a consistent
costmap, even if the robot moves, by generating the costmap in a static frame. In that case, a
conversion between the static and the robot frame is performed, for instance via odometry or
SLAM.

User detection and tracking At the same time as the costmap building, we need to detect if
the patient around the robot is entering a forbidden zone. This is where the main contribution
of this PhD dissertation comes handful. The PeoplePoseList (PPL)-based user awareness
system we presented before was built for finding and recognizing the users.

Moreover, its flexibility relies in its modularity: the different user detectors can be added or
removed according to the hardware specifications of the robot. For instance, the robot prototype
we use for the Alzheimer’s project has a Kinect, but no laser range finder.

An example architecture that can be used in that case would be: a face detection-based
PPLP seen in subsection 3.2.3, page 47, good for close user detection; a HOG-based PPLP as

3ROS architecture was presented in subsubsection 1.4.1.i, page 9.

8.2. Example of use #1: Surveillance 207

(a)

(b)

Figure 8.5: The different tools for the costmap needed in our surveillance application.
(a): The birdview GUI.
(b): The ”Point&Click”GUI.
Note that both GUIs share the costmap data and so represent the same costmap. Both can be used for
further editing this shared costmap.

seen in subsection 3.2.4, page 50, that detects users from far away; and a Polar-Perspective
Map (PPM)-based PPLP seen in subsection 3.2.6, page 56, reasoning on the shape of the
clusters. User matching can be made thanks to an distance matcher based on the geometrical
distance, and a PersonHistogramSet (PHS) one using the color appearance of the user. This
pipeline is drawn in Figure 8.6.

Detection of anomalous activity Once the costmap and the patient detection system are in
place, it becomes easy to detect if the patient enters a forbidden zone. The costmap watchdog
subscribes to both the costmap and to the resulting PPL ROS topics, the latter encapsulating
both user detection and recognition.

208 Chapter 8. Applications of our user awareness architecture for social robotics

PersonHistogramSet
matcher

Distance
matcher

FaceDetector

OpenNI+driver

PPM+PPLGHOGPeople
Detector

PPL

Sync
RGB+T+depth

Multimodal
Fusion

Caption

Processing+block
xROS+nodeX

Exchanged+data
xROS+messageX

ROS+Service

X
Node+publishing
messages+of+type+X

X
Node+subscribing+to
messages+of+type+X

T
ra

ck
s+

xP
P

LX
+T

D
ec

tio
ns

+x
P

P
LX

PPL

Figure 8.6: A possible user awareness architecture for the surveillance pipeline.

If there is a detected user and it is the caretaker, nothing is to be done, as the caretaker is
allowed to move in all areas. However, if the user seems to be the patient, the robot checks if
she enters a forbidden cell of the costmap. In that case, an Alert message is built. It is a data
structure containing all the relevant information for the caretaker: the time and date; the type of
alert (here, an anomalous activity in the surveillance module); the position of the detected users;
the gravity of the warning; and a snapshot of the camera color stream.

Two cases of use are visible in Figure 8.7. This alert message is published by the watchdog
for further notification to the caretaker.

Caretaker notification There are many desirable ways to notify the caretaker: a phone call,
an audio alarm, an instant email, etc.

These notification modules, as they deal more with software engineering, are out of the
scope of this PhD. They can easily be connected to the architecture, as the alert message
published by the watchdog contains all the relevant information. As a proof of concept, we wrote
a simple alert GUI that generates an alarm sound whose tone depends on the gravity of the alert
message, displays the snapshot of the message, and says aloud the content of the message
thanks to the robot Emotional-Text-To-Speech (ETTS) system. Note that this simple GUI was

8.2. Example of use #1: Surveillance 209

Figure 8.7: Two cases of use of the costmap watchdog. Above, the user is detected, but he is out of the
forbidden cells: no notification is needed. Below, the user comes close to the door, which is marked as
forbidden: an alert message is generated.

210 Chapter 8. Applications of our user awareness architecture for social robotics

written to demonstrate the capabilities of the surveillance block, and that the final end-user
application integrates these alert messages smoothly and includes a more adapted automatic
Skype call to the caretaker, giving her access to the video stream of the robot. A screenshot of
the robot GUI is visible in Figure 8.8.

Figure 8.8: Screenshot of the robot Graphical User Interface integrating the alert messages.

8.2.3 Testing the surveillance application with users, results and conclusions

The surveillance algorithm detailed above was implemented for MOPI, presented in subsubsec-
tion 1.3.1.ii, page 6. MOPI is a car-like robot, which can move around in the apartment of the
Alzheimer’s patient. To ensure the coherency of the costmap, defined in the camera frame (robot
coordinates), but meant to be used in a static frame (world coordinates) the conversion between
the camera frame and the static frame is made thanks to the robot odometry.

Note that the internal Kinect of MOPI is about 30 cm high and tilted to 45 degrees, which
means the floor is not visible. This can generate confusion among the users when it comes to
using the ”Point&Click”Graphical User Interface (GUI). A sample is visible in Figure 8.9.

A small testbed was built to test the usefulness of the application. Note that this user test
only focuses measuring the usability of the surveillance block for unexperienced users. Other
aspects, such as detection accuracy, are not the goal of the test, even though they are measured:
they are indeed directly correlated with the accuracy of the user awareness system, presented
in the previous parts of this PhD dissertation.

8.2. Example of use #1: Surveillance 211

Figure 8.9: Consequences of the tilted Kinect in MOPI on the ”Point&Click”GUI. The floor is not visible,
which makes the pyramids indicating the floor look confusing.

The robot MOPI is placed in front of the door of the test room. Even though the application
also works for a robot thanks to the geometrical transformations between frames of coordinates,
MOPI is here configured to stay still at that position during the whole experiment with the user.
First, the user is asked to play the role of the caretaker. She is asked to mark the main door of
the test room as dangerous using first the birdview GUI, then the ”Point&Click”GUI.
Then, the user is asked to play the patient role. She must test the surveillance capabilities by
trying to escape through the monitored door several times.

In order to measure the so-called User satisfaction, i.e. to what extent their interaction with
the application is satisfactory, a method called the Microsoft Desirability Toolkit is used [Benedek
and Miner, 2002]: after the experience, the user has to pick, among a list of about one hundred
adjectives, five that according to her resume best the system. These adjectives can be either
positive, for example efficient or fast, or negative, as hard to use or unattractive. This choice
leads to a guided interview where the number of all positive and negative comments said by the
user is recorded. The interest of using this adjective-picking method is that it avoids the frequent
user bias generated by post-experience rating questionnaires: in these questionnaires, they rate
the system high (satisfactory) even if they had a disappointing experience 4. Some metrics were
also used to measure both User effectiveness (i.e. can people complete their tasks?): and
User performance, also called User efficiency, (i.e. how long do people take to complete the
task?). Note that user satisfaction and its performance are two different concepts, but they are

4 These reasons are further detailed by [Wiklund et al., 1992]: In studies such as this one, we have found subjects
reluctant to be critical of designs when they are asked to assign a rating to the design. In our usability tests, we see
the same phenomenon even when we encourage subjects to be critical. We speculate that the test subjects feel that
giving a low rating to a product gives the impression that they are ”negative” people, that the ratings reflect negatively
on their ability to use computer-based technology, that some of the blame for a product’s poor performance falls on
them, or that they do not want to hurt the feelings of the person conducting the test.

212 Chapter 8. Applications of our user awareness architecture for social robotics

only moderately correlated: users tend to prefer the interface they are more at ease with, but not
always ([Gelderman, 1998]).

According to different usability experts, a number of five non-expert users is enough to detect
most of the usability problems of a system. Theses non-expert users were recruited thanks to
the Hallway testing paradigm [Nielsen, 1993], which recommends to recruit random users who
are in the surroundings of the testing area and do not have special knowledge about the tested
system, here the surveillance system of the robot MOPI.

Eight users, ages ranging from 26 to 56 (average 33 years old), 38% of which were female, all
of them graduate students or professors but with no direct link with the application, participated
in the benchmark. Some previous explanations were given to the users about how to use
both interfaces. A paper printed screenshot of both interfaces was used to explain them how
the interfaces work. Note that the birdview interface print was annotated to help the users to
understand the frame of coordinates. A scanned version of the annotated print is in Figure 8.10.
These annotations help the user when they later use the interface, and must be taken into
account in the results analysis.

Figure 8.10: The annotated birdview GUIs used during the user briefing.

The numerical results of the experience are gathered in Table 8.1. The words picked up by
the users for each interface are visible in the words cloud in Figure 8.11. This gives us a first hint
of the user satisfaction.

Furthermore, we can estimate the global user efficiency and satisfaction and study any
correlation between them. For any variable x, if X is the set of values of x for all users, and
µ is the mean of X and σ its standard deviation, x̄, the normalized version of x is defined as
x̄ = x−µ

σ . This normalized version has a mean of 0 and a variance of 1. For each interface,
we then define the user effectiveness and performance score as the average of the normalized
ratio of detected escapes, the normalized user clicks numbers, and the normalized time needed
to use the interface; and the user satisfaction score as the average of the normalized user
subjective satisfaction score and the normalized ratio of positive-to-negative comments. We can
then check if there is a correlation between performance and satisfaction. The curves are visible
in Figure 8.12.

Several conclusions can be drawn.

8.2. Example of use #1: Surveillance 213

GUI ”Point&Click” Birdview
Number of users 8 8

Average time for door labeling (seconds) 21.5 21.1
Average click number for door labeling 11.0 7.8

Number of escapes per user for this interface 5 5
Successful escape detection rate 80% 90%

Average subjective satisfaction score (1-7) 3.9 5.8
Average positive comments 2.0 4.1

Average negative comments 3.9 1.5

Table 8.1: Benchmark results for the surveillance application.

