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Resumen

Esta tesis desarrolla los algoritmos necesarios para construir las bases de

un sistema de generalización e inferencia de objetos y acciones. La general-

ización de objetos es llevada a cabo en un espacio n-dimensional llamado espa-

cio semántico-caracterı́stico, porque aúna las percepciones del robot, en forma

de valores de caracterı́sticas, con la descripción semántica asociada al objeto.

La inferencia de objetos se asume como una búsqueda de áreas relevantes, las

cuales se encuentran como intersección de elementos altamente dimensionales,

en la forma de modelos de palabras. La inferencia de acciones sigue los mis-

mos principios que en los objetos, pero midiendo los cambios sólo en el objeto

afectado por la acción (aproximación que hemos denominado “centrada en ob-

jetos”). Esta inferencia se lleva a cabo mediante capturas estáticas principio-fin

de la acción, aplicando distintos métodos de aprendizaje máquina. Finalmente,

algunas aplicaciones robóticas finales han sido desarrolladas, como el dibujo de

modelos mentales con un brazo manipulador a través de algoritmos evolutivos,

o el aprendizaje de vocabulario espacial por un robot humanoide.
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Abstract

This thesis develops the necessary algorithms to build the basis for a gen-

eralization and inference system of objects and actions. Object generalization

is performed in a n-dimensional space called semantic-feature space, because it

mixes the robot perceptions, in the form of features values, with the semantic de-

scription associated with the object. Objects inference is assumed as a search of

relevant areas, which are found as an intersection of high dimensional elements,

in the form of keyword models. Action inference follows the same principles

that objects, but measuring the changes only in the object affected by the action

(approach we have named “object-centered”). This inference is carried out as

static start-end snapshot, applying several machine learning methods. Finally,

some robotic end applications have been tested, like drawing mental models

with a manipulator arm through evolutionary algorithms, or the learning of spa-

tial vocabulary by a humanoid robot.
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Chapter 1
Introduction

A real artificial intelligence for robots is still a pendant task. The most we

can aspire in these days is to create modules which reproduce small parts of

the human cognition. Let us cite some of these modules, with high influence of

human cognition, but isolated in their field of study.

In (Dominey, Metta, Nori, & Natale, 2008) they try to imitate anticipation.

They use a dialog system where the human can ask the robot to execute a spe-

cific action in order to collaborate in completing a task. This dialog is recorded

and the action sequence is extracted. When they perform another dialog with

the robot and ask it to execute more actions, the robot searches for the same

sequence of actions in its “interaction history”. If a positive coincidence is re-

turned, the robot asks the user if the current sequence is the same as found in

its history. If a positive answer is given, from this moment, there is no need to

explicitly ask the robot for following steps of the sequence.

In (Tenorth, Clifford Perzylo, Lafrenz, & Beetz, 2012), the capability to imi-

tate is semantic reasoning. They present RoboEarth, which is a European project

(whose slogan is ’A Worldwide Web for Robots’) that attempts to be an open-

source network repository where robots can share information and learn from

each other, about their behaviors and their environments. Its way of encoding
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information makes use of an ontology (semantic knowledge). In the technical

part, the system is similar, in the way of working, to any cloud computing sys-

tem, with distributed units (the robots), and a central system on the internet.

RoboEarth allows the robot to connect to a web service, and upload (or down-

load) data information: maps for navigation, manipulation strategies, object

model, etc. Inside the cloud, data is linked with semantics through an ontol-

ogy language, which allows semantic inferences.

In (Pape et al., 2012), curiosity is the focus, and they consider it as a rein-

forcement learning system, where the robot must decide which actions to take

in which states to maximize its expected reward. They consider the reward,

not as a externally-specified task that needs to be solved, but as as a learning

of different behaviors based on patterns discovered in the sensory inputs. A

very similar scheme is followed in (Ngo, Luciw, Forster, & Schmidhuber, 2012),

where they implement a robotic arm with some colored blocks, and the reward

is managed as the learning of new behaviors.

Mental models (Roy, Hsiao, & Mavridis, 2004) (Mavridis & Roy, 2003), a kind

of imagination of objects and situations not currently being perceived, have also

attracted researchers. Mental models have their own section later, so we will not

further describe them yet.

As can be seen, separate developments have been able to reproduce small

consequences of cognition, but the initial formation of thoughts, or knowledge

development of the brain, remains as an unachieved challenge, and maybe the

underlying mechanisms are undiscovered even for neuroscientists.

To manage these developments involving machine cognition, there are some

computational architectures, or processing systems, with a real focus on endow-

ing cognitive capabilities to robots. Most notable are Soar (Laird, 2012), Cogbot

(Goertzel, Garis, Pennachin, & Geisweiller, 2010), TRoPICALS (Caligiore, 2011),

KnowRob (Tenorth & Beetz, 2009), and the one developed for the iCub (Sandini,

Metta, & Vernon, 2007). Each of them takes different initial assumptions about
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how the cognition must be tackled or developed. These distinct views are influ-

enced by the theories of artificial cognition stated by AI and robotics researches.

Let us overview the evolution of these theories through time.

1.1 Artificial Cognition Through Time

There are several theories of how cognition should be implemented in robots,

or in machines in general, with two leading, more influential, theories: cogni-

tivism and the embodied cognition. Although they are nowadays superposed,

we can establish a temporal line about computer researches involving cognition,

and how they have evolved through time.

1.1.1 Cognitivism

Some projects have provided, as a solution, models based uniquely on sym-

bols. According to (Vernon, Metta, & Sandini, 2007), the origin of this vision

comes from cybernetics, with the idea of an intelligence based only on logic. This

is a purely symbolic approach to the mind-body problem (with a kind of mind-mind

solution). This group of researchers have been called cognitivist. They believe

that a truly artificial consciousness, an intelligent system, can be achieved exclu-

sively by the treatment of symbols, and no body is required to achieve it. Most

of their investigations can be labeled as belonging to the computer scientist and

artificial intelligence (AI) world.

They rely on the manipulation of symbolic representations of the state and

behavior of the external world to facilitate appropriate interactions. The storage

of new knowledge gained from the experience is used to reason (manipulate

symbols) more effectively in future computations. Perception is understood as

a previous step in the process of abstraction of representations of the external

world, because the reasoning is symbolic, as concepts are manipulated to infer

changes in the world, as a sum of symbol consequences.
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One characteristic of these systems is that knowledge is human-designed,

which benefits of direct understanding by humans. This fact limits the capa-

bility of the system to learn beyond the structure given. As an example, an

automated planing system, makes assertions about the world state during its

execution, like “block A is on block B”. This statement, which is clear for an ide-

alized environment, can be not so defined in real world. Assuming two blocks

with similar size, “block A is on block B”, represents lots of different possibili-

ties, all of them fulfilling the statement e.g. blocks can be twisted with respect

to each other (in a range that in continuous), blocks can be inclined due to the

action of putting in there, blocks can be not exactly aligned, leaving a gap in one

side, and a salient in the other, one block can be deteriorated in a corner by hu-

midity, which makes it less reliable to be stacked. How can a system represent

this wide, and continuous, range of aspects by saying “block A is on block B”?

Examples of cognitivist architectures are the ACT-R (Anderson, 1995) or Soar

architecture (Laird, 2012). In cognitivist architectures, the focus is on invariant

and task-independent aspects of cognition. For these systems, the knowledge

must be introduced by the programmer, leading to a model of symbols, and

rules to manage and transform them. For instance, Soar behavior is a combina-

tion of rules produced by the system, in form of IF-THEN states. To solve a prob-

lem, a search in the problem space (the set of states) is performed to cyclically

move closer to the solution. Every cycle is composed by two phases: elaboration

(knowledge recollection) and decision (choosing next action to be taken).

On the other hand, ACT-R is composed of several specialized modules, each

processing a different kind of information: vision, manual module for control-

ling hands, declarative module for retrieving information and goal module (in-

ternal state when achieves a task). There is a coordinator which manages all

others modules. Reasoning is a cyclic process where patterns of information are

identified, and a production of new rules is fired. One example of the gap be-

tween the world and the symbol management is the perceptuomotor system of
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ACT-R. It does not code direct sensor information, but assumes that perception

has translated the visual data into objects (symbols), centering only in attention

and recognition.

The catalog of cognitivist tools include, among others, the ones from au-

tomated planning, logic-based and knowledge-based, such as expert systems,

case-based reasoning or ontologies. To put the reader in context about how sym-

bolic tools obtain results, let us explain how ontologies work.

An ontology is a knowledge representation system where the main elements

are a categorization structure and a set of rules among the elements belonging to

these categories, which allow to exploit the parent-child relationships (Schlenoff

et al., 2012). One module of the ontology is the language which it is written.

The languages used are called descriptive languages because they represent the

logic of the ontology in form of facts and rules, instead of representing the con-

trol flow as traditional, imperative languages (C/C++, Java, etc.). Once built the

structure, we can extract, also called infer, information from the ontology. Rea-

soners, also called inference engines, can deduce some information based on the

provided ontology and the input world facts. As an example, let us imagine a

simple ontology with only one rule: “If X croaks and eats flies then it is a frog”,

where X is undefined and represent a potential concept. Now, as a world fact

we could input that “Kermit croaks” and “Kermit eats flies”, where Kermit is an

instance of a class, a real entity beyond the ontology. With this information, and

by composition of facts, a reasoner could deduce that “Kermit is a frog”. Some

famous ontologies languages are CycL, used by Cyc (Lenat & Guha, 1989), one

of the oldest computer ontologies in the world, and OWL (McGuinness & van

Harmelen, 2004), very popular nowadays because of the rise of the semantic

web and because it is being used in the robotic cloud computing project known

as RoboEarth (Tenorth et al., 2012).

One problem the cognitivist have to face with is the separation from the real

world, called symbol grounding, but also called semantic gap or language grounding.
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Let us name what it means, and what it implies.

1.1.2 Symbol Grounding Problem

The symbol grounding problem, first defined by Harnad in 1990 (Harnad,

1990), is the concept of linking words with abstract concepts, to mix words we

use to define concepts with what we can perceive through our senses, somehow

like the structures in our brain which allow us to keep and retrieve the informa-

tion. It deepens in the most intimate concept of meaning, as an idea or a mental

model.

One idea Harnad expressed is that names and categories alone cannot repre-

sent the meaning of a concept, because they cannot be recombined, and there

must be a sensorial information attached. For example. imagine ”Horse” as a

mix of categorical and iconic representation, and imagine the same for ”Stripes”.

With these conditions, a symbolic new category ”Zebra” can be formed as the

conjunction of both previous categories. A person who has never seen a zebra

could identify one by joining both representations, which cannot be done only

with a symbolic approach.

Symbol grounding problem have been studied in such different fields like

psychology (Barsalou, 2010) or semantic web (Cregan, 2007), but our focus is

their application to the robotics world (Coradeschi, Loutfi, & Wrede, 2013). As

an opposition to cognitivism, and trying to solve its problems, it emerges a new

theory called embodied cognition.

1.1.3 Embodied Cognition

Moving away from cognitivism, some new theories emerged claiming that

mind is not isolate in the world, and that the process of learning is intrinsically

influenced by the interaction with the things to be studied. They believe that

cannot exist a concept without their physical experimentation (e.g. one cannot

really know what “roughness” means without a tactile interaction) (Pfeifer &
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Bongard, 2007). Those researchers defend the embodied cognition. The brain

affecting the world through the body, and the world changing the mind with

these actions, always with some kind of self-organization of knowledge in the

middle.

