
Playzones: A robust detector of game boards
for playing visual games with robots

Arnaud Ramey
UC3M – Madrid, Spain

arnaud.a.ramey@gmail.com

Miguel A. Salichs
UC3M – Madrid, Spain
salichs@ing.uc3m.es

Abstract— We present here a generic vision-based method for
detecting board games. This provides a convenient development
tool for playing games with robots.

This method only requires the user to draw a thick black
square,called playzone, around the game board. The algorithm
localizes this zone in the image provided by the camera and
compute a corrected version of the image. The whole process
requires a small computation time.

I. INTRODUCTION

Social robotics aims at making robots partners for ap-
plications such as entertainment, education, and assistance
for daily tasks. Playing with robots is a whole field of
investigation. To make the experience intuitive and enjoyable
for the user, the process of interaction with the robot must
be as straightforward as possible. The ultimate goal would
be that the user could play with the robot in a similar
manner he or she would with another human player. As such,
the modifications and alterations applied to the rules of the
game to make it playable with a robot should be as light as
possible.

However, it is not easy to develop such interaction meth-
ods. The field investigated in this paper is board games. The
colors, shape, size, and more generally the visual appearance
of such games vary a lot between them. However, the devel-
opment of such games for robotics is easier if is supplied a
method for spotting where the game is in the data supplied
by the sensors.

In this paper, we present a solution for a fast vision-
based detection mechanism for board games. The robustness
and efficiency of this solution has been verified through
extensive experimentation. Furthermore, its extensibility has
been proven by applying it for two board games, tic-tac-toe
and hangman.

II. RELATED WORK

The need to locate a zone of interest in an image is one
of the challenges of computer vision.

The classical way of locating a given spot or object
is to use some vision-based features. Some popular ones
are the SIFT and SURF markers ([2]), or more recently
the BRIEF markers ([3]). These markers present a small
computation time, robustness to light conditions and are
scale-independent. However, they are highly bound to the
visual appearance of the zone of interest. That is, there cannot
be some common interface able to locate board games for
different games based on such features.

An approach to tackle this problem is the use of fiducial
markers ([5]; [6]). It consists in a system of patterns added to
the environment. Some vision-based algorithms locate these
visual markers and succeed to estimate their position and
orientation. As such, information about the position in the
environment of the marked objects is obtained. A system
such as ARTag was proven robust to poor lightning condition.
However, the production of these markers requires some
knowledge that the average end-user might not have.

Turning the robot into a board game partner has been
performed already. However, most proposed methods were
ad-hoc solutions, using special devices. For instance, the
checkers playing robot presented in [9] uses a given con-
figuration with a camera mounted on top of the game and a
constant illumination. The board game position is manually
annotated by the user at the beginning of the game. In [11],
the toy robot developed in the project IROMEC, used to help
through games children with special needs, is able to play
some board games, but with a special interface. In [15], it is
made use of a giant checkerboard. The robots, namely Sony
AIBOs, as well as the human players, are used as pieces of
this checkerboard. In [13], a framework for playing games
with AIBOs has been developed. The vision analysis is based
on the fast detection of ellipses and lines, the detected objects
are then projected into a bird view perspective. Such a system
is applied for playing tic-tac-toe. However, the extensibility
of this system to other games is limited.

III. PROBLEM STATEMENT
A. Hardware specifications

”Maggie” is one of the research robots in the Robotics Lab
of the University Carlos III, in Madrid. It is a platform for
studying human-robot interaction, that is the ways to adapt
the robotics potentials to provide to human users new ways of
working and entertaining. An illustration of Maggie is below,
on Figure 1. Here is a summary of the extensive description
of Maggie in [1].

Maggie is designed as a 1.35 meters-tall girl-like doll.
Her base is motorized by two differentially actuated wheels
and a caster wheel on both sides. It is also equipped with
12 bumpers, 12 infrared optical sensors and 12 ultrasound
sensors. Above the base, a laser range finder (Sick LMS 200)
has been added. The upper part of the robot incorporates the
interaction modalities. On top of the platform, there is an
anthropomorphic robot head with an attractive design. The
head has two degrees of freedom, while each arm has one

Fig. 1: The robot Maggie.

degree of liberty. Invisible touch sensors are integrated in
several parts of the body, such as the shoulders, the hands
and the head.

These features are illustrated in Figure 2.