(a) (b)

Figure 8.11: Clouds of words chosen by the users to describe the surveillance GUIs. Note the fond size
is proportional to the amount of times the word was picked by users.
(a), with the birdview GUI.
(b), with the ”Point&Click”GUI.

First, the birdview GUI, although not faster to use, is felt as better by the users. It includes more
stable, efficient and reliable. This can partly be explained by the annotations given in the briefing,
but also because there is no reprojection ambiguity, contrarily to the ”Point&Click”GUI. The
”Point&Click”GUI, although it is visually more familiar (it includes the camera stream), turns out
to be more confusing for users because the ground is not visible. This problem could be avoided
with a tiltable Kinect, which is challenging with the robot actual shape.
There is a correlation between the users satisfaction and the performance of the interfaces: they
trust more the birdview one, which misses twice as few users as the ”Point&Click”: 90% against
80%.
However the correlation between the users performance score and their satisfaction is loose:

214 Chapter 8. Applications of our user awareness architecture for social robotics

−0.50 0.00 0.50 1.00

Final effectiveness and performance score
−1.00

−0.80

−0.60

−0.40

−0.20

0.00

0.20

0.40

0.60

Fi
n
a
l
sa

ti
sf

a
ct

io
n
 s

co
re

y = −0.01219x + 0.00304751
R² = 0.000142453

(a)

−0.60 −0.40 −0.20 0.00 0.20 0.40 0.60 0.80

Final effectiveness and performance score

−1.00

0.00

1.00

Fi
n
a
l
sa

ti
sf

a
ct

io
n
 s

co
re

y = 0.387764x + 2.28354e-17
R² = 0.0650475

(b)

Figure 8.12: User satisfaction against user effectiveness and performance for surveillance GUIs.
(a): With the birdview GUI.
(b): With the ”Point&Click”GUI.

this conclusion is clearer with the birdview plot, where these variables are independent (the
regression curve is almost a constant value).

8.2.4 Conclusions for the surveillance application

User surveillance is a natural extension for the user awareness architecture proposed in this
PhD dissertation. Thanks to the modularity of this architecture, it can easily be used in a
wide range of robots. The detection rate is high enough, thus validating the main goal of the
surveillance application: monitor forbidden zones. In addition, the different interfaces for labeling
the forbidden zones make it easier to use for users with different profiles, even for the ones
averse to technology.

However, the notification modules lack of user-friendliness: a simple alert sound and verbal
warnings are emitted. These simple reactions limit the interaction with the robot. Furthermore,
the challenging orientation of the imaging device suggests that a hybrid interface, to be de-
signed, would solve these limitations. It would need to combine the easiness of use of the
”Point&Click”interface with the robustness and intuitiveness of the birdview one. We can for
instance imagine a birdview-like interface, that would project the three-dimensional (3D) point
cloud onto the plane ground. In any case, the usefulness of the proposed application was
demonstrated.

8.3. Example of use #2: games 215

8.3 Example of use #2: games

The previous section focused on surveillance as an application of the user awareness architecture
presented in this PhD. In this section, we will focus on the possibilities of using it for games
adapted to young users interacting with the robot.

Indeed, social robots are often capable of playing games with users, as entertainment is
often one of their goals. Several examples were given in chapter 2, page 15. For instance,
in [Geiger et al., 2013], the authors stress the interest of a robot as a gaming platform for elderly
persons. The goal is to stimulate and keep active the user through board games. In this article,
the only game presented is Tic-Tac-Toe, played through the means of a touchscreen located
between the robot and the user. The Aibo dog pet-robot was capable of playing tic-tac-toe
in [Tira-Thompson et al., 2004] An iCat robot plays chess against schoolchildren in [Pereira et al.,
2008] and its emotional state affects the way it plays. Other examples are numerous.

We explored the possibilities of the user awareness architecture proposed in this PhD when
applied to games in robotics. This choice is motivated by two reasons: first, in a way similar
to surveillance, games demonstrate well the modularity of the proposed system, second, the
robots already embedded some simple games in their software: this would make easier the
assessment of the advantages and drawbacks of our architecture when applied to these games.
Two possible game applications are proposed in this section: tic-tac-toe, in subsection 8.3.1 just
below, and Red Light Green Light, in subsection 8.3.2, page 217.

8.3.1 Tic-tac-toe

tic-tac-toe is a board game made for two players. It is played on a square grid of 3 × 3 cells.
One player has cross-shaped pawns, the other circles. Turn by turn, each player locates a pawn
in a free cell of the grid. The goal of the game is to align three of his own pawns (horizontally,
vertically or in diagonal) before the other does.

Because of the simplicity of the rules and the simple hardware needed to play, it is a popular
game among children. It has been used several times in robotics too, as it can be a simple
application for measuring Human-Robot Interaction (HRI) metrics ([Johnson et al., 2008,Johnson
et al., 2006,Dewdney, 1989]).

Previous work In [Ramey, 2011], we presented how we turned the robot Maggie into an
autonomous tic-tac-toe player. 5. The user plays with Maggie in a very natural way: either using
cardboard pawns, or drawing on a piece of paper the crosses and circles. This scenario is
illustrated in Figure 8.13.

The interaction with the robot relies on the touch sensors present on the robot. The user
touches these sensors when she want to indicate the robot that she has played.

5A full description of the robot is available in the subsubsection 1.3.1.i, page 5

216 Chapter 8. Applications of our user awareness architecture for social robotics

Figure 8.13: The spatial configuration for playing tic-tac-toe with Maggie.

To help the robot finding where the proper tic-tac-toe game is in the picture, we invented the
concept of Playzone. It consists of a black thick square that is located so as to make a tight
frame for the game. It can be a rigid frame, made for instance of plastic, or drawn by the user
around the tic-tac-toe game to help the robot.
The detection of the playzone marker in the image is made of a few steps.

1. The input image is thresholded thanks to an adaptative thresholding of the color image
[Jain, 1977].

2. Dark connected components are quickly retrieved by a fast labelling algorithm based on
Disjoint Sets, already seen in section 3.2.6, page 56.

3. The closest connected component is obtained thanks to a pattern matching distance called
Modified Hausdorff Distance, seen in section 7.2.5.iv, page 182.

4. The closest component is approximated by a 4-edges polygon.

5. Finally, the content of this closest connected component is rectified into a birdview per-
spective, see [Semple and Kneebone, 1998].

The image processing is made much easier by the mean of the playzone marker: for the
tic-tac-toe for instance, we can divide the rectified playzone into a 3× 3 grid, and determine if
the content of each cell is a cross or a round.

Limitations of the previous work While the interaction flow we obtained at the time of writing
of [Ramey, 2011] was smooth and most users were satisfied with their experience with the robot,
the understanding of the environment by the robot was very poor.

Indeed, the mechanism of markers (playzones) was of a great help to find and understand
the game, but the robot had no concept of the users in its surroundings. Even more, it would
play as long as the capacitive touch sensors were activated, even though the user was gone.

8.3. Example of use #2: games 217

Contemporary HRI focuses on the contrary on the robot engaging the user during their
interaction: see for instance [Pereira et al., 2008] for some early experiments between children
and a iCat robot chess player, or [Sanghvi and Castellano, 2011] for a series of metrics for
determining the engagement of the user according to the way she stands and sits.

These studies underline how important it is for the engagement of the human user that the
robot companion gives feedback according to the state of the game, but also to the affect of the
user. This feature was absent in [Ramey, 2011].

Towards a dynamic tic-tac-toe: use of PeoplePoseList (PPL) We presented in the previous
chapters how a robust user recognition and tracking system was built. The information flow is
based on the building and transmitting of a special kind of message, called PeoplePoseList

(PPL) (defined in subsection 3.2.2, page 41).

These messages encapsulate all the useful information for a personalized interaction: how
many users are around the robot, where they are located, and their most probable identity.

It is then easy to build a user-aware tic-tac-toe game: by subscribing to the PPL topic, it can
detect who the users are and how engaged they are in the game.

The personalization of the game is multiple:

• at the beginning of the game, the robot uniquely identifies the player it will compete against.
It then can greet him or her.

• during the game, the robot checks periodically where the user is. If the user seems to walk
away from the game, it can ask her about her intentions to resume the game.

Integration and future works The bridge between the previously existing version of the tic-
tac-toe games presented in [Ramey, 2011] and the work presented in this PhD was implemented
and integrated into the robots of the lab.

It is actually a re-writing of the original skill present in the robots, that substitutes the
turn-by-turn playing with a more reactive behavior according to the motion of the user.

However, due to a lack of time in the final phase of this PhD, no experimental tests could be
integrated to measure the improvement of the HRI with this new version. This work will hopefully
be realized as an application of the PhD. Note that thanks to the open-source nature of most of
the code associated with this PhD, it can also be reused and adapted by other researchers.

8.3.2 Future works: Red Light Green Light

Another application of the user awareness architecture is under development at the time of
writing this dissertation: the Red Light Green Light game.

218 Chapter 8. Applications of our user awareness architecture for social robotics

Goal: This game has been popular for generations among children around the world (Spanish
name: escondite inglés, French name: 1, 2, 3, Soleil). The rules are simple: a group of children
stand in line several meters away from a wall. Their goal is to reach and touch the wall before
the others. Another child stands against the wall, she is the ”keeper”. When she stands facing
the wall, the other players can move freely. However, when she turns around and faces the other
players, they have to freeze themselves in the position they had, and any player that is caught
moving while she observes is penalized: she has to go backwards, hence further away from the
target wall, back to the start line. The first player to reach the wall without getting caught wins
the round, and becomes keeper. Before the keeper turns around to see the other players, she
warns them by saying a catchphrase, most often the name of the game.