For them, cognition is understood as the process of a system to adapt to an

environment. These system are self-organized structures which continuously

readapt itself in function of the environment stimuli. In some way, behaviors are

a kind of own ontology, but specific to this embodiment, because they also use

the external inputs which leads to an end, but the roads in embodied cognition

are self-constructed and time-varying.

This movement can find its roots, regarding robotics, in the works of Rod-

ney Brooks at Massachusetts Institute of Technology (MIT) about the subsumption,

or reactive, architecture in 1991 (Brooks, 1991). Instead of symbols, they worked

with behaviours, inspired on how insect works (without a high cognitive brain

like us). But, in the last decade, one of the most passionate defender of embodied

cognition has been Rolf Pfeifer, publishing several books about it (Pfeifer & Bon-

gard, 2007) (Pfeifer & Scheier, 1999). Embodied cognition usually groups some

different and related psychological and philosophical approaches to cognition

(further information in (Barsalou, 2008)):

• Embodiment: supports that the human mind is largely influenced by the

form of the human body. The way this body interacts with the world

largely determines how learning processes are performed.

• Emergence: states that complex systems acquire their complexity and pat-

terns as a results of performing simple interaction in the real world. These

complicated behaviors emerge as the sum of the more simple interactions

with the environment.

• Connectionism: Very related with emergence, it believes that mental phe-

nomena is the result of interconnecting simple units in large networks. The
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knowledge is produced by interaction, because networks are connected to

the world. The most notable development in this area is the Artificial Neu-

ral Networks (NN) paradigm.

• Enaction: This concept declares that knowledge is produced by motor

skills, through perception-action in the environment. Coordination of sev-

eral senses produces the association of input-effects that defines cognition.

• Situated Cognition: This extends the embodiment definition claiming that

cognition is modelled as a result of (and inseparably from) physical inter-

actions, but also of social and cultural contexts.

• Distributed Cognition: proposes that cognition is not confined to the in-

dividual and that it is distributed by placing knowledge, like memories or

facts, on the objects, on other individuals, and on tools from our environ-

ment.

Common techniques used by researchers in this area are: neural networks

(connecting world info to behaviors), learning by demonstration (imitation of

human actions), reinforcement learning (cyles of repetition and correction of

tasks), affordances (property of an object to be used in a task (Gibson, 1977)) and

motor babbling, among others. iCub platform is an example of this paradigm,

with several publications applying these principles. iCub is a humanoid robot,

whose dimensions, 90 cm of height and a weight of 23 kg, are similar to a 3.5-

year-old child and its developments have a special focus on cognition, specially

the embodied one. It has 53 degrees of freedom, with 9 in each hand. Once

defined the robot, we can now introduce some of these cognitive publications.

In (Marocco, Cangelosi, Fischer, & Belpaeme, 2010), they equipped iCub with

a recurrent artificial neural network (RNN, networks learning through time) and

let the robot interact with objects located on a desk. The network has, as input: 3

units to code the values of three joints (shoulder, pan-neck and tilt-neck), 1 unit

to code a binary tactile information of the hand, 1 unit coding the roundness of
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the object and 3 units to code a binary encoding for the objects ([1 0 0] for the

sphere, [0 1 0] for the cube, and [0 0 1] for the cylinder). There are 10 hidden units

and the 8 outputs units are trained to predict its next input state. The aim of this

work is to learn sensorimotor variations produced by the robot manipulation of

the object presented. After the training phase, the network input is connected

to actual encoders, and the output is used to determine next joints movements.

According to their results, iCub is able to reproduce object dynamics by acting

on the environment and, if linguistic input is suppressed in the testing phase,

it is also able to associate certain temporal sensorimotor dynamics to different

categories, a kind of grounding.

Another work is (Stramandinoli, Marocco, & Cangelosi, 2012) where they

also use RNN in two different ways. The aim of this experiment is to teach iCub

the meaning of high-order concepts, as a combination of primitives, defined also

semantically. There is a first training of the network that links words with motor

primitives from a library. Input of the network is a encoding of 13 words and the

output is a encoding of 7 basic action primitives. Output values are linked back

to the hidden layer in order to achieve a temporal model. The second training

set consists of sequences of temporal patterns that encode sequences of actions.

That means, basic action words activate a single output neuron (associate to a

primitive) and higher-order concepts activate a temporal sequences of action

primitives. Imagine KEEP word as a combination of GRASP and STOP. In a first

training, when the network has as input GRASP it activate GRASP output neu-

ron, and the same for STOP. In a second training, starting from the first training,

the network is stimulated with an input that represents KEEP, and the output

is the activation of, first, the neuron for GRASP, and next, in the next step, with

the neuron of STOP. With this scheme they are able to teach the robot how to

perform actions which are decomposable in motor primitives.

Other works has also used iCub as platform. We can briefly name two more.

In (Stoelen, Bonsignorio, Balaguer, Marocco, & Cangelosi, 2012), they train a
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network with time-delayed input layers, to mix low level motor joitns and se-

mantic information (called labels). Another work is (Calinon, D’halluin, Sauser,

Caldwell, & Billard, 2010), which will be further analyzed in the state of the art

chapter, but just as an advance, it uses a combination of machine learning tech-

niques to generalize cyclic movements to the robot, who is able to reproduce

them later.

Leaving iCub and coming back to the theories of cognition, we want to

summarize the opposite points in both theories. Thanks to the review done in

(Vernon et al., 2007) about artificial cognitive systems, we can list some differ-

ences between cognitivism and embodied cognition:

• Operation: while cognitivists use symbol rules, embodied use distributed,

self-organized networks.

• Representation: cognitivist use descriptive patterns of symbols that refer

to events in the world. Embodied representations are global states en-

coded in the distributed network.

• Grounding: cognitivits use symbols, embodied use non-direct interpretable

networks.

• Temporal Constrains: cognitivist’s symbols are not related with time, while

embodied representation is produced because of real-time interactions.

• Embodiment: cognitivists do not need a physical entity, but this is the first

requirement for embodied.

• Actions: for cognitivist, actions are consequences of symbols, and for em-

bodied, an action is a perturbation of the system.

• Adaptation: cognitivism considers the acquirement of new knowledge

(symbols or rules) as adaptation, while in embodied system, it implies a

structural adaptation of the network.
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1.2 Objectives

In this master thesis, the author aims to continue the line started by the em-

bodied cognition paradigm, because of the use of robot perceptions, but also use

symbols to ground and infer knowledge from objects and actions. The symbols

used are the ones related with language. As stated in Fig. 1.1 we take, from the

real world, objects, words and actions and try to extract common characteristics

to infer knowledge.

Objects Actions

REAL WORLD

MASTER THESIS

Generalization Inference

Semantics

Objects Space 
Goal-Oriented
Actions Space

Figure 1.1: Diagram representing objectives of this Master Thesis.

The technical targets of this project are the formalization and implementation

of a system able to:

1. Generalize objects features based on robot perceptions, by using a n-

dimensional feature space and semantic spoken information. The char-
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acteristics of the objects space will be explained in Section 3.1, while the

object generalization in Section 3.2.

2. Infer objects characteristics based on their semantic descriptions and cre-

ate mental models. Theoretical objects feature inference is tackled in Sec-

tion 3.3, with experimental tests in Section 5.1 and 5.2.

3. Generalize actions by their consequences in objects (object-centered) in a

n-dimensional feature space. This will be explained in Section 4.1.

4. Infer actions influence in the environment based on their semantic label

(action name). Those inferences are achieved in static start-end snapshots

(a kind of goal orientation). This will be also explained in Section 4.1, with

experiments in Section 5.3.

5. Use those processes in real world applications, specially the robotics one.

The whole experiments set is contained in Chapter 5.

These are the specific targets of this master thesis, but in a more general way,

the researches performed by the Robotics Lab tries to develop more intelligent

robots with a neuroscientist inspiration. Our long term goal is to replicate the

behavior of mirror and canonical neuron system.



Chapter 2
State of the Art

The works developed in this thesis join many areas of study, some involving

traditional AI, semantics, neuroinspired and embodied cognition, etc. Because

of this, we have divided the related works in two categories: Neurorobotics and

Cognitive Machines.

2.1 Neurorobotics

Neurobotics is the design of computational structures for robots inspired by

the study of the nervous systems of humans and other animals (Arbib, Metta,

& Smagt, 2008). That is, robotics with neuroscientist inspiration. From among

the variety of topics it involves, our focus is only on the mirror and the canon-

ical neuron system. After an introduction of this kind of neurons, there will be

presented some computational models which tries to imitate their behavior.

2.1.1 Mirror and Canonical Neurons

Mirror and canonical neurons are allocated in the motor area of the brain

(Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). If they are important to our work,

it is because they support the idea of a goal-oriented coding of actions in the
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human brain. There are some differences in their behavior, defining:

• Canonical Neurons: induce motor action preparation by activating not

only during action execution but also as a consequence of the perception

of affordances (understood as the property of an object to be used in a task,

e.g. a knob affords twisting).

• Mirror Neurons: fire both when the animal performs an action and when

he observes the same action performed by others.

Some empirical evidence of this conduct is shown in (Umiltà et al., 2001),

where mirror neurons were proved to fire when the beginning of an action is

shown, but not the end, demonstrating their goal-oriented coding. Evidence can

also be found in (Umiltà et al., 2008) and (Rochat et al., 2010), where monkeys

are trained to grasp food with different tools, activating these same neurons

when observing the action perform by the experimenter with another tool. The

monkeys use pliers, which leads to activate muscles in a certain way, as long as

the pliers need to be press to close the two mobile parts, and be release to open

them again. On the contrary, the human demonstrator uses an inverse-plier,

whose mechanism to be used is exactly the contrary, pressing to open, releasing

to close. No matter the plier, or the action executor, same group of neurons

get activated, so the way-to-do-it does not seem the reason for their fire, and

the goal of the action seems to be the motive. The relevance of mirror neuron

system has been noticed by the AI and robotics community, developing some

computational models imitating them.

2.1.2 Computational Models

From (Thill, Caligiore, Borghi, Ziemke, & Baldassarre, 2013) we highlight

two computational architectures inspired in the mirror neuron system: MNS

and the one by Metta. MNS (Oztop, Kawato, & Arbib, 2006) is an extension

of a previous computational neuromodel called FARS (Fagg & Arbib, 1998). It
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extends FARS by adding a simulation of the behavior of brain areas support-

ing mirror neurons. One of its keys, is the functionality of hand-state estima-

tion based on vision analysis. The parameters extracted are two, the purely

related with the hand (e.g. aperture, velocity) and the relative relation to objects

(e.g. hand-object distance, angle difference between hand and object principal

axis). They use a simulator that generates trajectories to grasp objects (prehen-

sion mode), while training the mirror neurons (standard error backpropagation

from neural networks). When they want to recognize actions (action recognition

mode), the system observes hand moving towards an object, while processing

information referent to the hand and the object. The information provided al-

lows to recognize the action. The system was added with two extensions in

MNS2-I (Bonaiuto, Rosta, & Arbib, 2007): the mirror neuron were fired not only

when the action is observed, but also when it is heard and they were fired also

when the last part is not observed (a reproduction of Umiltà experiment (Umiltà

et al., 2001)). A second revision of the system, MSN2-II (Bonaiuto & Arbib, 2010)

lead to include other capabilities such as an output monitoring system to check

the results of action. With this movement, they are trying to discover a way to

adapt known functions to new environments. Some other additions are a kind

of reinforcement-learning module, where the system can reward successful ac-

tions, and also motivational states, a kind of drives which regulate the weights

of the network, in function of current state, to influence towards a particular

result.