Fig. 2: The hardware equipping Maggie.

Maggie relies on a main computer hidden inside her chest
and controlling all its skills. A tablet PC on her belly allows
information display or user interaction through touch inputs.
For image acquisition, the camera (hidden in the mouth), is a

Logitech QuickCam Pro 9000, with a resolution of 640x480
pixels and a frame rate of 30 fps. A Microsft Kinect is
mounted at the belt, enabling acquisition of depth images.
The integration of this device on Maggie is presented in [10].

B. Software architecture

The architecture in Maggie relies on the AD organization
(Automatic-Deliberative), as described in [1], which handles
skills relying on primitives.

Primitives are in direct communication with the physical
devices of the robot, and send elementary orders to them.
This includes the base actuator, the head actuator, the laser
sensor, the tactile sensors, etc.

A skill is the ability of Maggie to do a specific action.
It relies on the data supplied by the sensors (such as the
touch sensors on the body, the camera, the laser, etc.). The
actions triggered by a skill can be numerous: move a part
of the body, say something, connect to a website, etc. The
fundamental inputs and outputs are made using primitives.
The algorithms that will be presented here were implemented
as skills in the global architecture of Maggie.

The voice generator is provided by professional software
wrapped into the global architecture of Maggie as a skill.
The generated sound is then emitted through loudspeakers
situated in the neck of Maggie. It is possible to communicate
with Maggie using the voice: the sound is relayed through a
headset and understood by Maggie with a speech recognizer
using a grammatical based knowledge.

IV. APPROACH
The idea behind our solution is explained in subsection IV-

A. In subsection IV-B, we will give an overview of how the
algorithm to find the board game is structured.

The algorithm for finding the playzone goes by several
independent steps, each of them using different mathematical
concepts. That is why, in subsection IV-C, subsection IV-D
and subsection IV-E we will explain the detail under each
part of the algorithm.

A. Overview of the method

As seen before, the diversity of the appearance of board
games prevents from using a generic algorithm for finding
them. Some additional information, or markers, has to be
added. That is why we choose to indicate visually the border
of the board game using a thick, black, square-shaped marker
around the game. It then looks like a black squared frame
surrounding the game. 1

The algorithm to find this marker is then vision based.
It will find the black shape in the image, and transform its
content to fit the square shape corresponding to a top (bird)
view.

1 This black square can be produced by the end user through several
means. For instance, it can be drawn, using any black marker, on the sheet
of paper that is used for the board game. This method presents the advantage
of needing very little hardware and not being constrained by the size of the
game. It is also possible to build a black frame of cardboard, wood or any
other rigid material. This then can be reused for different instances of a
game, but constrains the maximal size of the games, that have to fit into
this frame.

B. Description of the algorithm
Let I be the image supplied by the camera. Typically, I is

a VGA image, that is a 640 × 480 image with three layers.
A sample is visible in Figure 3.

Fig. 3: An example of acquired frame I . We want to get a bird’s
view perspective of the game board, marked with the black
thick marker.

At the same time, we will describe the algorithm and
we will provide captures from the effective treatment of an
image by the program.

Our purpose here, as presented in subsection IV-A, is to
find the playzone in I and obtain a rectified version of it in
a normalized image PZ. We want the image PZ to be of
size (W,H) where W,H ∈ N are values chosen by the user,
for instance W = 300 and H = 300.

1) First of all we transform the image I to a gray-scale
version Ig ([14]).

2) Then, we threshold Ig with into a monochrome image
It. We use an adaptive threshold, as described in [8].
This technique uses a variable threshold for each pixel,
depending on the neighbor colors. As such, it allows
stressing the local contrast generated by the black
shape of the marker. This is more robust to light
conditions than a simple threshold. A sample is in
Figure 4.

Fig. 4: It, the acquired frame, thresholded

3) We get all the connected components of It, using
the disjoint-sets data structure and union-find algorithm
explained in subsection IV-C, as shown on Figure 5.

4) We select the best connected component P of It,
using the MHD distance explained in subsection IV-
D. A sample is visible in Figure 6.

5) We get the corners of this component. We use some
algorithms presented in subsection IV-E. Cf Figure 7.

Fig. 5: Illustration of all the connected components of It: each
one is of a different color. However, as there are many
components in this image, and the image is only 256 colors,
it is possible that distinct components have the same color.
The components are actually stored as vectors of points
(corresponding to the non-black pixels).