Implementing Red Light Green Light on a robotic platform presents a lot of advantages.
Thanks to its popularity among children for generations, most children that interact with our
robots already know the rules, and hence are ready to play. The game requires the child to have
both physical strength (speed) and control of her own body, which is good for her development.
The game does not need a lot of verbal interaction, once the game has started, which eases the
Human-Robot Interaction for shy users, such as small children. Because they are based on the
children motion, consecutive rounds of the game tend to be less repetitive than static games,
such as the tic-tac-toe presented before, and hence make the interaction last longer before the
user is bored. And finally, and maybe most important, Red Light Green Light requires by definition
powerful user detection and tracking capabilities, which is what provides our architecture. Without
such a mechanism, teaching the robot to play Red Light Green Light is impossible. On the other
hand, as seen before, user awareness only improved the tic-tac-toe game.

Method: User awareness is required mainly if the robot is the keeper. Furthermore, giving
the robot the role of keeper solves all issues of robot motion and control: the only motion of the
keeper is turning in place. This is why we focused on implementing the game with the robot
being the keeper.

Interaction flow: here is how we plan the interaction flow. If the robot is static (Flori), it has to
be put against the wall at the beginning of the game. If it is mobile (MOPI, Maggie), it can start
the game from anywhere, then moves against the wall. First, the robot announces the beginning
of the game, and sums up the rules, facing the users. It asks the user to go to the virtual starting
line (a few meters away from the robot) and checks the user complies with it. Then the game
starts: the robot turns around against the wall, wait for some time, then say the catchphrase and
turn around. If one of the users is caught moving, the robot asks her to move backwards. The
setup of the game is visible in Figure 8.14.

Implementation: The user architecture proposed in this PhD supplies all the data needed for
an easy implementation of the Red Light Green Light game: thanks to it, the users are detected
and recognized. The PeoplePoseLists (PPLs) messages that are emitted not only contain the

8.3. Example of use #2: games 219

Robot

Player

Static Kinect
view frustrum

Static Kinect

Goal wall

(a)

Game launching

Say rules, learn about users

Ask users to go to starting line

User at the starting line?

Turn to face the wall
Wait for few seconds

Say catchphrase
Turn to face the players

(for each user) user moving?

Send this user back to the
starting line

This user at the starting line?

Has one user won ?

User want another round ?

Game finished

YES
YES

YES

YES

NO
NO

NO

YES

NO

NO

(b)

Figure 8.14: The game design for the Red Light Green Light game.
(a): The perception of the environment is made by a static device, here the Kinect, that will not be

disturbed by the motion of the robot.
(b): The interaction flow of the game. It more or less follows the way two children would play together.

220 Chapter 8. Applications of our user awareness architecture for social robotics

identity and position of the different users, but also their user mask, i.e. a binary image that
indicates all pixels belonging to the user. With this data, we can easily determine if a user is
moving: by matching the shape of this user from one frame to another, its relative motion can
be estimated. Then, if this motion is over an experimental threshold (for instance, if one of the
points of the shape has moved of more than 20 centimeters), then the user is set as moving and
sent back to the start line.

Because the robot is moving (facing the wall, engagement gestures, etc.), the camera
embedded in it is often in motion and suffers motion blur: especially during the rotation phases
when the robot turns around, the images are blurry and the user detection becomes challenging.
For this reason, we use an external sensing device, an external Microsoft Kinect plugged into
the robot but that lies next to it and remains static whatever the gestures of the robot.

State and results: The Red Light Green Light game is a good application for the user archi-
tecture proposed in this PhD. It is in development at the time of writing this dissertation, and will
be used as a support for testing the usability of the user architecture by other users than the
author. For this goal, an extra effort concerning the documentation and integration of the pipeline
has been made. The motion detection components have already been developed for a previous
project and were successfully integrated into the Red Light Green Light pipeline. A sample is
visible in Figure 8.15. We hope to develop this work into a useful testbed for measuring other
Human-Robot Interaction (HRI) metrics.

8.3.3 Conclusions for games

Games represent a important and popular field for social robots, and they make a good applica-
tion of the user awareness architecture presented in this PhD. Two end-user games are under
development at the time of writing: tic-tac-toe and Red Light Green Light.

The former is actually an upgrade of an existing version of the game that was developed dur-
ing the Master Thesis of the author on the robots. The user awareness enables a customization
of the game play and the Human-Robot Interaction (HRI) to engage the player more efficiently.
The latter is a game that was developed from scratch. It requires a precise user detection and
recognition system to measure the motion of the players, which would have been a difficult
challenge without our work.

As said, both games are still under development and already have some prototype versions
ready. We hope in a near future that they will be ready for deeper experiments with users,
and that they will make a good testbed for HRI and widen the range of possibilities the robots
propose.

8.3. Example of use #2: games 221

(a)

(b)

Figure 8.15: Sample pictures of motion detection in a user mask for Red Light Green Light. The white
points correspond to the edge of the user mask. Green points correspond to a polygonal approximation
of this white edge, and red arrows represent the motion of each of the green points, both in direction and
amount: the bigger the acceleration, the greater the arrow.
Picture (a) corresponds to two still users, picture (b) corresponds to a user walking to the right direction.

222 Chapter 8. Applications of our user awareness architecture for social robotics

CHAPTER 9

Conclusions, main contributions and future developments

Social robots need to be aware of the users around them. Without this key skill, they cannot offer
a meaningful interaction with their users.

This PhD dissertation tackled the problem of giving user awareness to social robots. Many
techniques for detecting, recognizing and tracking users are already published by other authors,
and I chose to reuse and improve the most relevant ones.

User awareness has been divided in two sub-tasks: user detection on the one hand, user
recognition on the other hand. The former consists of finding the users around the robot thanks
to the sensors data. User recognition aims at recognizing these detections of users against
previous ones.

User detection User detection is mainly based on image processing and computer vision
techniques. In this field, this PhD contributions have consisted of designing a common data mes-
sage, called PeoplePoseList (PPL), that enables the standardization of all the user detectors
that were integrated; and selecting the best algorithms to improve them and adapt them to this
data message.
A PPL message is structured as a Robot Operating System (ROS) msg data file. ROS is a
communication middleware, originally described in [Quigley et al., 2009] .
The various user detectors are shaped as ROS processes, capable of creating PPLs messages.
They are then called PeoplePoseList Publishers (PPLPs). A PPLP is structured as a ROS node,
subscribing to the data topics it needs, for instance the color image stream, and publishing PPL

messages for every new data received. Thanks to the ROS architecture, various PPLPs can run

223

224 Chapter 9. Conclusions, main contributions and future developments

in parallel, even if they are written in different programming languages (among C++, Python, and
Perl) and running on distributed computers.

Most of the PPLPs I created are based on existing image processing techniques but were
improved in different ways and their performance was extensively measured through the use
of different datasets. Face detection is based on the Viola-Jones two-dimensional (2D) face
detector [Viola and Jones, 2004] but uses the depth image to remove outliers. Similarly, the
Histogram of Oriented Gradients (HOG) PPLP discards false positives obtained by the original
2D algorithm [Dalal and Triggs, 2005] thanks to the depth shape of the detections. A driver using
the NiTE middleware, originally written for the Kinect Software Development Kit (SDK) [Latta
and Tsunoda, 2009], was written so as to share its data with the rest of the ROS architecture.
A technique originally based on stereo-vision for autonomous cars, called Polar-Perspective
Map (PPM) ([Howard and Matthies, 2007]), was also integrated and benchmarked. State-of-
the-art algorithms in object detection for grasping by robotic arms have been used too: we can
indeed consider users standing on the floor as big objects standing on a planar surface. And
finally, we experimented techniques that are not based on image processing but instead rely
on other sensors: a PPLP based on the microphone activity uses Voice Activity Detection and
sound source localization, while the leg-pattern detector analyzes the horizontal 2D scans of the
laser range finder to locate the users around the robot.

All PPLPs do not have the same accuracy or computational needs. The NiTE, tabletop and
PPM PPLPs have both excellent accuracy and recall on uncluttered scenes, but get easily fooled
by human-like objects as a coat rack. On the other hand, the HOG detector is based on the
analysis of the color image, and its accuracy is reasonably high to discriminate between real
users and these user-like objects, but it needs to see the entire person from head to feet to detect
it. Note that the face detection-based PPLP is especially appropriate for close user detection,
while it performs poorly when the user is further.

User recognition The second sub-problem of user awareness is user recognition. We focused
especially on determining if two successive user detections correspond to the same physical
user.

Our contributions to user recognition follow a structure similar to user detection: first, a
common design was designed for all the algorithms that could perform user recognition. These
algorithms are called PeoplePoseList Matchers (PPLMs) and are in fact structured as ROS
nodes. They offer a ROS service that matches reference users against detected ones (services
can be seen as a kind of callable inter-process function or web-service). This service takes as a
argument a reference PPL, corresponding to the tracked users by the system, and a detected
PPL. They return the cost matrix, i.e., for each pair of (reference PeoplePose (PP), detected PP),
the cost of associating one to the other. The higher the cost, the more different they are.

This sub-problem is also a point that has been studied by others before this PhD. Some of
the techniques I propose reuse and improve these previous works. Most of the PPLMs that I
developed handle with physical traits of the user. Face recognition, based on different algorithms

225

such as Eigenfaces ([Turk and Pentland, 1991]) , Fisherfaces ([Belhumeur, 1997]) , and Local
Binary Patterns Histograms ([Ahonen et al., 2004]) give reliable hints of the user identity. Two
algorithms I developed handle with the user height and the shape of her breast. Note that the
user height can be used as a real recognizer and estimates the identity of the user, while the
breast-based PPLM only estimates the gender of the user.