Metta’s model (Metta, Sandini, Natale, Craighero, & Fadiga, 2006) is very

similar in the conception to MNS, and the enactive cognition plays an important

role in its development, with a robotic platform interacting with its surround-

ing. Action effects are measured using the approximation of (Fitzpatrick, Metta,

Natale, Rao, & Sandini, 2003), which means that they use optical flow varia-

tion measures by a vision system, and extract properties of this movement. The

technical system is composed by a camera and a motion capture glove, so the
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variety of detectable affordances is reduced to object movements (rolling prop-

erties). This affordance is detected by a canonical system which acts as a forward

model predicting the action outcome. Another posterior module compares the

predicted and the sensed signals, and the results is the learning signal. The F5

monkey brain area (equivalent to Broca area in humans, which contains canon-

ical and mirror neurons) is represented here as a closed-loop motor controller

plus the learning signal.

Despite the different implementation techniques on both architectures, they

share a common point in the calculation of relative parameters and the use of

prediction models. The modules presented in this thesis aim to serves as the

beginning of an action effects generalizer and recognizer. Apart from the neu-

roscientist inspiration of the work, we also need other technologies to build the

system, tools integrated nowadays in the so called cognitive machines.

2.2 Cognitive Machines

Adapting a definition from (Haykin, 2005), a cognitive machine is an intel-

ligent system that is aware of its surrounding environment and uses its under-

standing to learn through interactions with the environment, adapting its inter-

nal states to variations in input stimuli by making corresponding changes in the

system in real-time with specific objectives (e.g. reliability, efficiency). Specifi-

cally, a cognitive robot is defined (Wang, 2010) as an autonomous intelligent sys-

tem that mimics the cognitive mechanisms of the brain by using computational

intelligence. As can be seen, the definition is not closed an involves several fields

of investigation. There have been selected the most related to this thesis, to be

presented as related works, but the topic is much bigger and grows everyday.
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2.2.1 Semantic Analysis and Symbol Grounding

Involving semantics and AI, there are approaches like Latent Semantic Anal-

ysis (LSA) (Landauer & Dumais, 1997) and Hyperspace Analogue to Language

(HAL) (Burgess, Livesay, & Lund, 1998). These are works with purely symbolic

management, a reason that was criticized because the absence of connection to

the real world (no symbol grounding) (Glenberg & Robertson, 2000).

The first work with a link between sensorial information and language was

VIsual TRAnslator (VITRA) (Herzog & Wazinski, 1995). Non-static situations

are provided in the form of video sequences, and VITRA is able to analyse and

perform automatically generate natural language descriptions for the scenes it

recognize. After training, VITRA is able to answer simple questions about situa-

tion such as: traffic jams, soccer match and route planning. In (Steels, 2001), they

ground information in the context of games, where the catalogue of interactions

is very limited and constrained. Through simple interactions guided by the user,

they are able to associate semantic commands to simple actions. Inference is not

covered in these works, and just the linking semantic-action is considered.

We are also interested in how semantic can be linked to specific complex

actions in complex worlds, beyond the constrained examples presented. In

(Hasegawa, Rzepka, & Araki, 2009), starting from motor angle patterns, they

transform the actions perceived into context-independent rules related to action

verbs. On the same line, but using NN, (Marocco et al., 2010) constructs a fully-

recurrent neural network, where the inputs are both, semantic and kinematic

parameters. The words are encoded in a binary way, which is sometimes called

a localist encoding, which means that each word is associated with a single in-

put neuron, and its single activation (usually on/off as 0/1) refers to the word

being used. The number of words is bounded to the number of known objects.

The output neurons control motor angles over time, creating trajectories. As

explained before, recurrent neural networks are used in (Stramandinoli et al.,

2012) in a double way. The first training of the network links words and mo-
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tor primitives associated. The second training of the network uses the result of

first training to perform high-order words understanding, by activating, for a

high-order input, a composition of primitives as output.

Our system is highly dependent of semantics, as long as it allows a classifi-

cation of object and actions by its name. The main difference of this thesis with

the presented semantic works, is that, our system is able to understand a de-

scription of an object and returns coherent values. In the case of actions, it can

predict how an action will affect an object, only by naming the action.

2.2.2 Mental Models

The use of mental models is an important aspect in cognitive machines. Men-

tal models are the initial step for imagination in robots, and may enable real

world applications, such as drawing. The topic has been studied, mainly, in

conversational robotics by Deb Roy at MIT. For instance, in (Mavridis & Roy,

2003), they achieve what they have called object permanence (awareness of an ob-

ject when it is not visible). A simulator is used in this case, as they instantiate

objects detected with the vision system, and transform them into virtual equiv-

alents. Virtual objects can be semantically described, adding two extra options.

Different spatial perspectives are allowed in the descriptions (“touch the block

on my left”), as well as time perspectives (“touch the block you were just hold-

ing”). In (Roy et al., 2004), the system is endowed with multimodal inference.

Force necessary to manipulate objects is inferred by instantiating objects in the

simulator and running a dynamics engine. Vision techniques allows to calculate

object velocities in function of forces applied.

The most similar development to this project is shown in (Roy, 2002b). The

main target of this system (called DESCRIBER) (Roy, 2002a) is to assign ranges

of values of features to words. A training phase is carried and human-made

descriptions are transcribed to define synthetic colored rectangles shown in a

screen. Descriptions are filtered to associate only the relevant ones (e.g. sub-
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stantives and adjectives are relevant, but prepositions are not). Every word is

only potentially relevant and the word is linked to a subset of features, corre-

sponding to the analysis of the rectangle. In this point, they need to check what

word best represents, or describes, a feature. The distinction is made by com-

paring feature distributions between descriptions formed with these words to

see their influence. They find the subset of features for which the distributions

are maximally divergent (more different) when the target word is present in the

description and when it is not. The maximum difference correspond to the most

relevant word for these features. The results allows the generation of correct

semantic descriptions of the rectangles selected by the user on a screen, also

including spatial relations to other objects (Figure 2.1).

The dark blue rectangle touching the 
light blue rectangle

Figure 2.1: DESCRIBER output is the generation of natural descriptions of selected rectangles.

Figure based on (Roy, 2002b).

The apparent limitation of the system is in the shape of the elements, work-

ing only with rectangles. A larger review about grounding symbol with percep-

tual categories can be found in (Roy, 2005).

Our system aims to be different of Roy’s works in that, we follow the inverse

process than DESCRIBER. As long as they select an object, the system analyses
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and finally construct a description in natural language, we describe an object

semantically, and the system returns the feature values expected of an object

with this description.

2.2.3 Object Affordances

The Gibsonian definition of affordance (Gibson, 1977) is the action possibil-

ities that an objects offers. In other words, the property, or quality, of an object

to be used in a task. Typical examples of affordances are: knob affords twisting,

button affords pressing, mug handles affords holding. The brain representation

of affordances (Fagg & Arbib, 1998) are supposed to encode direct object prop-

erties (size, location) but also relative agent-objects properties (relative distance,

actual contact). Canonical neurons seems to manage this process, because they

fire with the simply presentation of an object, preparing motor actions to their

execution.

This thesis is very related to affordance topic because of the goal-oriented

coding of objects in actions. For example, (Fitzpatrick et al., 2003) try lo infer the

action possibilities of object motion by pushing-pulling them and analyzing the

results, acquiring affordances (what actions objects can “afford”). These affor-

dances are detected as optical flow variation measures by with a camera, from

which properties of this movement are extracted. In (Demiris & Dearden, 2005),

they try motor babbling, which are randomly generated motor parameters, to

measure action consequences and compare them different models. Object track-

ing in a scene is achieved by clustering regions in the image with similar position

and movement properties. The random motor consequences are later added, as

nodes, to a Bayesian Belief Network (probabilistic model that represents a set of

random variables and their dependencies as a directed graph). They assure that

robot learns the forward model for the movement of the robot gripper.

Although techniques are very diverse in affordance topic, connectionism, in

different forms of neural networks, seems to be a big influence. In (Cos-aguilera,
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Cañamero, & Hayes, 2004) a Self-Organizing Feature Map is trained to identify

object features and link them to the success or the failure in the accomplish-

ment of the task. In a similar way, (Dogar, Cakmak, Ugur, & Sahin, 2007) first

executes motor primitives randomly to objects and then trains a Support Vec-

tor Machine to link actions and effects. In (Montesano, Lopes, Bernardino, &

Santos-Victor, 2008) they take a development approach, which means that ac-

tions are constructed over the previous, and simpler, known actions. A visual

system tracks an object, and by applying different random actions to an object,

the robot groups tactile and vision variation using a type of graph (Bayesian

Network).

Our system can be considered as a first step in the development of complete

affordance module for robots. We code the action by its goals, and not by the

way they are achieved. We are different from presented affordance works in

that, they link an input, usually some kind of motor parameters, with an output,

the change in the object. In our case the input considered is the name of the

action, and the output is, equally, the change in the object. In future revisions of

the works, internal changes in the robot when executing an action could also be

considered.

2.2.4 Feature Inference

Object feature inference is not a very studied topic, and only two examples

have been found in literature. One work is (Nakamura, Nagai, & Iwahashi,

2007), where they use an extension of probabilistic Latent Semantic Analysis

(pLSA) to infer features using information from different sensorial channels.

pLSA is usually used in statistical natural language processing, as a way to mea-

sure the probability of a word to appear in a certain document, or in a specific

topic (co-occurrence data). They have modified this method to check the co-

occurrence of sensorial data (as if they were words in a document): visual, au-

ditory and haptic. There is a big embodiment vision of knowledge in this work,
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as the robot constructs information based on interaction with the environment.

In a first stage, the robot grasps an object and observes it from different perspec-

tives, recording its visual, auditory and haptic features while moving it. Their

aim is to categorize different objects in function of their features, but, with the

use of pLSA they can also infer features e.g. how an object sounds, based on

how the object looks. Despite they are highly focused on multimodal catego-

rization, they provide a direct cross-feature mapping that allows to infer certain

features in function of other.

The other work found, is an already cited work (Roy et al., 2004). Previously

to explain how the inference is performed, let us overview the platform and the

experiment. The robot is “Ripley”, a manipulator with vision cameras mounted,

and the environment of the experiment consist in a set of objects on a table.

Image processing identify objects and human faces, and maps this information

into a simulator (what they call mental imagery). The simulation environment

contains the table, the objects and a representation of a human operator. It is

also used a dynamics engine to predict future states of the system. Regarding

inference module, when objects moves, the system infers forces necessary to

produce this movement. This can give an idea of the dynamics features of the

object (self-moving, rolling, etc.).

Our work is more focused in feature-semantic inference, that is, guess the

features of an object, by its description. A way to achieve this is to use on-

tologies, which are very good at inferring semantic knowledge. The problem

here is the ungrounded approach, remaining the process only in a symbolic un-

grounded development.

2.2.5 Action Recognition and Imitation

Humans perform thousands of actions every day, and for a seamless Human-

Robot Interaction and the introduction of robots in our daily life tasks, action

recognition is a key factor. There are many computer approaches to the field,
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and the literature is quite extensive. Here, there will be reviewed, specially, the

goal-oriented actions, and the ones using learning but, for a larger survey, con-

sult (Poppe, 2010).

