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ABSTRACT
An objective of natural Human-Robot Interaction (HRI) is
to enable humans to communicate with robots in the same
manner humans do between themselves. This includes the
use of natural gestures to support and expand the informa-
tion that is exchanged in the spoken language. To achieve
that, robots need robust gesture recognition systems to de-
tect the non-verbal information that is sent to them by the
human gestures. Traditional gesture recognition systems
highly depend on the light conditions and often require a
training process before they can be used. We have inte-
grated a low-cost commercial RGB-D (Red Green Blue -
Depth) sensor in a social robot to allow it to recognise dy-
namic gestures by tracking a skeleton model of the subject
and coding the temporal signature of the gestures in a FSM
(Finite State Machine). The vision system is independent of
low light conditions and does not require a training process.

Categories and Subject Descriptors
I.2.9 [Robotics]: Sensors; I.4.8 [Scene analysis]: Tracking

General Terms
Algorithms, Design, Experimentation
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1. INTRODUCTION
Natural Human-Robot Interaction (HRI) includes non-

verbal communication. One of its fields is gesture commu-
nication. In order to detect gestures performed by humans,
robots use gesture recognition systems. Several works have
been carried out to allow robots “seeing” their environment
[1]. One of the most important factors of robot-embarked
gesture recognition systems is the need of low-cost, robust
sensors to acquire visual data of the environment. At the
same time, the data provided by the sensor must be analysed
and interpreted in real time by the robot. The classical ap-
proach to gesture recognition is based on 2D images analysis
and requires high computation time or long training phases.
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Using image data implies the application of complex sta-
tistical models for recognition, which are difficult to use in
practical applications [3].

We use a low-cost RGB-D camera to track a human per-
forming gestures by extracting and tracking a model of his
skeleton. It enables the identification of dynamic hand ges-
tures regardless the relative orientation of the subject to the
camera. The gestures are modelled using a Finite State Ma-
chine (FSM) and interpreted by the social robot Maggie [2]
as commands sent by the subject. Our FSM is similar to
[4], but additionally, and thanks to the 3D skeleton model,
we added a third dimension to the gesture space. Other
works used a 3D skeleton model to track hand gestures with
promising results [3] to control video games. Our approach
mixed both works seizing the capabilities of the RGB-D sen-
sor and integrated them in the robotic platform.

2. DESCRIPTION OF THE SYSTEM
The gesture recognition system is composed of several

modules.The vision system of the robot is the Microsoft’s
Kinect time-of-flight camera, an RGB-D sensor that mixes
standard RGB images with depth information provided by
an Infra-Red (IR) sensor. Its price is between 5 and 10 times
lower than usual time-of-flight cameras while its precision
meets gesture recognition requirements. The sensor data
can be accessed and controlled by the open-source openNI
framework (http://openni.org/) via the NITE middleware
(http://www.primesense.com/). The latter provides real-
time tracking of the 3D skeleton model of the subject using
the depth information of the sensor. We use this 3D skele-
ton model to extract the temporal signature of hand ges-
tures using an FSM which codes the direction of the hand
in different states. During the execution of a gesture, and
while the hand is changing its trajectory, a stream of state
changes is sent to a template-based classifier which decides
which gesture is being performed by the human.

3. 3D GESTURE IDENTIFICATION

3.1 Extraction of the Body Features
The RGB-D sensor calculates the distance at which the

body is located. With this information, the API is capable
of detecting human shapes and build a skeleton model of
the human who is being detected. Moreover, the API tracks
the position and orientation parameters of all the joints of
the skeleton model in real time. This information enables
us to track down the hands of the subject in real time. The
API provides the orientation of the body from the camera



reference coordinates. To monitor the gestures it is easier,
however, to transform it to the subject coordinates system.
This is done through computing the transformation matrix
to the user coordinates using the position of both his shoul-
ders, neck and head. This allows us to capture his gestures
even if the human is not directly orientated to the sensor.

3.2 Movement Extraction and Representation
Once we have found the human reference system, we track

the hand motion in the following way. We consider a vector
Ve defined as Ve = (xe−xs, ye−ys, ze−zs) where (xe, ye, ze)
and (xs, ys, zs) are the coordinates of the end effector and
the shoulder of the human respectively. While the gesture
is being executed, Ve varies. We extract the velocity com-
ponents (ẋ, ẏ, ż) of Ve by MVe

= ( δx
δt
, δy

δt
, δz
δt
). By comparing

the components of MVe
, we determine the instantaneous di-

rection of the hand. If its velocity in this direction is above
a given value, we consider a motion has just been performed
in this direction.

We codify this motion as a state of an FSM. We have
chosen the following states to codify the motion properties
of the hand: Left (L) and Right (R) for the ẋ component;
Up (U) and Down (D) for ẏ; Back (B) and Forward (F)
for ż; and Still (S) which means no motion in any of the
components. Hence, a gesture is a finite specific sequence of
states. Fig. 1 depicts an example of this FSM.

Figure 1: Example of the used FSM. The state rep-

resent ”hello” gesture that involves waving the hand.

The numbers indicate the state changing sequence.

3.3 Gesture Classification
Gesture classification is carried out by template match-

ing. We define a pool of gestures which can be identified by
the system using a search tree. Each node of the tree corre-
sponds to one possible state of the FSM. While the gesture
tracking system is feeding the classifier with a stream of
states, the classifier navigates through the branches of tree.
If the tracker sends a sequence of states that corresponds
with an entire branch of the tree, the classifier will arrive to
the leaf of this branch. When this happens, it triggers an
event stored in this leaf and specific to the gesture which
has been detected. Events are one of the key communica-
tion mechanisms of the software architecture of the robot
[2]. One of their possible uses is to make the robot perform
certain tasks. For example, if the vision system of the robot
detects a gesture indicating it to come closer, the classifier
will trigger an event which activates the robot movements
in the direction of the user.

4. RESULTS AND CONCLUSIONS
We presented the integration of an RGB-D sensor in a so-

cial robotic platform allowing it to recognise dynamic hand
gestures in 3D. Our system consists in the exploitation of the
sensor capabilities of building 3D human skeleton models in
real time. With the skeleton model we track the temporal
variations of hand gestures and we model them in an FSM.
The states of the FSM correspond to the 3D hand directions
of the gesture. While the gesture is being performed by the
human, the vision system, feeds a template-based classifier
with a stream of the FSM’s states. When the classifier de-
tects the gesture, an event is sent notifying the robot. Our
system does not require a training phase.

Our robot relies on a dual core 1,6 GHz micro-processor
laptop. This binds us to use low CPU consumption algo-
rithms, which led us to discard classical approaches to ges-
ture recognition. The NITE middlewarewe provides an ac-
tual framerate of 25 FPS. Additionally, our recognition sys-
tem is light enough to maintain this framerate and requires a
reasonable CPU workload. Hence, it proves to be a real-time
solution for gesture recognition in a modest platform.

Because of the IR depth sensor, the system is indepen-
dent of low light conditions. Furthermore, by building the
3D skeleton of the subject, gestures can be executed regard-
less the orientation of the subject. The main condition is
that the hand must be visible by the vision device during
most of the gesture. Future work involves expanding the
pool of states of the FSM in order to be able to recognise
more gestures and mix them with other natural communica-
tion methods such as natural spoken language. Additionally,
our gesture recognition system tracks the hand gestures, but
since we use a 3D model of the skeleton, it is possible to vir-
tually track any other part of the body. Future revisions of
our system will point to that direction.
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