Another class of PPLMs focuses on users’ adhered human characteristics, and more espe-
cially the color of her clothes. The descriptor is called a PersonHistogramSet (PHS), a set of
color histograms structured according to the part of the body they describe, and the matching is
made thanks to sums of histograms distances.

Finally, techniques from other fields can be used. Fiducial markers, such as ARToolkit tags
([Kato and Billinghurst, 1999]) , give a very reliable estimation of the user pose, although the
process of wearing a tag is somewhat cumbersome.

Multimodal fusion and tracking The first block of the architecture, the PPLP, analyzes the
data of the sensors and published possible sets of detections of users found in it. The second
block, the PPLM, evaluates to what extent one of these detections corresponds to a user seen
before. The functionality that we now need is combining these detections across time using the
matching results to form tracks, or trajectories, of each real user. In other words, we need to
merge together the outputs of different algorithms: this process is called data fusion.

Two mains classes of algorithms are available for this task: particle filters ([Gordon et al.,
1993]) and Kalman Filters (KFs) ([Bishop and Welch, 2001]). They both give an estimate of the
so-called state of the system, given a series of measurements over time. I chose to focus on the
second one, for its important presence in related work and availability. Actually, KFs are made
for estimating the state of linear systems (i.e., there is a linear transformation between the state
and the measurements). For this reason, we used an extension of KFs for non-linear problems
called Unscented Kalman Filter (UKF) ([Wan and Merwe, 2000,Julier and Uhlmann, 2004]) .

In our case, the state is the position and orientation of the user, and the measurements are
the PPs given by the different publishers. However, KF (and UKF) needs to know a-priori the
dimension of the state. The number of users being unknown a-priori, we cannot use one unique
filter to estimate all the user states at the same time. Consequently, there is actually one filter
per detected user, i.e. per track. During a phase called gating, the detections that are too far
away from existing tracks are kept in memory. If numerous PPs accumulate at a given point,
it will trigger the creation of a new track at that point. The matching between the set of KFs
(also called tracks) and the detections is made through a process called assignment ([Jonker
and Volgenant, 1987,Rong Li and Bar-Shalom, 1996]), which find the combination of matches
that minimizes the cost generated by each of these matches. This assignment is based on the
so-called cost matrix, describing the likeliness of each track with each detection, estimated by
each of the PPLMs running.

This structure is expandable: a new PPLM, whatever its algorithm and input sensors are, will
generate a cost matrix that will be handled by the generic algorithm of the data fusion node. It is

226 Chapter 9. Conclusions, main contributions and future developments

modular: a PPLM ca be started or shut down dynamically, which starts or stops the associated
ROS service, and so is seamlessly used or not by the data fusion node.

We have systematically run extensive benchmarks on each of the sub-components of our
user architecture, and on the architecture itself. Standard academic datasets were used, such
as the DGait dataset ([Igual et al., 2013]) or the Kinect Tracking Precision dataset ([Munaro et al.,
2012,Munaro and Menegatti, 2014]). However, these dataset do not offer data that corresponds
to typical HRI scenarios, so we recorded our own dataset, named the RoboticsLab People
Dataset. This data is freely available for other researchers to use and compare their results
against ours. These extensive benchmarks have underlined that, thanks to multimodal fusion,
the use awareness architecture supplies an accurate local mapping of the users around the
robot.

Applications The described system provides user awareness to the robot: it indicates how
many users are around it, where they are and possibly who they are. This information of key
importance for a meaningful HRI, but is not a end-user application: it is thought to be used
by higher-level applications. Although it is not the scope of the work presented in this PhD, I
developed two end-user applications that make use of our user architecture.

• Surveillance: the robots of the RoboticsLab are used in a project dealing with helping
caretakers of Alzheimer’s patients. One of the tasks that must be carried out is surveillance
of the patients: especially at night, they are expected to remain in a safe area (bedroom)
and not wander in potentially dangerous zones (kitchen, outside...). The surveillance
application I developed, thanks to the user awareness architecture, detects where the
users are, and when they enter a forbidden area, mechanisms are triggered to notify
the caretaker. The interest of this application was demonstrated thanks to extensive
experiments.

• Games: one of the main targeted audiences for personal robots is children. User aware-
ness comes handy when we want to personalize the games. A previous version of the
tic-tac-toe ([Ramey, 2011]) was extended using our architecture. Whereas the robot was
blind in this previous version and was assuming there was a user in front of it, now it is
aware of who is playing against it and what is her behavior.

9.1 Summary of the contributions

Here are the main contributions of the work presented in this PhD to the field of user detection in
HRI:

• A full user awareness architecture that supplies a local map of the users surround-
ing the robot. It is based on 3 modules: PeoplePoseList Publisher (PPLP), a common

9.2. Future works 227

interface for user detection algorithms, at the same time lightweight and adapted to a
wide range of detectors; PeoplePoseList Matcher (PPLM), a common interface for user
recognition algorithms; and finally a data fusion algorithm, based on Unscented Kalman
Filters and using the output of the two first modules. This architecture is implemented
using the ROS middleware. The map it supplies can be used for end-user applications.
The architecture is modular, and was successfully implemented on four robots with very
different morphologies.

• The integration and improvement of several existing user detection algorithms into
the PeoplePoseList Publisher (PPLP) format: Viola-Jones face detection ([Viola and
Jones, 2004]) and HOG ([Dalal and Triggs, 2005]), both improved with false positive
removals thanks to depth; NiTE ([Latta and Tsunoda, 2009]); Polar-Perspective Map
([Howard and Matthies, 2007]); and more. Some of these algorithms are fast but with a
poor accuracy, while other perform better but require more computation time.

• The integration and improvement of existing user recognition algorithms into the
PeoplePoseList Matcher (PPLM) format: namely, face recognition based on three different
techniques, and using the improved face detection.

• The conception, development and extensive benchmark of novel user detection
and user recognition algorithms: height-based user recognition; breast-based user
recognition; user recognition based on structured histograms of clothes color (PersonHistogramSet);
and voice recognition using Machine Learning techniques. The performance of each of
these novel techniques have been benchmarked.

• The realization of useful end-user applications using the user awareness architecture:
surveillance, a game sample such as tic-tac-toe. The surveillance application has been
used for a user study that demonstrates its usefulness and relevance.

• A precise and extended annotated image dataset for user detection in HRI context,
called RoboticsLab People Dataset. It contains data that we acquired in realistic HRI
scenarios and that we manually labeled. It is freely available for other researchers to
benchmark their user detection, recognition and tracking algorithms.

9.2 Future works

In this section, we identify possible extensions of the work presented in this PhD dissertation. I
hope these goals will be compatible with my future work and will be accomplished promptly.

• The number of possible configurations of PPLP and PPLM is very high, and some configu-
rations are more adapted to given robots than others. We have demonstrated that some
configurations outperform others, most notably the simultaneous use of several PPLMs
can increase the precision of the user mapping compared with each of these PPLMs taken

228 Chapter 9. Conclusions, main contributions and future developments

alone. We wish to establish guidelines concerning the design of configurations offering a
good trade-off between speed and accuracy, according to the state of the robot.

• We are currently testing a end-user game were user awareness is a key component: Red
Light Green Light. In contrary to the previously presented tic-tac-toe, the rules themselves
of this game need to understand where the users are and their motion.

Published contributions

All my published contributions are listed in chronological order in my list of publications, page
242.

Bibliography

[Ahonen et al., 2004] Ahonen, T., Hadid, A., and Pietikäinen, M. (2004). Face recognition with
local binary patterns. Computer Vision-ECCV 2004. [93, 224]

[Alonso-Martin and Castro-González, 2013] Alonso-Martin, F. and Castro-González, A. (2013).
Multidomain Voice Activity Detection during Human-Robot Interaction. Social Robotics. [72,
78, 81, 131]

[Alonso-Martı́n et al., 2013] Alonso-Martı́n, F., Gorostiza, J. F., Malfaz, M., and Salichs, M.
(2013). Multimodal Fusion as Communicative Acts during Human-Robot Interaction. Cyber-
netics and Systems, 44:681–703. [130]

[Alonso-Martin et al., 2011] Alonso-Martin, F., Ramey, A., and Salichs, M. A. (2011). Maggie
: el robot traductor. In UPM, editor, 9 Workshop RoboCity2030-II, number Breazeal 2003,
pages 57–73. Robocity 2030, Madrid. [12]

[Anezaki, 2011] Anezaki, T. (2011). Development of a human-tracking robot using QR code
recognition. Frontiers of Computer Vision (FCV), 2011 17th Korea-Japan Joint Workshop on.
[70]

[Austin and Kouzoubov, 2002] Austin, D. and Kouzoubov, K. (2002). Robust, Long Term Navi-
gation of a Mobile Robot. In Proc. IARP/IEE-RAS Joint Workshop on Technical Challenges
for Dependable Robots in Human Environments. [18]

[Barber and Salichs, 2002] Barber, R. and Salichs, M. (2002). A new human based architecture
for intelligent autonomous robots. In Asama, H. and Inoue, H., editors, Proceedings of The
4th IFAC Symposium on Intelligent Autonomous Vehicles, pages 85–90. Elsevier. [5, 12]

229

230 Bibliography

[Belhumeur, 1997] Belhumeur, P. (1997). Eigenfaces vs. fisherfaces: Recognition using class
specific linear projection. Pattern Analysis and Machine Intelligence, IEEE Transactions on.
[92, 93, 224]

[Bellotto and Hu, 2009] Bellotto, N. and Hu, H. (2009). Multisensor-based human detection and
tracking for mobile service robots. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on. [xviii, 32, 73, 74, 81, 85, 145]

[Benedek and Miner, 2002] Benedek, J. and Miner, T. (2002). Measuring Desirability: New
Methods for Evaluating Desirability in a Usability Lab Setting. In Proceedings of Usability
Professionals Association, volume 2003, pages 8–12. [211]