Human Action Recognition

The learning techniques involving actions for generalization and imitation

has been called learning by imitation or programming by demonstration (Calinon et

al., 2010). The way these methods learns an action is by recording the kinematics

of the actions that humans perform, such as arm trajectories of a human reaching

an object, and applying then different machine learning algorithms. The math-

ematical techniques used are, among others, Hidden Markov Models (HMM, a

kind of Bayesian Network), for modeling actions in terms of human and robot

joint position trajectories (Calinon & Billard, 2004) (Calinon & Billard, 2005), or

Gaussian Mixture Models (GMM, probabilistic model) as in (Calinon & Billard,

2007). Let us extend the process followed in one of the papers. In (Calinon et al.,

2010) a human operator performs a task several times (e.g. hitting a ball) using

a robotic arm. Positions, orientations and velocities of the arm are recorded and

with HMM, they estimate the number of states, so that, representative steps.

HMM is used to handle spatio-temporal variabilities of trajectories across sev-

eral demonstrations. Finally, and in order to reproduce the generalized trajec-

tory, Gaussian Mixture Regression is then used to create a regression function

with HMM states. This reconstructed trajectory is the one the robot reproduces

to imitate the human movement.

If we refer to direct action recognition, that is, recognize an action by exter-

nal measurements, but typically observation, techniques used are more diverse.

In (Subramanian & Suresh, 2012), they do a neuro-fuzzy classification of opti-

cal flow features between consecutive frames of human movement sequences.

Neuro-fuzzy is a combination of fuzzy logic with neural networks, by using as

input to the neural network, the classified output of a fuzzy system. Tracking
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and filtering human hand and feet trajectories through Principal Component

Analysis (PCA) is the method selected in (Chivers, 2012). First they record tra-

jectories from a video by tracking key points. After a smoothing of trajectories,

they split them into sub-units called basic motions. Next, they extract some fea-

tures of the basic motions, and project these feature vectors into a reduced space

generated by PCA, resulting in the formation of clusters for similar actions. For

recognition purposes, they record an action, transform it as explained, project

its vector in the reduced space, and finally, associate it with the closest cluster.

Using a demonstration set of actions, in (Gräve & Behnke, 2012), they encode

actions as states of HMM, which are later linked by their means, using Gaussian

Process Regression.

The focus of all of these studies is also on learning the kinematics of actions,

such as the trajectory of reaching for objects. The difference here is the sensorial

way to obtain human data.

Goal/Object Oriented Action

However literature from the areas of neuroscience and psychology indicate

that the human brain encodes actions as end-goals related to the affordances of

objects. For example, when children imitate others grasping a person’s ear, they

tend to imitate the action goal (which ear to grasp) rather than the kinematic

aspects of the action (which hand is used to perform the grasping) (Bekkering,

Wohlschla, & Gattis, 2000). As stated in (Thill et al., 2013), cognitive psychol-

ogy has found empirical evidence (Elsner & Bernhard Hommel;, 2001) (Kiesel

& Hoffmann, 2004) to support the idea that behavior, and motor actions are en-

coded in terms of goals. This topic was initiated with the Ideomotor Principle

(Greenwald, 1970), which stated that actions are represented as perceptual con-

sequences. It then evolved to the Theory of Event Coding (Hommel, Müsseler,

Aschersleben, & Prinz, 2001), stating that perception and action have a common

representation system in the brain, with networks of features codes (cognitive
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structures) called event codes.

We differentiate about two closely related, but different in meaning, concepts

about actions:

• Goal/Object Oriented: In the literature, they are the actions in which the

only parameters to be considered, to be learned or imitated, are those of

relative differences between the initial and the end (the goal) configura-

tion. They can encode objects (Gallese et al., 1996) or environment pa-

rameters, but they always contain initial-end differences. The term Object

Oriented is usually reserved, in neuroscientist field, to actions whose goal

is an object e.g. point, stare (Faillenot, Toni, Decety, Grégoire, & Jeannerod,

1997) or grasp (Jeannerod, Arbib, Rizzolatti, & Sakata, 1995).

• Object-Centered: We denote them as the actions in which the only pa-

rameters to be considered are the ones related to the object affected by

the action, ignoring the human parameters. It is based on a definition

about Object-Centered representations in (Schaal, 1999). They can be goal-

oriented (initial-end differences of objects configuration), or continuous-

tracking (continuous tracking of object properties), but they refer solely to

the object.

When talking about Goal-Oriented Actions in robotics, a goal codification is

found in (Calinon, Guenter, & Billard, 2005) where, despite they learn the trajec-

tory to perform an action, they also code some goals to be achieved, even in a

distinct way than learned. The robot is programmed to achieve tasks, but not the

way to do it. They replicate a psychological experiment (Bekkering et al., 2000)

with children, where, in a table, there are colored dots which are alternatively

touched by a human with both arms. When the dots stay on the table, children

tend to imitate the goal (what dot to touch), and not the arm used to do it. In

the replicated experiment, the demonstrator repeats the same task, and while

observing the demonstration, the robot tries to extract a set of constraints for
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the task, by extracting relevant features. Later, the robot computes the trajectory

that best satisfies the constraints and generates a motion.

As the reader may notice, examples for affordances and Goal-Oriented Ac-

tions may look quite similar. As said before, both topics are closely related.

But, despite that, there are also some not-so-close to affordance approaches to

goal-directed actions. By using an architecture called HAMMER, in (Demiris

& Khadhouri, 2006) they consider a hierarchical behavior-based architecture to

achieve target tasks. In a posterior revision of the architecture, they included

content-based selection of behaviors, based, not only in the performance, but in

other parallel parameters, e.g reliability, cost and utility of a request (Demiris &

Khadhouri, 2008).

The paradigm of Object-Centered Actions is partially covered by those Goal-

Oriented Actions whose focus is on reaching same final situation of an object

solely. There are no exclusively continuous-tracking Object-Centered Actions

references in literature, to the author’s knowledge, and the only one, slightly

related, found uses a combination of object spatial tracking and demonstrator-

hand movement tracking. In (Johnson, 2004), they build a system with a set of

primitives actions, which are in fact inverse models. When the human demon-

strator performs an action, they track the object and the hand spatially through

time. At the same time, they run all inverse models during action stages to see

the better performance of each model in each stage. Finally, they construct a

high-level inverse model composed of those selected primitives, being able to

imitate the action goal with similar spatial movements. Notice that the param-

eters to be imitated are not robot motor ones, like in previous presented refer-

ences, the only target here is the hand position. The object tracking is used to

identify grasping and releasing stages.

Our work aims to be more extensive than presented works in that, our sys-

tem allows a complete object-centered paradigm with features beyond spatial

ones, being able to include others like changes in color or shape in objects.
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Objects Space

In this section, the methods proposed to generalize and infer objects, taking

into account their characteristics, will be explained. There is a core idea in this

chapter about the assumptions made to link words and objects. This concept,

named Semantic-Feature Space, will also be covered.

3.1 Semantic-Feature Space

This concept represents the basis for feature generalization and word-object

linking1. The aim behind it is to find a way of mixing the embodied data per-

ceived by the robot sensor, with an abstract symbolic representation, which al-

lows a feasible manipulation, for recognition or inference purposes.

3.1.1 Semantic Labeling

The process we call “Semantic-Labeling” is, in fact, filling a grounding database

which represents and stores tagged points in a n-dimensional feature space. Hu-

1The concepts named “Semantic-Feature Space” and “Semantic Labeling” are not original of
the author, and these ideas are exclusively engineered by Juan González Vı́ctores, director of this
thesis. They will be explained, because they are key, and fundamental, concepts to understand
the rest of the chapter.



28 Objects Space

man descriptions of objects are split into representative words and populate the

grounding database. Words are combined with real sensor data, represented by

labeled points in the n-dimensional feature space (an example with two words,

and two features can be seen in Fig. 3.1).

Figure 3.1: Example of grounding database population.

The information structure inside database is represented as < fw,w > pairs.

Where fw is the vector of feature values (in the form of scalars numbers), which

becomes coordinates in the space, and w is the word which becomes the asso-

ciated point label. All the points from a single descriptions share input sensor

information, thus their coordinates are spatially the same. Let n be the number

of sensed features and Fε<n be the n-dimensional feature space. The space is

populated with a set of f labeled points in F . The reason why we create several

points, each with the same coordinates, but only differing in the label, is that we

expect same-label points, when the populating is complete, will form a kind of

cluster expandable in some axis.

We define S as the semantic space (the space of words, that is, the descrip-

tion) and m as the number of different words which have been stored in the

grounding database. So, G denotes a grounding function which can be defined

as:

G : S → F (3.1)
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The semantic-feature linking from the semantic space S to the feature space

F is defined as follows:

∀wεS,G(w) = {wf1 , ...,wfi, ...,wfn} (3.2)

Where wfi is the value of a single feature for any w. That leads, for a single

sample, to the creation of a number of points equal to the number of words

used to define the sample. All these points have same coordinates, and the only

difference is the word label. When a population has been performed with many

samples, there are point clouds with the same label, in areas of the space.

3.2 Object Generalization

Our interpretation of generalization is the creation of a model, a kind of men-

tal model, which describes a keyword in all feature space generalizing knowl-

edge from previously presented objects. We aim to find what areas in the n-

dimensional space are relevant for a word, that is, where this word is best repre-

sented in the space. These word models have the form of hyperplanes identified

by their label words. For each word w, all points containing this word are used

to create an hyperplane hw, of order n − 1. The hyperplane is defined in all the

space, so the “meaning” of the word is also extended across, and along, features.

With “meaning” we are referring where the word represented by the cloud is

still relevant in. With extension we refer to those axis where the hyperplane is

expanded infinitely. The main difference with usual approach of clustering, is

that they want to know where the word is relevant, but not where the word can

be extended, conserving its relevance, fact that we explore in our work.

In all space, m hyperplanes are constructed. To review our publication as-

sociated to this part of the work, see (Victores, Morante, Jardón, & Balaguer,

2013a).
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3.2.1 PCA Algorithm and Hyperplanes Creation

The Principal Component Analysis (PCA) is used to build the hyperplanes.

PCA is made to convert a set of observations into a set of uncorrelated repre-

sentative variables called principal components (PCs). Usual use of PCA is to

supply a lower-dimensional representation of a dataset, with the less possible

loss of information (Smith, 2002). We also make use of this property, by pro-

jecting our labeled points (the ones with the same word label) on hyperplanes

defined by their most relevant principal components. Those PCs are the ones

which explains the maximum variance of the dataset, that is, those uncorrelated

vectors that best define the point cloud. Hyperplanes are n − 1 dimensional, to

assure intersection among them, and the process to build them is mathemati-

cally performed as follows:

1. Mean Subtraction: For all points of the cloud with the word w, the mean

for each feature is calculated (Eq. 3.3).

f̄ =
1

n
·

n∑
i=1

fi (3.3)

Where f represents a single dimension (feature) and i is the number of

word samples. With this calculation we obtain the middle point of the

cloud.

2. Covariance Matrix: Calculation of this matrix allows us to know the rela-

tions and coupling among features. We denote the data of all the words

for a single feature as Fi (Eq. 3.4).

F =


F1

...

Fn

 (3.4)
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A simple covariance between two features, which is no more than their

correlation, is defined as in Eq. 3.5.

cov(Fi,Fj) = E
[
(Fi − E(Fi))(Fj − E(Fj))

]
(3.5)

Where E(Fi) is the expected value of the corresponding feature Fi. All the

feature weights have been established as equal, so the expected value is a

simple average. Joining all features covariances, the resultant covariance

matrix A is expressed as in Eq. 3.6.