Fig. 6: Illustration of P , the best kept component of the thresholded
image It.

Fig. 7: The outer corners obtained through geometrical analysis.

6) We find the inner corners of the playzone. The
playzone is shaped as a black squared frame. This is
then done by evaluating the average thickness of the
black pixels on the four sides (north, south, east, west)
of the quadrilateral shape found in the previous step.
Cf Figure 8.

7) We compute the homography matching
these four corners in I to the four corners
(0, 0); (0, H); (W,H); (W, 0) of the normalized
square image P .
To make sure that each corner of I is associated to the
good one of P , we previously sort these four corners
of I according to the angle they form with the center
of the component.
The resulting homography is a 3 × 3 real matrix that

Fig. 8: An illustration of the process to obtain the inner corners of
the playzone. The outer shape of the playzone is swept
by an horizontal scan-line which evaluates the median
thickness of the black border on the left and right border.
A vertical scan-line gives the up and down thicknesses.
The upper left inner corner, for instance, is located at the
intersection of the average left border and upper one. On
this illustration, the horizontal scan-lines are represented.
Their color goes from red, for the first scan-line, to blue,
for the last one.

we will name H (further explanation, see [12]).
8) We rectify the image I , by applying the homography

matrix H: the result is our target image PZ.
We also apply a 180o rotation to get the image from
the player point of view. For instance, if, later, Maggie
refers to the left of the board, it will be the left side of
the board for the player, which is much more natural.
We finally obtain a top view of the board game, without
the marker: this was our goal. A sample is visible in
Figure 9.

Fig. 9: Final image PZ, rectified and cropped. Note the 180o

rotation.

Now comes some additional information about some key
steps of the algorithm.

C. Finding components: Union Find using the Disjoint-Sets
data structure

We consider a set of points P =
{
p = (x, y) ∈ N2

}
∈

N2N. In fact, these points represent the non-null points of an
image.

A connected component of P is a subset C of P points
such as ∀c ∈ C, ∃c̃ ∈ C, ‖c− c̃‖L1

= max(| c.x − c̃.x |, |
c.y − c̃.y |) = 1.

That corresponds to the usual definition of connected com-
ponents for non-oriented graphs, supposing that two points

at an Euclidean distance of 1 on P are two linked nodes in
the corresponding graph. This equivalence is illustrated in
Figure 10.

Fig. 10: Illustration of the correspondence between connected com-
ponents in images and graphs.

Now, we look for a quick way to find every connected
component of P . More accurately, it is to obtain a partition
{Pi, 1 ≤ i ≤ n} of P , where n is the number of connected
components of P and ∀i ∈ [1; n], Pi is a connected
component. This is illustrated in Figure 11. There are many
ways to make it, we chose to use the Union-Find algorithm
with the Disjoint-Sets data structure.

Fig. 11: The goal of this part is to extract the components. Above,
the original image: each non-black point represents a point
of P . Under are the connected components {Pi}. Each
component has been drawn in a different color.

a) Disjoint sets: The disjoint-sets data structure was
first presented in [7] in 1964. A set is a structure of tree,
in which each node has a reference to his father (while it is
references to his sons in the classic tree structure). A disjoint-
set forest is a list of sets.

b) Union Find: A union-find algorithm supplies a
disjoint-set forest two functions: union and find. The
former allows the fusion of two sets, while the latter finds the
root of the tree in which is located the supplied argument.

c) The algorithm: we can give a pseudo-code version
of the algorithm.

proc FindComponents(List of point P, int width, int height) ≡
computing the disjoint set

foreach p = (x, y) in P ; do
createNode (x, y)

od
for y := 0 to height step 1 do

for x := 0 to width step 1 do
Node curr = Node (x, y);
Node up = Node (x, y − 1);
Node left = Node (x− 1, y);
if x > 0 ∧ y > 0 ∧ exists up ∧ exists left

then Union(up, curr);
Union(left, curr);

else if x > 0 ∧ exists left
then Union(left, curr); fi

else if y > 0 ∧ exists up
then Union(up, curr); fi

fi
od

od
now create the lists

create A, an array of size width× height of blank point lists;
for y := 0 to height step 1 do

for x := 0 to width step 1 do
Node curr = Node (x, y);
add (x, y) to A[curr.father];

od
od

now collect the results
create R, a list of list of points;
for y := 0 to height step 1 do

for x := 0 to width step 1 do
if A[y ∗ width+ x] not empty

then add A[y ∗ width+ x] to R; fi
od

od
return R;

.