[Benesty et al., 2008] Benesty, J., Chen, J., and Huang, Y. (2008). Microphone Array Signal
Processing, volume 1. [73]

[Berliner and Hendel, 2007] Berliner, T. and Hendel, Z. (2007). Modeling Of Humanoid Forms
From Depth Maps. United States Patent Application 20100034457. [32, 36, 65]

[Bertsekas, 1985] Bertsekas, D. (1985). A distributed asynchronous relaxation algorithm for the
assignment problem. In 1985 24th IEEE Conference on Decision and Control, volume 24,
pages 1703–1704. IEEE. [150]

[Bishop and Welch, 2001] Bishop, G. and Welch, G. (2001). An introduction to the kalman filter.
Proc of SIGGRAPH, Course. [xix, 141, 144, 225]

[Blauth et al., 2012] Blauth, D. A., Minotto, V. P., Jung, C. R., Lee, B., and Kalker, T. (2012).
Voice activity detection and speaker localization using audiovisual cues. Pattern Recognition
Letters, 33(4):373–380. [72]

[Blodow and Rusu, 2009] Blodow, N. and Rusu, R. (2009). Partial view modeling and validation
in 3D laser scans for grasping. Humanoid Robots, 2009. [59]

[Bloom et al., 2012] Bloom, V., Makris, D., and Argyriou, V. (2012). G3D: A gaming action
dataset and real time action recognition evaluation framework. Computer Vision and Pattern
Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on. [45]

[Bouchrika and Nixon, 2006] Bouchrika, I. and Nixon, M. (2006). People detection and recogni-
tion using gait for automated visual surveillance. In IET Conference on Crime and Security,
volume 2006, pages 576–581. IEE. [94, 203]

[Bradski and Kaehler, 2008] Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer
vision with the OpenCV library. [47, 50, 61, 99, 101, 111, 201]

[Brandstein and Ward, 2001] Brandstein, M. and Ward, D. (2001). Microphone arrays: signal
processing techniques and applications. [73]

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45:5–32. [79]

Bibliography 231

[Burgard et al., 1998] Burgard, W., Cremers, A., and Fox, D. (1998). The interactive museum
tour-guide robot. Proceedings of the fifteenth national/tenth conference on Artificial intelli-
gence/Innovative applications of artificial AAAI ’98/IAAI ’98 intelligence, pages 11–18. [17]

[Cai et al., 2010] Cai, Y., Laws, J., and Bauernfeind, N. (2010). Design Privacy with Analogia
Graph. IAAI. [96, 121]

[Canny, 1986] Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698. [39]

[Cano et al., 2002] Cano, P., Batle, E., Kalker, T., and Haitsma, J. (2002). A review of algorithms
for audio fingerprinting. 2002 IEEE Workshop on Multimedia Signal Processing. [130]

[Castellano et al., 2009] Castellano, G., Pereira, A., Leite, I., Paiva, A., and Mcowan, P. W.
(2009). Detecting User Engagement with a Robot Companion Using Task and Social
Interaction-based Features Interaction scenario. Proceedings of the 2009 international confer-
ence on Multimodal interfaces, pages 119–125. [16]

[Chang et al., 2010] Chang, S., Ham, S., and Suh, D. (2010). ROHINI: A robotic flower sys-
tem for intuitive smart home interface. In Control Automation and Systems (ICCAS), 2010
International Conference on, pages 1773–1776, Gyeonggi-do, Korea. [57]

[Comport et al., 2003] Comport, A. I., Marchand, E., and Chaumette, F. (2003). A real-time
tracker for markerless augmented reality. page 36. [71]

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
learning. [35, 79, 120]

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients
for human detection. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on (Volume:1). [32, 34, 65, 224, 227]

[Dalmasso et al., 2009] Dalmasso, E., Castaldo, F., Laface, P., Colibro, D., and Vair, C. (2009).
Loquendo - Speaker recognition evaluation system. Acoustics Speech and Signal Processing
ICASSP 2009 IEEE International Conference on, pages 4213–4216. [130]

[Damasio et al., 1982] Damasio, A. R., Damasio, H., and Van Hoesen, G. W. (1982). Prosopag-
nosia: Anatomic basis and behavioral mechanisms. Neurology, 32(4):331–331. [2]

[Darrell et al., 2000] Darrell, T., Gordon, G., Harville, M., and Woodfill, J. (2000). Integrated
person tracking using stereo, color, and pattern detection. International Journal of Computer
Vision. [94, 101, 111, 116]

[Dell’Amico and Toth, 2000] Dell’Amico, M. and Toth, P. (2000). Algorithms and codes for dense
assignment problems: the state of the art. Discrete Applied Mathematics, 100(1-2):17–48.
[150]

[Dewdney, 1989] Dewdney, A. (1989). A Tinkertoy computer that plays tic-tac-toe. [215]

232 Bibliography

[Deyle et al., 2014] Deyle, T., Reynolds, M. S., and Kemp, C. C. (2014). Finding and navigating
to household objects with UHF RFID tags by optimizing RF signal strength. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2579–2586. IEEE. [71]

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. [113]

[Dubuisson and Jain, 1994] Dubuisson, M.-P. and Jain, A. K. (1994). A modified Hausdorff
distance for object matching. In Pattern Recognition, 1994. Vol. 1 - Conference A: Com-
puter Vision Image Processing., Proceedings of the 12th IAPR International Conference on,
volume 1, pages 566 –568 vol.1. [182]

[Duda et al., 1995] Duda, R., Hart, P., and Stork, D. (1995). Pattern Classification and Scene
Analysis 2nd ed. [91]

[Dudek et al., 2007] Dudek, G., Sattar, J., and Xu, A. X. A. (2007). A Visual Language for Robot
Control and Programming: A Human-Interface Study. Proceedings 2007 IEEE International
Conference on Robotics and Automation. [32, 70]

[Fiala, 2005a] Fiala, M. (2005a). ARTag, a Fiducial Marker System Using Digital Techniques.
Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2:590–596.
[70]

[Fiala, 2005b] Fiala, M. (2005b). Comparing ARTag and ARToolkit Plus fiducial marker sys-
tems. In Haptic Audio Visual Environments and their Applications, 2005. IEEE International
Workshop on, page 6 pp. [70]

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus:
A para- digm for model Fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24:381–395. [40, 62]

[Fisher, 1936] Fisher, R. (1936). The use of multiple measurements in taxonomic problems.
Annals of Human Genetics. [92]

[Fitzgibbon and Fisher, 1995] Fitzgibbon, A. W. and Fisher, R. B. (1995). A Buyer ’ s Guide to
Conic Fitting. In British Machine Vision Conference, pages 513–522. [112, 119]

[Fortmann, 1983] Fortmann, T. (1983). Sonar tracking of multiple targets using joint probabilistic
data association. Oceanic Engineering, IEEE Journal of. [148]

[Fox et al., 1997] Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window approach to
collision avoidance. Robotics & Automation Magazine, IEEE, 4(1):23–33. [184]

[Galler and Fisher, 1964] Galler, B. A. and Fisher, M. J. (1964). An improved equivalence
algorithm. Commun. ACM, 7(5):301–303. [57]

[Garage, 2010] Garage, W. (2010). Beer Me, Robot. [25]

Bibliography 233

[Garcia and Quintana-Domeque, 2007] Garcia, J. and Quintana-Domeque, C. (2007). The
evolution of adult height in Europe: a brief note. Economics and human biology, 5:340–349.
[117, 159]

[Gavrila and Munder, 2006] Gavrila, D. M. and Munder, S. (2006). Multi-cue Pedestrian Detec-
tion and Tracking from a Moving Vehicle. International Journal of Computer Vision, 73:41–59.
[38]

[Geiger et al., 2013] Geiger, J., Leykauf, T., and Rehrl, T. (2013). The Robot ALIAS as a Gaming
Platform for Elderly Persons. Lebensqualität im Wandel von Demografie und Technik - 6.
Deutscher AAL-Kongress mit Ausstellung. [21, 215]

[Gelderman, 1998] Gelderman, M. (1998). The relation between user satisfaction, usage of
information systems and performance. Information & Management. [211]

[Gockley et al., 2005] Gockley, R., Bruce, A., Forlizzi, J., Michalowski, M., Mundell, A., Rosen-
thal, S., Sellner, B., Simmons, R., Snipes, K., Schultz, A. C., and Wang, J. (2005). Designing
robots for long-term social interaction. In 2005 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS, pages 2199–2204. [19, 24]

[Gonzalez-Pacheco et al., 2011] Gonzalez-Pacheco, V., Ramey, A., Alonso-Martin, F., Castro-
Gonzalez, A., and Salichs, M. A. (2011). Maggie: A Social Robot as a Gaming Platform.
International Journal of Social Robotics, pages 1–11. [21]

[Gordon et al., 1993] Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing IEE
Proceedings F, 140(2):107–113. [141, 225]

[Grisettiyz, 2005] Grisettiyz, G. (2005). Improving grid-based slam with rao-blackwellized particle
filters by adaptive proposals and selective resampling. Robotics, IEEE Transactions on,
23(1):34–46. [xix, 191]

[Gross et al., 2009] Gross, H. M., Boehme, H., Schroeter, C., Mueller, S., Koenig, A., Einhorn,
E., Martin, C., Merten, M., and Bley, A. (2009). TOOMAS: Interactive shopping guide robots
in everyday use - Final implementation and experiences from long-term field trials. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pages
2005–2012. [22]

[Grossman et al., 2000] Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neigh-
bor, G., and Blake, R. (2000). Brain Areas Involved in Perception of Biological Motion. Journal
of Cognitive Neuroscience, 12(5):711–720. [2]