A =


cov(F1,F1) · · · cov(F1,Fn)

cov(F2,F1) · · · cov(F2,Fn)
...

...
...

cov(Fn,F1) · · · cov(Fn,Fn)

 (3.6)

3. Eigenvectors and Eigenvalues: Covariance matrix eigenvectors represent

point cloud PCs, and their respective eigenvalues associated inform about

the quantity of the variance explained by each PC. That means, the best

that each component describes the cloud.

Let us define what eigenvectors are mathematically, and how they are cal-

culated. An eigenvector is defined as a vector that, when multiplied by

a matrix, results in a vector equivalent to the original one multiplied by

a scalar (called eigenvalue). That is, an eigenvector of a square matrix A,

is a vector v (non-zero) that, when multiplied by A, gives as a result the

same vector v multiplied by a single number λ (Eq 3.7, called eigenvalue

equation).

Av = λv (3.7)

Where λ is an scalar called eigenvalue of v. Up to here is the mathematical

definition, for interpreting the reason why eigenvector are data defining
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directions, we can tackle the definition from other side. The eigenvec-

tors are the vectors for which matrix A simply elongates or shrinks. This

amount of modification is represented by the eigenvalue. So, eigenvec-

tors are those vectors which are most elongated by the original data (point

cloud). As the covariance matrix represents couplings between features,

the maximally elongated vectors are the best explaining the dispersion.

As maths involved to calculate eigenvectors are quite extensive (for a full

derivation of the algorithm, see (Golub & Van Loan, 1983)), a summary

can be presented as:

• The matrix A is reduced to upper Hessenberg form H , which is an al-

most triangular matrix with zero entries below the first subdiagonal,

as in Eq. 3.8. This is achieved by orthogonal similarity transformation

A = QHQT , where Q is orthogonal and H has the same eigenvalues

as A, but is easier to handle for the next algorithm.

H =



∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
0 0 ∗ · · · ∗

...

0 · · · 0 0 ∗


(3.8)

• Then, the QR algorithm is performed to further reduce the matrix H

to upper triangular matrix T (called Schur form). The resulting form

is H = STST , with S being a unitary matrix.

• Eigenvalues are extracted from the resulting triangular matrix T . In

this matrix, the main diagonal is formed by 1 by 1 and 2 by 2 blocks,

which are the eigenvalues (1 by 1 if real or 2 by 2 if complex eigenval-

ues). An example can be found at Eq. 3.9. In this case, eigenvalues
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are 1, 2± i and 3.

T =


1 ∗ ∗ ∗
0 2 −1 ∗
0 1 2 ∗
0 0 0 3

 (3.9)

Once the value of eigenvalues are known, eigenvectors of T can be

computed as a linear system of equations with known coefficients,

that is, finding the non-zero solutions of the eigenvalue equation, and

then, pre-multiplying by QS to obtain eigenvectors of A.

4. Sorting Eigenvectors: Once we have eigenvectors defined, we order them

in descending order, by means of their eigenvalues. From the sorted eigen-

vectors we extract the ordered n − 1 best components (called principal

components), and generate the corresponding hyperplane hw.

Once we have those defining vectors, the next step is to build a hyperplane.

Formally, a hyperplane can be constructed with a perpendicular vector ā =

(a1, a2, ..., an) and a scalar b. This combination defines the general scalar equa-

tion of a hyperplane (Eq. 3.10), with m being the highest dimension.

a1x1 + a2x2 + · · ·+ amxm = b (3.10)

This equation can be expressed in matrix form as Ax = b. So our aim is to

obtain this perpendicular vector and the point, in order to obtain the hyperplane.

To achieve it, we use the properties of dot product (Eq. 3.11).

c̄ · d̄ =

n∑
i=1

cidi = c1d1 + c2d2 + · · ·+ cndn (3.11)

According to dot product definition: two non-zero vectors are orthogonal if, and

only if, their dot product is equal to zero. To define a hyperplane of n−1 dimensions,
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in a n dimensional space, we need n − 1 vectors v contained in the hyperplane.

From PCA, we obtained a set of vectors which are contained inside the hyper-

plane. For each of these vectors is performed a dot product with a, because a

must be orthogonal to each of them. Let us remind that a is the vector we want

to find, the one orthogonal to the hyperplane. These principal components mul-

tiplied with a lead to a system of linear equations defined as in Eq. 3.12.

v̄1 · ā = 0⇒ v11a1 + v12a2 + · · ·+ v1nan = 0

v̄2 · ā = 0⇒ v21a1 + v22a2 + · · ·+ v2nan = 0

...
...

...

v̄m · ā = 0⇒ vm1a1 + vm2a2 + · · ·+ vmnan = 0

(3.12)

With m = n − 1. The system of equations has n unknowns and n − 1 equa-

tions, it is indeterminate. To cross this gap, we define a1 = 1, which is equivalent

to elongate one variable of a, and the rest get adapted, obtaining a unique solu-

tion. This trick does not affect to the solution, and it only changes the magnitude

of the vector, and not its direction, which is what we are interested in. The ob-

tained vector ā is orthogonal to the hyperplane.

The only remaining unknown parameter is b, which is a scalar. If in Ax = b,

the hyperplane equation, we substituteAwith ā and substitute xwith one point

in the hyperplane, b is directly obtained and the hyperplane is now completely

defined. The point in the hyperplane selected has been the, previously calcu-

lated, middle point of the cloud. An example of created hyperplanes for several

clouds, in a 3 dimensional spatial-color space, can be found in Fig. 3.2

This generalization has two facets:

• It is a feature description of objects based on hyperplanes in a feature

space. These hyperplanes define the cloud formed by all the points with

the same word.

• It is a way to extend the meaning of words across the feature space.
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Figure 3.2: Three planes representing the meaning of three different word point clouds.

Up to here there have been defined the steps followed to generalize words

in a feature space. Next step is to take advantage of these models to infer infor-

mation.

3.3 Feature Inference

Once the database has been trained, that is, populated, and point clouds

have been generalized as hyperplanes, there can be performed an inference step

to extract information. We consider the inference of objects features as a kind

of robotic imagination, where the features of unknown objects by generalizing

characteristics from previously presented objects can be deduced.

In the context of hyperplanes, the inference is exploited as a search of rele-

vant areas in the Semantic-Feature Space, that is, finding the geometrical figure

that contains all the valid solutions, when words are used as query. In other

words, we want to semantically describe an object, and obtain the features this

object would have.
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This geometrical figure M is defined as the one resulting from the intersec-

tion of the hyperplanes of the query words (Eq. 3.13).

M(w1, ..., wq) = hw1 ∩ ... ∩ hwq (3.13)

With q being the number of query words. The intersection of q hyperplanes

can lead to different figures, in function of the number of hyperplanes, and the

order of the space. Dimension of M can be calculated as n − q, and the possi-

ble resulting figures are: points, lines, planes, or high-dimensional hyperplanes.

These different results can be managed if, when no unique solution is found, we

project point cloud center of masses on M . These projections, orthogonal pro-

jections in fact, are achieved using an algorithm called Modified Gram-Schmidt.

3.3.1 Modified Gram-Schmidt

No matter the resulting figure, we orthogonally project the center of mass

of each n-dimensional point cloud, corresponding to each query word, on M .

The technique used is the modified Gram-Schmidt process for orthogonalization

(MGS), which performs an orthogonal projection of a vector into another one. A

simple projection of a vector v into another vector u is defined as in Eq. 3.14.

proju (v) =
〈u,v〉
〈u,u〉

u (3.14)

With 〈·, ·〉 representing the dot product. But, when the searched projection

must be orthogonal, MGS states that a vector v orthogonally projected into u, is

defined as in Eq. 3.15.

u = v − proju (v) (3.15)

This equation involves only two vectors, but this formula can be recursively

applied to create a vector orthogonal to k several vectors (Eq. 3.16). We need this

multivector projection because M can be highly dimensional (that is, polygons

defined by several vectors e.g. two for a plane, three for a cube, etc.).
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u
(1)
k = vk − proju1

(vk)

...

u
(k−1)
k = u

(k−2)
k − projuk−1

(u
(k−2)
k ) (3.16)

For q query words, there are q projected points in M . As these points will be

on different zones of M , a weighted mean is applied to these points, obtaining a

unique solution, which is also contained inM (an example in Fig. 3.3). Currently

the weights are all equal. Some advantages can be highlighted, as the solution

is:

1. Complete: Because it is completely defined in all the feature space.

2. Relevant: Because it is contained in the area where the elongations of

meanings intersect.

3. Balanced: Because all the words influence the same way in the final solu-

tion.

This method followed is valid and correct in all cases, but, in order to reduce

computation time, some special cases can be defined. We consider special cases,

those where the order of M lead to situation that can be simplified. It is impor-

tant to notice that following cases are just simplifications to improve efficiency,

but could be also solved with the previous method.

The first special case is q = n. In this situation, M order is null (remember

that its dimensionality is q − n = 0), the resulting figure is a point, so it is not

necessary a further computation, and the solution is this point (an example of

this special situation is shown in Fig. 3.4). The interpretation of this situation

is that in the description provided as query, there is one word representative

for one of the features in the space, so no interpolation is required to supply

undefined features.
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Figure 3.3: Unique solution using MGS for two query words but three dimensions. The aug-

mented region shows the orthogonal projection of centers of mass.

The other special case is q = 1. In this case, there are no intersection, because

a single hyperplane is generated from a single query word. In absence of more

information, the center of mass of the point cloud becomes the solution. The

reason behind this decision is that we suppose that for a point cloud, the cen-

ter of the cloud will be the most relevant area possible. Obviously this is true

for clouds forming convex sets, but it remains uncertain how non-convex sets

would respond to this request.

The key point of the object inference presented is that it enables the discovery

of objects features from description words, even if they have never seen before

together.

Let us recapitulate the steps followed in this chapter to generalize and infer

object features:

1. Using PCA we obtain relevant cloud vectors, that is, its principal compo-
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Figure 3.4: In this special case, intersection point becomes the solution.

nents.

2. With the PCs, we create a hyperplane for each point cloud. Up to here is

the so called generalization.

3. Finally, we intersect the hyperplanes corresponding to query words. These

queries are the ones asked by the human when describing an object in

order to obtain its features.

This final step is called inference, because the system deduces characteristics

of a described object, based on previous experiences, even if this combination of

words in the description has never been introduced before.
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Chapter 4
Object-Centered Actions

As stated previously, Object-Centered Actions are the ones focused on pa-

rameters of the object affected by the action. The intention behind this develop-

ment is to provide robots with the capability of imagining how a set of actions

affect its surrounding environment and, as previously, being able to do it even if

the robot has never seen an specific combination of actions, applied to the envi-

ronment, before. Environment, in the current state of development, means only

objects.

While objects features are static, regarding its features, actions are, by def-

inition, dynamic and changing, and their analysis becomes more complex and

difficult. This is the reason why the author has decided to address the problem

as a Goal-Oriented task. As a reminder:

• Goal-Oriented Samples: Every action becomes reduced to a vector of fea-

tures, where each element represents the variation, in the object character-

istic, between the beginning and the end. These values are fixed relative

to the initial state of the object (before the action begins).
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4.1 Goal-Oriented Samples

This mode does not have a generalization step detachable from the inference

process. To create models, there have been selected several machine learning

algorithms, each of them creating a different internal model, which serves at

the same time as generalization and as parameter generator. The only ad-hoc

process carried to achieve action generalization and inference is the grounding

of the database in the Semantic-Feature Space.