D. Recognizing the best one: Modified Hausdorff Distances

Let us consider a list of connected components as CC ={
C ∈ N2N} ∈ (N2N)N, obtained for instance with the

method described in subsection IV-C. We also consider a
model component M =

{
m = (x, y) ∈ N2

}
∈ N2N.

The objective in this section is to select the component of
CC which matches the best with the shape of M .

First, we re-normalize all the components of CC. The
reason of doing so is that we cannot get any prior infor-
mation about the size of the playing zone. From now, the
components of CC are considered as normalized.

We have now to compare a normalized set of points, M , to
every normalized set of points of CC. The idea is to compute
a distance between M and every component CC of C, and
to keep the member of C which realize the best result.

In [4] is made a comparison between the different ways of
computing a distance between two sets of points. According
to these findings, we use the distance D22, defined as:

∀A,B ∈ R2N,
D22(A,B) = maxd6(A,B), d6(B,A)

with d6(A,B) =
1

absA

∑
a∈A

d(a,B)

and d(a,B) = min
b∈B
‖a− b‖

Using this distance, we can now iteratively compute the

distance of each component of C and keep only the best.
It is possible to add a maximum threshold value to avoid
returning a component when the playzone is nowhere to be
found on the screen.

In pseudo-code, such an algorithm would be written:

proc d6(A,B) ≡
r = 0;
foreach a in A; do

dab = INFINITY ;
foreach b in B; do

dab = min(a− b, dab); od
r = r + dab;

od
r = r/ | A |;
return r;

.
proc d22(A,B) ≡

return max(d6(A,B), d6(B,A));
.
proc selectComponent(CC,M) ≡

best = INFINITY ;
foreach C in CC; do

if d22(C,M) < best
then best = d22(C,M);

rep = C;
fi

od
return rep;

.

d) Examples: Let us provide two examples to show the
capacities of this method.

Example 1: Table I shows a few test images and their dis-
tances with the model image, obtained with our comparator.

TABLE I: Results of the image comparator on an example. Above,
the model image of our comparator. Below, the test
images and their distance.

image
distance 0.608 3.605 16.866 3.863

Image number 1, which is the same as the model with a
scaling, gets the most little distance. 2

Image number 3, very different from the model, gets a higher
mark and is immediately discarded by the comparator.

Example 2: we apply the same method to a real input
image obtained from the robot camera. The model image is
a monochrome playzone shape. The results are gathered in
Table II. We can see that the correct corresponding connected
component gets the lowest mark from the comparator.

2We could wonder why we do not get a distance of zero with this image.
The reason is simple: the scaling of the image did not preserve the ratio
(border thickness) / (image width). Therefore, the rescaled image has a
thicker border, and so some points are distant from the points of the model
image.

TABLE II: Results of the image comparator on a real image.
Above on the left, the model image of our comparator:
the shape of the playzone.
Above on the right, the thresholded input image, where
each component is drawn with a different color.
Below, some connected components and their distance.

image
distance 0.85 1.52 1.99 2.12 3.81

E. Finding the corners of a connected component

We consider a set of points P representing a connected
component, according to the definition seen in subsection IV-
C.

We know this component is the representation of a square
with a thick border (our playzone), on which was applied a
homography (distortion due to the projection matrix of the
camera).

The corners detection can be obtained through several
different algorithms in our implementation. These are ge-
ometric algorithms, most of them based on the analysis
of the function that associates a direction in [0, 2π[to the
furthest point of the center of the connected component in
that direction.

V. EXPERIMENTAL RESULTS

The previously presented method has been implemented
on the robot Maggie seen in subsection III-A. It relies on
the AD architecture seen in subsection III-B.

Samples of the algorithm applied to a tic-tac-toe game and
a hamgman game is visible in Figure 12. and Figure 13 (the
latter being visible at the end of the article).

Fig. 12: A sample image of a human player using the playzone
mechanism for interacting with Maggie.

A database of around 70 sample images, provided with
the camera mounted on the robot, has been used to measure
the performances of the algorithm. These images are regular

640×480, 3-channels images. The pictures present different
point of views and lighting conditions, some of them show
a clean background while others are full of objects. Some
pictures are challenging enough so as to reaching a 100%
success rate over the whole database is not reachable.