[Guo and Hall, 1989] Guo, Z. and Hall, R. (1989). Parallel thinning with two-subiteration algo-
rithms. Communications of the ACM. [109, 110, 111, 115]

[Haritaoglu et al., 1999] Haritaoglu, I., Harwood, D., and Davis, L. (1999). Hydra: multiple
people detection and tracking using silhouettes. In Proceedings 10th International Conference
on Image Analysis and Processing, pages 280–285. IEEE Comput. Soc. [203]

234 Bibliography

[Haritaoglu et al., 2000] Haritaoglu, I., Harwood, D., and Davis, L. (2000). W/sup 4/: real-time
surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):809–830. [203]

[Howard and Matthies, 2007] Howard, A. and Matthies, L. (2007). Detecting pedestrians with
stereo vision: safe operation of autonomous ground vehicles in dynamic environments. In
Kaneko, Makoto; Nakamura, Y., editor, Proceedings of the 13th Int. Symp. of Robotics
Research, Hiroshima, Japan. [18, 32, 38, 56, 65, 224, 227]

[Hunt and Schalk, 1996] Hunt, A. and Schalk, T. (1996). Simultaneous voice recognition and
verification to allow access to telephone network services. Acoustical Society of America
Journal. [130]

[Igual et al., 2013] Igual, L., Lapedriza, A., and Borràs, R. (2013). Robust Gait-Based Gender
Classification using Depth Cameras. In Eurasip Journal On Image And Video Processing.
[xix, 45, 54, 62, 82, 94, 117, 121, 126, 127, 226]

[Jain, 1977] Jain, A. K. (1977). A Fast Karhunen-Loeve Transform for Digital Restoration of
Images Degraded by White and Colored Noise. Computers, IEEE Transactions on, C-
26(6):560–571. [216]

[Jang and Chin, 1990] Jang, B. and Chin, R. (1990). Analysis of thinning algorithms using
mathematical morphology. Pattern Analysis and Machine Intelligence, IEEE Transactions on.
[109]

[Johnson et al., 2008] Johnson, M. J., Loureiro, R. C. V., and Harwin, W. S. (2008). Collabora-
tive tele-rehabilitation and robot-mediated therapy for stroke rehabilitation at home or clinic.
Intelligent Service Robotics, 1:109–121. [215]

[Johnson et al., 2006] Johnson, M. J., Wisneski, K. J., Anderson, J., Nathan, D., and Smith,
R. O. (2006). Development of ADLER: The activities of daily living exercise robot. In Pro-
ceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and
Biomechatronics, 2006, BioRob 2006, volume 2006, pages 881–886. [215]

[Jonker and Volgenant, 1987] Jonker, R. and Volgenant, A. (1987). A shortest augmenting path
algorithm for dense and sparse linear assignment problems. Computing. [150, 151, 225]

[Julier, 2000] Julier, S. (2000). A new method for the nonlinear transformation of means and
covariances in filters and estimators. Automatic Control, IEEE Transactions on. [146, 147]

[Julier and Uhlmann, 2004] Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear
estimation. Proceedings of the IEEE. [141, 145, 225]

[Jung et al., 2012] Jung, J., Dan, B., and An, K. (2012). Real-time human tracking using fusion
sensor for home security robot. Consumer Electronics (ICCE), 2012 IEEE International
Conference on. [32]

Bibliography 235

[Kanda et al., 2004] Kanda, T., Hirano, T., Eaton, D., and Ishiguro, H. (2004). Interactive Robots
as Social Partners and Peer Tutors for Children: A Field Trial. [24]

[Kanda et al., 2009] Kanda, T., Shiomi, M., and Miyashita, Z. (2009). An affective guide robot
in a shopping mall. HRI ’09 Proceedings of the 4th ACM/IEEE international conference on
Human robot interaction. [1]

[Kato and Billinghurst, 1999] Kato, H. and Billinghurst, M. (1999). Marker tracking and HMD
calibration for a video-based augmented reality conferencing system. In Augmented Reality,
1999. (IWAR ’99) Proceedings. 2nd IEEE and ACM International Workshop on, pages 85–94.
[69, 74, 75, 225]

[Katsuki et al., 2003] Katsuki, R., Ota, J., Tamura, Y., Mizuta, T., Kito, T., Arai, T., Ueyama, T.,
and Nishiyama, T. (2003). Handling of objects with marks by a robot. Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat.
No.03CH37453), 1. [68]

[Kaufman and Lord, 1949] Kaufman, E. L. and Lord, M. W. (1949). The discrimination of visual
number. The American journal of psychology, 62:498–525. [2]

[Kepski and Kwolek, 2012] Kepski, M. and Kwolek, B. (2012). Human Fall Detection by Mean
Shift Combined with Depth Connected Components. Computer Vision and Graphics. [32,
203]

[Kollar et al., 2012] Kollar, T., Vedantham, A., Sobel, C., and Chang, C. (2012). A Multi-modal
Approach for Natural Human-Robot Interaction. Social Robotics. [21]

[Krumm et al., 2000] Krumm, J., Harris, S., and Meyers, B. (2000). Multi-camera multi-person
tracking for easyliving. Visual Surveillance, 2000. Proceedings. Third IEEE International
Workshop on. [101]

[Kuhn, 2006] Kuhn, H. (2006). The Hungarian method for the assignment problem. Naval
research logistics quarterly. [150]

[Laptev et al., 2008] Laptev, I., Marszałek, M., Schmid, C., and Rozenfeld, B. (2008). Learning
realistic human actions from movies. In 26th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. [197]

[Latta and Tsunoda, 2009] Latta, S. and Tsunoda, K. (2009). Gesture keyboarding. US Patent
App. 12/391,145. [36, 224, 227]

[Laws and Cai, 2006] Laws, J. and Cai, Y. (2006). A privacy algorithm for 3d human body scans.
[96, 119, 120, 121]

[Lee et al., 2005] Lee, K., Ho, J., and Kriegman, D. (2005). Acquiring linear subspaces for
face recognition under variable lighting. Pattern Analysis and Machine Intelligence, IEEE
Transactions on. [103, 107]

236 Bibliography

[Lee et al., 2012] Lee, M., Forlizzi, J., and Kiesler, S. (2012). Personalization in HRI: A longi-
tudinal field experiment. Human-Robot Interaction (HRI), 2012 7th ACM/IEEE International
Conference on, pages 319–326. [24]

[Lee et al., 2009] Lee, M., Forlizzi, J., and Rybski, P. (2009). The snackbot: documenting the
design of a robot for long-term human-robot interaction. Human-Robot Interaction (HRI), 2009
4th ACM/IEEE International Conference on. [1, 24]

[Leite et al., 2012] Leite, I., Castellano, G., Pereira, A., Martinho, C., and Paiva, A. (2012).
Modelling empathic behaviour in a robotic game companion for children. In Proceedings of
the seventh annual ACM/IEEE international conference on Human-Robot Interaction - HRI
’12, page 367, New York, New York, USA. ACM Press. [32]

[Li and Jr, 1982] Li, K. and Jr, E. W. (1982). Text-independent speaker recognition with short
utterances. The Journal of the Acoustical Society of America. [133]

[Lienhart and Maydt, 2002] Lienhart, R. and Maydt, J. (2002). An extended set of haar-like
features for rapid object detection. Image Processing. 2002. Proceedings. 2002 International
Conference on. [33]

[Loomis, 1971] Loomis, A. (1971). Figure Drawing for All Its Worth. [95]

[Marton et al., 2011] Marton, Z., Goron, L., Rusu, R., and Beetz, M. (2011). Reconstruction and
verification of 3D object models for grasping. Robotics Research. [59]

[Mikić et al., 2003] Mikić, I., Trivedi, M. M., Hunter, E., and Cosman, P. (2003). Human Body
Model Acquisition and Tracking Using Voxel Data. International Journal of Computer Vision,
53:199–223. [32]

[Mittal and Davis, 2003] Mittal, A. and Davis, L. S. (2003). M2 tracker: A multi-view approach
to segmenting and tracking people in a cluttered scene. International Journal of Computer
Vision, 51:189–203. [94, 102, 111, 116, 122]

[Moghaddam and Yang, 2002] Moghaddam, B. and Yang, M. (2002). Learning gender with
support faces. Pattern Analysis and Machine Intelligence, IEEE Transactions on. [93]

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., and Whittaker, W. (2002). Conditional
particle filters for simultaneous mobile robot localization and people-tracking. Proceedings
2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 1.
[141]

[Mooij, 2010] Mooij, J. M. (2010). lib{DAI}: A Free and Open Source {C++} Library for Discrete
Approximate Inference in Graphical Models. Journal of Machine Learning Research, 11:2169–
2173. [153]

[Mozos et al., 2010] Mozos, O. M., Kurazume, R., and Hasegawa, T. (2010). Multi-part people
detection using 2D range data. International Journal of Social Robotics, 2:31–40. [74]

Bibliography 237

[Muñoz Salinas, 2009] Muñoz Salinas, R. (2009). People detection and tracking with multiple
stereo cameras using particle filters. Journal of Visual Communication and Image Represen-
tation. [141]

[Mumm and Mutlu, 2011] Mumm, J. and Mutlu, B. (2011). Human-Robot Proxemics : Physical
and Psychological Distancing in Human-Robot Interaction. Design, pages 331–338. [164]

[Munaro et al., 2012] Munaro, M., Basso, F., and Menegatti, E. (2012). Tracking people within
groups with RGB-D data. Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. [117, 161, 226]

[Munaro and Menegatti, 2014] Munaro, M. and Menegatti, E. (2014). Fast RGB-D people
tracking for service robots. Autonomous Robots. [117, 161, 226]