As in objects case, we feed the Semantic-Feature Space with labeled points

in a n-dimensional space. This process is exactly the same as performed in pre-

vious chapter, but labels, in this case, are not feature descriptions as previously,

but the name of the action. After a population phase, we obtain point clouds

which represent typical variations of features in an object after the application

of a specific action.

Every point created reflects the change produced in the object, and not the

movements performed to achieve it. Every time the action is performed, the

variation of feature values are extracted from the object. This variation is for-

mally a vector of scalars, which, for the point created, represents its coordinates.

The selected algorithms are: Arithmetic Mean Model, Direct-Inverse Neural

Networks, Support Vector Regression and Gaussian Mixture Model.

As reader may notice, the algorithms selected do not belong to a specific

category of machine learning, and they are very diverse, ranging from classi-

fication and regression to probabilistic models. The reason is that the problem

presented is not usual, and no specific algorithms exist, so we want to evaluate

the strengths and weaknesses of many different algorithms in giving a coher-

ent solution. The aim of the presented techniques is to obtain a coherent model

parameter generator for the corresponding semantic input. That means, when

action is queried with its name, the algorithm must return the expected variation

of features in the object.

Each method has its working mechanism and peculiarities, which will be
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explained below. To review our publication associated to this part of the work,

see (Victores, Morante, Jardón, & Balaguer, 2013b).

4.1.1 Arithmetic Mean Model

This is the direct, and most intuitive, approach. When receiving a new sam-

ple for an action, each feature is updated by averaging with the new value. To

avoid the whole average computation of all points in the cloud in each step, an

incremental version has been implemented (Eq. 4.1).

An+1 = An +
vn+1 −An

n + 1
(4.1)

Where A means average, v is a new value, and n and n− 1 are previous and

current state respectively. This method serves, at the same time, as generaliza-

tion and as inference. For each new sample, the model is updated, simplifying

the cloud to a single point. When asked with an action word as query, the aver-

age value is returned. In the case that several query words are used, the resulting

value is the composition of both averages. That means, a sum, for each feature,

of the values of all actions queried.

This is the simplest of the algorithms implemented, and its results will be

presented in the experiments chapter.

4.1.2 Direct-Inverse Neural Networks

As a simple definition, a neural network is an interconnected group of units

(called artificial neurons) with connection weights among them. It relies on a

connectionist approach to acquire knowledge, which means that it connects in-

puts and outputs with a network and learns by modifying parameters in the

network in a training phase. Neural networks model complex relationships be-

tween data using a supervised training phase, where correct outputs for deter-

mined input combinations are provided to the network, and learning is per-

formed during this process.
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In this case, a classical three-layered fully connected Feed-Forward Neural

Network has been selected (Schaul & Felder, 2010). This means that our network

has three consecutive layers (called input-hidden-output), where the neurons of

a layer are connected with all neurons of the following layer. Actions here are

represented by input neurons, with one neuron for each action.

The training algorithm is back-propagation, which for each demonstration

sample, updates connection weights to minimize the error. Each neuron has,

as activation function, the logistic sigmoid function (Eq. 4.2). The activation

function defines the output of a single neuron for a given input value. There is

also the possibility of shifting this activation function to a higher or lower value

using a bias. The bias is directly summed to the activation value of the neuron.

logsig(s) =
1

1 + e−s
(4.2)

With a network input x and an output network y, with k neurons, the final

result obtained is Eq. 4.3.

yk = b
(3)
k +

H∑
j=0

w
(2)
kj logsig

(
b
(2)
j +

U∑
i=0

w
(1)
ji xi

)
(4.3)

Where w(1)
ji and w(2)

kj are the weights for the first (input) layer and the

second (hidden) layer respectively (between the neuron j-i and k-j in each case).

That means that two neurons are connected with a weight between them. These

weights are the ones updated in the learning process by backpropagation. H is

the number of hidden neurons and U is the number of inputs neurons, while b(3)k

and b
(2)
j represent the bias for the corresponding neuron. We do not use a bias

in our algorithm, so the equation results as Eq. 4.4.

yk =

H∑
j=0

w
(2)
kj logsig

(
U∑
i=0

w
(1)
ji xi

)
(4.4)

The particularity of the network used is not in its structure, which is very

common, but in that it is trained inversely when compared to its habitual use.
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Usually it classifies a combination of numerical inputs into a delimited num-

ber of classes, but in our case, the class is used as input, and the numerical

values belonging to the class are the network outputs. The resulting network

achieved, with inputs and outputs swapped, is called Direct-Inverse Neural Net-

work (Kabir, Member, & Wang, 2008). Our aim is to generate parameters located

near the intermediate values of the point cloud (Fig. 4.1).

Figure 4.1: Scheme of our Direct-Inverse Neural Network.

Some issues arises when inverting neural networks. As stated in (Dua, 2000),

the problem associated with this technique is that this mapping results in a one-

to-many mapping between the output and the inputs, because in usual neural

networks, different inputs can yield the same output. That is, that in inverse

neural networks, same input values result in different output values.

Despite it is a problem for other projects, this is not our case. Correct, but

slightly different, results, are a good simulation of how biological organism per-

form actions e.g. when drawing several circles in a paper, they all share a com-

mon pattern, but they are not exactly equal. This is the reason why we do not
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care about this behavior. Moreover, for actions combination, every action be-

comes an input neuron, so simultaneous activation is allowed. In the experi-

ments chapter, there will be shown its results, which are quite promising.

4.1.3 Support Vector Regression

Support Vector Machines (SVM), are the third of the algorithms presented,

and, as neural networks, they are supervised learning models, usually used for

classification, data analysis and pattern recognition. The focus in our case is

regression, not classification, so we use a modified version of SVM prepared for

regression. Support Vector Regression (SVR) is a modified version of SVM to

perform linear and non-linear regression. Good introductions about SVR are

found in (Nalbantov, Groenen, & Bioch, 2005) and (Smola & Scholkopf, 2004),

although we will review the most important points in the model construction.

For pedagogical reason, there will be explained, in first place, the linear ver-

sion of SVM, but as a advance, in the SVR for non-linear regression (Pedregosa,

Grisel, Weiss, Passos, & Brucher, 2011) (Chang & Lin, 2011), the input data is

mapped into a high-dimensional feature space using a fixed mapping (a kernel),

and a linear regression is constructed in this feature space.

On it basics, linear SVR tries to reduce model error by minimizing the Eu-

clidean Norm, while using a type of loss function called ε-insensitive loss func-

tion. That means, the goal is to find a function f(x) (Eq. 4.5) with, at most, ε of

deviation from the actual yi targets.

f(x) = 〈ω, x〉+ b

with ω ∈ X, b ∈ <
(4.5)

Where f(x) is a typical linear high-dimensional regression equation and X

denoting the space of the input pattern. As said, to solve this regression, SVR

minimizes the Euclidean Norm plus some loss values. So, the problem is an
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optimization problem (Eq. 4.6), with this scheme:

minimize 1
2 ‖ω‖

2 + C
∑n

i=1(ξ
+
i + ξ−i )

constraints

yi − 〈ω, xi〉 − b ≤ ε+ ξ+i

〈ω, xi〉+ b− yi ≤ ε+ ξ−i

ξ+i , ξ
−
i ≥ 0

(4.6)

Defining C as a weight to balance the strictness of penalty (how precise the

model is) with flatness of f (how “horizontal” the regression is. Understanding

horizontal as lower ω values as possible). ξ variables, called slack and usually

displayed as (ξ, ξ∗) for our (ξ+, ξ−), represent the penalty added by using a loss

function (Eq. 4.7). There are two penalties because errors committed in the re-

gression can be upper errors, above the regression function (ξ+) or lower, under

the function (ξ−).

|ξ| =

 0 if |y − f(x)| < ε

|y − f(x)| − ε otherwise

 (4.7)

In this summary ε is a predetermined non-negative parameter (manually

set), y is the true target value and f(x) is the estimated, by SVR, target value. In

other words, if the absolute residual is equal to ε or less, then there is no penalty.

As there is a no-penalty zone, this method is called ε-insensitive. However, if the

point is situated outside the allowed band, a linear amount of loss |y − f(x)|−ε is

associated with the estimation. A graphical representation of SVR can be found

on Fig. 4.2.

The process above explained represents linear regression. In case there want

to be performed a non-linear regression, and previously to apply the method

above explained, the data need to be converted into higher spaces, x → Φ(x),

presuming they will acquire linearity in that space. This process of mapping

could be achieved by transforming all samples into transformed space, called

feature space, and then applying linear SVR. But, computationally, this may be
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Figure 4.2: Scheme of SVR for linear regression case.

unfeasible for very high (or even infinite) dimensions. Luckily, checking Eq. 4.6,

the only operation SVR needs to perform in the transformed space is the dot

product, so there is a trick to simplify computation by using a technique called

Kernel trick. A kernel is just a dot product of two vectors (in some space). The

advantage of using determined kernels, over dot product, is that, using kernels,

dot product in the transformed space can be written out as an operation with

the original coordinates, as in Eq. 4.8. Using this trick, transformed coordinates

not need to be calculated, and only the kenel is applied.

〈
Φ(x) · Φ(x′)

〉
= K(x,x′) (4.8)

Where Φ(x) is the point in the transformed space. There are several kernels,

each of then representing a different transformed space. The Kernel used in our

case is Gaussian Radial Basis Function kernel, or RBF kernel, which induces a

infinite dimensional feature space (demonstration in (Eigensatz, 2006)). RBF is

a real-valued function whose value depends only on the distance between two

points (x, x′) (Eq. 4.9).

K(x,x′) = exp

(
−||x− x′||2

2σ2

)
(4.9)

Where x is the support vector point (called center of the hypersphere), that
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is, a point outside the allowed band. x′ is the testing data point (actual data)

and ||x−x′|| denotes the norm (here L2 norm), a kind of distance between them.

The support vector will be the RBF center and, the last parameter, σ, manually

adjustable, will determine the area of influence of this support vector over the

space.

Regardless the kernel used, Eq. 4.6 is a convex quadratic optimization prob-

lem (which means that local minima is also global minima), with some linear

constraints. This can be solved by transforming the problem into two subprob-

lems (a process called dual formulation) and applying and ad-hoc iterative al-

gorithm called Sequential Minimal Optimization.

In this case, actions becomes a number (e.g. move = 1, rotate = 2, etc.),

and the result are expected to be reasonable. The author believes that regression

could lead to problems in massive training datasets, but further investigations

are required.

4.1.4 Gaussian Mixture Model

The last algorithm implemented is Gaussian Mixture Model (GMM), which

is a unsupervised probabilistic parametric model used for density estimation

and clustering. Its structure relies on a weighted sum of Gaussian components

(Reynolds, 2009), where each gaussian tries to model a point cloud. Formally, is

a weighted sum of K multivariate Gaussian, described as Eq. 4.10.

p(x|λ) =

K∑
i=1

ωi gi(x) (4.10)

Where x is a D-dimensional data vector (D as the number of features), ω is

the weights vector and g(x) represents the Gaussian densities. M is the number

of components (number of Gaussians) where the points will be clustered. That

is, how many Gaussians will be used to model the point cloud.

In a basic algorithm, this is a manually tuned parameter, but there are some
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score values to select the optimal number of components e.g. Bayesian Informa-

tion Criterion (BIC). Each component density g(x) is defined as in Eq. 4.11.

gi(x) =
1

(2π)D/2 det(Σi)1/2
exp

{
−1

2
(x− µi)T Σ−1 (x− µi)

}
(4.11)

Where µi and Σi are the Gaussian parameters for the mean and the covari-

ance matrix respectively. Weights represent, in some way, the influence of a

specific component over the whole data, reason for the constraint
∑K

i=1 ωi = 1.