Each image was first manually annotated. The user speci-
fies via a graphical user interface the correct position of the
four corners of the playzone for each image.

A. Time performance
The database previously presented was evaluated on dif-

ferent CPUs.
The average times of detection over the whole database is

visible in Figure 14.
For modern desktop PC or laptops, the average computa-

tion time is less than 50 milliseconds. This allows the use of
the playzone mechanism for real-time applications. without
any further modifications.

For CPUs similar to the ones found on embedded comput-
ers, however, the computation time is over 100 milliseconds.
This is unfortunately not fast enough for a real time detection
without lagging.

However, such a processing time is satisfying if used
with turn-to-turn games. For instance, for a checkers game
detecting the playzone in a fraction of seconds does not
present an handicap for the interaction experience of the
player.

Another bypass could be to lower the resolution of the
input image. As a drawback, however, the resolution of the
final corrected playzone content is also reduced. This can
trigger problems for games with a high level of details.

A detail of the costs of each step is presented in Figure 15
(visible at the end of the article). We can notice the most
time-costly steps are the computation of the connected com-
ponent and the final rectification of the image. These two
steps almost represent two thirds of the total computation
time.

B. Noise resistance
On each image of the database, we apply a noise of given

amplitude. That is, we blend this image with a uniform noise
image with a given transparency index.

For amplitude of 0, the image is not altered at all, while
1 is equivalent to a purely noised image. This is shown on
Figure 16 (visible at the end of the article).

Each image of the set is submitted to the playzone detector,
and the found location of the playzone is compared with
the manually annotated one. We consider that a playzone is
correctly detected if four corners are found and the distance
of each corner to the four correct corners is less than 5% of
the longest vertex of the correct playzone.

The results are visible in Figure 17. Note that for a noise
greater than 85%, the detection is not performed successfully
anymore. We can however add that the image is hardly
understandable even for an human eye.

The successful detections rate drops under 80 % of its
peak value (obtained for images with no noises) on our image
database for a noise superior to 50 %.

0

20

40

60

80

100

120

140

160

180

ti
m

e
 (

m
s)

AMD Athlon64 DualCore 5200+ @ 3Ghz (desktop PC)
Intel Core2 P8600 DualCore @ 2.4 Ghz (laptop)
Intel Core2 T5500 DualCore @ 1.66 Ghz (laptop)
Intel Atom DualCore N550 @1.5 Ghz (EeePC)
Intel Pentium M @1 Ghz (tablet)
Intel Atom Z530 @ 1.6 Ghz (embedded PC)

Fig. 14: The average detection time for the database of images.
The images are of size 640× 480.

0 0.2 0.4 0.6 0.8 1

Noise factor

0

20

40

60

80

100

S
u
cc

e
ss

 r
a
te

Fig. 17: Effect of a noise applied to the input images database.
As the noise applied is randomly generated, the obtained
curve is not continuous.

VI. CONCLUSIONS AND FUTURE WORKS

The presented method allows having a fast and robust
detector for board games. Thanks to the use of the additional
marker, we manage to make abstraction of the diversity of
appearances that such a game can present.

However, the time performance does not allow a real-time
detection of the playzone for less powerful computers such as

embedded computers. We are currently addressing this issue
using some tracking algorithms. Furthermore, the presented
method does not cope well with partial occlusions of the
playzone, for instance by the human user arm. The tracking
also aims at solving this issue by searching partial playzones
in the vicinity of the last detected position.

Some further optimization is also ongoing, especially
concerning one of the slowest steps, the computation of the
connected components of the image.

An integration of the whole playzone module is currently
ongoing with ROS, the Robot Operating System 3.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the funds provided by
the Spanish Government through the projects called Peer to
Peer Robot- Human Interaction (R2H), of MEC (Ministry
of Science and Education), and A New Approach to Social
Robotics (AROS), of MICINN (Ministry of Science and
Innovation).

REFERENCES

[1] R. BARBER AND M. SALICHS, A new human based architecture for
intelligent autonomous robots, Elsevier, 2002, pp. 85–90.

[2] H. BAY, A. ESS, T. TUYTELAARS, AND L. VAN GOOL, Speeded-
up robust features (surf), Comput. Vis. Image Underst., 110 (2008),
pp. 346–359.