[Nagamine and Suzuki, 1964] Nagamine, S. and Suzuki, S. (1964). Anthropometry and body
composition of Japanese young men and women. Human Biology. [102]

[Nielsen, 1993] Nielsen, J. (1993). A mathematical model of the finding of usability problems.
Proceedings of the INTERACT’93 and CHI’93, pages 206–213. [212]

[Niinuma et al., 2010] Niinuma, K., Park, U., and Jain, A. K. (2010). Soft Biometric Traits for
Continuous User Authentication. IEEE Transactions on Information Forensics and Security,
5(4):771–780. [102]

[Oberli et al., 2010] Oberli, C., Torres-Torriti, M., and Landau, D. (2010). Performance eval-
uation of UHF RFID technologies for real-time passenger recognition in intelligent public
transportation systems. IEEE Transactions on Intelligent Transportation Systems, 11:748–753.
[71]

[Olson and Delen, 2008] Olson, D. and Delen, D. (2008). Advanced data mining techniques.
[46]

[Pang et al., 2011] Pang, Y., Yuan, Y., Li, X., and Pan, J. (2011). Efficient HOG human detection.
Signal Processing. [35]

[Pereira et al., 2008] Pereira, A., Martinho, C., Leite, I., and Paiva, A. (2008). iCat, the chess
player: the influence of embodiment in the enjoyment of a game. AAMAS ’08 Proceedings of
the 7th international joint conference on Autonomous agents and multiagent systems. [215,
217]

[Poppe, 2010] Poppe, R. (2010). A survey on vision-based human action recognition. Image
and vision computing. [197]

[Quigley et al., 2009] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger,
E., Wheeler, R., and Ng, A. (2009). ROS: an open-source Robot Operating System. In ICRA
Workshop on Open Source Software, Kobe, Japan. [9, 41, 223]

238 Bibliography

[Rae et al., 2013] Rae, I., Takayama, L., and Mutlu, B. (2013). The influence of height in robot-
mediated communication. In ACM/IEEE International Conference on Human-Robot Interaction,
pages 1–8. [94]

[Ramey, 2011] Ramey, A. (2011). Playzones : A robust detector of game boards for play-
ing visual games with robots. In Libro de Actas del 3er Workshop ROBOT’11: Robótica
Experimental, chapter 7c, pages 626–638. ROBOT’11, Sevilla. [56, 215, 216, 217, 226]

[Ramey, 2012] Ramey, A. (2012). Playzones: a robust detector of game boards and its applica-
tion for games with robots. Master thesis, University Carlos III of Madrid. [57]

[Ramey et al., 2011] Ramey, A., Gonzalez-Pacheco, V., and Salichs, M. A. (2011). Integration
of a Low-Cost RGB-D Sensor in a Social Robot for Gesture Recognition. In Proceedings of
the 6th International Conference on HumanRobot Interaction, HRI ’11, pages 229–230, New
York, NY, USA. ACM. [5, 32]

[Ramey et al., 2013] Ramey, A., Malfaz, M., and Salichs, M. A. (2013). Fast 3D Cluster-Tracking
for a Mobile Robot Using 2D Techniques on Depth Images. Cybernetics and Systems. [32]

[Rehg, 1999] Rehg, J. (1999). Vision-based speaker detection using bayesian networks. Com-
puter Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. [34]

[Reid, 1979] Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control, 24. [148]

[Rivas, 2007] Rivas, R. (2007). Robot skill abstraction for ad architecture. 6th IFAC Symposium
on Intelligent Autonomous Vehicles, 47(4):12–13. [12]

[Rong Li and Bar-Shalom, 1996] Rong Li, X. and Bar-Shalom, Y. (1996). Tracking in clutter with
nearest neighbor filters: analysis and performance. IEEE Transactions on Aerospace and
Electronic Systems, 32(3):995–1010. [148, 225]

[Rowley et al., 1998] Rowley, H., Baluja, S., and Kanade, T. (1998). Neural network-based face
detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on. [34]

[Rusu, 2009] Rusu, R. B. (2009). Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments. PhD thesis, Computer Science department, Technische Universitaet
Muenchen, Germany. [51]

[Rusu and Cousins, 2011] Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library
(PCL). 2011 IEEE International Conference on Robotics and Automation, pages 1–4. [40, 62]

[Saldivar-Piñon, 2012] Saldivar-Piñon, L. (2012). Human Sign Recognition for Robot Manipula-
tion. Pattern Recognition Lecture Notes in Computer Science. [101]

[Samaria and Harter, 1994] Samaria, F. and Harter, A. (1994). Parameterisation of a stochastic
model for human face identification. Applications of Computer Vision, 1994., Proceedings of
the Second IEEE Workshop on. [103]

Bibliography 239

[Sanghvi and Castellano, 2011] Sanghvi, J. and Castellano, G. (2011). Automatic analysis of
affective postures and body motion to detect engagement with a game companion. Human-
Robot Interaction (HRI), 2011 6th ACM/IEEE International Conference on. [217]

[Satake et al., 2009] Satake, S., Kanda, T., Glas, D. F., Imai, M., Ishiguro, H., and Hagita, N.
(2009). How to approach humans?: strategies for social robots to initiate interaction. HRI 09
Proceedings of the 4th ACMIEEE international conference on Human robot interaction, pages
109–116. [23]

[Schiele and Crowley, 1996] Schiele, B. and Crowley, J. (1996). Object recognition using multi-
dimensional receptive field histograms. Computer Vision - ECCV’96. [101]

[Schüldt et al., 2004] Schüldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions:
A local SVM approach. In Proceedings - International Conference on Pattern Recognition,
volume 3, pages 32–36. [197]

[Schulz et al., 2003] Schulz, D., Fox, D., and Hightower, J. (2003). People tracking with anony-
mous and ID-sensors using Rao-Blackwellised particle filters. In Proceedings of the 18th
international joint conference on Artificial intelligence, pages 921–926. [141]

[Semple and Kneebone, 1998] Semple, J. G. and Kneebone, G. T. (1998). Algebraic projective
geometry. Oxford classic texts in the physical sciences. Clarendon Press. [216]

[Shanno, 1970] Shanno, D. (1970). Conditioning of Quasi-Newton Methods for Function Mini-
mization. Mathematics of Computing, 24:647–656. [119]

[Streit and Luginbuhl, 1995] Streit, R. and Luginbuhl, T. (1995). Probabilistic multi-hypothesis
tracking. [148]

[Thrun, 2002] Thrun, S. (2002). Particle Filters in Robotics. Smithsonian, 1:511–518. [141]

[Thrun et al., 1999] Thrun, S., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D.,
Hahnel, D., Rosenberg, C., Roy, N., Schulte, J., and Schulz, D. (1999). MINERVA: a second-
generation museum tour-guide robot. Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), 3. [17]

[Tian and Yuan, 2010] Tian, Y. and Yuan, S. (2010). Clothes matching for blind and color blind
people. Computers Helping People with Special Needs. [101]

[Tira-Thompson et al., 2004] Tira-Thompson, E., Halelamien, N., Wales, J., and Touretzky, D. S.
(2004). Tekkotsu: Cognitive robotics on the Sony AIBO. Citeseer. [215]

[Turk and Pentland, 1991] Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal
of cognitive neuroscience. [91, 224]

[Varvadoukas et al., 2012] Varvadoukas, T., Giotis, I., and Konstantopoulos, S. (2012). Detect-
ing human patterns in laser range data. In Frontiers in Artificial Intelligence and Applications,
volume 242, pages 804–809. [74]

240 Bibliography

[Viola and Jones, 2001] Viola, P. and Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, volume 1, pages 511–518, Los Alamitos, CA, USA. IEEE Comput.
Soc. [32, 33, 65, 104]

[Viola and Jones, 2004] Viola, P. and Jones, M. (2004). Robust real-time face detection. Inter-
national journal of computer vision. [33, 34, 224, 227]

[Vogt, 2002] Vogt, H. (2002). Efficient object identification with passive RFID tags. Pervasive
Computing. [71]

[Wan and Merwe, 2000] Wan, E. and Merwe, R. V. D. (2000). The unscented Kalman filter for
nonlinear estimation. Adaptive Systems for Signal Processing, Communications, and Control
Symposium 2000. AS-SPCC. The IEEE 2000. [145, 146, 148, 225]

[Wiklund et al., 1992] Wiklund, M., Thurrott, C., and Dumas, J. (1992). Does the fidelity of
software prototypes affect the perception of usability? Proceedings of the Human Factors and
Ergonomics Society Annual Meeting. [211]

[Wolf et al., 2012] Wolf, C., Mille, J., Lombardi, L., and Celiktutan, O. (2012). The liris human
activities dataset and the icpr 2012 human activities recognition and localization competition.
[45]

[Wooden et al., 2010] Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A. A.,
and Raibert, M. (2010). Autonomous navigation for BigDog. In 2010 IEEE International
Conference on Robotics and Automation, pages 4736–4741. IEEE. [204]

[Yin, 1970] Yin, R. K. (1970). Face recognition by brain-injured patients: a dissociable ability?
Neuropsychologia, 8:395–402. [2]

[Zhang and Suen, 1984] Zhang, T. and Suen, C. (1984). A fast parallel algorithm for thinning
digital patterns. Communications of the ACM. [109, 110, 111, 115]

[Zhao et al., 2003] Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. (2003). Face
recognition: A literature survey. ACM Computing Surveys, 35(4):399–458. [91, 93]

[Zhou, 2004] Zhou, S. (2004). Visual tracking and recognition using appearance-adaptive
models in particle filters. Image Processing, IEEE Transactions on. [141]

[Zhu and Yeh, 2006] Zhu, Q. and Yeh, M. (2006). Fast human detection using a cascade of
histograms of oriented gradients. Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on. [35]

List of Publications

[1] Fernando Alonso-Martin, Arnaud Ramey, and Miguel Ángel Salichs. Speaker identification
using three signal voice domains during human-robot interaction. In Proceedings of the 2014
ACM/IEEE international conference on Human-robot interaction - HRI ’14, pages 114–115.
ACM Press, 2014.