The parametric model is completely defined by the set λ = {ω, µ,Σ}. An exam-

ple of how the number of components affect to its performance, for the case of

density estimation, is found on Fig. 4.3

Figure 4.3: Probability density function of a dataset, with different number of components in

the mixture (K = number of components).

For the covariance matrix, there are some configuration possibilities which

modify algorithm performance (Fig. 4.4). One is the “full” mode, where the

whole covariance matrix is taken into account in calculations, which implies to
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use covariances between features in the final Gaussian configuration. Visually

in a 2-dimensional case, Gaussian can look twisted with respect to one axis. An-

other mode is the “diagonal” one, where only the diagonal values of the matrix

are considered, ignoring the rest, that is, using only the features variances. Vi-

sually in 2-dimensional case, Gaussian becomes parallel to one of the axis. The

last mode is ”spherical”, where we force a diagonal matrix with all values being

equal. Visually in 2-dimensional case, Gaussians becomes circular.

Other parameters configuration include the possibility of sharing the covari-

ance matrix among all components. Giving all components the same covariance

matrix, all Gaussians look the same in shape, but are placed in different coordi-

nates (this is formally called “tied” parameters).

Figure 4.4: Different mixtures in function of the covariance matrix parameters.

The above process defined represents the model. But the parameters need to

be estimated in a way that they better match the point cloud distribution. The

most common used technique is called Maximum Likelihood Estimation (MLE).

The MLE quality of the prediction, for T training vectors x, is written as in Eq.
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4.12.

L(λ : x) =

T∏
t=1

p(xt|λ) (4.12)

These parameters may be estimated with an iterative algorithm called Ex-

pectation - Maximization. To give an idea of its working, it iteratively modifies

mixture parameters to monotonically increase the likelihood of the model. Basic

GMM has been tested in experiment chapter, whose results can be checked it

that chapter.

As a summary, all these presented algorithms will be asked for a prediction

of how an action will affect an object. In next chapter, all of them will show their

results.



Chapter 5
Experiments

In this chapter, all the presented algorithms will be tested to evaluate their

performance for different tasks. The experiments are divided in three blocks,

each one corresponding to a different dataset to be modeled: objects, spatial

references and actions.

5.1 Simulated Objects

This experiment, whose formal description can be found on (Victores et al.,

2013a), involves a simulated robot, ASIBOT (Jardón, Vı́ctores, Martinez de la

casa, Gimenez, & Balaguer, 2012). This robot is an arm, created for assistance

purposes. The aim is to close the algorithms to physical machines, or at least,

to their limitations. For that, in this experiment, images and descriptions are

provided to the system, and then, the queries are asked for drawing.

5.1.1 Datasets

The dataset is composed by synthetically generated images (Fig. 5.1). These

images are colored figures, which vary in shape and position, over a black back-

ground. Linked to the images, descriptions are attached to each image (only
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representative words). To accelerate the process, the initial population is gen-

erated automatically. The descriptions are composed by words automatically

added when the image is generated.

Figure 5.1: Dataset used for populating the grounding database. For example, the first image is

labeled as top-left-dark-blue-fat-straight-box

The system is trained with 300 images with 7-word descriptions. These

words are nouns and adjectives. The training population represents approxi-

mately the 13% of all the possible combinations of words. This fact is deliberate,

to prove that our algorithms does not need all possibilities to be presented, and

that the inference system can manage that situation. Additional Gaussian noise

of 1% is added to simulate errors of real captures of data.

In total, 12 features are extracted from images. The first 2 correspond to spa-

tial positions, x and y- Another 2 are used to define the color, hue and value, and

finally, 8 features are used to characterize the contour (e.g. convexity, eccentric-

ity, circularness, squareness, etc).
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5.1.2 Testing

The final expected result is having the robot drawing an object it has never

seen before. But, before that, a mental model is needed. The approach selected

in this thesis is to infer features from previous object and feed this information

to an Evolutionary Computation Algorithm (EC). That is, to ask semantically for

a query, expects the algorithm to create a mental model and then feed EC with

this model. The reason why we need EC is that mental model (a vector of scalars

of features) is not directly representable graphically. If only inference were the

objective, the experiment would end here.

If we consider the habitual three steps of evolutionary algorithms (selection,

crossover and mutation), EC performs a Steady State Selection algorithms for

the first step, which, for each generation, it replaces only a few of the resulting

individuals at a time, while other methods substitute them all. That is, the idea

of this selection is that a big set of the individuals will survive to next generation.

Steady State steps:

• Selection: A tournament (comparison of fitness) is performed between

random individuals. The fitnesses are compared and winners (best fit-

ness) are selected for crossover. Fitness is a metric that represents how an

individual (with its combination of features) best represents the reference

provided, how close are their values.

• Crossover: Winners are crossed and their descendant substitute the worst

values from the previous tournament.

• Mutation: With a certain probability, each child can be mutated.

This process occurs iteratively until a termination condition is accomplished.

Termination condition is set to a certain number of generations without im-

provement in the fitness value. Tournament size is set to 3 individuals, mutation

probability is 70% and termination condition is set to 50 generations without im-

provement.
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For generating the mental model, EC controls the coordinated 2D positions

of a set of points inside an image. Those points together forms a shape. The

features, ofthis generated image, are extracted and the fitness is calculated as

the sum of feature differences between the reference data and the generated one.

Several generated mental models can be seen in Fig. 5.2. Let us remember that

this reference is the vector of values returned from the hyperplanes intersection

algorithm.

Figure 5.2: Mental models of the robot when asked for: (a) “bottom right”, (b) “bottom left”, (c)

“top right”, (d) “top blue”

Notice that unnamed features in the query words, such as color or shape,

remain uncertain in their values. Despite they can be also modified in the muta-

tion process, the reference values with which they are compared are undefined

values from hyperplanes intersection. As we consider that hyperplanes are ex-

tended in relevant features, the rest of the features of the vector take intermedi-

ate values.

The models generated can be used directly for the drawing application, map-

ping the shape as a trajectory on a table. Fig. 5.3 depicts a screenshot of the

simulated ASIBOT drawing a query.

Apart from the simulator, errors produced by the inference system (before

EC) can be calculated. On Table 5.1 there are measured errors induced by the

scalability of dimensions. That is, we force the space to have a low number of

dimensions, and then we increment them one to one. The features we know are

relevant, for the combination of words queried, stays always in all spaces tested.
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Figure 5.3: Simulated ASIBOT robot arm drawing the model generated for “bottom left”.

Table 5.1: Dimensionality errors for the query “top-left”.

Number of Features 2 3 4 5 10 12

Deviation of 1 0.038 0.036 0.038 0.036 16.855 16.227

Deviation of 2 -0.308 -0.298 -0.298 -0.305 -14.238 -13.541

The inference system does not know how representative a word is for a fea-

ture, but a human evaluation can determine that, for instance, “left” word is

mostly associated with x coordinate. This idea is exploited by measuring the

results for “top-left” query when augmenting the number of features.

Some limitations of this experiment can be listed:

• Context dependency: This experiment implementation is not capable of

correctly managing words that change depending on the context. That is,

words whose perceptions do not remains stable, or similar, for all samples

sensed. A possible solution to this problem could be a previous clustering

step, to guess how many meanings (clusters) a word has in our space.

• Misrepresentation: Some features cannot be completely defined due to

color space limitations. For example, in HSV color space (Hue, Saturation,

Value) we use, the hue for “red” can be represented as 0 and also as 360.
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A hyperplane fitted to these values would lead to unstable, understood as

without sense, directions, probably around 180 (which is not red). We have

chosen HSV instead of usual RGB (Red, Green, Blue), because RGB cannot

describe a color with a single word associated to one of the variables, while

HSV indeed can.

• Extendability: The assumption is that any point cloud for a word can be

extended, while conserving their meaning. This assumption could not be

true when accumulating experiences for words (e.g. mugs can take many

colors, shapes or sizes, which may affect hyperplanes creation).

5.2 Robot Spatial Knowledge

Beyond simulated or synthetic samples, the authors aim to bring embodied

information closer to the proposal. The first part of this experiment is a synthetic

dataset to test how the algorithms would generalize spatial information, but

following it, we present experiments with a real robot.

5.2.1 Synthetic Spatial References

The aim here is to acquire a kind of spatial knowledge by providing spatial

samples as reference, which is a means for a human to teach spatial language to

a machine. This has more sense when talking about embodied machines, that is,

robots. The synthetic tests are usually the first kind of experiments performed

when testing machine learning algorithms, because of its ease and quickness in

programming, and there will be presented first.

Datasets

The population phase, consists in computer-generated samples representing

a white circle in a black background (Fig. 5.4). These circles are randomly dis-
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tributed along the image, and they are automatically classified, with semantics,

according to their coordinates.

Figure 5.4: Dataset used for training and test phase in spatial experiment.

The samples, whose circle coordinates are their features, are labeled with

their spatial characteristics. Images are 100x100 pixels size and the classification

is carry out as follows: height and width are virtually divided in 3 equal parts

(resulting in 9 areas). Words are assigned to the samples, based on circle coor-

dinates, and they are: ‘TOP’, ‘BOTTOM’, ‘RIGHT’, ‘LEFT’ and ‘MIDDLE’. This

last word, ‘MIDDLE’, is used twice, or in a double way, because it can repre-

sent vertical but also horizontal middle space. For population purposes, 70%

of the dataset, composed of 300 samples, is used, and the test phase uses the

remaining.

In this case, all possible combinations of words are fed to the grounding

database, except those implicitly contradictory (e.g. LEFT-RIGHT).

Testing

The first result, shown on Table 5.2, represents the algorithm numerical out-

put, the coordinates, for the semantic input combination of the words (the ones

of its column and row). In this case, the algorithm used is the one previously

presented as object generalization and inference, with hyperplanes. The space
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Table 5.2: Training dataset with x, y coordinates output for a ‘word, word’ input.

TOP BOTTOM LEFT RIGHT MIDDLE

TOP 51.3 , 78.0 * 21.0 , 78.5 76.1 , 77.6 -40.7 , 79.5

BOTTOM * 51.5 , 21.3 20.9 , 21.6 78.3 , 12.1 111.4 , 20.8

LEFT 21.0 , 78.5 20.9 , 21.6 20.9 , 50.6 * 20.9 , 55.7

RIGHT 76.1 , 77.6 78.3 , 21.1 * 77.1 , 50.1 77.8 , 33.8

MIDDLE -40.7 , 79.5 111.4 , 20.8 20.9 , 55.7 77.8 , 33.8 46.7 , 45.8

Table 5.3: RSS result x, y when compared the test samples with algorithm output.

TOP BOTTOM LEFT RIGHT MIDDLE

TOP 105.8 , 37.1 * 16.5 , 19.9 9.4 , 7.2 342.8 , 31.6

BOTTOM * 131.7 , 39.3 24.5 , 28.8 14.2 , 16.5 190.5 , 20.3

LEFT 16.5 , 19.9 24.5 , 28.8 42.5 , 130.2 * 30.5 , 40.1

RIGHT 9.4 , 7.2 14.2 , 16.5 * 23.7 , 85.8 13.6 , 37.8

MIDDLE 342.8 , 31.6 190.5 , 20.3 30.5 , 40.1 13.6 , 37.8 134.6 , 155.7

is 2-dimensional.