[3] M. CALONDER, V. LEPETIT, C. STRECHA, AND P. FUA, Brief : Bi-
nary robust independent elementary features, Computer, 6314 (2010),
pp. 778–792.

[4] M.-P. DUBUISSON AND A. JAIN, A modified hausdorff distance for
object matching, in Pattern Recognition, 1994. Vol. 1 - Conference A:
Computer Vision Image Processing., Proceedings of the 12th IAPR
International Conference on, vol. 1, Oct. 1994, pp. 566 –568 vol.1.

[5] M. FIALA, Artag, a fiducial marker system using digital techniques,
Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on, 2 (2005), pp. 590–596.

[6] M. FIALA, Comparing artag and artoolkit plus fiducial marker
systems, in Haptic Audio Visual Environments and their Applications,
2005. IEEE International Workshop on, oct. 2005, p. 6 pp.

[7] B. A. GALLER AND M. J. FISHER, An improved equivalence algo-
rithm, Commun. ACM, 7 (1964), pp. 301–303.

[8] A. JAIN, A fast karhunen-loeve transform for digital restoration
of images degraded by white and colored noise, Computers, IEEE
Transactions on, C-26 (1977), pp. 560 –571.

[9] D. LEWIS AND D. G. BAILEY, A checkers playing robot, Massey
University, Palmerston North, NZ, November 15-16 2004.

[10] A. RAMEY, V. GONZÁLEZ-PACHECO, AND M. A. SALICHS, Inte-
gration of a low-cost rgb-d sensor in a social robot for gesture
recognition, in Proceedings of the 6th international conference on
Human-robot interaction, HRI ’11, New York, NY, USA, 2011, ACM,
pp. 229–230.

[11] B. ROBINS, E. FERRARI, AND K. DAUTENHAHN, Developing sce-
narios for robot assisted play, in Robot and Human Interactive
Communication, 2008. RO-MAN 2008. The 17th IEEE International
Symposium on, aug. 2008, pp. 180 –186.

[12] J. SEMPLE AND G. KNEEBONE, Algebraic projective geometry, Ox-
ford classic texts in the physical sciences, Clarendon Press, 1998.

[13] E. TIRA-THOMPSON, N. HALELAMIEN, J. WALES, AND D. S.
TOURETZKY, Tekkotsu: Cognitive robotics on the Sony AIBO, Cite-
seer, 2004.

[14] W. WHARTON AND D. HOWORTH, Principles of Television Reception,
Pitman Paperbacks Series, Pitman Publishing, 1971.

[15] M. XIN AND E. SHARLIN, Exploring human-robot interaction through
telepresence board games, Lecture Notes in Computer Science, (2006),
pp. 249 – 261.

3http://ros.org

http://ros.org

Fig. 13: Application of the playzone method to two popular board games: tic-tac-toe and hangman. The image analysis of the board game
is much easier in the corrected, cropped image than in the raw input one.

threshold
image

numerote
components

compare
components

get corners remove border warp matrix rectif image
0

10

20

30

40

50

60

70

ti
m

e
 (

m
s)

AMD Athlon64 DualCore 5200+ @ 3Ghz (desktop PC) Intel Core2 P8600 DualCore @ 2.4 Ghz (laptop)
Intel Core2 T5500 DualCore @ 1.66 Ghz (laptop) Intel Atom DualCore N550 @1.5 Ghz (EeePC)
Intel Pentium M @1 Ghz (tablet) Intel Atom Z530 @ 1.6 Ghz (embedded PC)

Fig. 15: The times costs for each step, in milliseconds. The total detection and rectification time corresponds to the sum of the times for
each step.

Fig. 16: Effects of the noise factor on a sample image. The first noised picture corresponds to a 50% noise, the second to a 75% noise.
With such a noise, the playzone becomes hard to recognize even for the human eye.

	INTRODUCTION
	RELATED WORK
	PROBLEM STATEMENT
	Hardware specifications
	Software architecture

	APPROACH
	Overview of the method
	Description of the algorithm
	Finding components: Union Find using the Disjoint-Sets data structure
	Recognizing the best one: Modified Hausdorff Distances
	Finding the corners of a connected component

	EXPERIMENTAL RESULTS
	Time performance
	Noise resistance

	CONCLUSIONS AND FUTURE WORKS
	ACKNOWLEDGMENTS
	References

