Extracción de modelos 3D basado en CNN y nubes de puntos para mapeado
XLIV Jornadas de Automática
Zaragoza/Spain
2023-09-06

La obtención de modelos 3D precisos es importante en robótica. Una amplia gama de aplicaciones como mapear objetos requieren de un conocimiento preciso de su forma y disposición. Sin embargo, puede ser difícil lograr una alta precisión, especialmente cuando se trata de datos reales que incluyen factores como oclusiones, desorden y ruido, influyendo en el resultado final. En el estado del arte, se combina deep learning en imágenes 2D con segmentación de nubes de puntos. Sin embargo, los estudios comparativos al respecto son muy limitados. En este trabajo, implementamos y comparamos varios métodos existentes, aplicando mejoras para que estos funcionen correctamente en entornos complejos. Analizamos cuatro formas de obtener modelos 3D, tres de ellos basados en detección por bounding box y un cuarto basado en la obtención de una máscara mediante instance segmentation. Se realiza una comparación tanto cualitativa como cuantitativa, presentando las fortalezas y los límites de cada método, además de un ejemplo práctico de uso.

CONGRESS BOOK
ISBN
Editorial
First page
Last page
Year