Once having these values, they can be now compared with the samples re-

served for the test phase. For this task, Root-Sum-Square (RSS) results are com-

pared (Eq. 5.1), once for each coordinate x and y.

f(x) =

√√√√ n∑
i=1

(xi − µ)2 (5.1)

Where n is the number of samples, xi is the single coordinate value for a test

sample, and µ is the result obtained of the training phase (shown previously on

Table 5.2) for these words combination. Equation results on Table 5.31.

A closer look to the tables reveals some characteristics to be interpreted:

1Values with (*) mark correspond to undefined fields because of the absence of samples to
compare with (e.g. no ‘LEFT-RIGHT’ sample).
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• The initial automatic sample classification were performed dividing the

100 pixels in three equal parts, so any value lower than 33, or higher

than 66, represents a correct parameter generation for unambiguous words

(lower than 33 for BOTTOM and LEFT, and higher than 66 for TOP and

RIGHT).

• When the word ‘MIDDLE’ is present, values are misplaced due to their

ambiguity, because it is present in both vertical and horizontal.

• Best results (bold numbers) are given when both words are clearly defined

and unambiguous (e.g. TOP-RIGHT, BOTTOM-LEFT, etc).

Once tested synthetically, the experiment can go a step further by trying an

improved, but similar, experiment with a real robot.

5.2.2 Humanoid Robot TEO Spatial Pointing

The most real experiment has been performed on TEO, the humanoid robot

(Monje et al., 2011) (Fig. 5.5). This test is an evolution of the synthetic task of

learning spatial positions, but with embodied characteristics.

The objective is to teach TEO spatial 3D references (x, y, depth) by showing

it a visual marker. After that training phase, we want to ask the robot to point

to a semantic asked position. This capability is similar to “imagine” positions

in space. The combinations of words may have not been heard by the robot

before, like pointing to “FRONT-RIGHT” having already learnt “FRONT” and

“RIGHT” separately.

Datasets

As said, this experiment is the most real-world type of the one presented, so

the sensorial capabilities are here important. To create a population of samples,

a human operator shows to the robot a colored visual marker, and, at the same
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Figure 5.5: TEO is a full humanoid robot from Robotics Lab research group, Universidad Carlos

III de Madrid.

time, describes the sample (Fig. 5.6). The words used to describe the sample, are

all the used in the previous experiment, plus two additional words representing

the depth variable (FRONT and BACK).

Figure 5.6: Human operator teaching spatial positions to TEO.
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This initial phase is a semantic grounding process, where the system links the

user’s words, caught via automatic speech recognition (ASR), with the spatial

characteristics of the marker. Robot vision is based on Kinect camera for depth

measures and basic OpenCV algorithms to segment marker color (Fig. 5.7).

Figure 5.7: TEO segmentation to detect colored marker.

Testing

After the training phase, human operator asks TEO, using ASR, to point to

a specific position. As a summary, the robot executes the algorithms for hyper-

planes intersection, obtains a representative set of coordinates, and moves its

arm to this position (Fig. 5.8). Some comments can be made about this experi-

ment:

• The words used to describe spatial positions must be pre-accorded, in or-

der to feed the automatic speech recognition corpus. The corpus is the

bag of all words which must be recognized, ignoring the rest. This fact

limitates the possibility of further spontaneous teaching.

• Luckily, spatial references must only be learned once, due to the fact that

they does not change in time.
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Figure 5.8: TEO pointing to a semantic queried position.

5.3 Goal-Oriented Samples

Instead of objects as in previous section, this experiment aims to distin-

guish how different actions affect different features of objects in the environ-

ment (Victores et al., 2013b). The algorithms tested are the ones already formally

presented: Arithmetic Mean Model, Direct-Inverse Neural Networks, Support

Vector Regression and Gaussian Mixture Model.

5.3.1 Datasets

To compare them, each model is trained with the same experimental dataset.

The dataset is composed by 5 “move” frame sequences, and 5 “rotate” frame

sequences. The sequences are composed by 7 frames, with a size of 100x100 pix-

els. White rectangles are situated over a black background (Fig. 5.9). In “move”

sequence, the rectangle displaces 60 pixels along the image, with the same rota-

tion. In “rotate” the angle varies 60 degrees, keeping the same coordinates.

An additional 1% of standard deviation noise has been incorporated to each

feature x, y and alpha, to emulate camera perturbation effects and errors during

segmentation.
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Figure 5.9: Dataset used for training and test phase for simple actions experiment. Upper

sequence is “move”, lower is “rotate”.

5.3.2 Testing

As has been previously described, almost all algorithms need parameters to

be set manually. Algorithm parameters are tuned as follows:

• Arithmetic Mean Model: No special initial tuning is needed.

• Direct-Inverse Neural Networks: We have chosen a network with three

layers, with 50 neurons in the hidden layer, having a sigmoid function, as

activation function. Epochs are fixed to 10, that is, the whole data is used

for training 10 times.

• Support Vector Regression: Kernel chosen is Radial Basis Function. The

penalty weight C is set to 1 and ε (allowed distance to the band) is set to

0.1.

• Gaussian Mixture Model: Components are set to 1 (only one Gaussian

will fit the data), as we know there is only one point cloud in the space.

The covariance matrix is “full”, so all covariance matrix is considered in

calculations.

On Table 5.4 and Table 5.5 can be found the outputs of the different algo-

rithms for words “rotate” and “move”, respectively.

It is important to notice the difference in meaning of the standard deviation

for NN and for GMM. In NN, the standard deviation (marked as (*)) represents
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Table 5.4: “Rotate” results.

X Y ALPHA

MEAN 0 -0.2 65.62

D-I NN (*) 0.05 ± 0.26 -0.12 ± 0.1 64.83 ± 0.22

SVR 0 -0.1 64.55

GMM (**) 0 ± 1.41 -0.2 ± 0.74 65.62 ± 2.81

Table 5.5: “Move” results.

X Y ALPHA

MEAN 59.8 59.6 -0.26

D-I NN (*) 59.75 ± 0.2 59.56 -0.74 ± 0.43

SVR 59.9 59.1 0.71

GMM (**) 59.8 ± 0.74 59.6 ± 1.35 -0.26 ± 2.8

the output of the algorithm, because it is stochastically variable. The reason is

the initial random set of network’s weights for each training phase (we trained

the network once per each one of the 5 times we tested it). NN output presented

is the average of running the algorithm 5 times, each with its corresponding

training phase. However, in GMM, the standard deviation (marked as (**)) de-

scribes input data dispersion in the estimated model. That means, the standard

deviation for each axis of the Gaussian.

For a composition of actions, a “move” and “rotate” combination, the error

is calculated as an Euclidean Distance (Eq. 5.2) between the reference and the

obtained values.

f(p, p0) =

√
(p

(x)
0 − p(x))2 + (p

(y)
0 − p(y))2 + (p

(alpha)
0 − p(alpha))2 (5.2)

Where (p(x), p(y), p(alpha) = (60, 60, 60)) are the references and (p
(x)
0 , p

(y)
0 , p

(alpha)
0 )

are the composed real values (calculated as a direct sum of values from “move”
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Table 5.6: “Move” plus “Rotate” Euclidean Distance results.

EUCLIDEAN DISTANCE

MEAN 5.39

D-I NN 4.74 ± 0.38

SVR 5.35

GMM 5.39

and “rotate”). On Table 5.6 the results are presented. This final metric compares

algorithms accuracy, obviating other advantages that will be explained later.

The following points highlight some of the benefits and drawbacks of the

studied algorithms for this specific synthetic dataset:

• Arithmetic Mean: Fast and coherent parameter generator. Incremental

version is an extra advantage. However, it lacks a certain degree of flexi-

bility and its results are limited to point clouds which forms a convex set

or a quasi-convex set. That means (in a 2-dimensional space where the

reader can imagine it) that, concave shapes would lead to a point in the

“middle” but empty space, which is non-acceptable.

• Direct-Inverse Neural Network: It has proved to work well, even being

inversely trained. As a parameter generator, it is the most bio-inspired,

which can be also seen in the fact that its results are correct, but not always

the same, similar to a biological organism. Also, the possibility to acti-

vate simultaneously two input neurons allows a seamlessly combination

of action stimulus.

• Support Vector Regressor: This regressor has proved to return acceptable

results. However, it remains uncertain how a regression algorithm would

scale to big training datasets.

• Gaussian Mixture Model: Results are equal to Arithmetic Mean, because
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of the use of a single component, but other parameters are allowed (e.g.

more components, different covariances matrix constraints, tied parame-

ters, etc.). Another interesting capability is the return of a standard devi-

ation model parameter, which, for action parameter generation, can make

easier the generation of points, inside a coherent model, in the form of a

normal distribution.

With all these experiments, we have tried to cover a wide range of possibil-

ities in machine learning algorithms field, assuming each algorithm limitation.

In the final chapter, some general conclusions will be outlined, as well as the

main contributions of this thesis.



Chapter 6
Conclusions

Some conclusions have been outlined during experiments chapter, but here

the most important contributions of this work will be reviewed, as a whole, and

also some future works.

6.1 Contributions of this Work

As a general scope, the bases for future research on robot imagination and

inference of objects and actions using machine learning algorithms have been

set. More specific contributions are:

1. A system to provide robots with feature generalization abilities, first step

for imagination in robots, has been created. Its main characteristics are

the construction of hyperplanes with most representative components of

tagged point clouds. This is achieved with PCA, to obtain principal com-

ponents, and hyperplanes creation, to model the meaning of the words in

the feature space.

2. A system to provide robots with inference capabilities mixed with seman-

tic queries, improving human robot interaction, has been created. This is
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achieved as a search of relevant areas in the feature space, which is ob-

tained as hyperplanes intersection. For objects, the system is able to return

the expected features of an object, simply by its description. For actions,

the algorithms can generate parameters which represent how the environ-

ment is affected by only using as input the action name. For spatial lan-

guage, some basics embodied references can be taught to robots.

3. All the proposals have been tested with synthetic, simulated and real ex-

periments, with acceptable results, externally recognized by the scientific

community through published papers. The algorithms have been applied

to different concepts, like objects, actions and spatial language, in order to

cover a wide range of possibilities.

6.2 Future Directions

The most interesting future work derived from this thesis, is to apply the

knowledge acquired to different fields, maybe with real world closer applica-

tions. Obviously more robotic developments can be added to extent its function-

alities: context detector using ontologies, objects and actions recognition (not

only inference), external and internal robot information mixing in grounding to

see how actions affect to the internal state of the robot or multi-modal informa-

tion (beyond visual). Another pendant work is to generalize actions as feature

trajectories of objects in a continuous tracking experiment. In other words, how

the object changes through time, when an action is performed on it, beyond the

final variation currently measured.

For non robotic developments the author considers that generalization and

inference system, with semantic information, can served to interpret big quanti-

ties of mixed numerical and semantical data. One example would be Social Net-

works, where users share personal information, discuss about news and events,

etc. All this data could be mixed with profile information (e.g. age, gender,
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hours online, etc.) to generalize and categorize users in function of their in-

terests, and also to infer what users group or collectives are interested in certain

topics. A similar idea is developed by Deb Roy’s company Bluefin Labs1. On the

same line, this could be also used for interpreting Big Data, to simplify the pre-

sentation of information to user in charge of extract relevant information. An-

other company, Narrative Science2, is exploiting this idea in conjunction with

natural language generators, in order to create coherent texts from numerical

data.

1https://bluefinlabs.com
2http://narrativescience.com

https://bluefinlabs.com
http://narrativescience.com
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