[2] Arnaud Ramey and Miguel Ángel Salichs. Morphological gender recognition by a social
robot and privacy concerns. In Proceedings of the 2014 ACM/IEEE international conference
on Human-robot interaction - HRI ’14, pages 272–273, New York, New York, USA, March
2014. ACM Press.

[3] Arnaud Ramey, Maria Malfaz, and Miguel Ángel Salichs. Fast 3D Cluster-Tracking for a
Mobile Robot Using 2D Techniques on Depth Images. Cybernetics and Systems, 2013.

[4] Arnaud Ramey and Miguel Ángel Salichs. Real-time recognition of the gender of users
around a social robot: preliminary results. In 11th Workshop RoboCity2030: Social Robots,
pages 978–84–615–6787–4. University Carlos III of Madrid, Madrid, 2013.

[5] Arnaud Ramey, Javi F. Gorostiza, and Miguel Ángel Salichs. A Social Robot as an Aloud
Reader: Putting together Recognition and Synthesis of Voice and Gestures for HRI Experi-
mentation. In HRI 2012, Boston, MA, 2012.

[6] Fernando Alonso-Martin, Arnaud Ramey, and Miguel Ángel Salichs. Maggie : el robot
traductor. In UPM, editor, 9 Workshop RoboCity2030-II, number Breazeal 2003, pages
57–73. Robocity 2030, Madrid, 2011.

[7] Victor Gonzalez-Pacheco, Arnaud Ramey, Fernando Alonso-Martin, Alvaro Castro-Gonzalez,
and Miguel Ángel Salichs. Maggie: A Social Robot as a Gaming Platform. International
Journal of Social Robotics, pages 1–11, September 2011.

241

242 List of Publications

[8] Arnaud Ramey. Playzones : A robust detector of game boards for playing visual games with
robots. In Libro de Actas del 3er Workshop ROBOT’11: Robótica Experimental, chapter 7c,
pages 626–638. ROBOT’11, Sevilla, 2011.

[9] Arnaud Ramey, Victor Gonzalez-Pacheco, and Miguel Ángel Salichs. Integration of a Low-
Cost RGB-D Sensor in a Social Robot for Gesture Recognition. In Proceedings of the 6th
International Conference on HumanRobot Interaction, HRI ’11, pages 229–230, New York,
NY, USA, 2011. ACM.

[10] F Alonso-Martin, V Gonzalez-Pacheco, A Castro-Gonzalez, Arnaud Ramey, Marta Yébenes,
and Miguel A Salichs. Using a Social Robot as a Gaming Platform. In 2nd International
Conference on Social Robotics, pages 30–39. Springer Berlin Heidelberg, 2010.

Abbreviations

AD Automatic-Deliberative . 120

COM Center of Mass .54

ETTS Emotional-Text-To-Speech . 208

EKF Extended Kalman Filter . 142

FAE Fundacion Alzheimer España . 203

FOV Field of View . 140

GIS Google Images Search. .106

GUI Graphical User Interface . 210

HOG Histogram of Oriented Gradients . 224

HRI Human-Robot Interaction . 220

KF Kalman Filter . 225

KTP Kinect Tracking Precision. .161

LRF Laser Range Finder . 23

LBPH Local Binary Patterns Histograms . 91

ML Machine Learning . 79

PCA Principal Component Analysis . 91

PHS PersonHistogramSet . 225

PP PeoplePose . 224

PPL PeoplePoseList . 223

PPLP PeoplePoseList Publisher . 223

243

244 List of Publications

PPLM PeoplePoseList Matcher . 224

PPM Polar-Perspective Map . 224

RFID Radio-Frequency Identification . 85

RGB Red Green Blue . 206

RGBD Red Green Blue Depth . 5

RLPD RoboticsLab People Dataset . 161

ROS Robot Operating System . 223

SDK Software Development Kit . 224

SLAM Simultaneous Localization and Mapping . 22

SVM Support Vector Machine . 119

UKF Unscented Kalman Filter . 225

VAD Voice Activity Detection . 132

Index

L1 norm, 95
L2 norm, 95
L∞ norm, 96
PeoplePoseList Matcher, 151
PeoplePoseList, 43
PeoplePose, 41

A color space, 96
A posteriori state estimate, 141
A priori state estimate, 141
Accumulation, 58
AD (Automatic-Deliberative) architecture, 12
Adhered human characteristics, 92
Alert message, 205
ARToolkit, 66
Assignment, 146
Audio features, 70

Behavioral traits, 92
Binary mask, 110
Blending factor, 141
Boosting, 33

Calibration, 71
Class of an image, 90
Color image, 36
Computer vision, 31
Contour image, 107
Cost matrix, 147

Costmap, 202
Costmap watchdog, 202

Data association, 146
Depth image, 36

Eigenfaces, 89
Estimate update equation, 141

Face detection, 33
Face recognition, 89
Fisherfaces, 90

Gain, 141
Gating, 152
Gender recognition, 87

Hallway testing, 209
Histogram, 94
Histogram normalization, 96
Histogram of Oriented Gradients, 34
HSV, 96
Human-Robot Interaction, 1

Image gradient, 34
Image processing, 31
Innovation, 141

Kalman filter, 139

Laser range finders, 71

245

246 Index

Linear assignment problem, 146

Maggie, 5
MOPI, 6
Morphological thinning, 106
Multi-mask, 37, 120

Norms, 95

Observation covariance, 145
Observation model, 140

Particle filter, 138
Pattern files, 73
Patterns, 67
PersonHistogramSet, 119, 122
Physical traits, 92
Playzone, 213
Pochhammer symbol, 147
Polar-Perspective Map (PPM), 38
Process noise, 140

Red-Green-Blue (RGB) image, 36
Residual, 141
Robot Operating System (ROS), 9
Robotics, 1

Seed (for user mask generation), 39
Sigma points, 143
Skeleton, 106
Social robotics, 1
Soft biometrics, 88
State of the system, 138, 140
Surveillance, 201

tags, 66
Topological skeleton, 106
Track, 146

User awareness, 1
User effectiveness, 209
User efficiency, 209
User label, 123
User mask, 37
User performance, 209

User recognition, 87
User satisfaction, 209

Voice activity, 70

	Acknowledgments
	Abstract
	Resumen
	Résumé
	Contents
	List of Tables
	List of Figures
	Code listings
	Introduction, problem definition and goals
	Potential benefit of the PhD
	Goals of the PhD
	Resources and constraints
	Specifications of the robots

	Methodology
	Software architecture

	Structure of the PhD

	Related work
	Social robots without any user awareness mechanism
	Detecting users as obstacles
	Short term awareness
	User awareness through explicit actions
	Autonomous user detection
	Intelligent environments

	Long term awareness
	Summary

	I User detection
	Vision-based person detection
	Introduction
	State of the art
	Face detection
	Human body detectors: Histogram of Oriented Gradients
	Kinect API: NiTE
	Polar-Perspective Map (PPM)

	Research contribution
	Preliminaries: User mask from depth image and seed pixel
	Design of a common interface for user detectors
	Robust 3D face detection with depth information.
	Improvement of the original HOG detector and integration as a PeoplePoseList Publisher
	NiTE-based PeoplePoseList Publisher
	PPM-based PeoplePoseList Publisher
	Tabletop PeoplePoseList Publisher
	Comparative performance of the different PeoplePoseList Publishers

	Summary

	Other techniques for person detection
	Introduction
	State of the art
	Tag based user detection
	Voice detection
	Leg pattern detection

	Research contribution
	ARToolkit PeoplePoseList Publisher
	Voice localization PeoplePoseList Publisher
	Integration of the leg pattern detector and benchmark

	Summary

	II User recognition
	Vision-based user recognition
	Introduction
	State of the art
	Face and gender-from-face recognition
	Height and other anatomy-based techniques
	Histogram-based user recognition

	Research contribution
	Building a dataset of training sample images for gender-from-face recognition
	Implementation and benchmarking of gender-from-face recognition for the social robot MOPI
	Height detection for user recognition and gender estimation
	Breast detection for gender estimation
	PersonHistogramSet: user recognition based on structured Hue histograms

	Summary

	Other techniques for user recognition
	Introduction
	State of the art
	Research contribution - text-independent user voice identification
	Description of the system
	Integration as a PeoplePoseList Matcher
	Experimental results

	Summary

	III Data fusion and user mapping
	Data fusion and user mapping
	Introduction
	State of the art
	Particle filters
	Kalman filtering

	Research contribution
	Preliminary: benchmarking of linear assignment algorithms
	A common interface for PeoplePoseList (PPL) matchers: the PeoplePoseList Matcher (PPLM)
	Integration of recognition algorithms as PeoplePoseList Matchers
	Benchmarking and limitations of the UKF and different combinations of PPLMs
	Tracking of objects in a depth image

	Summary

	IV Applications for the system
	Applications of our user awareness architecture for social robotics
	Use of our user awareness architecture and associated tools
	Using PeoplePoseLists (PPLs) for end-user applications
	User visualization tools
	ROS Rviz Markers
	PPLViewer

	Example of use #1: Surveillance
	Problem definition
	Implementation
	Testing the surveillance application with users, results and conclusions
	Conclusions for the surveillance application

	Example of use #2: games
	Tic-tac-toe
	Future works: Red Light Green Light
	Conclusions for games

	Conclusions, main contributions and future developments
	Summary of the contributions
	Future works

	Bibliography
	List of Publications
	Index

